
1. Virtual Exchange
Author: Petteri Koponen

The VE (Virtual Exchange) module defines classes for control and management
operations of a cluster of switches. A cluster consists of a number of interconnected
exchanges: the simplest cluster is a single exchange. The VE provides an interface
independent of the structure of the underlying cluster - a cluster of exchanges is seen as
one (virtual) exchange. A reader must note that this chaper describes the VE
architere and design - the current implementation (described at the end of the
chapter) does not support many of the features mentioned.

�����������
	����������	�����

The VE is planned to consists of a number of “dumb” exchanges, i.e. ATM
(Asynchronous Transfer Mode) switches. The switches can be either VTT’s (Valtion
Teknillinen Tutkimuskeskus) FSRs (Frame Synchronized Ring) or they can come from
various vendors. At least in theory, the only requirement of the VE architecture is that the
switches implement some open protocol for control and management - this is why they
are called “dumb”.

In the first phase, a single external workstation controls the switches. The workstation is
directly connected to one of the switches with ATM. The workstation must be able to
open at least one control and management connection to each of the switches in the VE.
These connections are used for e.g. establishing/releasing connections across a single
switch and requesting/receiving statistics.

In the VE architecture, the switches only switch cells, i.e. they do not process signalling
messages. Also, they hold only a limited amount of information about state of the
connections. This is achieved by routing signalling channels from/to external sources
to/from the workstation, which handles all the signalling and stores most of the state
information of the switches. The signalling messages pass through the switches in the VE
transparently, i.e. they are seen as ordinary user data.

An example VE architecture is illustrated in figure 1. The VE consists of four
interconnected switches and a workstation, which is called the switch controller. Multiple
external terminals and switches are connected to the VE. The switch controller needs to
establish control and management connections to switches A - D. When these
connections, or at least the relevant part of them, are established, the switch controller
commands the switches to set up signalling connections through the VE between itself
and the external sources (terminals and switches). These procedures are explained later in
detail.

switch
A

TE B1

switch
controller

switch
B

switch
C

switch
D

TE B2

TE B3
TE D2

TE A1

TE A2

switch
C1

switch
D1

link 1

link 2

link 3

link 5link 4

port 2

port 1

port 4

port 3

port 8

port 5

port 7

port 6

Figure 1 Virtual Exchange

�������������������! "����#���

This subchapter covers VE’s architecture, which has more features than VE’s current
implementation. Please refer to the last subchapters if you want to know what has been
implemented up to now.

1.2.1 2.1 Control and management protocols
As mentioned earlier, the switches must implement some general purprose protocol for
external management and control. Currently, two protocols have been considered: VAPI
(VTT’s API for the FSR) and Ipsilon’s GSMP (General Switch Management Protocol).

VAPI. The VTT is implementing an API for the FSR. As opposed to earlier plans, VAPI
is going to exist in an external workstation instead of an embedded PC. VAPI consists of
functions for establishing, modifying and releasing both point-to-point and point-to-
multipoint connections. The workstation is connected to the FSR with ATM. VAPI
reservers one or two channels for its use. The FSR’s interface card (IC) to which the
workstation is controlled differs slightly from the other ICs, but all the ICs could be
upgraded, so that the management and control messages would not have to pass through
one pre-determined IC. This feature would make the VE more fault tolerant (this will be
discussed later).

The current VAPI implementation runs on Linux. It uses Linux’s socket-based ATM API
to pass AAL-0 (ATM Adaptation Layer) PDUs (Protocol Data Unit) between the
workstation and the FSR. VAPI uses AAL-0 PDUs as its control messages and the
messages may pass through several FSRs, which may naturally take some time or the
messages may be lost. These losses are not detected, because currently the VAPI
functions do not wait for confirmation from the FSR, but return immediately after

sending the AAL-0 command message to the switch. VAPI is planned to be upgraded to
support confirmations, but at least the first version does not do that.

GSMP. Developed by Ipsilon, GSMP has quite much the some functionality as VAPI
has. It has been described in detail in RFC 1987, which has been released in August
1996. It seems that GSMP is gaining wide industrial acceptance and it has already been
implemented in e.g. some of Hitachi’s and Digital’s ATM switches. GSMP does not
define an interface as VAPI does - instead, it is a simple protocol with a few PDUs and a
state machine. In principle, the protocol consists of request and corresponding responses.
Also, the switch can inform the workstation of asynchronous events such as a link going
down. The GSMP messages are variable length and are encapsulated directly in an AAL-
5 PDUs with an LLC/SNAP header. The default virtual channel for LLC/SNAP
encapsulated messages is VPI = 0, VCI = 15. GSMP can be used to control a number of
switches by instantiating it multiple times.

It is not known, what kind of a protocol VAPI uses to pass messages between the
workstation and the FSR. Because VAPI’s and GSMP’s basic features are very similar, it
should be considered, if VAPI could use native GSMP or its enhanced superset to control
the switch. This would be commercially a very sound solution - the FSR could be used as
an IP switch with Ipsilon’s IP software or the needed software could be implemented by
some other organization.

1.2.2 2.2 Control and management connections
To control a switch with either VAPI or GSMP, the switch controller must be able to
send/receive AAL-0/AAL-5 PDUs to/from it. The case is very simple when the controller
is connected to the switch with a physical link: the controller and the switch must
send/receive PDUs to/from a pre-determined channel(s) (VAPI’s control channel(s) or
GSMP’s VPI = 0, VCI = 15). If the VE consists of multiple switches, the case becomes
more complicated: the controller has to set up the connections in stages. In figure 1, if the
controller wants to build a control and management connection to switch B, if first has to
ask switch a (using the pre-determined channel(s)) to establish a VPI/VCI pair between
itself and switch A, and then to connect this connection to switch B’s pre-determined
control channel. The switch C could then be connected either via switch B or switch A
(and after this, switch D via switch C). The biggest problem with this scheme comes from
the bidirectionality of the control channels - how can e.g. switch A know that PDUs
coming from switch B’s control channel are not ment to itself, but must be routed to the
switch controller. This problem does not exist if there is only one intelligent IC in a FSR,
but in this case, only one route can be used to establish a control channel to a switch,
which makes the system more sensitive to link failures. This problem must be discussed
with the VTT.

In case that multiple control connections could be established between the controller and
a single switch, procedures similar to MTP3’s (Message Transfer Part 3) changeover and
changeback procedures could be applied, i.e. the control messages could be re-routed in
case of link failures etc. For example, if a primary control connection between the

controller and switch C would pass through switch A and the secondary connection
through switches A and B, failure of switch B would automatically activate the secondary
and deactivate the primary connection.

According to latest news from the VTT, a native FSR cluster (cluster consisting solely of
FSRs) could be controlled through VAPI without establishing the control channels. This
would be achieved by using FSR’s ring addresses in addition to normal port addresses in
the control messages. A ring represents here one FSR switching fabric. This means that
also distant switches could be controlled with simple API function calls. This feature has
not been implemented in the FSR (or VAPI) until now.

1.2.3 2.3 Signalling
The VE can accept signalling from external switches and terminals when the needed
control and signalling connections have been set up. The signalling connections are
established through possibly multiple switches between the external sources and the
switch controller. For example, when the controller wants to set up a signalling
connection to switch C1 through switch B, it orders switch A to connect some VPI/VCI
pair in link 1 to another pair in link 2. Then it orders switch B to connect the previous
VPI/VCI pair in link 2 to some pair in link 4. Finally, it commands switch C to connect
the previous pair in link 4 to the default signalling channel (VPI = 0, VCI = 5) in port 5,
and the signalling connection is fully established. The connection can be released in
reverse order.

The signalling messages are encapsulated in AAL-5 CPCS PDUs. The NIC (Network
Interface Card) of the Linux-based switch controller can handle the necessary
segmentation and reassembly functions, which makes the implementation more efficient
and spares resources of the signalling software. The switch controller is not limited to
map only signalling connections - it can connect to any any VPI/VCI pair of any exterior
port of the VE (ports 1 - 8 in figure 1). This allows e.g. data connections or GSMP
connections to be established between the controller and some external source.

$�%�&�&('�)+*-,�.�)/.�0�1�2�1�3�4�065�.�1�2"3�,�7

One of the goals of the VE architecture is that signalling software is independent of the
topology of the cluster. Due to this, the VE interface must be very general, which
propably makes the implementation rather complex. As mentioned in the beginning, user
of the VE module sees the VE as a single ATM switch with a great number of ports
(ports 1 - 8 in the simplified example of figure 1). This implies that VE’s internal control
and signalling connections and resources (like available bandwidth of links or switches)
must be managed under the VE interface, i.e. transparently to the ATM signalling and
management protocols.

The VE interface is similar to VAPI or GSMP. It provides basic functions for
establishing, modifying and releasing connections (point-to-point or point-to-multipoint)
and for different management and configuration operations like configuring ports or

requesting status of a switch. The biggest problem is that these operations take a variable
amount of time, especially when applied to a switch on the edge of a large cluster - the
tasks must either run on a process/thread of their own (and block while waiting for the
response) or the functions must be implemented by using state machines (which go to a
waiting state when the request is sent and perhaps use timers to notify if the request has
failed). This problem is partially solved when using VAPI’s current version, which does
not support confirmations: at least the time-critical connection management functions do
not block. However, the VE architecture has been designed to be asynchronous meaning
that it supports asynchronous notifications of successful or failed operations.

The VE interface controls the switches of the cluster through the Fabric interface. The
VE uses Fabric objects to establish/modify/release physical, real connections (as opposed
to logical connections accross the cluster) accross individual switches, to ask status of
one switch, etc. This version of the paper does not discuss much how the VE internally
establishes the connections. The VE must order each switch along the connections route
to establish a connection. It also has to check if the connection setup of each switch was
successful and either to return a success indicator or to notify the client with some other
means. This procedure requires further study.

The VE interface will be used by several clients, e.g. Call Control and SAAL (Signalling
AAL). It provides an interface of a single switching fabric. Clients can e.g. create
connections (veVE::EstablishVC() method) accross this (virtual) fabric. They can
also request status information from the VE, configure its outer ports, etc. The client does
not see concrete fabric objects, connections or interior ports. Interior ports mean here
ports that connect switches of the cluster to each other. Outerior ports connect the cluster
to workstations and switches outside the cluster. What the clients see are veVE object
(implemented according to Singleton design pattern), veVCProxy objects it has created
and the outerior ports of the cluster (or the VE), i.e. vePortProxy objects. The VE
module is designed so that clients only need to include ve.h file that contains veVE class
definition.

8�9�:�:(;�<�=">�?
@A<�BDC�E+F-G�<�E6<"H
>�<"I

The implementation documented here is minimal and supports the smallest set of
functions that were needed in the first prototype of the TOVE switch. Features include:

• Support for a single FSR or Back-to-Back fabric. These simplifies the operations
substantially but does not preclude future extensions.

• Setup/teardown of point-to-point VCs. No VPs or point-to-multipoint VCs are
supported, although these features could be very easily added in the VE (the current
VAPI supports them, too).

• Automatic allocation (when required) mechanism for VPI/VCI pairs.

1.4.1 4.1 How to use the VE?
As mentioned before, ve.h is the only class the user needs to include to use the VE. All
the called methods belong to the veVE class or the classes (actually objects) it returns.
The first thing to do is always the initialization.

• Initializing the VE. The VE is given an object that contains a reference to the
configuration file. The VE delegates interperation of the configuration information to
individual fabrics. See switch.conf file for details about the configuration options.
The initialization must be done only once!

• Obtaining proxies to ports. Ports must be referred by proxies to them. The clients
can not access the port objects directly.

• Establishing a point-to-point VC. The current version of the VE requires incoming
and outgoing points (port/VPI/VCI combinations) and an acknowledgement object as
parameters. An acknowledgement object is ment for the future asynchronous use of
the VE (e.g. when GSMP has been deployed). The success() or failure()
method of the object is called when the VC establishment has succeeded or failed,
respectively. The client is not supposed to operate immediately returned veVCProxy
object before either of these methods has been called.

• Releasing the VC. All the VCs must be released when they are not needed anymore
so that the reserved resources are released.

Below is an example of the above phases.

// Prepares the configuration file for reading.
tvFileParser configs("../switch.conf");

// veVE implements Singleton design pattern. This returns a
// pointer to the only instance of the veVE class.
veVE *instanceOfVE = veVE::instance();

// Initializes the VE.
if (instanceOfVE->initialize(configs) != veOK_ERR)
{
 // The VE was not initialized properly.
 Handle error and exit (or do something else).
}

// Gets proxies to ports.
vePortProxy port1, port2;
if ((getPortProxy(port1, 1) != veOK_ERR) ||
 (getPortProxy(port2, 2) != veOK_ERR))
{
 // Some of the ports did not exist.
 Handle error and exit.
}

// Creates two points and lets the VE to allocate VPIs and
// VCIs in the ports.
vePoint inPoint(port1, veUNDEFINED_VPI, veUNDEFINED_VCI);

vePoint outPoint(port2, veUNDEFINED_VPI, veUNDEFINED_VCI);

// Establishes a connection. MyAckObj is derived from veAckObj
// => it implements success() and failure() methods.
xxMyAckObj ackObj;
veVCProxy vcProxy = instanceOfVE->establishVC(inPoint,
 outPoint,
 ackObj);

... program waits for a call to ackObj’s success() or failure()
 methods and does something with the established VC after
 that ...

// Finally, the VC is released.
vcProxy.release();

J�K�L�L(MON�PRQSN6T�U�V
WDX"N
Y/Z![�X\QSW

The biggest flaws are marked with ++TODO++ in the code. These places (and many
others) will be changed/extended in the next release of the VE module.

• The VPI/VCI allocation mechanism is currently just for testing purproses! In
real use, the VPI/VCI space would run out.

• The error handling is very primitive.

• The module supports only a small portion of VAPI’s and especially FSR hardware’s
features.

]�^�_�_�`�a�b�a
cAdfe�d
ghd�i�jlkRm/d�n�b

Most of the VE functionality is going to be implemented during winter/spring -97. All
the VE components (classes) are under development and are going to substantially
extended. These include:

• Support to point-to-multipoint VCs. This is fairly easy to implement at the VE level,
but much harder in Call Control and other high-level modules.

• More advanced tracing and logging features. The classes should support methods and
mechanisms for status enquires and they also should be able to return/log some
statistic about their activities. Currently, mechanisms like these are not very useful
due to absence of messages, i.e. notifications and confirmations from FSR hardware
to the switch controller.

• Implementation of a GSMP fabric and related classes. It seems that the VTT may
provide GSMP support in the FSR hardware, which would benefit also the the TOVE
project, mainly because GSMP has become almost a de facto standard in distributed
control of ATM switching hardware.

o�p�q�q�rts�u"s!v�w�s�v�x"w

The statistics below do not include basic research on ATM and B-ISDN technologies etc.
The VE module does not contain much code - most of the work was done in studying the
existing APIs and protocols for switch management and also in designing and evaluating
the VE architecture, i.e., is it possible and feasible to manage multiple switches by a
single switch controller.

Activity Research Design Coding Reviews TOTAL

Duration (h) 80 40 60 20 200

Table 1 Duration of activities

Lines Of Code (LOC) Number of files Number of classes

1880 25 27

Table 2 Metrics

y�z�{�{(|O}�~�}��A}�����}"�

Lazar, A., Marconcini, F., Towards Open API for ATM Switches, Center for
Telecommunications Research, Columbia University, New York, March 1996,
http://www.ctr.columbia.edu/.

Newman, P., Edwards, W., Hinden, R., Howman, E., Liaw, F., Minshall, T. G., Ipsilon’s
Generic Switch Management Protocol Specification version 1.1, Ipsilon Networks, Palo
Alto, August 1996, http://www.ipsilon.com/.

Haatanen, T., Tuliluoto, J., FSR switch Application Programming Interface, VTT
Information Technology, Espoo, October 1996, http://www.vtt.fi/tte/.

