
1. CPCS (and CPCSIF)
Author: Juhana Räsänen

CPCS module provides the higher layers an interface to AAL5 Common Part
Convergence Sublayer services. Actual CPCS/SAR functionality is implemented in
hardware, so this protocol acts only as an wrapper to ATM Network Interface Card and
Linux kernel ATM services.

CPCSIF defines the AAL5 CPCS service interface (CPCS-primitives).

�����������
	����������	�����

This protocol is the lowest layer of the TOVE protocols. Its basic function is to provide
higher layers transport of AAL5 SDUs over an ATM connection as defined in [1],
Chapter 6. A suitable subset (that is also supported by the ATM NIC and Linux ATM
interface) for signalling use has been selected, see Chapter 4 for a complete list of
implemented features.

The users of the CPCS (in practice SSCOP, Service Specific Connection Oriented
Protocol) access its services with the help of CPCS interface module (CPCSIF), which
define the service primitives of CPCS.

Conceptually one CPCS instance represents one ATM point-to-point connection and is
bound to a single VPI/VCI triple in the ATM interface of the controller workstation.
From the signalling software point of view this means that a CPCS instance (together
with SSCOP and SSCF instances associated with it) represent one signalling link.

From the software architecture point of view CPCS can be seen as the boundary between
OVOPS++ world and operating system.

�������������������! "����#���

The architecture of CPCS is very simple due to the fact that it acts only as an wrapper to
the Linux kernel ATM services. CPCS consists of a protocol conduit (class cpcsAdapter)
that has a pfDevice instance as a class member. The state machine of the protocol is
trivial, because CPCS is stateless; likewise the service interface is equally trivial having
only two primitives (classes cpcsUNIDATAreq and cpcsUNITDATAind).

Interface from the OVOPS++ to the communications channel (eg AAL5 socket) is
implemented with help of pfDevice class instance. Device classes act as wrappers to
Unix file descriptors and facilitate asynchronous operation by registering themselves to
OVOPS IOHandler.

Thus, the role of the protocol is on the other hand to process incoming CPCS user
requests and send the data to kernel, and on the other hand to transform incoming
messages from kernel to CPCS primitives and send them to CPCS user.

$�%�&�&('�)+*-,�.�)/.�0�1�2�1�3�4�065�.�1�2"3�,�7

Although CPCS resembles an adapter conduit (connects to other conduits only on A-
side), it is implemented as a protocol conduit, because the functionality of cpcsAdapter
was easiest to implement with a state machine, which is not used in adapters.

CPCSIF messenger classes are inherited from pfMsgTransporter instead of pfMessenger.
In this simple case the same functionality is achieved with a small performance gain,
when unnecessary creations/deletions of pfMessenger classes is avoided.

8�9�:�:(;�<�=">�?
@A<�BDC�E+F-G�<�E6<"H
>�<"I

Only message mode without corrupted data delivery option is implemented in the service
interface (CPCSIF). The protocol itself does not implement CPCS functionality, but
provides a wrapper to the actual AAL5 CPCS function implemented in hardware.

• CPCS primitive parameters: CPCS-ID, CPCS-LP, CPCS-CI and CPCS-UU are
present in cpcsUNITDATAreq and cpcsUNITDATAind classes, but only CPCS-ID
(Interface Data) is actually used, others are set to default values.

J�K�L�L(MON�PRQSN6T�U�V
WDX"N
Y/Z![�X\QSW

None known at the time of this writing.

]�^�_�_�`�a�b�a
cAdfe�d
ghd�i�jlkRm/d�n�b

No needs for future development is seen at the moment, but if OVOPS++ framework is
developed for instance by allowing adapters have state machines or making a new
conduit class of pfDevices, the implementation of CPCS will get a little bit simpler.

o�p�q�q�rts�u"s!v�w�s�v�x"w

CPCS module development was spread over a long time. First version that offered a
“virtual” AAL5 channel between two conduit stacks was completed in the summer 1996
and a full version supporting pfDevices was completed later in the autumn.

Activity Research Design Coding Reviews Total

Duration (h) 5 10 25 20 60

Table 1 Duration of activities

Lines Of Code (LOC) Number of files Number of classes

517 11 7

Table 2 Metrics

y�z�{�{(|O}�~�}��A}�����}"�

[1] ITU-T Recommendation I.361, B-ISDN ATM Adaptation Layer (AAL)
Specification, Helsinki, March 1993.

