
Author: Timo Pärnänen

Document: tcap

Date: 06/11/1998

Version: 0.2

TCAP

The tcap module implements the ITU-T Recommendations Q.771-774 [1][2][3][4]
(Signalling System No. 7 - Transaction Capabilities Application Part). The TCAP is a set
of communication capabilities that provides an interface between applications and a
network layer service.

1 Introduction

The TCAP is a connectionless remote procedure call (RPC) and part of it is quite similar
to the remote operation service element (ROSE), published in ITU-T X.219 and X.229.
The TCAP operates on top of SCCP (Signaling Connection Control Part) and supports
database access by the SS#7 (Signaling System No. 7) switches, and the applications that
reside in the switch use TCAP to access information.

The TCAP defines the format and fields that allow a service switching point (SSP) or a
service control point (SCP) to formulate a TCAP access request to another node and a
database (figure 2).

TC-USER

TCAP

SCCP

MTP

SS#7

Figure 1. The location of TCAP module in a SS7 protocol stack.

Figure 2. Typical message flow.

TCAPTCAP

SCP

SSP SSP

2 Architecture

The figure 3 describes the architecture of TCAP specified in ITU-T Recommendations.
The TCAP is divided into two sub-layers, component and transaction sub-layers. Both
layers include two or more blocks.

In our implementation of TCAP, this structure is simplified by combining different
blocks together. TSM and DHA have identical states, these and CCO are all combined to
one class called Dialogue(Impl), Protocol(Impl) class plays role of TCO and ISMprotocol
class implements actions defined in ISM block. Relations of these classes are shown in
the figure 5.

2.1 Modules and interfaces

TOVE TCAP implementation is distributed with CORBA (ORBacus [6]). A TCAP
adapter stays on top of TOVE SCCP and therefore it is implemented with C++. The
purpose of the adapter is to transform messengers from a conduit graph to CORBA
requests and vice versa. Other part of this TCAP implementation is implemented with
Java (JDK 1.1.6 [7]).

TC-User (Transaction Capabilities) interface is implemented according to OMG
Document, Interworking Between CORBA and TC systems [5]. The

TCO
(Transaction
Coordinator)

TSM
(Transaction State-

Machine)

Transaction Sub-Layer

DHA
(Dialogue
Handling)

CCO
(Component
Coordinator)

ISM
(Invocation State-

Machine)

Component Sub-Layer

Component Handling

N-UNITDATA(ind. req.)
N-NOTICE(ind.)

TR-primitives

TC-primitives (Dialogue and component handling primitives)

Figure 3. Overview block diagram of TCAP (ITU-T / Q.774).

TcPduProviderFactory interface is used to create new TC sessions for CORBA objects
and to register and de-register CORBA objects to receive dialogs from TC/SS#7 entities.
TcPduProvider interface is used to communicate with the TC/SS#7 stack by the TC-User.
It provides both TC dialog handling and TC component handling primitives.

Upper protocol: ingw (TC-User)

Upper module: tove.ingw

Upper interface: org.omg.TcSignaling

Module: tove.tcap (Java package)

tcap (C++ module)

Lower interface: sccpif

Lower module: sccp

Table 1. The upper and lower interfaces and modules used by tcap module.

2.2 Object relations at runtime

Internal interface:
tove.idl.tcap

Figure 4. Modules and interfaces.

TC-User

TcPdu
ProviderFactory

TcPdu
Provider

tove.tcap

tcap

sccpif

sccp

� � � �

tove.idl.tcap

 Dialogs, Invocation
 State Machines etc.

Java

C++

org.omg.TcSignaling

Following figure 5 shows runtime object relations in TCAP module. Additionally there
are message and component objects and state machine objects for ISM and Dialogue.

CORBA requests from TCAP adapter are received in CORBAInputHandler object. This
object constructs message objects (N_UNITDATAind) from incoming CORBA requests.
Created message is started at new Thread and it is accepted to a protocol when run
method is called by the Java Virtual Machine. Threads are used to prevent CORBA
requests to block.

 The protocol creates and maintains dialogues, and maps remote and local dialogue ID
pairs. The TCAP protocol decodes messages from CORBAInputHandler, and directs
them to the right dialogue. When incoming message is a BEGIN message, the protocol
checks, is there a TC-User registered with an address founded in the message. Outgoing
messages TCAP encodes and then sends as CORBA requests to the TCAP adapter.

The dialogue uses SendInterface implemented by a TcPduProviderImpl to send dialog
and component handling primitives to the TC-User. The user can set several components

Figure 5. Object relations at runtime.

CORBAInputHandler

Dialogue

ISM

tcapAdapter

Protocol

ISM

ISM

N_UNITDATAreq

N_UNITDATAind

N_UNITDATAind

Java

C++
CORBA IDL

TcPdu
Provider

TcPduProvider
Factory

TcPduUser

create_tc_pdu_provider
register
deregister

component and dialogue
handling primitives

and then send them with a dialogue handling primitive. The dialogue stores and delivers
components, and maintains invocation state machines (ISM).

2.3 Class hierarchy

The figure 6 shows component and message class hierarchies of the TCAP
implementation. The grayish area of the class hierarchy is generated from ASN.1
(Abstract Syntax Notation One) description by Snacc for Java tool. A dashed line
describes interface inheritance (italic font). Snacc generated message classes (Begin,
End, Continue) have not a common base class (except ASN1Type interface). That makes
it more difficult to use. Due to that problem, another message hierarchy is created, which
have Snacc classes as attributes.

Components have a same kind of hierarchy as messages. Using these hierarchies,
components can be stored easily inside messages. Messages get also common messenger
features and in that way they can be transmitted between protocol and dialogue.

ibm.asn1.
ASN1Type

MessageTypeBeginBegin End Continue

ComponentPortion

java.util.
HashTable

ComponentInvokeReturn
Error

Return
Result

tove.common.Me
ssenger

Message

BEGIN END CONTINUE

tove.asn1.tcapmessages.*

N_UNITDATAind

ComponentBase

Result Error

SNACC generated classes

Invoke Reject

Reject

Figure 6. Class hierarchy of messages and components.

The figure 7 shows class hierarchies of the TCAP protocol, dialogue and ISM. All of
these protocols extends common protocol implementation base class, and thus inherit a
synchronous accept method and state machine features.

A part of actions for the protocol and dialogue are implemented as methods in messages
and components.

Figure 7. Class hierarchies for Protocol, Dialogue and ISM.

ISMstate_
WaitForReject

ISMstate_
OperationSent

ProtocolImpl

DialogueImpl

DialogueState

ISMstate
CORBAInputHandler

State

SendInterface

DialogueState_
InitiationReceived

DialogueState_
Idle

DialogueState_
InitiationSent

DialogueState_
Active

ISMstate_
Idle

tove.common.
Protocol

tove.common.
ProtocolImplBase

tove.idl.tcap.
_tcapUpImplBase

tove.idl.tcap.
tcapDown

ISMprotocol

Protocol

Dialogue

3 Implementation details

The following list describes some implementation details used in the TCAP:

• Allocation of IDs

- Dialogue IDs are generated by the TCAP, but invoke IDs are allocated by the TC-
User.

- Transaction ID and dialogue ID are combined together, so there is one and only
ID (dialogue ID) to identify dialogues. No separate transaction layer exists in this
implementation.

4 Features implemented

This version of the TCAP does not implement all features described in relevant
Recommendations by ITU-T and OMG Document. Table 2 lists unimplemented
parameters (that are the not transferred and negotiated) in TC-primitives between the
TCAP and user. Table 3 compares some implemented and unimplemented features in the
TCAP protocol.

Dialogue handling

Qos, DialogPortion, TerminationType

Component handling

OperationClass, LinkedID

Table 2. Unimplemented parameters in TC-primitives.

IMPLEMENTED NOT IMPLEMENTED

Operation Class 1

(Both success and failure are reported)

Operation Classes 2-4

Structured Dialogue

(BEGIN, END, CONTINUE)

Unstructured Dialogue

(UNI)

Normal end Pre-arranged end, abort of
dialogue

TC-primitives (except Notice and
Abort)

TR-primitives

TC-NOTICE, TC-ABORT

Return Result Not Last component

Table 3. Implemented and not implemented protocol features.

Additionally an Application Context Name is not supported in register/deregister
CORBA methods in the TcPduProviderFactory interface. Unimplemented CORBA

methods in the TcPduProvider interface are: uni_req, set_dialog_qos, get_dialog_qos
u_abort_req, result_nl_req and destroy.

Due to lack of features in used Snacc ASN.1 tool for Java, some part of ASN.1
description (Q.773) are changed e.g. OPERATION and ERROR macros are replaced
with more simpler types.

5 Known bugs and flaws

• Unimplemented features mentioned in previous chapter.

• The order of components changed in TCAP message coding. The reason can be found
in Component Portion class (generated by Snacc). It uses a Hastable, which is
unordered container.

• Decoding errors can not be specified and localized due to Snacc generated code. Only
one common ASN1Excepion is thrown when error occurs.

• There might be memory leaking because destroy method is unimplemented. The
TcPduProvider should know which dialogs it owns.

• Type of reject indication is not based on a problem type, but u_reject_ind is always
used instead of r_reject_ind.

6 Future development

First feature that should be implement is destroy method in the TcPduProvider
implementation. This means that TcPduProvider should know which dialogs it owns. The
provider has to implement some kind of map of dialogs, which is synchronized with the
dialogue map in the TCAP protocol.

Some problems may be fixed if ASN.1 tool will be changed or new version of Snacc for
Java is released. Also some unimplemented features like missed parameters (table 2)
could be implemented.

7 References

[1] ITU-T Recommendation Q.771, Signalling System No.7 – Functional Description
of Transaction capabilities, 03/93

[2] ITU-T Recommendation Q.772, Signalling System No.7 – Transaction
capabilities Information Element Definitions, 03/93

[3] ITU-T Recommendation Q.773, Signalling System No.7 – Transaction
capabilities Formats and Encoding, 03/93

[4] ITU-T Recommendation Q.774, Signalling System No.7 – Transaction
capabilities Procedures, 03/93

[5] OMG Document: telecom/98-10-03, Interworking Between CORBA and TC
Systems, Revised (Final) RFP Submission, October 19, 1998

[6] ORBacus For C++ and Java, version 3.0, Object-Oriented Concepts, Inc., 1998.

[7] Java Development Kit ™ 1.1.6, Sun MicroSystems, Inc., 1998.

