Author: Pasi Nummisalo

Document: DCF

Date: 1/18/99
Version: 1.0
DCF

1 Introduction

The DCF (Distributed Component Framework) can be used to construct component
based applications, which have model and GUI (control/view) parts. The model part is
used to implement component’s logic and the control/view part is used to present this
component to a user. Model components can be connected and manipulated in a visual
way to assemble applications. DCF components conforms to the JavaBeans design
principles. See picture 2 at appendix 4 for overall architecture view.

2 Architecture

Typicaly the DCF model part is connected to externa client with a developer defined
interface. The application logic is constructed by connecting model components together.
When the client interface receives a method call it must be translated to an internal
transporter event. This event visits at connected components in particular order
transferring the client data. Transporter event can carry any type of data. The data value
is accessed from the TransporterEvent interface with its name (setProperty, getProperty).
Appendix 3 presents TransporterEvent interface.

A ManagedFacade class is used to provide common access to model components from
the GUI. The Managed interface is described in appendix 1. This interface is fixed and
can be used to access different component properties and methods through dynamic
action and property methods. Every method has an identifier parameter (object key)
which is used to identify components. The GUI reads unique component identifiers at the
connect phase. The model part can also make call backs to the GUI. The Manager
interface is presented at appendix 2.

3 Implementation details

3.1 Packages

The common package provides interfaces for GUI and model parts. The dcf package
includes model classes and the swinggui GUI classes. See picture 1 at appendix 2 for
package dependencies (dashed arrows indicate relations between packages).

3.1 Classes

Every DCF model component must be derived from a Componentimp abstract class.
Components must implement accept method in where the component logic is added.
Every outside accessible property must have public set and get methods. See picture 3 at
appendix 4 for aUML class diagram.

3.2 Relationship to JavaBeans

DCF components obey JavaBeans 1.0 specification /1/. However some restrictions and
additions have been made to support DCF functionality. Every DCF component must
implement the Componentlf interface, components are connected through
TransporterEventListener interface, components can be context components (including
other components), and they have to register themselves to the facade at loading or
creation time.

3.3 Swing GUI

The GUI (view/control) part is provided as it is. The GUI is done merely as proof of
concept and the design/implementation should be carefully reconsidered if used further in
other projects. One possibility is to use some existing graphics package to do the GUI
part and adapt it to use DCF interfaces and logic. Although the GUI part includes some
advanced ideas the TOVE project doesn't at this time have resources to fully finish the
GUI implementation.

4 Features implemented

DCF logic can be constructed in a visua manner and distributed to other DCF
environments. Component properties can be shown and atered from GUI. DCF
environment handles storage and retrieval of component’s state (based on standard
JavaBeans serialization file).

5 Future development

The model part is very easy and clean implementation for e.g. prototyping purposes. In
the production environment things like performance, scalability and storage integration
should be considered. Emerging standards like the Enterprise Java Beans should give a
good support for extending ideas presented in this paper for production environment
needs. The new JavaBeans specification (implemented in JDK 1.2) should be studied.

6 References

1. Hamilton,Graham (Editor). JavaBeans Specification 1.01. Sun Microsystems
Inc.1997.

APPENDIX 1

/*
* Managed. j ava
*
* Copyright 1999 Hel sinki University of Technol ogy
* ALL RI GHTS RESERVED BETWEEN JANUARY 1996 AND JUNE 1999.
*
/

package tove. dcf. comon;

/**
Interface for nmanaged conponents.
@ut hor Pasi Nunm sal o
@ersion 1.0 (14.12.98)
*/
public interface Managed extends java.rm . Renote
{
i nt connect Manager (Manager nanager)
throws java.rm . RenoteException, dcfException;
voi d di sconnect Manager (Manager nanager)
throws java.rm . RenoteException, dcfException;
int createObject(int contextKey, String classNane)
throws java.rm . Renot eException, dcfException;
voi d del et eObj ect (i nt cont ext Key, int objectKey)
throws java.rm . Renot eException, dcfException;
voi d addLi st ener (i nt conponent Key, int |istenerKey)
throws java.rm . RenoteException, dcfException;
voi d renoveli st ener (i nt conponent Key, int |istenerKey)
throws java.rm . RenoteException, dcfException;
hj ect action(int key, String comand, Object[] paraneters)
throws java.rm . Renot eException, dcfException;
voi d setProperty(int objectKey, String nanme, Object paraneter)
throws java.rm . Renot eException, dcfException;
bj ect getProperty(int objectKey, String nane)
throws java.rm . RenoteException, dcfException;
voi d copy(int serviceKey, String destinati onNane)
throws java.rm . RenoteException, dcfException;
void install (Conmponentlf service)
throws java.rm . Renot eException, dcfException;
}

Table 1. Managed interface

APPENDIX 2

package tove. dcf.comon;

/**
A cal l back interface for manager conponents.
@ut hor Pasi Nummi sal o
@ersion 1.0 (14.12.98)
*/
public interface Manager extends java.rm . Renote
{
voi d propertyChange(int objectKey, String nane, Cbject newVal ue)
throws java.rm . Renot eException, dcfException;
bj ect action(int objectKey, String conmand, Cbject[] paraneters)
throws java.rm . RenoteException, dcfException;
}

tove.dcf.common tove.dcf.swinggui java.swing
Managed OutputLabel
Manager GUIComponent -
Componentlf GUI ,//l
dcfException R~ Callback y
TransporterEventListener \\ ClientFrame /
{
TransporterEvent dcfApplet /
TestGUI /
/N 4

! OutputGUI

! InputGUI

i ConnectPointGUI

tove.dcf i PropertyDialog
Componentimpl _I;roplasrtyModel
ConnectPoint oofbar
Input XYLayoutManager
Output BasicMouseMotionAdapter
BasicMouseAdapter
Test
. ConnectorPanel

Environment
ManagedFacade
TransporterEventimpl
ComponentimplBeaninfo

Table 2. Manager interface.

Picture 1. Package dependencies.

APPENDIX 3

/*

* TransporterEvent.java

* Copyright 1999 Hel sinki University of Technol ogy

* ALL RI GHTS RESERVED BETWEEN JANUARY 1996 AND JUNE 1999.
*

*/

package tove. dcf. comon;

import java.util.*;

/**
Interface for transporter event.
@ut hor Pasi Nummi sal o
@ersion 1.0 (14.12.98)
*/
public interface TransporterEvent
{
public void send();
public void setListeners(Vector listeners);
public void setListener(TransporterEventListener |istener);
public void continueExecution();
public void setProperty(String nane, Object val ue);
public Object getProperty(String nane);
public Hashtabl e getProperties();
public void setCriteriaMet();
public boolean isCriteriaMet();
public void setState(TransporterEventListener |istener);
}

Table 3. Transporter Event interface.

APPENDIX 4

GUI/Application creation Application logic

Visual JavaBeans Non visual JavaBeans

ManagedFacade User Component

DCF Component

Context #g
\

View, Control

Picture 2. Overall architecture.

common.TransporterEventListener

Wl

common.Componentlf common.Managed java.rmi.UnicastRemoteObject

=
A ~——
-
-
1 ~
-
-
1 ~-
-~
1 ~

£ p t

Componentimpl e ManagedFacade

A A f f 0.1

) femote facade]
ConnectPoint OutputPoint :
| Environment
InputPoint Test
java.beans.SimpleBeaninfo java.util. EventObject common. TransporterEvent
T T S

ComponentimplBeaninfo TransporterEventimpl

Picture 3. Class hierarchy.

