
Author: Vesa-Matti Puro / Timo Pärnänen

Document: Sw module documentation

Date: 13/01/1999

Version: 0.6

SW

The sw module provides the framework for ATM switch software. It provides facilities to
access the cards, physical interfaces, logical signaling interfaces and other resources in
the switch.

1 Introduction

The sw module implements a main program for ATM switch software. It provides access
to switch resources by delegating operations to proper modules. Administrators have
runtime access to configure switch parameters and resources via CORBA interface.
Standardized management protocols are used to get information of switch parameters.

2 Architecture

The figure 1 shows the switch architecture. Management protocol implementations,
SNMP (Simple Network Management Protocol [1]) and ILMI (Interim Local
Management Interface [2], [3]), and configuring interface implementation are CORBA
adapters to support access to ATM MIB and other system variables (ILMI is used only in
UNI links). Routing resources are implemented in other module and it is distributed also
with CORBA. The switch class has different prototypes and common objects as
attributes, e.g. SS7 (Signaling System No. 7) stack, and cloneable prototypes of signaling
protocols.

The architecture of the switch framework consists of following classes or collections of
classes: system, switch, routing, card, physical interface, logical signaling interface,
subscription, call, virtual path and virtual channel. In the following, each of these entities
are described further (some classes are just ideas without concrete implementation)

• System provides a singleton for a global access point for the switch framework. The
system can contain several switches that can be accessed through the system. The
System may be implemented using several separate singletons if needed.

• Switch is an object that provides an access point to a switch and resources of the
switch. The interface of the switch provides access to line interface cards, physical
interfaces in those cards, logical signaling interfaces in those physical interfaces and

virtual paths and channels in physical interfaces in addition to other physical or
logical resources.

• Routing is an object that makes routing decisions based on the information given
from the switch. The routing contains a static route database. The switch informs
routing about dynamic changes in routes such as congestion, blocking and route
failures.

• Card is an object that models a physical line interface card attached to the switch.
One card can contain one or several physical interfaces. Activation or deactivation of
a card activates or deactivates physical interfaces contained in the card. Other
operations performed on the card can be propagated to physical interfaces as well.

• Physical interface (port) is an object that models a physical network interface that is
connected to the switching fabric. The physical interface has several properties that
describe characteristics of the interface such as line speed and the number of virtual
paths and channels supported.

• Logical signaling interface (link) is an object that models the signaling capabilities of
the whole physical interface or one logical channel inside the physical interface. The
logical signaling channel supports one of various signaling protocol stacks such as
UNI or NNI signaling stack. The UNI signaling stack may contain ATM, CPCS,
UNI-SSCF and then one of access signaling protocols such as UNI 3.1, UNI 4.0 or

PORTSWITCH

CONFIG SNMP ILMI

FCF

LINK

ROUTING

PORT
FACTORY

PROTOTYPES
MUXES

ETC. COMMON

SS7
STACK

GSMP

CORBA

Figure 1. Switch architecture.

Q.2931. The NNI signaling stack may contain ATM, CPCS, NNI-SSCF and network
signaling protocol (BISUP).

• Subscription is an object that models subscribed services in local interfaces. It
contains a user service profile.

• Call is an object that models the ongoing call and resources associated to it. The call
can be SVC or PVC.

• Virtual path is an object that models virtual path connection in a physical interface.
This object is used for unallocated and allocated virtual paths. Virtual paths can be
switched if that is supported by the hardware.

• Virtual channel is an object that models virtual channel connection in a physical
interface. This object is used for unallocated and allocated virtual channels. Virtual
channels can be switched if that is supported by the hardware.

A port factory creates ports using registered port prototypes (identified with string). A
fabric control function (FCF) is a generic interface, which hides the concrete switching
protocol or API, e.g. ATM FCF implementation uses GSMP (Generic Switch
Management Protocol [4]) to make fabric connections in a switching hardware.

3 Implementation details

There are three major collections of classes implemented in the sw module. Those are
port, link and fcf (fabric control function). The figure 2 describes a class hierarchy of port
and link classes. The fcf hierarchy is presented in the figure 3.

3.1 Port and link

A base class of the port hierarchy stores link objects, mapped with link number as a key.
The link class hierarchy encapsulates only an actual signaling protocol, which is
implemented using the signaling framework (see TOVE signaling framework document).
Inherited link classes are used to instantiate and set the selected protocol. Lower layer
protocols must be encapsulated in inherited port class. For example the swAtmPort
subclass stores SAAL (Signaling ATM Adaptation Layer) link objects, which
encapsulates SAAL sub-layer protocols.

The ATM port implements also the swPortConfig interface, which is used by GSMP to
configure port parameters and VPI/VCI values. The ATM port has the ILMI CORBA
adapter as an attribute. The purpose of this adapter is to provide an access to ATM MIB
for distributed ILMI agents. There is no any concrete MIB object in sw, but ILMI adapter
delegates requests to the object where information exists.

3.2 FCF

The Fabric Control Functions (FCF) is used to hide switching functions from the Call
Control and call procedures at all. The FCF is not based any recommendations or
specifications, it is only a wrapper between the call procedure and switching fabric.
When ATM links are going to be connected, FCF interprets connect functions from the
call procedure and uses GSMP to control the switch to make a virtual connection in the
switch. In case of narrowband links, some other switching methods (e.g. FSR API) are
used in FCF.

The FCF makes connections based on attributes in information elements. All information
elements which are used in the connect operation are derived from the ieConnectInfo
base class. The figure 3 shows an information element hierarchy for the connect
operation. The switch has a connect method with a base class type of objects as
parameter, and double dispatching technique is used to type check for FCF (see chapter
3.3).

Figure 2. Port and link.

swPort

swAtmPort

swPortConfig

swFabricCallback

swLink

cpcsATMAdapter

swNNIlink

saalLink

saalUNIlink saalNNIlink

swIlmiImp
l

swPortFactory

swUNIlink

usscfProtocol nsscfProtocol

sscopProtocol

_factoryProxy

_muxProxy

_coOrdProxy

The figure 4 shows a class hierarchy for ATM FCF. The swFCF base class implements
three generic interfaces. The swConnectIface implements different connect methods,
swFabricCallback is used to get callbacks (success or failure) to connect operations, and
swEventIf is used to get generic state information of the fabric and its ports.

The swATMFCF class implements also the swConfigControl interface which is used to

set some switch attributes and to provide configure objects for each port. The ATM FCF

pfIE

ieConnectionIdentifier

ieInformationElement

ieTimeSlot ieE1

ieConnectionInfo ieCause

Figure 3. Information elements for connect operation.

swFabricCallback swConnectIface swEventIf

swFCF

swATMFCF

swConfigControl

swConnectId

gsmpConnectionManagement

gsmpConfigurationManagement

gsmpEventManagement

Figure 4. ATM FCF.

has the GSMP connection, configuration and event management object as attributes to
handle corresponding actions in the switching fabric using the GSMP protocol. The
swConnectId class is used to store connection information and handle responses (success
or failure) to switch command from GSMP.

3.3 Switching operation

The following figure shows connect (point-to-point) operation steps starting in a
signaling interface between the UNI protocol and call control.

Steps of the point-to-point connect operation in UNI ATM signaling:

1. UNI protocol sends sigSETUP indication primitive to the call control. The primitive
includes decoded parameters from the UNI SETUP pdu.

2. Call control calls a connect method from the switch with the SETUP storage, input
link identifier and proxy for the call control (callback object) as parameters.

ccProtocol

uniProtocol

SAAL

swSwitch

swATMFCF

GSMP

swConnectId

ieConnectionIdentifier
(input)

Routing

swAtmPort
(output)

swAtmPort
(input)

ieConnectionIdentifier
(output)

pfStorage
(SETUP)

sigSETUPind

connect(SETUP, inputLinkId, callback)

getCalledPartyNumber()
selectRoute(number)

reserveResources()

connect (output)

connect (input, output)

connect (input)

connect (input, output)

addBranch() success()

swSuccessMessage

1

3

8

4
5

6

7

2

9

10

Figure 5. Point to point connect using UNI ATM signalling.

3. Switch object gets a called party number from the SETUP object.

4. Routing module is used to find a destination port/link. The route selection based on
called party number.

5. Resources for input and output connections are reserved from corresponding port
objects. The resource information (e.g. VPI/VCI values) is stored up information
elements (input/output).

6. Because the switch object has a base class type of information elements for input and
output connections, double dispatching is used to recognize the actual type of
information elements (in ATM connection the type is ieConnectionIdentifier).

7. When the connection type is clarified the proper FCF (here ATM FCF) is called to
make the connection.

8. ATM FCF uses the GSMP protocol to add unidirectional branches to the switch. Due
to unidirectional switch command, two branches must be added per point-to-point
connection.

9. SwConnectId handles responses from GSMP.

10. When responses for both add branch commands are received, the switch sends a
callback message to the call control to indicate that fabric connection is successfully
done.

3.4 Interfaces

Following interfaces list ideas of methods that could be necessary in corresponding
objects in the sw module. These requirements are founded in different standards and
recommendations. Not all interfaces are implemented and some are partially
implemented.

The switch has the following interface:

class swSwitch
{
// System Group
// based on UNI31 4.5.1

string getDescription(void) const;
string getObjectIdentifier(void) const;
string getUpTime(void) const;
string getContact(void) const;
string getName(void) const;
string getLocation(void) const;
int getServices(void) const;

// system variables
int getPointCode(void) const;
string getPrefix(void) const;
int getESI(void) const;

// based on GSMP 2.0 version 7.1
// maybe these can be implemented in the swVersion class that could be inherited to
// swSwitch

int getFirmwareVersion(void) const; // 16 bit number
int getSwitchType(void) const; // 16 bit number
int getSwitchName(void) const; // 48 bit number

// based on System Group sysDescr
string getHWname(void);
int getHWversion(void);
string getOSname(void);
int getOSversion(void);
string getNWname(void);
int getNWversion(void);

// port management
// Port types FSR155 / FSRE1 / FSRTAXI etc.
void addPort(int portNumber_, const string &portType_);
void removePort(int portNumber_);
swPort * findPort(int portNumber_) const;

} ;

The port has the following interface:
(function is equal with UPD connection)

class swPort
{
// link management

void addUNIlink(int linkNumber_); // maybe link number can be same as vpi
void addNNIlink(int linkNumber_, int destinationPointCode_);
void removeLink(int linkNumber_);
swLink * findLink(int linkNumber_) const;

// Link number and port number are combined together. This link identifier is used also in
// a crossConnMux with port number
// reservation of paths

swPath * reserveVPI(void);
swPath * findVPI(int vpi_);
void releaseVPI(swPath *vpi_);

// port management (affects to port status)
void bringUp(void); // bring up once or keep it up
void takeDown(void); // take down and keep it down
void resetInputPort(void); // connections are removed

// loopback control (affects to port status)
void setInternalLoopback(void); // output cells are relayed to input
void setExternalLoopback(void); // input cells are relayed to output
void setBothwayLoopback(void); // both of the above

// event management (affects to line status)
void portUp(void); // event happened in the port
void portDown(void); // event happened in the port

// Physical Interface UNI MIB Attributes
// based on UNI31 4.4.2

int getTransmissionType(void);
int getMediaType(void);
int getOperationalStatus(void);

// ATM Layer Interface UNI MIB Attributes
// based on UNI31 4.4.3

int getMaxVPCs(void);
int getMaxVCCs(void);
int getConfiguredVPCs(void);
int getConfiguredVCCs(void);
int getMaxVPIbits(void);
int getMaxVCIbits(void);
int getType(void);
int getVersion(void);

// GSMP 2.0 version 7.2
int getMinVPI(void);
int getMaxVPI(void);
int getMinVCI(void);
int getMaxVCI(void);
int getReceiveCellRate(void);
int getTransmitCellRate(void);
int getPortStatus(void); // available, unavailable, internal/external/bothway lb
int getPortType(void);
int getLineStatus(void); // up, down or test
int getPriorities(void);
int getPhysicalSlotNumber(void);
int getPhysicalPortNumber(void);

pfBoolean isVPswitchingSupported(void);

pfBoolean isMulticastLabelsSupported(void);
pfBoolean isLogicalMulticastSupported(void);
pfBoolean isLabelRangeSupported(void);
pfBoolean isQoSsupported(void);

// ATM Layer Statistics
// based on UNI31 4.4.4
// this has to be implemented using callback

int getReceivedCells(void);
int getDroppedReceivedCells(void);
int getTransmittedCells(void);

} ;

The link has the following interface:

class swLink
{
// requirements from BISUP and routing

int getPortNumber(void);
int getPeerPointCode(void);
string getPeerPrefix(void);

// ATM Layer Interface UNI MIB Attributes
// based on UNI31 4.4.3

int getMaxVPCs(void); // check BISUP IEs for these parameters
int getMaxVCCs(void);
int getConfiguredVPCs(void);
int getConfiguredVCCs(void);
int getMaxVPIbits(void);
int getMaxVCIbits(void);
int getType(void);
int getVersion(void);

} ;

The path has the following interface:

class swPath
{
// reservation of VCI

swChannel * reserveVCI(void);
void releaseVCI(swChannel *vci_);

// Virtual Path UNI MIB Attrbutes
// based on UNI31 4.4.5

int getVPI(void);
int getOperationalStatus(void);

int getTransmitTrafficDescriptor(void); // check IEs for these parameters
int getReceiveTrafficDescriptor(void);
int getTransmitQoSclass(void);
int getReceiveQoSclass(void);

} ;

The channel has the following interface:

class swChannel
{
// Virtual Channel UNI MIB Attributes
// based on UNI31 4.4.6

int getVPI(void);
int getVCI(void);
int OperationalStatus(void);
int getTransmitTrafficDescriptor(void);
int getReceiveTrafficDescriptor(void);
int TransmitQoSclass(void);
int ReceiveQoSclass(void);

} ;

4 Features implemented

This release of the sw module implements ATM versions of port and FCF objects. UNI
and BISUP signaling protocols are supported in UNI/NNI link classes. Connect methods
for switching operation support only ieConnectionIdentifier type of information elements
used in ATM connection.

Not all classes, mentioned in a previous chapter, are implemented. The path and channel
classes are replaces with integer values. The switch, port and link classes are
implemented, but they do not support all methods listed in classes in the previous
chapter.

Also the system, card, call and subscription (and virtual path and channel) classes are not
implemented in this release of the sw module.

5 Limitations

Error handling is insufficient in several methods in classes of the sw module. In general
freeing of resources is incompletely implemented. Detailed code reviews and testing
phase are needed to figure out possible problems.

6 Future development

Narrowband objects like the port, link and FCF will be implemented (see an example in
Appendix chapter). The narrowband connect operation requires also new information
elements (e.g. ieTimeSlot, ieE1) and corresponding FCF may use some other protocol or
API than GSMP to control the switch. Maybe some ideas mentioned in previous chapters
get concrete implementations in future.

7 References

[1] Case, J., Fedor, M., Schoffstall, M., Davin, J., “A Simple Network Management
Protocol (SNMP)” , RFC 1157, May 1990.

[2] The ATM Forum Technical Committee, “ Integrated Local Management Interface
(ILMI) Specification Version 4.0, af-ilmi-0065.000, September 1996.

[3] The ATM Forum Technical Committee, “ATM User-Network Interface
Specification (v3.1), Section 4: Interim Local Management Interface
Specification” .

[4] Newman, P., Edwards, W., Hinden, R., Hoffman, E., Ching, F., Lyon, T.,
Minshall, G., “ Ipsilon’s General Switch Management Protocol Specification
Version 2.0” , RFC 2297, March 1998.

8 Appendix

Following list shows steps how to implement new port/link/FCF combination. ISDN
(Integrated Services Digital Network) is used as an example.

1. Create a new signaling link class (swISDNlink) by inheriting it from swLink class.
Implement methods for prototype handling and setConduits to instantiate signaling
protocol.

2. Create a new port class (swNarrowBandPort) by inheriting it from swPort class. Store
corresponding link (lower layer protocols like LAPB) classes in some collection
structure in new port class. Implement some addLink method where both link objects
(for lower layer and upper layer) are created, stored and connected together.
Remember to implement a clone method.

3. Register new port type to the port factory in swSwitch.

4. Store prototypes of new link classes and make clone methods (named create) in
swSwitch.

5. Create a new information element (e.g. ieTimeSlot or ieE1) by inheriting it from
ieConnectionInfo class in ie module. Add corresponding connect methods for double
dispatching.

6. Add new connect/disconnect methods, which has new information elements
(mentioned in previous step) as parameters, to swConnectIface

7. Create a new FCF object (swNarrowBandFCF) by inheriting it from swFCF class.
Store an instance of suitable switching protocol or API in this new FCF. Implement
needed interfaces from swif module (default implementation is empty code in
swFCF).

8. Store an instance of new FCF in swSwitch.

9. Implement new connect methods (mentioned in step 6) to swSwitch. These methods
delegates connect method calls to the right FCF instance.

