
Olli Martikainen
Vesa-Matti Puro
Juhana Räsänen
Timo Pärnänen
Pasi Nummisalo
Petteri Koponen

2

TABLE OF CONTENTS

ABBREVIATIONS 6

INTRODUCTION 7

OVOPS++ 8

1 Introduction 8

2 Architecture 8

3 Implementation details 12
3.1 Timers and scheduling from OVOPS 12
3.2 Frame 12
3.3 New transporters 12
3.4 Multiplexer 13
3.5 Other features in the framework 13

4 Known bugs and flaws 14

5 Future development 14

6 User’s guide 15
6.1 Implementing of protocols and states 15
6.2 Implementing of messages 19
6.3 Implementing of accessors 19
6.4 Example of main function 20

7 Statistics 22

8 References 22

VIRTUAL EXCHANGE ERROR! BOOKMARK NOT DEFINED.

1 Introduction Error! Bookmark not defined.

2 Architecture Error! Bookmark not defined.
2.1 Control and management protocols Error! Bookmark not defined.
2.2 Control and management connections Error! Bookmark not defined.
2.3 Signalling Error! Bookmark not defined.

3 Implementation details Error! Bookmark not defined.

4 Features implemented Error! Bookmark not defined.
4.1 How to use the VE? Error! Bookmark not defined.

5 Known bugs and flaws Error! Bookmark not defined.

6 Future development Error! Bookmark not defined.

3

7 Statistics Error! Bookmark not defined.

8 References Error! Bookmark not defined.

TOP LEVEL (AND COMMON) ERROR! BOOKMARK NOT DEFINED.

1 Introduction Error! Bookmark not defined.

2 Architecture Error! Bookmark not defined.

3 Future development Error! Bookmark not defined.

4 Statistics Error! Bookmark not defined.

CPCS (AND CPCSIF) ERROR! BOOKMARK NOT DEFINED.

1 Introduction Error! Bookmark not defined.

2 Architecture Error! Bookmark not defined.

3 Implementation details Error! Bookmark not defined.

4 Features implemented Error! Bookmark not defined.

5 Known bugs and flaws Error! Bookmark not defined.

6 Future development Error! Bookmark not defined.

7 Statistics Error! Bookmark not defined.

8 References Error! Bookmark not defined.

NSSCF (AND NAALIF) ERROR! BOOKMARK NOT DEFINED.

1 Introduction Error! Bookmark not defined.

2 Features implemented Error! Bookmark not defined.

3 Known bugs and flaws Error! Bookmark not defined.

4 Future development Error! Bookmark not defined.

5 Statistics Error! Bookmark not defined.

6 References Error! Bookmark not defined.

USSCF (AND UAALIF) ERROR! BOOKMARK NOT DEFINED.

1 Introduction Error! Bookmark not defined.

2 Features implemented Error! Bookmark not defined.

4

3 Known bugs and flaws Error! Bookmark not defined.

4 Future development Error! Bookmark not defined.

5 Statistics Error! Bookmark not defined.

6 References Error! Bookmark not defined.

SSCOP (AND AAIF) ERROR! BOOKMARK NOT DEFINED.

1 Introduction Error! Bookmark not defined.

2 Architecture Error! Bookmark not defined.

3 Implementation details Error! Bookmark not defined.

4 Features implemented Error! Bookmark not defined.

5 Known bugs and flaws Error! Bookmark not defined.

6 Future development Error! Bookmark not defined.

7 Statistics Error! Bookmark not defined.

8 References Error! Bookmark not defined.

DSS2 ERROR! BOOKMARK NOT DEFINED.

1 Introduction Error! Bookmark not defined.

3 Implementation details Error! Bookmark not defined.
3.1 Protocols and states Error! Bookmark not defined.
3.2 Messages and information elements Error! Bookmark not defined.

4 Features implemented Error! Bookmark not defined.

5 Known bugs and flaws Error! Bookmark not defined.

6 Future development Error! Bookmark not defined.
6.1 Co-Ordination Error! Bookmark not defined.

6.2 Access to information element fields Error! Bookmark not defined.

6.3 Decoding without switch-case Error! Bookmark not defined.

7 Statistics Error! Bookmark not defined.

8 References Error! Bookmark not defined.

Appendix I Error! Bookmark not defined.

Appendix II Error! Bookmark not defined.

5

CALL CONTROL ERROR! BOOKMARK NOT DEFINED.

1 Introduction Error! Bookmark not defined.

2 Architecture Error! Bookmark not defined.

3 Implementation details and features implemented Error! Bookmark not defined.
3.1 Protocol Error! Bookmark not defined.
3.2 Acknowledge Object Error! Bookmark not defined.
3.3 States Error! Bookmark not defined.
3.4 Cross Connector Mux Error! Bookmark not defined.
3.5 SCF Adapter Error! Bookmark not defined.
3.6 Multi Point Mux Error! Bookmark not defined.
3.7 Detection Point Data Objects Error! Bookmark not defined.
3.8 Triggers Error! Bookmark not defined.
3.9 Messages and transitions Error! Bookmark not defined.
3.10 Fabric interface Error! Bookmark not defined.

4 Known bugs and flaws Error! Bookmark not defined.

5 Future development Error! Bookmark not defined.

6 Statistics Error! Bookmark not defined.

7 References Error! Bookmark not defined.

USER SIDE SIGNALLING (USI + ISP + ISPIF)ERROR! BOOKMARK NOT DEFINED.

1 Introduction Error! Bookmark not defined.

2 Architecture Error! Bookmark not defined.

3 Implementation details Error! Bookmark not defined.

4 Features implemented Error! Bookmark not defined.

5 Known bugs and flaws Error! Bookmark not defined.

6 Future development Error! Bookmark not defined.

7 Statistics Error! Bookmark not defined.

8 References Error! Bookmark not defined.

1.

6

ABBREVIATIONS
ATM Asynchronous Transfer Mode

B-ISDN Broadband Integrated Services Digital Network

B-ISUP B-ISDN User Part

CC Call Control

CPCS Common Part Convergence Sublayer

CVS Concurrent Versions System

DSS2 Digital Subscriber Signalling System No.2

ITU-T International Telecommunication Union - Telecommunications

Standardization Sector

ISDN Integrated Services Digital Network

MTP-3 Message Transfer Part 3

OVOPS Object Virtual Operations System

PDU Protocol Data Unit

SAR Segmentation And Reassembly

SSCF Service Specific Coordinate Function

SSCOP Service Specific Coordination Oriented Protocol

TOVE Transparent Object-oriented Virtual Exchange

UNI User-Network Interface

VE Virtual Exchange

7

2. INTRODUCTION
This document describes software modules that belong to the TOVE project’s 1996
Deliverables package. The package and this document will be distributed to project’s
participants in March 1997.

The document consists of several chapters, each chapter describing a single functional
software entity that may include several modules (i.e., a protocol and its interface
module). The chapters are meant to help reading the code and understand the software
architecture but to use the code in other projects, one needs to go through the comments
in the code and to have the corresponding specifications available.

Each chapter describes module’s architecture, implementation-related issues and future
development plans. A chapter also includes statistics about spent working hours and
some basic code metrics. Not all the working hours are included in statistics of the
individual modules. Table 1 shows approximations of hours not allocated to any module.

Meetings Information
gathering

Papers and
presentations

Linux ATM
and demo

Documentation Total

160 160 320 320 320 1280

Table 1 Working hours not allocated to modules

TOVE project will provide support in case project’s participants are going to use the
software in their projects.

8

3. OVOPS++
OVOPS++ (Object Virtual Operations System ++) is a protocol framework for network
programming that is based on Conduits+ and OVOPS. Conduit+ was developed by a
team from Ascom Tech AG, University of Illinois and GLUE Software Engineering.
OVOPS was developed by Telecom Finland and Lappeenranta University of Technology.
OVOPS++ builds the Conduit+ framework on top of services provided by OVOPS.
These services include, e.g., scheduling and timers. Currently, only a limited subset of
OVOPS functions is used.

���������	��

����������

�����

This documentation describes some architecture and implementation solutions of the
OVOPS++ framework that was implemented by the TOVE project. The implementation
is based on an original PD software developed by Open Environment Software Oy. This
documentation does not describe a general architecture of conduits because of well-
documented papers about Conduits that are written by University of Illinois (see
appendix) and Ascom Tech AG (see references).

�����������������	 "!���
#���!

A layered protocol stack is made up of conduits, and messages are transferred through the
stack. The framework has four kinds of conduits: protocol, mux, factory and adapter.
Each conduit, except adapter, has a sideA and sideB to which other conduits can be
connected. The protocol is a conduit used to implement one communication layer of
protocol stack; it includes a pointer to a state machine and it holds protocol specific
variables and timers. The mux is a conduit that connects one sideA conduit to any
number of sideB conduits. Thus it is used to multiplex messages to one or more conduits.
The factory conduit is used with the mux to create dynamically new conduits to the mux
sideB in run time. The factory conduit has a prototype conduit (or conduit string) to be
cloned and installed to the mux sideB. The adapter is a conduit which has only sideA.
Using the adapter, the software implemented with conduits can communicate with the
outer world.

Following figures (1-3) show relations between objects in the OVOPS++ protocol
framework.

There are also a few examples of inherited classes and method names in figures. The first
figure shows a conduit hierarchy, the second one shows a message and timer hierarchy.
The third figure has rest of classes like classes for scheduling and trace. Grayish classes
are OVOPS classes, and normal white ones indicate OVOPS++ framework classes.

9

a t M u x () ;
a t A d a p t e r () ;
a t F a c t o r y () ;
a t P r o t o c o l () ;

$ % & ' () * $ + ' , - '

p f M s g T r a n s p o r t e r p f I n s t a l l e r p f U n I n s t a l l e r p f C r o s s C o n n e c t e r p f E x p l o r e r

a p p l y () ;

. / 0 1 2 2 1 3 4 1 5

. / 6 7 8 1 5 0 1 2 2 1 3 4 1 5
i n i t () ;
s t a r t () ;
s t o p () ;

9 : ; < = > ?

e x T i m e r

se t D a t a () ;

e x M e s s e n g e r

e x T i m e r M e s s e n g e r

M e sse n g e r

M e ssa g e

m a k e M e ssa g e () ;
m a k e I n s t a l l e r () ;
m a k e U n I n s t a l l e r () ;
m a k e C r o ssC o n n e c t e r () ;
m a k e E x p l o r e r () ;

@ A B C D E F @ G C H I C J D K H G C L

p u t F i r s t () ;
g e t F i r s t () ;
p u t L a s t () ;
g e t L a s t () ;
r e a d () ;
d e s t r o y () ;

p f F r a m e

p f C l o s e R e q u e s t

p u t F i r s t () ;
g e t F i r s t () ;
p u t L a s t () ;
g e t L a s t () ;
r e a d () ;

p f F r a m e C o n t a i n e r

i n i t () ;
s t a r t () ;
t i m e o u t () ;

MONPMRQTSTUWV XZY�[

e x a m p l e P r o t o c o l

Figure 2 Message and timer hierarchy

a c c e p t () ;
c o n n e c t T o A () ;
c o n n e c t T o B () ;
t o A () ;
t o B () ;

\] ^ _ ` a b c d e ` d f g] h i f

\] ^ _ ` a b c d j]k^P_"`lamb"c d e no\

e x p o r t () ;

p q r s t p u v w
m a k e C o n d u i t () ;

x y z { | } ~ � �
i n s t a l l O n S i d e B () ;
f i n d S i d e B C o n d u i t () ;

� � � � �
c h a n g e S t a t e () ;

� � � � � � � � � �

c h a n g e S t a t e () ;

� � � � � � �

P r o t o t y p e

S i d e B s

I m p l e m e n t a t i o n

a l l o c a t e () ;
a l l o c a t e W i t h K e y () ;
g e t () ;
i sK e y () ;
f r e e () ;

p f M a p

g e t D i sp a t c h K e y () ;

� � � � � � � � � �

i n p u t _ 1 () ;
i n p u t _ 2 () ;

e x B a s e S t a t e
i n p u t () ;
e x B a s e S t a t e

E v e n t T a sk

m a k e A d a p t e r () ;
m a k e M u x () ;
m a k e P r o t o c o l () ;
m a k e F a c t o r y () ;

� � � � ¡ ¢ £ ¤ ¥ ¦ § ¤ � ¨ ©

S t a t i c i n s t a n c e () ;
i n p u t _ 1 () ;

e x S t a t e

S t a t i c i n s t a n c e () ;
i n p u t _ 1 () ;
i n p u t _ 2 () ;

e x S t a t e

Figure 1. Relations between conduit objects

10

run();
next();

pfSystem

static instance();

sendingTrace();
receivingTrace();

ª « ¬ ­ ® ¯ ° ± ² ­

³µ´ ±·¶¹¸

 run();

º»º»¼l½¹¾W¿¹ÀWÁ�Â ¿¹Ã

¼l½¹¾W¿¹À�ÁWÂ ¿·Ã Ä Å�Æ»Ç¹È�ÀWÂ ¿¹ÃÉËÊ Ìo¿¹ÃËÉ�Ç¹Í¹Î

ÏP¿ÑÐ·Ê ½¹¿

save();
execute();

ÒÔÓ·Õ¹Ö�×ÙØËÚ¹Û¹Ü

pfDev ice

 pfConduitImp

ÝßÞ¹à¹à·á¹â�Þ

ÝßÞ¹ãoä�åçæ¹è»Þ¹é é

pfTransporter

sendingTrace();
receivingTrace();

ê ë ì í î ï ð ñ ò ó ð

sendingTrace();

exTrace

pfDev iceHost

Figure 3 Relations between OVOPS and the framework

As these figures show, there is always at least one framework class (pf, protocol
framework, as prefix) between OVOPS and user defined classes (ex, example, as prefix).
In this way OVOPS was hidden from the user, and interfaces became simpler and clearer.
This also makes the framework more flexible, because OVOPS classes behind the
framework can be replaced with new implementations later like to a frame has already
been done.

One major architectural detail, which is not mentioned in the Conduit+ paper, is the use
of proxies. A conduit implementation is protected from a user inside the proxy. The user
gets only the proxy to the corresponding implementation and use methods of the
implementation through the proxy. The implementation includes a reference counter
mechanism like a figure 4 shows.

11

The implementation counts number of references (proxies) to itself. Each conduit
implementation (except adapter) has conduits (proxies) on a sideA and sideB. When the
last proxy to the implementation has been deleted also implementation itself will be
destroyed. This feature is used, e.g., when protocol stacks (different connections) are
uninstalled.

The following figure shows an example how OVOPS++ building blocks (conduits) can
be connected to each other and thus implement an ATM signalling software.

_ i m p l e m e n t a t i o n

ô õ ö ÷ ø ù ú û ü

_ r e f C o u n t = 3

ýÿþ��������	��
���
���������������������
����

_ i m p l e m e n t a t i o n

� � � � � � ! "

_ i m p l e m e n t a t i o n

$ % & ' () * +

Figure 4 Reference counter and proxies

O Call Control

Factory

A ccess Protocol

State

A dapter

L ink Protocol 1

A dapter

M ux

T Cal l Control

Factory

A ccess Protocol

L ink Protocol 2

M ux

Cross Connecter

creates

M essage

Temporary connection

Figure 5 Example how the software of ATM switch can be build using OVOPS++

12

,.-/,0,21436587/9:3;9:<>=@?:=@A/B><DC>9:=@?.A/7/E

Following chapters describe implementation details and solutions that have not been
explained or are solved in different way in the Conduit+ paper (appendix A).

3.3.1 3.1 Timers and scheduling from OVOPS
Timers and a scheduling mechanism are derived from OVOPS classes.

A protocol has timers as attributes or pointers to them. Protocols handle timers with start,
stop and setTimeout methods in a pfTimer class. When the timeout occurs, the timer
(inherited from the pfTimer) sends timeoutMessenger to the protocol that directs it to a
right input in a state machine. Thus, timeouts were handled like any other messengers in
the state machine.

The scheduling mechanism is mainly composed from two parts, tasks and messages.
Conduits (implementations) are derived from an OVOPS EventTask, and messages
(pfTransporter) are derived from an OVOPS Message, thus messages can be saved to the
OVOPS scheduling queue. More detailed description of the scheduling can be founded in
the OVOPS documentation.

3.3.2 3.2 Frame
All information chunks that the protocol processes and transfer are stored into frames
within OVOPS++. Because this function is so essential in the information processing, the
implementation must be efficient and secure. The basis of the efficiency is to avoid
copying whenever possible (e.g., when a frame is transferred from a protocol instance to
another). However, it must be secure at the same time, so that two protocols cannot write
to same frame with unpredictable results, and on the other hand, when a frame is not
referenced any more, the memory area is safely freed.

The pfFrame implementation is a reference-counting copy-on-write solution. The actual
data is stored in pfContainer class instances that can be referenced by one or more
pfFrame class instances. The user sees only instances of pfFrames, which hide the
reference counting and copy-on-write details. If a copy is made of a frame, a new
instance is made only of the pfFrame class and it is set to point to the existing
pfContainer class. Now the container has two referencing frames, and if either of them
writes to the frame (or otherwise changes it), a copy is made. When reference count of a
container drops to zero, the memory area is freed automatically.

3.3.3 3.3 New transporters
A factory conduit has a prototype to be cloned when new conduits are installed on the
mux sideB. If the prototype has more than one conduit, the first conduit is installed on the
mux sideB and the last conduit of the conduit string has to be installed to an upper
destination. An explorer transporter was implemented to travel through the prototype
conduit string and find the last conduit from that string. This way the factory can connect

13

the last conduit sideB of the prototype string to the upper destination (to an upper mux
for instance).

A closeRequest transporter is used to start an uninstalling process for the conduit string
on the mux sideB. This transporter is send as asynchronous from a protocol to the mux.
After receiving this closeRequest transporter the mux will send an uninstaller to the
protocol to disassemble the conduit string and remove it from the mux sideB.

3.3.4 3.4 Multiplexer
Figure 6 shows how to use a multiplexer and how it works. The mux (multiplexer) have
an accessor which gets a dispatch key from incoming message, and a map which keeps a
collection of the mux sideB conduits. A PfMap uses an STL Map structure to store
dispatch key and conduit pairs. In this OVOPS++ release, the pfMap object generates the
new dispatch key when necessary and it supports only (long) integer values. In the
Conduit+ paper has mentioned that accessors may include the mechanism to generate
dispatch keys, thus user can define different criteria for generating keys.

If the dispatch key of an incoming messenger does not match any of conduits installed on
the mux sideB, the incoming transporter is directed to the factory but only if message’s
installPermission flag indicates access to do it (installPrmission flag have to set e.g. when
SETUP message is sent to the mux).

3.3.5 3.5 Other features in the framework
A device class is also provided (class pfDevice). It offers a general socket interface for
network or UNIX interprocess communication. Its function is to tie a socket descriptor to
OVOPS scheduling so that asynchronous events from the sockets (i.e., an incoming

pfFactory

Connection
Protocol

Protocol

pfMux

creates

Message dispatchKey

Connection
Protocol

Accessor

pfMap

getDispatchKey

isKeyInstalled

Figure 6 Function of multiplexer

14

packet) could be detected. For this reason pfDevice is built on OVOPS Device class.
Note that pfDevice is not usable as it is, but it must always be inherited to implement a
device for a specific class of file descriptors. This is because especially opening a file
descriptor is always specific to the type of the descriptor (for example opening a disk file
takes quite different parameters than opening a TCP/IP socket), so there cannot be any
general open method. An other thing that the user of a pfDevice must take in accout is
providing a callback interface for the device, if asynchronous messages to the device are
possible. This is done by implementing pfDeviceHost interface to the class using the
device (typically a class derived from pfAdapter or pfProtocol) and giving an instance of
this class as a "host" class. The callback functions are called by the device when an
asynchronous message arrives at the socket.

There are also classes for a trace system. All traces are called from the pfNewTrace class
that implements a singleton pattern and delegates traces to an actual trace (mode) class
stored in STL Map a link identifier as a key. The framework sends automatically trace
calls when any message is sent or received from/to any conduit. The trace has a name
information about message, sending/receiving conduit, protocol state and accessor. A
user inherits an abstract pfTraceMode class to implement different message sequence
charts , e.g., a chart with ASCII characters or some graphical diagrams.

F.G/H0H2IKJ>L�MNJDO>P>QSRUT.JSV;WYX4TZMNR

There are two known "bugs" in the OVOPS++. The first one is in timer initializing. The
software breaks if the user calls setMessenger or setTimeout methods before a setHost
method, thus the host must be defined always before these methods can be called.

Another bug occurs when a transporter is stopped at the mux. This kind of situation may
happen when the transporter has no install permissions set and the dispatchKey of an
incoming messenger doesn not match any of mux sideB conduits, then the transporter is
left without deleting. Normally the protocol on the mux sideB will destroy the
transporter.

Transporters whose come to the mux from the sideA (from down) have to be send to the
mux as synchronous, otherwise it is caused problems because a scheduling mechanism
may give turn to the next message even if an installing process for a new connection (to
mux sideB) is still unfinished.

[.\/]0]2^>_>`@_Sacbed>b.f:b:g4hji�k;b:l>`

There has been arisen a need for a state machine also in other conduits than the protocol.
This means that the state pointer may be moved from the pfProtocol to the pfConduit
class in the future. After this change, a user can implement some protocol specifications
inheriting the mux conduit. Then same conduit has the accessor and state machine. The
state machine also helps to implement better adapters.

In this moment the framework uses very much normal casting, but this is not suitable for
complicated class hierarchies whose have several levels and use multiple inheriting.

15

Future study is considering to find a solution from double dispatching technique, but also
C++ casts (e.g., dynamic_cast) will be taken into account.

As discussed in chapters 3.4 and 4, the multiplexer is not very robust. In generally the
question is: which part of the framework is wanted to be constant and which part is
intended to be inherited. In the future the dispatchKey may be generated in the accessor
(like mentioned in the Conduit+ paper) and type of the key must be more general than
integer, string for example. An error handling may be implemented in the state machine
of the factory and an install permission flag can be removed in whole. These issues have
to be researched carefully during the next development iteration of the OVOPS++.

Also the new timer and scheduling mechanism may be developed in the future. This
means that the OVOPS code behind the framework will become unnecessary. Replacing
the OVOPS code is going to be quite painless, due to own "adapter" classes between user
and OVOPS classes in the framework.

There is a possibility to enhance the performance of the frames. At the moment all the
data areas are allocated and freed every time a container is created or destroyed, but a
more efficient approach would be adding the free memory areas into private free list.
Also methods to split and combine frames could prove useful.

m.npo0o2qsr:t.u�v rew>x>y/z>t

This chapter gives short introduction with code examples how to use the OVOPS++
framework. Following simple code examples correspond to the protocol stack showed in
the figure 6.

3.6.1 6.1 Implementing of protocols and states
First code examples define a header and implementation files to a protocol connected to
the mux sideA in the figure 6. It is very simple protocol, which have one timer.

//Description:
// Define header file to a protocol connected to the mux
// sideA (downward). The protocol has one timer.
//

#include "pf/protocol.h"

class Protocol : public pfProtocol
{

public:
Protocol(void);
virtual ~Protocol(void);
void setT1timeout(pfUlong msec_);

void sendConnectMessageToB(void);
void sendReleaseMessageToB(void);

private:

16

pfTimer _timerT1;
};

In the constructor of the implementation code example initializing of the timer can be
seen. First host is set for the timer, then the timeout messenger and last timeout value.
The protocol is also initialized to the ReadyState.

The protocol has also methods to send different messages to the mux (on sideB of the
protocol).

//Description:
// Define implementation file to a protocol connected to the //
// mux sideA (downward). The protocol has one timer.
//

#include "exampleprotocol.h"
#include "examplemessages.h"

Protocol :: Protocol(void)
: pfProtocol()

{
_timerT1.setHost(this);

pfTimerMessenger *messenger = new TimeoutMessage;
assert(messenger != 0);

 _timerT1.setMessenger(messenger);
 setT1timeout(100);

changeState(protocol_, ReadyState::instance());
return;

}

Protocol :: ~Protocol(void)
{

return;
}

void Protocol :: setT1timeout(pfUlong msec_)
{
 pfUlong usec = (msec_ % 1000) * 1000;
 pfUlong sec = (msec_ - (usec / 1000)) / 1000;
 _timerT1.setTimeout(sec, usec);

return;
}

void Protocol :: sendConnectMessageToB(void)
{

ConnectMessage *messenger = new ConnectMessage;
assert(messenger != 0);
toB(messenger);
return;

}

void Protocol :: sendReleaseMessageToB(void)
{

ReleaseMessage *messenger = new ReleaseMessage;
assert(messenger != 0);
toB(messenger);

17

return;
}

Next protocol is a connection protocol. It has a clone method and a copyconstructor
because it is cloned by the factory when new connection is created and installed to the
mux sideB. Below is the header file of that protocol example.

//Description:
// Define header file to a connection protocol connected
// to the mux sideB (upward). The protocol have to be a
// clone method because of factory will clone it and install
// these instances to the mux sideB.
//

#include "pf/protocol.h"

class ConnectionProtocol : public pfProtocol
{

public:
ConnectionProtocol(void);
ConnectionProtocol(const ConnectionProtocol &other_);
virtual ~ConnectionProtocol(void);
virtual ConnectionProtocol *clone(void) const;

private:
void sendAcknowledgeMessageToA(void);

};

Following codes define a state machine for the connection protocol. The first file
describes a header file of a base state with all possible inputs to the connection protocol
state machine. If the connection protocol had any timers, also inputs for timeout
messengers would be in this file.

//Description:
// Define header file to a base state for a connection
// protocol state machine.
//

#include "pf/state.h"

class pfMessenger;

class ConnectionState : public pfState
{

public:
ConnectionState(void);
virtual ~ConnectionState(void);

virtual void ConnectMsgAct(ConnectMsg *messenger_,
 pfProtocol *protocol_) const;

virtual void ReleaseMsgAct(ConnectMsg *messenger_,
 pfProtocol *protocol_) const;

};

Next two files (header and implementation) show an example of actual states
(ConnectionIdle) in the state machine joined to the connection protocol. The state was

18

implemented with singleton pattern, and it has one rewritten input method
(ConnectMsgAct).

//Description:
// Define header file to a idle state for a connection
// protocol state machine.
//

#include "pf/state.h"

class pfMessenger;

class ConnectionIdle : public ConnectionState
{

public:
static ConnectionIdle *instance(void);

virtual void ConnectMsgAct(ConnectMsg *messenger_,
 pfProtocol *protocol_) const;

protected:
ConnectionIdle(void);
virtual ~ConnectionIdle(void);

private:
 static ConnectionIdle *_only;
};

When the ConnectionIdle state is received the ConnectMsg message, it sends an
AcknowledgeMsg message to the mux and change the state to the ConnectionActive
state.

//Description:
// Define implementation file to a idle state for a connection
// protocol state machine.
//

#include "pf/messenge.h"
#include "idlestate.h"
#include "exampleprotocol.h"

ConnectionIdle *ConnectionIdle :: _only = 0;

ConnectionIdle *ConnectionpIdle :: instance(void)
{
 if (_only == 0)
 {
 _only = new ConnectionIdle;
 assert(_only != 0);
 }
 return _only;
}

ConnectionIdle :: ConnectionIdle(void)
 : ConnectionState()
{
 return;
}

19

ConnectionIdle :: ~ConnectionIdle(void)
{

_only = 0;
 return;
}

void ConnectionIdle :: ConnectMsgAct(
ConnectMsg *messenger_,
pfProtocol *protocol_) const

{
ConnectionProtocol *p = (ConnectionProtocol*) protocol_;
p->sendAcknowledgeMessage();
changeState(protocol_, ConnectionActive::instance());
return;

}

3.6.2 6.2 Implementing of messages
The following code of implementation file shows how to implement simple messages.
User have to rewrite an apply() method from which the right state input is called. These
example messages doesn’t include any data thus they have only apply() methods and none
attributes.

//Description:
// Define implementation file to messages transferred
// between the example Protocol and ConnectionProtocol.
//

#include "examplemessages.h"

void ConnectMessage :: apply(pfState *state_,
 pfProtocol *protocol_)

{
assert(state_ != 0);

 ConnectionState *s = (ConnectionState *) state_;
s->ConnectMessageAct(this, protocol_);
return;

}

void ReleaseMessage :: apply(pfState *state_,
 pfProtocol *protocol_)

{
assert(state_ != 0);

 ConnectionState *s = (ConnectionState *) state_;
s->ReleaseMessageAct(this, protocol_);
return;

}

3.6.3 6.3 Implementing of accessors
A pfAccessor class in the OVOPS++ framework has two pure virtual methods, whose
user have to implement. The clone() method of the accessor is needed when the mux is
cloned. The purpose of the getDispatchKey is to get a protocol specific identifier from
the message. Due this key the mux can store conduits on its sideB.

20

//Description:
// Define implementation file to accessor
//

#include "exampleaccessor.h"
#include "examplemessages.h"

Accessor :: Accessor(void)
 : pfAccessor()
{
 return;
}

Accessor :: ~Accessor(void)
{
 return;
}

Accessor *Accessor :: clone(void) const
{
 Accessor *newAccessor = new Accessor(*this);
 assert(newAccessor != 0);
 return newAccessor;
}

pfKey Accessor :: getDispatchKey(
const pfMessenger *messenger_) const

{
 pfKey key = ((Messages *)messenger_)->getConnectionKey();
 return key;
}

3.6.4 6.4 Example of main function
The last code is an example of main function to be used to create the protocol stack by
connecting conduit to each other. The mux and factory are created with pfConduitFactory
thus the accessor is set as a parameter when the mux is created and a proxy to the
connection protocol when the factory is created. The Factory use this proxy as prototype
for new connections.

//Description:
// Define main function to create protocol stack and
// send one message.
//

#include "pf/factory.h"
#include "pf/cfactory.h"
#include "pf/mux.h"
#include "pf/system.h"

#include "exampleprotocol.h"
#include "exampleaccesor.h"
#include "connectionprotocol.h"
#include "examplemessages.h"

int main(void)
{

21

pfId id = 1;

// Create conduits
 Protocol *exampleProto = new Protocol();
 assert(exampleProto != 0);
 pfConduit exampleProxy(exampleProto, 1);

exampleProxy.setId(id);

ConneectionProtocol *conProto = new ConnectionProtocol();
 assert(conProto != 0);
 pfConduit conProxy(conProto, 1);

conProxy.setId(id);

 pfConduitFactory *absFac = pfConduitFactory::instance();
pfConduit factoryProxy = absFac->makeFactory(conProxy, id);

 Accessor *accessor = new Accessor;
 assert(accessor != 0);

pfConduit muxProxy = absFac->makeMux(accessor, id_);
muxProxy.setId(id);

// Connect conduits
exampleProxy.connectToB(muxProxy);
muxProxy.connectToA(exampleProxy);
muxProxy.connectToB(factoryProxy);
factoryProxy.connectToA(muxProxy);

// Create trace
pfNewTrace::instance()->setTrace(exampleTrace::create(), id);

// Register conduits to the trace
exampleProxy.setTraceOn();
conProxy.setTraceOn();
factoryProxy.setTraceOn();
muxProxy.setTraceOn();

// Send message
exampleProxy.sendConnectMessageToB();

// Run the system !!!
pfSystem::instance()->run();

return 0;
}

In the main function there is also initializing for a trace. The link identifier is set to each
conduit and then the example trace object (inherited from pfTraceMode) is set to the
common trace object (singleton) an identifier as a key. Conduits, to be traced, are
registered to the trace object.

Finally the example protocol sends a message to the mux, and the scheduling system is
started.

22

{.|p}0}�~��@�.�Y�4�:�@�/�.�

The following table shows estimated figures of hours used to develop the OVOPS++
protocol framework during the first year of the TOVE project. 320 hours were used
outside the project to implement the first prototype of OVOPS++. These hours are
included in the table below.

Activity Research Design Coding Reviews Total

Duration (h) 200 130 190 60 580

Table 1 Duration of activities

Next table shows a size of the framework as code. Numbers describes metrics of the
framework including the original PD software code but no the OVOPS code by
Lappeenranta University of Technology.

Lines Of Code (LOC) Number of files Number of classes

4109 37 30

Table 2 Metrics

�.�/�0�2�K�:�@�:�c�:�>�:�.�

H. Hueni, R. Johnson, R. Engel. A Framework for Network Protocol Software,
OOPSLA’95 Proceedings, Austin,1995

R. Engel. Signalling in ATM networks: Experiences with an object-oriented solution. In
International Phoenix Conference on Computers and Communications, IEEE, 1995.

E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Addison-Wesley, 1995.

23

