
Author: Harri Sunila

Document: TRS

Date: 15/10/1998

Version: 0.1

TOVE Route Service

Routing in TOVE switch is implemented in TOVE Route Service (TRS) module. The
module contains CORBA clients to modify the routing database and query routing
information from the database. The CORBA server is implemented using Java
programming language and pure Java PSE Pro database.

 1 Introduction

Routing in TOVE switch is based on PNNI routing [1]. Routing is very much like in
PNNI consisting of hierarchical network topology of separate sub networks. TRS
module implements a scalable architecture to handle the topology of the network and
calculate a number of routes between sub networks or hosts. TRS module does not
implement a routing protocol and thus the architecture is suitable for topologically
static networks. However a routing protocol may be added afterwards to update the
state of the topology database, which makes the software architecture flexible for
future development.

2 Architecture

2.1 Architecture of routing databases

TOVE Route Service consists of CORBA server, which is responsible for
maintaining the routing database and computing optimal routes between network
nodes. On the user side there is separate CORBA clients for both updating the
topology database and query routing information. A single CORBA server maintains
the database of one sub network. The nodes in a sub network form a peer group and
the links within a peer group are called peerlinks. Links between peer groups are
called uplinks. The nodes of the peer group as well as peer- and uplinks of the peer
group are stored in a single database. The hierarchical routing concept is achieved as
in PNNI model. On higher level every peer group is represented as a single node and
these nodes form a new peer group. This makes the routing concept very scalable.

B.1

B.2 B.3

A.2

A.1 A.3

C.1C.2

CA B

Physical network

Routing database
in CORBA server

Logical network
of peer groups

Routing database
in CORBA server

The idea of the routing is represented in figure 1 as well as the mapping of network
nodes to the routing database.

Figure 1. Mapping of physical and logical networks to routing databases

The routing between distant peer groups is achieved via nested method calls between
CORBA servers. Every switch in a network has its own CORBA server, which
contains the information of accessible hosts and switches. This means that a single
switch is the smallest possible peer group. The same CORBA server is also the access
point to the routing information for the switch and all queries of routing information
are executed via that server. If the desired routing information can not be found from
the first server, the server does a nested method call to the next CORBA server.

2.2 Architecture of routing

Consider the network topology shown in figure 1. Let’s assume that the switch A.1
wants to find the route to the switch C.2. It executes a routing query in its private
CORBA server (not shown in figure). Because C.2 is not a neighbor of A.1 the server
executes a routing query in server containing nodes A.1, A.2 and A.3. Because C.2 is
not neighbor of any of these, the server executes a routing query in server containing
nodes A, B and C. The whole routing query chain is represented in chart 1.

Switch A.1 Server A.1 Server A Server *

Select route to C.2

C.2 not found

C.2 not found

Select route to C.2

Select route to C.2

C found

C is reachable via B

B found
B is reachable via A.3
C is reachable via B

A.3 found
A.3 is reachable via link y
B is reachable via A.3
C is reachable via B

Setup to
link y

Setup from
link x

Chart 1. Chain of routing queries

As the previous example shows, routing between peer groups can be considered as
partial source routing. The example shows that to reach peer group C.2 the route goes
via networks B and C, but the internal topologies of these networks are not visible
outside. This means that A.1 can not decide how C is reached from B. TOVE Route
Service is similar to PNNI routing model and routing queries generate a list of peer
groups or nodes to reach the destination from source. PNNI calls this list ‘Designated

Transit List’ DTL. Similarly TOVE Route Service provides DTL to the user. The use
of DTL helps the routing decision since DTL contains always the next prefix of the
route, which can be used in intermediate nodes. If signaling protocols support the use
of DTL, the load of routing servers will be minimized since the routing server of the
originating node initiates the calculation of the route as far as possible.

2.3 Architecture of Generic Call Admission Control

The function of Generic Call Admission Control GCAC is to assure that the selected
route fulfills the QoS demands of the call. TOVE Route Service provides also the
GCAC function. The QoS parameters of the links can be stored in the database and
the GCAC is done after the calculation of the route is complete. If the route passes the
GCAC it is returned to the user, otherwise the routing server tries to find an
alternative route.

2.4 Architecture of the software

The following figure and shows how TRS is used by the signaling software. CC is the
user of trsRoutingClient and trsManagementClient is used by swSwitch.

Figure 2. The modules used with TOVE Route Service.

3 Implementation details

The implementation of TOVE Route Service is a straightforward CORBA client-
server implementation. IDL operations to modify the database are blocking, but
routing information queries are non-blocking operations and results are returned by a
separate callback interface. The server serves every operation invocation in a separate
thread, which may cause some overhead but simplifies the server implementation.

The routing database is separated from the server implementation and is accessed by a
separate DatabaseManager class. DatabaseManager is implemented according the
Singleton pattern, which ensures a global access to a single object. DatabaseManager

���������	��
����

��������������� ���� "! � #$��� ������%'&$��&���#$()#$���
 "! � #*���

+-,/.103254)6�7�8
9 8;:�<�8;:

is responsible of the transaction management and access of database objects including
the synchronization of database.

The database is an Object Design’s PSE Pro database, which contains a very useful
API and class library. The data model of the network consists of separate
PersistentNode, PersistentLink and SpanningTreeNode classes, which are persistent
and can be stored in the database.

Calculation of routes is separated from the server to a separate thread. An abstract
class RoutingAlgorithm implements the Runnable interface and may be run in a
separate thread. A derived class SpanningTreeAlgorithm calculates the minimum
spanning tree of the network according Dijkstra’s algorithm and searches the route
from the spanning tree. An alternative routing algorithm may be implemented simply
deriving a class from RoutingAlgorithm and implementing the algorithms into
corresponding methods.

The client side of TOVE Route Service is divided in two separate classes. The
management of the database is performed with class trsManagementClient, which is a
wrapper of the management part of the IDL interface. This class performs type
translations between OVOPS++ and CORBA types. Routing queries are performed
with class trsRoutingClient, which is a wrapper of the routing part of the IDL
interface. This class performs similar type translations and offers an interface for the
user to make routing queries and the server to make callbacks to CC.

4 Features implemented

The server side provides the client the complete set of management operations. These
operations allow the user to modify the database.

• registerNode()

Add a new node in the database. The node has an unique prefix and a list of links
to adjacent nodes.

• unregisterNode()

Remove a node from the database. This operation removes the node from the
database as well as all bidirectional links to this node. If the database contains
unidirectional links to the removed nodes, those should be removed beforehand. If
the node does not exist, operation throws an exception.

• addLinks()

Add new links to an existing node. The link contains the information of the
reachable node as well as QoS parameters of the link such as cell rate or delay. If
the destination node of the link does not exist in the database, it is added. ***Or
should we throw an exeption?***

• removeLinks()

Remove some existing links of the node. If the node does not exist, operation
throws an exception.

• updateLinks()

Update the QoS parameters of some node. If the node does not exist, operation
throws an exception.

The trsRoutingClient provides the user a method to query routing information. The
interface has a single operation to select the route. The operation allows the user to
request multiple alternative routes to the destination, but currently only the selection
of one route is supported by the server. Currently the server does not perform the
generic call admission control procedure either.

5 Known bugs and flaws

There is not known bugs, since TOVE Route Service module has not been properly
tested.

6 Future development

In the near future TRS is about to be tested. In the future support of multiple
alternative routes as well as the generic call admission control procedure should be
added.

7 References

[1] The ATM Forum, Private Network-Network Interface Specification Version
1.0, March 1996

