
Author: Timo Kokkonen

Document: diag

Date: 15/06/1998

Version: 0.1

DIAG

The diag modules provides facilities to implement a uniform way of handling debug
messages, information given by a software, warning, normal and fatal error messages.

1 Introduction

Signaling software has different needs to provide various kinds of information to the
developer and the operator of the software. This modules tries to unify these needs and
provide facilities that are more sophisticate than using printing to standard output or error
streams directly. All other modules use this module. The design of the module is based
on ideas from Linux ATM signaling software and various design patterns.

This module is inte

2 Architecture

Protokollan arkkitehtuurin kuvaus: spesifikaation arkkitehtuuri, luokkakaavioita jne.

Esimerkkinä kuva (Picture) + kuva- ja taulukkoteksti (Caption).

Figure 1. Glass of wine

2.1 Alikappale 1

Jokaisen otsikon jälkeen heti hieman tekstiä.

2.1.1 Alialikappale 1

Alikappaleen alikappale: luultavasti tämän syvemmälle ei tarvitse mennä.

3 Implementation details

Informal information about the current events of the protocol framework (trace) is
needed. The framework can provide that by the following debug additions.

State changes
pfProtocol::changeState can inform about state changes. The method can find out the
name of the current and the new state using the RTTI. The following trace output will be
displayed. This is only applicable to protocol conduits.
DEBUG: (ID) CHANGING_STATE: (OLD_STATE) -> (NEW_STATE)

Receiving trace
pfProtocol::accept can inform about received events. The method can find out the name
of the received primitive using the RTTI. The following trace output will be displayed.
DEBUG: (ID) RECEIVING: (PROTOCOL) receives (PRIMITIVE)_(SN)

Sending trace
pfProtocol::toA or pfProtocol::toB can inform about sent events. The method can find out
the name of the sent primitive using the RTTI. The following trace output will be
displayed.
DEBUG: (ID) SENDING: (PRIMITIVE)_(SN)

Running trace
PfProtocol::runCallBack can inform about events executed events. The start and the stop
of the run in identified. The method can find out the name of the executed primitive using
the RTTI. The following trace output will be displayed. This is only applicable to
protocol conduits.
DEBUG: (ID) START_RUNNING: (PROTOCOL) at (STATE) runs (PRIMITIVE)_(SN)
DEBUG: (ID) END_RUNNING

Protocol trace
PfProtocol can inform about the creation and deletion of a new protocol. The following
trace output will be displayed.

DEDUG: (ID) PROTOCOL_CREATED: (PROTOCOL)
DEBUG: (ID) PROTOCOL_DELETED: (PROTOCOL)

User trace
User can provide additional debugging output by using a debug method in the trace
object. Several choices of the format of the output are available. Variable length
parameter lists are not used. The following trace output will be displayed.

DEBUG: (ID) TRACE: (USER PROVIDED OUTPUT) : (FILE) : (LINE)
DEBUG: (ID) TRACE: (OUTPUT) = pfULong : (PFULONG VALUE) : (FILE) :
(LINE)
DEBUG: (ID) TRACE: (OUTPUT) = string : (STRING VALUE) : (FILE) : (LINE)
DEBUG: (ID) TRACE: (OUTPUT) = pfFrame [(LENGTH)] : (FILE) : (LINE)
DEBUG: (ID) TRACE: 65 65 65 65 65 65 65 65 65 65 : AAAAAAAAAA
DEBUG: (ID) TRACE: END_OF_FRAME

ID = LxCxxxxxxxxxxPxxxxxxxxxxMxx, where L is a link indentifier, C is a call
identifier, P is a primitive identifier and M is a module identifier (two aphanumeric
characters).

Errors and warnings
Protocol framework can inform about thrown exceptions and exceptions that are cached
by the framework in the pfProtocol::runCallback. The following error output will be
displayed.
ERROR: EXCEPTION_THROWN: (EXCEPTION)
ERROR: EXCEPTION_CATCHED: (EXCEPTION)

Module identifiers are the following.
CC cc cc
UNI 3.1 uni u3
UNI 4.0 uni40 u4
DSS2 dss2 d2
BISUP bisup bi
SSCOP sscop ss
UNI-SSCF usscf us
NNI-SSCF nsscf ns
CPCS cpcs cp
TCAP tcap tc
MTP3 mtp3 m3
SCCP sccp sc
GSMP gsmp gs
ILMI ilmi il
MGMT mgmt mg
SWITCH switch sw
TESTING testing te
SF sf sf
PF pf pf

If more formal user trace is needed that can be provided in the following form.

Method call
DEBUG: (ID) TRACE: METHOD_START: CLASS = (CLASS) METHOD = (METHOD)
DEBUG: (ID) TRACE: METHOD_END: CLASS = (CLASS) METHOD = (METHOD)

Object creation (how about copy constructor and clone)
DEBUG: (ID) TRACE: OBJECT_CREATED: CLASS = (CLASS) ID = (SN)
DEBUG: (ID) TRACE: OBJECT_DELETED: CLASS = (CLASS) ID = (SN)

The error detection could be based on the values of UNI/DSS2/BISUP Cause information
element. An object could be implemented that could raise an exception carrying
information about the cause value of the error. Only one or few different exceptions are
needed.

The supported cause values are the following.

Normal events

1 unallocated (unassigned) number
2 no route to specified transit network
3 no route to destination
16 normal call clearing
17 user busy
18 no user responding
21 call rejected
22 number changed
23 user rejects all calls with calling line identification restriction
27 destination out of order
28 invalid number format (address incomplete)
30 response to STATUS ENQUIRY
31 normal, unspecified

Resource unavailable

35 requested VPCI/VCI not available
36 VPCI/VCI assignment failure
37 user cell rate not available
38 network out of order
41 temporary failure
43 access information discarded
45 no VPCI/VCI available
47 resource unavailability, unspecified

Service option not available

49 Quality of Service unavailable
57 bearer capability not authorized
58 bearer capability not presently available
63 Service option not available, unspecified

Service option not implemented

65 bearer capability not implemented
73 unsupported combination of traffic parameters
78 ALL parameters cannot be supported

Invalid message

81 invalid call reference value
82 identified channel does not exist
88 incompatible destination
89 invalid endpoint reference
91 invalid transit network selection
92 too many pending add party requests

Protocol error

96 mandatory information element is missing
97 message type non-existent or not implemented
99 information element non-existent or not implemented
100 invalid information element contents
101 message not compatible with call state
102 recovery on timer expiry
104 incorrect message length
111 protocol error, unspecified

The error messages should identify the source of the error and in case of call control and
network interface signaling protocol the cause value of the error. At the same time when
the error diagnostics are logged, and exception is thrown. That exception is cached in a
place where a call can be released. In an optional places the exception can be cached
without releasing the call.

Diagnostics itself cannot throw exceptions which are propagated to call control or
signaling protocols.

Perceived severity defines six severity levels, which provide an indication of how critical
the event notification is.

• Critical severity level indicates that a service affecting condition has occurred and an
immediate corrective action is required. This corresponds to the fatal level in Linux
ATM signaling.

• Major severity level indicates that a service affecting condition has occurred and an
urgent corrective action is required. This corresponds to the error level in Linux ATM
signaling.

• Minor severity level indicates that the existence of a non-service affecting fault
condition and that corrective action should be taken in order to prevent a more serious
fault. This corresponds to the error level in Linux ATM signaling.

• Warding severity level indicates the detection of a potential or impending service-
affecting fault, before any significant effects have been felt. Action should be taken to
further diagnose and correct the problem in order to prevent it from becoming a more
serious service-affecting fault. This corresponds to warning level in Linux ATM
signaling.

Diagnostic facilities classify the diagnostic messages to five different categories. These
categories are DEBUG, INFORMATION, WARNING, ERROR, and FATAL.

The use of these categories is the following.

• Debug is used for information that is useful in the development time, but it is not
needed after the software is completed and can be turned off. Debug information is
usually used to show that certain program code is reached and to show values of
certain variables at certain point. Examples: “object b created” , “method c called” ,
“variable d has value d1” , “parameter e has value e1” , “primitive f arrived” , “pdu g
sent” and “ timer h expired” .

• Information is used for information that is useful to the operator of the software in the
normal operation of the software. This is usually used when the software is started or
stopped or when configuration information is loaded. Examples: “signaling started” ,
“port b added” and “address c removed” .

• Warning is used for information that is given when something unexpected has
happened but the current operation can be completed using default values or
otherwise. Some optional service maybe not be provided. A connection or call is not
cleared because of the situation that caused the warning to be issued. Examples:
“unrecognized information element” and “primitive b received in state c” .

• Error is used for information that is given when something unexpected has happened
and the current operation cannot be completed. Even mandatory service cannot be
provided. A connection or a call is cleared after an error recovery does not succeed.
Examples: “error in a mandatory part of a pdu” , “using default case label” , and
“communication error”

• Fatal is used for information that is given when a severe error has occurred and the
continuing the operation is impossible. This class should be used in extremely rare
cases and usually just in the starting phase of the software. Example: “error in
configuration file” .

Different error codes should be standardized:

Object cannot be created
Object cannot be deleted
Function call failed
System call failed
Invalid parameter
Unexpected type
Unexpected value
Out of range
Assigning to itself

Not implemented
Null pointer

Alignment not succesful
Protocol error
Error in sequence numbers

Out of service
Retry counter reached
Timer expired

Encode error
Decode error
PDU in wrong protocol
Unexpected PDU in this state
Invalid message type
PDU length violation
PDU too short
PDU too long

Lack of credit

Open error
Writing error
Reading error

Error in address
Routing failure

Dynamic entity not found
Static entity not found

Congestion detected
Memory full
Memory cannot be released
Table full

4 Features implemented

Mitä ominaisuuksia on toteutettu ja mitä jätetty toteuttamatta?

• Ominaisuus 1. Seuraa tarpeellinen kuvaus.

• Ominaisuus 2. Ja sen kuvaus.

5 Known bugs and flaws

Onko versiossa bugeja tai puutteita? Milloin järjestelmä ei toimi kunnolla? Voitaisiinko
joku tehdä paremmin, jos olisi aikaa?

• Bugi 1. Bugin kuvaus.

• Bugi 2. Kuten edellä.

6 Future development

Modulin jatkokehityssuunnitelmat. Voi sisältää aikatauluja tms., mutta lähinnä
(mielestäni) ideoita siitä, miten modulia kannattaisi parantaa/laajentaa tai mitä
ominaisuuksia kannattaisi lisätä.

7 References

Tänne viitteitä lähteisiin papereiden tyyliin.

8 Appendixes

Appendix A Linux ATM diagnostics examples

In the following there are examples of the use of diagnostic facilities in the Linux ATM
signalling software.

Debug

io.c: “TO KERNEL: %s (%d) for 0x%lx/0x%lx <%d>”
proto.c: “ freeing socket 0x%lx@%p”
proto.c: “socket 0x%lx enters state %s (Q.2931 %s)” ,
q2931.c: “AAL type %ld"
q2931.c: “ ITF.VPI.VCI: %d.%d.%d”
q2931.c: “ Incoming call from %s”
q2931.c: “Cause %d (%s)”
timeout.c: “T309 has expired”

Information

atmsigd.c: “Linux ATM signaling”
atmsigd.c: “Acting as %s side” ,net?”NETWORK”:”USER”
kernel.c: “Active close (CR 0x%06X)”
kernel.c: “Added local ATM address %s at”
q2931.c: “Active open succeeded (CR 0x%06X”
q2931.c: “Passive close (CR 0x%06X)”

Warning

atmsigd.c: “Not found. Using defaults.”
io.c: “bad signaling write: wanted %d, wrote %d”
io.c: “ local address table overflow”
kernel.c: “ invalid message %d”
kernel.c: “message %s is incompatible with state %s”
q2931.c: “STATUS %s received in state %s”
q2931.c: “Bad Q.2931 message %d”
timeout.c: “Trouble: T308_2 has expired”

Error

atmsigd.c: “chdir %s: %s”
io.c: “ read kernel: %s”
io.c: “bad kernel write: wanted %d, wrote %d”
kernel.c: “no local address”
proto.c: “socket 0x%lx has non-empty listen queue”
proto.c: “ ignoring duplicate VPCI %d (itf %d)”

q2931.c: “can't parse message - aborting the call”
q2931.c: “q_close returned <0 in to_q2931”
sap.c: “unsupported traffic class %d\n”
sap.c: “AAL type %d requested”

Fatal

atmsigd.c: “Error in config file. - Aborting.”
atmsigd.c: “ fork: %s”
io.c: “kernel message too short (%d < %d)”
io.c: “kernel message too big (>= %d)”

