
Author: Pasi Nummisalo

Document: IN

Date: 1/18/99

Version: 1.0

History:

IN Service Creation and Execution

TOVE IN (Intelligent Network) service creation and execution environment is build on
the DCF (Distributed Component Framework, see document DCF). The goal was to
provide a simple and extendable prototyping environment for IN services.

1 Introduction

IN services can be created from SIBs (Service Independent building Block). SIBs are
seen in this implementation as DCF components. With this approach services can be
created from user defined components in a visual editor. Ready made services can be
copied to execution environment which is basically same as the service repository/testing
environment, but doesn’t have to support GUI connection functionality. The TOVE IN
environment consists of a service repository node and possible several service execution
nodes. The repository node with the GUI connected includes similar functionality as
SCEF (Service Creation Environment Function) and SMF (Service Management
Function).

2 Architecture

Pictures 1 and 5 show overall architecture of TOVE IN environment. The service
execution environment uses CORBA 2.0 compliant ORB (Orbacus) to communicate with
SSP (Service Switching Point). The IDL interface between these two points is based on
an IDL mapping of an INAP (Intelligent Network Protocol). The mapping is defined in
OMG’s document Interworking Between CORBA and TC Systems (telecom/97-12-06). A
method call (INAP operation) originating from SSP is translated to a generic event,
which is filled with CID (Call Instance Data). Service components are organized as a tree
hierarchy (see appendix 1, picture 3). Services are at top level. Services contain triggers
and service subscribers. Service subscriber contains the individual service logic. Service
logic includes BCP (Basic Call Processing) components (in and Out) and required SIBs.
SIBs are connected to form the individual service logic. SIB properties (SSD, Service
Support Data) can be altered to customize the logic of one SIB.

As said services and service subscribers are stored in repository node from where they
can be deployed to execution node. When the service and its subscribers are installed also
required BCSM (Basic Call State Model) triggers are activated at SSP.



Picture 1. IN service architecture.

3 Implementation details

The implementation includes following visual components (figure 2): service, subscriber,
trigger, BCP in with 9 POIs (Point Of Initiation), request report, translate SIB, algorithm
SIB, compare SIB, end of dialog, HLSIB (Higher Level SIB), connection point, and BCP
out with 3 PORs (Point Of Return). Service component presents certain service category
e.g. free phone (0800 xxxx) service category. The service includes trigger components
that are used when the service is deployed. Corresponding BCSM triggers are activated
with parameters from these trigger components. Service is identified by service key
property. Service subscribers live in the service context. Subscribers present companies
how have subscribed certain service. Subscribers are identified by their number e.g. 0800
007 where 007 is the subscriber number and 0800 service category number.

Sessions are created from UserFactory object, which is bound to CORBA name service.
When the first message (initialDP) arrives from the SSP a session (UserResponder
object) is marked active. The session is in an active state as long as the SSP or the service
logic ends the session (end assocation message or end dialog component).

3.1 Packages

Package scp includes SIBs and other component classes. Package in/inap/tove includes
INAP classes. Package idl/toveinap is generated from toveinap IDL file.

��������� 	��
	��������
� ���
��������� ��������� 	���� ����� 	
����������� ������������� ��������!

��������� 	���� ����� 	
��"���	�#��
� ���
������$��

Event, CID

SIB

Fixed interfaces

Visual JavaBeans Non visual JavaBeans

DCF Component

DCF Context

DCF Environment

Java platform

View, Control Model

Facade

Service/HLSIB

CORBA

CORBA Services

IDL mapping of INAP

BCP

OVOPS++ platform with CORBA support

%�&�'�(�) *�&
+�,-&�'�.�%�%�/�0
SLEE

BCSM

PIC

DP



Picture 2. Package dependencies.

4 Features implemented

INAP interface, trigger activation, service, subscriber, BCP with POIs and PORs,
translate SIB, algorithm SIB, compare SIB, end of dialog, HLSIB (Higher Level SIB),
request report.

5 Future development

This solution doesn’t include database access. It can be done with JDBC (Java Database
Connectivity) API or with some another technique.

6 References

1. ITU-T: Q.1223, Q.1213

2. TOVE: DCF documentation

ProxyFactory
ProxyInitiator
ProxyResponder
UserFactory
UserInitiator
UserResponder

tove.in.inap.tove

TcUser
TcUserGenericFactory
...

org.omg.TcSignaling

SCE
ServiceNode
Service
Trigger
SpecificDigitStringTrigger
Subscriber
BCP
POI
RequestReport
SIB
SIBBeanInfo
SIBGUI
AlgorithmSIB
CompareSIB
TranslateSIB
HLSIB
POR
ProceedPOR
ClearCallPOR
ContinuePOR
BCPout
EndDialog
...

tove.scp

SSF_SCF_responder
SSF_SCF_initiator
TcUserFactory
...

tove.idl.toveinap

...

tove.dcf

...

org.omg.CORBA



APPENDIX 1

Picture 3. Component hierarchy.

Picture 4. Example service.

SLEE

Services

Service x

Subscriber x

BCP in

BCP out

SIB x

HLSIB x

SIB x

SSD

POI x

next

POR x

Trigger x

Context

Subscriber

Property
editor

Translate SIB

context spefic toolbar

HLSIB

POIs

PORs

Connection
Point

Algorithm SIB

Compare SIB



APPENDIX 2

Picture 5. Overall architecture.

UNI

TOVE SMPTOVE B-SSP

NNI
cc

SCPSSP

INGW

SS#7

TOVE SCEP

B-ISDN

TOVE SLEE

Services

Name service

RMI

Deploy


