
Author: Juhana Räsänen

Document: SSCOP

Date: 3/6/1998

Version: 0.1

SSCOP

The sscop module implements the ITU-T Recommendation Q.2110 [1] (B-ISDN ATM
Adaptation Layer - Service Specific Connection Oriented Protocol (SSCOP)). SSCOP is
a sub-layer of SAAL (Signalling ATM Adaptation Layer) that is responsible for assured
data delivery between signalling AAL connection endpoints.

1 Introduction

SSCOP (Service Specific Connection Oriented Protocol) is a link layer protocol that
offers the signalling protocols a reliable transport of data over an AAL5 link to the
neighbouring system. Its functionality is defined in [1].

SSCOP uses CPCS adapter to access AAL5 service offered by the ATM Network
Interface Card, and the service interface of SSCOP is implemented in AAIF module, that
contains OVOPS++ messenger classes for AA primitives. Usually the applications (eg
signalling protocols) don’ t use SSCOP directly, but through a suitable SSCF (Service
Specific Coordination Function). Currently there are SSCFs defined for UNI and NNI
signalling protocols.



2 Architecture

The sscop module implements a protocol conduit that can be used in user to network
interface and network to network interface signaling stack as shown in Figure 1 and
Table 1.

Figure 1. The upper and lower interfaces and modules used with sscop module.

Upper protocol: usscfProtocol or nsscfProtocol

Upper module: usscf or nsscf

Upper interface: aaif

Module: sscop

Lower interface: cpcsif

Lower module: cpcs

Lower protocol: cpcsATMAdapter or cpcsUDPAdapter

Uses: switch (toveManager) (not currently supported, should be used)

Used by: saal (saalConnection)

Table 1. The upper and lower interfaces and modules used with sscop module.



3 Implementation details

The implementation of this co-ordination function is a straightforward conduit
implementation without any modifications. To demonstrate this, Figure 3 has a small part
of SSCOP SDL diagram. Q.2110 Recommendation defines 10 states for the protocol state
machine and the inputs driving the state machine (as well as the primitives sent by
SSCOP) are represented in Figure 2.

���������

�
	��
���������������������������
	��������������������� ��!#"�$

���%�&'�#�����)(�*�+
��,�����&'��!-"�$�(�!#"�.�/

������0�	1	�����.

������0�	32
��4�"'!5"�6�"���2�.
������0%	7����2�"'!���8
9

"�6�"���2�. ������0�	34�:�4�2;/�!���4���2���6�"
.

Figure 2. SSCOP inputs

The main inputs for SSCOP are the primitives from the SSCOP user and data indications
from AAL5 CPCS layer. Other sources of events are the primitives from layer
management entity (MAA-*  primitives), timeouts from SSCOP timers and internal
events generated by SSCOP itself (these events are generated e.g. when data is accepted
for transfer, but it is first buffered inside SSCOP and the actual transfer takes place later).
Also the PDU inputs can be viewed as internal events, since on an arrival of a CPCS-
UNITDATA.indication the contents of the AAL5 data indication are decoded into a
SSCOP PDU, which is then accepted as a new event into the message queue of SSCOP.
This is indicated with the dotted line in Figure 2.



Idle

Clear
Transmitter

VT(CC) := 1
VT(SQ) :=
VT(SQ)+1 

Clear-buffers := BR

Initialize
VR(MR)

Set Timer_CC

Outgoing
Connection

Pending

AA-ESTABLISH.
request

BGN PDU

Detect
Retransmission

VT(MS) :=
BGN.N(MR) 

BGREJ PDU
AA-ESTABLISH.

indication

Incoming
Connection

Pending
Idle

BGN PDU

TRUE

FALSE

If available, resend the
BGREJ.SSCOP-UU sent in
the last BGREJ PDU;
otherwise, BGREJ.SSCOP-
UU := null

retransmission

Figure 3 Part of SSCOP SDL diagram

The code snippet below contains the corresponding input methods from SSCOP state
machine code. One can see that one SDL block translates into approximately one line of
code, so reading code with the SDL diagram is quite easy.

void sscopIdle :: aaESTABLISHreqAct(
    aaESTABLISHreq *messenger_,
    pfProtocol *protocol_) const
{
    sscopProtocol *sscop = (sscopProtocol *) protocol_;
    clearTransmitter(sscop);
    sscop->_clearBuffers = messenger_->getBufferRelease();
    sscop->_VT_CC = 1;
    sscop->_VT_SQ++;
    initializeVR_MR(sscop);
    sscop->sendBGNpdu(messenger_->getSSCOP_UU());
    sscop->_timerCC.start();
    changeState(protocol_,
                sscopOutgoingConnectionPending::instance());
    return;
}

void sscopIdle :: sscopBGNpduAct(
    sscopBGN_PDU *messenger_,
    sscopProtocol *protocol_) const



{
    if (detectRetransmission(protocol_,
                             messenger_->getN_SQ()) != 0)
    {
        protocol_->sendBGREJpdu(protocol_->_lastBGREJsscop_uu);
    }
    else
    {
        protocol_->_VT_MS = messenger_->getN_MR();
        protocol_->
            sendAaESTABLISHind(messenger_->getSSCOP_UU());
        changeState(protocol_,
                   sscopIncomingConnectionPending::instance());
    }
    return;
}

4 Features implemented

Most of the features of SSCOP are implemented.

Global statement of conformance

Global statement: The implementation specified in this PICS meets all the mandatory
requirements of the referenced standards:

Yes/No
NOTE – Answering “No”  to this question indicates non-conformance to this

Recommendation. Non-supported mandatory capabilities are to be listed in the PICS
below, with an explanation for the abnormal status of the implementation.
The supplier will have fully complied with the requirements for a statement of
conformance by completing the statement contained in this subclause. However, the
supplier may find it helpful to continue to complete the detailed tabulations in the
subclauses which follow.

<>=?<A@B=DC E'E)F)GIHKJMLB=ONP<Q<SR

1.1.1 B.5.1 Protocol Capabilities (PC) – SSCOP
See Table B.1.





ITEM # Protocol Feature Status Reference Support

PC1 Does IUT support Keep Alive function? M 5.0 e) Yes

PC2 Does IUT support the Local Data Retrieve
function? (Optional in Q.2130)

M / (O) 5.0 f) Yes

PC3 Does the IUT support SSCOP initiated error
recovery due to protocol error?

M 5.0 i) Yes

PC4 Does the IUT recognize all of the Messages
regardless of state?

M Table 2 Yes

BGN M Yes

BGAK M Yes

BGREJ (Optional in Q.2130) M / (O) Yes

END M Yes

ENDAK M Yes

ER M Yes

ERAK M Yes

POLL M Yes

STAT M Yes

USTAT M Yes

RS (Optional in Q.2140) M / (O) Yes

RSAK (Optional in Q.2140) M / (O) Yes

SD M Yes

UD (Optional in Q.2140) M / (O) Yes

MD (Optional in Q.2130 and Q.2140) M / (O) Yes

PC5.1 In the absence of protocol error, does the IUT
support assured data transfer with sequence
integrity?

M 5.0 a) h); 7.1 j) Yes

PC5.2 Does IUT support the sending of the
Unassured Data PDU? (Optional in Q.2140)

M / (O) 5.0 h); 7.1 n) Yes

PC5.3 Does IUT support the sending of the
Management Data PDU? (Optional in
Q.2130 and Q.2140)

M / (O) 7.1 o) Yes

PC6 Does IUT support user invoked
re-synchronization procedures? (Optional in
Q.2140)

M / (O) 5.0 g) Yes

PC7 Does IUT support the establishment
procedures for an SSCOP connection?

M 5.0 g) Yes

PC8 Does IUT support release procedures for an
SSCOP connection?

M 5.0 g) Yes

PC9 Does IUT support polling after
retransmission? (Mandatory in Q.2140)

O / (M) SDL Yes

PC10 Does IUT support the segmenting of STAT
PDUs?

M 7.2.5 Yes

PC11 Can the IUT initiate SSCOP connection? M 5.0 g) Yes

PC12 Can the IUT reject (BGREJ) the
establishment of an SSCOP connection from
its peer? (Not available in Q.2130)

M / (N/A) SDL Yes

PC13 Does IUT support error reporting to layer
management?

M 5.0 d) Yes



SSCOP PDUs – Protocol Data Units (PD)

SSCOP System Parameters (SP)

5 Known bugs and flaws

ITEM # Protocol Feature Status Reference Support

Order of Octet Transmission

PD1 Ascending numerical order M 7.2.1 Yes

Field Mapping Convention

PD2 Lowest bit number = Lowest order value M 7.2.1 Yes

PD3 Are PDU formats 32 bit aligned? M 7.2 Yes

PD4 Are all reserved bits coded as zeros? M 7.2.3 Yes

ITEM # Protocol Feature Status Reference Support

SP1 Maximum number of transmissions
of a BGN, END, ER, or RS PDU (MaxCC) M 7.7 a)  Yes / Value:

SP2 Maximum number of SD PDUs before
transmission of a POLL PDU (MaxPD) M 7.7 b)  Yes / Value:

SP3 Maximum number of List Elements in a
STAT (MaxSTAT)? M 7.7 c)  Yes / Value:

SP4 Maximum PDU size M 7.2.4 Yes / Value:

SP5 Timer_POLL M 7.6 a) Yes / Value:

SP6 Timer_KEEP-ALIVE M 7.6 b) Yes / Value:

SP7 Timer_NO-RESPONSE M 7.6 c) Yes / Value:

SP8 Timer_IDLE M 7.6 c) Yes / Value:

SP9 Timer_CC M 7.6 d) Yes / Value:

SP10 If PC16 is supported, what is the maximum
size of the SSCOP-UU? M 6.1.2 b); 7.2.4 Yes / Value:

SP11 Does the IUT support a SSCOP-UU length of
at least four octets? (Mandatory in Q.2140) O / (M) 6.1.2 b); 7.2.4;

clause 11/Q.2140
Yes / Value:



Know bugs:

• The handling of SSCOP PDU sequence numbers is not currently correct. Sequence
numbers are integers (modulo 2^24), but the present code can’ t handle the situation
where sequence numbers wrap over 2^24, so if an SSCOP instance runs over a long
time, it will eventually encounter this bug.

Features not yet implemented:

• Handling of MAA-UNITDATA.requests, MD PDUs and MD PDU Queued Up
events.

• Buffering of SD PDU Queued Up events in states 7, 8 and 9.

6 Future development

The ITU-T implementation guides should be checked and needed modifications
implemented. Final code modifications should be performed. The final code inspection
should be performed.

8 References

[1] ITU-T Recommendation Q.2110, B-ISDN ATM Adaptation Layer - Service
Specific Connection Oriented Protocol (SSCOP), July 1994


