
SCOMS demonstration project

The Interworking Trough SCOMS Switch

Concentrating on ATM and ISDN

Markus Mäkelä

TKK/TLM SCOMS Project

Index

Abbreviations

1. Introduction

2. Backgrounds on Why the Switch Was Made

3. Hardware Used at Demonstration Project

4. Basics of ISDN and ATM Networking

ISDN

ATM

5. Introduction to the Software and Configuration Used

at the Demonstration Project

4.1 ISDN

4.2 ATM

4.3. SCOMS and Switch Software

6. Connecting ATM and ISDN trough SCOMS Switch

7. Maybe the Most Important Part of the Project: SW Module

8. The Whole SCOMS Stack

9. The Future

10. Problems I Met

11. What Did I Actually Do?

12. Final Words

Abbreviations

AAL ATM Adaptation Layer

ABM Asynchronous Balanced Mode

API Application Program Interface

ARP Address Resolution Protocol

ATM Asynchronous Transfer Mode

B−Channel Bearer Channel

B−ISDN Broadband ISDN

BISUP Broadband ISDN User Part

CATV Community Antenna Television

CC Call Control

CC−O CC Originating Side

CC−T CC Terminating Side

CLIP Classical IP Over ATM

CLP Cell Loss Priority

CORBA Common Object Request Broker Architecture

CPCS Common Part Of Convergence Sublayer

D−Channel Delta Channel

DSS1 Digital Subscribe System 1

EDSS1 Euro ISDN

ETSI European Telecommunications Standards Institute

FCF Fabric Control Function

FSR Frame Synchronized Ring

GFC Generic Flow Control

HDLC High−level Data Link Control

HEC Header Error Control

ILMI Interim Local Management Interface

IP Internet Protocol

ISDN Integrated Services Digital Network

ISUP ISDN User Part

ITU−T International Telecommunication Union

Telecommunication Standardization Sector

LAPD Link Access Protocol on the D−channel

MIB Management Information Base

MPLS Multi−Protocol Label Switching

MSN Multiple Subscriber Number

MTP Message Transfer Part

NNI Network−Node Interface

OSI Open Systems Interconnection

PPP Point to Point Protocol

PSTN Public Switched Telephone Network

PTI Payload Type Identifier

PVC Permanent Virtual Circuit

SAAL Signaling AAL

SCC Signaling CC

SCOMS Software Configurable Multidiscipline Switch

SCOMS/FSR FSR switch for SCOMS project

SNMP Simple Network Management Protocol

SS7 Signaling System 7

SSCOP Service Specific Connection Oriented Protocol

SVC Switched Virtual Circuit

SW Module Switch Module

TCP Transmission Control Protocol

TKK/TLM Teknillinen Korkeakoulu /

TietoLiikenneohjelmistojen ja Multimedian laboratorio

UNI User Network Interface

UNI−SSCF UNI−Service Specific Coordination Function

VCI Virtual Channel Identifier

VPI Virtual Path Identifier

VTT Valtion Teknillinen Tutkimuskeskus

1. Introduction

FSR is a switch produced by VTT. It has the ability to interconnect ATM,

ISDN ja PSTN networks by signaling. I work with the SCOMS−project, whose

job is to build signaling protocols for FSR switch and to make the switch really

work in practice too. My employer is TKK/TLM.

My job in the project is to accomplish the practical part. So this document

bases mostly in the practical part too. Practical part contains coding,

configuring, buying hardware, installing, and a great amount of "tuning" like

compiling the kernel many times and things like that. On this special

assignment I concentrate on interworking of ISDN and ATM and forget the

PSTN.

I created two IP subnets for special use of this demonstration. Subnets are

ATM subnet (192.168.6.0) and ISDN subnet (192.168.7.0) and the addresses

are 192.168.6.1 and 192.168.6.2 on ATM (Mikki and Hupu) and 192.168.7.1

and 192.168. 7.2 on ISDN (Roope and Aku).

Everything described on this paper is SCOMS/FSR switch related. If all

protocols were fully described or ISDN/ATM completely introduced would

this paper be like 500 pages which for sure is not the intention.

This whole paper (except 4) describes what I have done during the

demonstration project. All the information, configurations, etc. on this paper is

found out by me in a way or another. Without one single part of the

information given below the project would have failed. I have been there

implementing all of the parts more or less. But main idea of my work was to

make all the protocols and the hardware work together. All the stuff in this

paper concentrates on co−operation of all the parts coded by SCOMS and

certain ready parts coded by someone else before.

2.Backgrounds on Why the Switch Was Made

There is large diversity in networks already existing and the diversity has lead

to the heterogeneous networks. Of course for different kind of networks

different kind of software solutions and services are made. There is no

universal transport solution for different networks or it is hardly achieved.

Services should be delivered over different kind of networks which should

provide seamless integration of networks from perspective of the end users. In

that case network elements have to support different kind of networks and call

and connection control functions. Interworking capabilities are required to

interconnect networks.

The usability of software and services in this case is ensured by using IP over

ATM and ISDN on raw data channel after the data channel is opened by

interworking of ISDN and ATM networks signaling. This makes most of the

Linux software and services reachable.

The interworking between different network might also be done by software

without SCOMS switch but then the interworking would be significantly

slower and the idea making big networks work together would be wasted.

Also, the ATM, ISDN and other cards still of course have to be physically

attached somewhere to make the interworking work.

3. Introduction of the hardware used at demonstration

project

The goal goal of the demonstration project is to demonstrate transferring data

between ISDN and ATM networks trough FSR/SCOMS switch. Hardware

combination used on the demo project consists of two ISDN Linux PC’s

including one ISDN card each and three ATM Linux PC’s including one ATM

card each.

Two of the ATM cards are connected to FSR as its clients and one is installed

to a Linux PC which will control the FSR/SCOMS switch. The card installed

on controlling Linux PC will be connected to FSR controlling card on FSR

port one. All the signaling information is sent trough ATM controlling card to

switch. After some huge testing I noted that Efficient´s (eni) ATM cards were

the best available so I installed one on Mikki and one on Hupu. These two

ATM cards are connected to FSR via normal ATM fiber. This time (too) I

noticed that the ATM support is not very good yet. For instance using two

ATM cards on same computer makes big problems. I noted that the other ATM

card does not work at all with the current ATM Linux software.

On ISDN side Telewell´s passive card (Winbond support) turned out to be a

very good choice. Software support is adequate on Linux and the card works

fine. On FSR will be installed two VTT’s special production ISDN cards

which will be directly connected to our normal passive ISDN cards via normal

ISDN connection. Also ISDN phone may be connected to FSR.

Linux PC’s are all 450Mhz PentiumII except the switch control Linux PC,

which is 200Mhz Pentium. Switch control Linux PC is only used for

controlling the switch.

4. Basics of ATM and ISDN networking

To understand the interconnection between ISDN and ATM we must

understand the basics of ISDN and ATM networking. The following chapters

are dealing with that.

4.1ISDN

ISDN (Integrated Services Digital Network) is an all digital communications

line that allows the transmission of voice, data, video and graphics, at high

speeds, over standard communication lines. ISDN provides a single, common

interface with which to access digital communications services that are

required by varying devices, while remaining transparent to the user. ISDN is

not restricted to public telephone networks alone; it may be transmitted via

packet switched networks, telex, CATV networks, etc.

The following diagram shows ISDN and LAPD in relation to the OSI model:

PICTURE 1: ISDN and LAPD in relation to the OSI model

There are three logical digital communication channels in ISDN called B, D

and H. D channel and two B channels are used in this demonstration. The

channels perform the following functions:

� � � � � � � � �

� � � � � � 	 � � � � � �
 � � �
 �
 � � � � � � � � � � � �
 � � � � � � � � �
 � � � � � � � � 	 �
� � � � � � �
 � � � � � 	 �
 � � � � � � � � �
 � � � �
 � � � � � � � � � � � � � 	 �

� � � � � � � � �
� � � � � � � � � � � � � � � � � � �
 � � � 	 � �
 � � �
 � � � �
 � �
 � � � � � �
 � �

� �
 � � � �
� � � � � � � � �

� � � � � � � �
 � � � � � � �
 � 	
 � � � � � � � � � � � � � � � � �

 � � � � �
 � � �
 � �
 � �
� � 	 � � � � � � � � � ! " # $ � � � %

LAPD Link Access Protocol on the D−channel (defined in CCITT Q.920/921).

LAPD is a bit oriented protocol on the data link layer of the OSI reference

model (layer 2). Its prime function is ensuring the error free transmission of

bits on the physical layer (layer 1). LAPD works in the Asynchronous

Balanced Mode (ABM). This mode is totally balanced (i.e., no master/slave

relationship). Each station may initialize, supervise, recover from errors, and

send frames at any time.

ISDN protocols used on this demonstration on different layers :

& � ' � � (� � � �) � � � * � � �) ! *
 � � + � � , %
& � ' � � - � & . � � � � � � � & �

The structure of ISDN number is described on standard E.164 defined by ITU−

T. The basis of the number comes from the more traditional E.163 number

which is used on telephone networks. Number consists of country number,

network prefix and personal number. The routing is made on the order

described below.

4.2ATM

ATM stands for Asynchronous Transfer Mode and it is a type of network

protocol. ATM is the foundation technology for Broadband Integrated Services

Digital Network (B−ISDN). ATM uses short, fixed length data units called

"cells" (53 bytes per cell). ATM network moves cells with low delay and low

delay variation with no fixed timing relationship between the 2 communicating

hosts. ATM is designed for all kinds of data i.e. voice, video and data.

PICTURE 2: Relationship between Transmission Path, Virtual Path & Virtual

Channel

A physical link contains several virtual paths and each virtual path consists of a

number of virtual channels (circuits). Bundles of virtual channels are switched

via virtual paths.

ATM cells are transmitted via cells switching among virtual paths and virtual

channels. A cell will be switched into different virtual channel and path as it

moves toward its destination by ATM switches in the network by changing the

VPI/VCI value in the cell header. All cells within a virtual channel have the

same VPI/VCI value.

Methods used in traffic management to ensure high performance in ATM

networks:

) � � � � 	 � � '
 � � � � � 	 / 	 � �
 � � 	
 / � � � � 	 � � � �

 � � 	 � � � � � � 0 � �
 �
- � 1 �

 � 	 � � � � � � � � � �

 � � � �
 � 0 	 � � � � � � � �
 � � � � 2
 �
 � � � � �
 � 	 � �
(� 3 � � � � � � � � �
 ' ! � ' � � � � & � � � � � � � � �
 ' � �
 % � � � � � � 	 � � � � � � 	 � � � �
 � �
 � � � � �
 �
 � � � � � 	

� � � � 	 '

Transmission on ATM is connection oriented, cell switching, cell discarded

with no retransmission, unidirectional or bi−directional, symmetric or

asymmetric bandwidth. The signaling stack is pictured below:

PICTURE 3: The ATM/UNI Stack

UNI signaling protocol is roughly analogous to Q.931, and depends upon a

lower layer called SAAL (composed of SSCF and SSCOP) for reliable

transport of the signaling messages, much as Q.931 depends on Q.921. For

those unfamiliar with signaling, the protocol defines a vocabulary of messages

and agreed−upon procedures which allow an endpoint to request that the

network dynamically set−up and tear−down communication connections with

specified characteristics (e.g., bandwidth and "quality−of−service" desired) to

specified destinations.

PICTURE 4: The UNI Header

Together, the VPI and VCI comprise the VPCI. These fields represent the

routing information within the ATM cell.

ATM systems use both E.164 and NSAP numbers (Network service access

point). E.164 is used mainly on public ATM networks and NSAP on private

ones. E.164 is also used to make it easier to interconnect with N−ISDN

networks. NSAP address structure consists of IDP and DSP parts. IDP defines

the domain defined the structure. It is divided in two parts: AFI and IDI. DSP

is the address defined by the domain. It is divided in three parts: HO−DSP, ESI

and SEL. No more introduction on these protocols is required on this

particular paper.

5. Introduction And Configuration of Software Used in

Demonstration Project

This chapter describes the software used in demonstration project. Every

software used in this project also has exact description how the software is

configured to work properly with the SCOMS/FSR switch.

5.1ISDN Linux software

On ISDN side the only software which turned out to be usable on this project

was isdn4linux (ISDN for Linux). Other software are not supported at all or

they are very randomly and rarely updated and fixed. The documentation on

isdn4linux turned out to be superior too. On these facts the choice between

different software was clear: There was no choice. The software itself,

information on it and the FAQ are available on many sites, for instance at

http://www.isdn4linux.de.

The first step installing ISDN support on Linux PC is to configure the kernel

and modules so that ISDN features needed are added. ISDN support is working

as a module and all ISDN stuff is under the module. The following

configuration on kernel (kernel 2.2.14) works fine with our Telewell ISDN

cards:

+ � � , �
 � � ' �
 � � � � 4 5 3 4 + � � , �
 � � � �

6 7 8 �
 � � � �
 � ' � 	 � � � � �
 � � � �
6 7 8 �
 � � � �
 �
 � � � � � � + � � ,
6 7 8 �
 � � � �
 � � � � � � � � � � � � � � � � � � 	 � �

5 3 4 � � � � � � � � �
 � � � �

5 3 4 � � � � � � � � � � � � � � � � � �
 � � � � � � �
 � � � �

6 7 8 � � � � � �
 � � � �
 � � � * 9 1 : 0 � � �)
6 7 8 � � � � � �
 � � � �
 � � � ; � � � � � � ; " " < - � � � � � 	 � � � �

Modules configuration file is located at following place:

0 �
 	 0 	 � � � � � � �
 � � �

After configuring the kernel and the modules they are to be compiled by the

following way:

0
 � � 0 � � 	 0 � � �
 � 0 4 � � � � � � �
 	 � � � � �
0
 � � 0 � � 	 0 � � �
 � 0 4 � � � � � � � 	 � � � �
0
 � � 0 � � 	 0 � � �
 � 0 4 � � � � � = + � � � �
0
 � � 0 � � 	 0 � � �
 � 0 4 � � � � � � �
 � � �
0
 � � 0 � � 	 0 � � �
 � 0 4 � � � � � � �
 � � � > � � �
 � � �

Now that the kernel is configured we can concentrate on configuring the ISDN

software for our needs. Of course for first the software has to be installed. It is

done by the following way:

� � � � 9 � � � � � � # � �

 � � � � � � � � � � � � � � (? " � � � �

Linux RedHat6.1 is used by SCOMS project and the best rpm packet for it is

isdn4k−utils−3.0−5.i386.rpm. After the kernel is configured and rpm packet

installed we only have to make some scripts and settings. I wrote a script that

does all the things needed to rise ISDN even if the Linux PC was booted

before executing the script. The scripts are located at:

� � � � � � 0 �
 	 0 � 	 � � 0 � � � � � � �
 � �
 � � � � � �
� �
 � 0 �
 	 0 � 	 � � 0 � � � � � � �
 � �
 � � �

Isdnctrl is the command used on most configuring and it was included in

isdn4linux packet. With /usr/sbin/isdnctrl list you can check whether the

configurations are what you wanted.

@ A 0 � � � 0 � �
@ 3 � �
 � � � � � �
 � � �
@ 3 � � �
 � 3 B � � � B) (� " � -

@ + � � , �
 � � �
 �
@ 1 � � � � C � + � �) < - �) " ? � D �)
@ . �
 C � + � �) < - �) " ? � D � -

@ 3 � , �
 � � � � � �
@ : ; , 3 � , � �
 � � �
 � � � � ' �
 � � � 	 � � � � � � � � � �
@ 3 � , : 9 E � �
 � � �
 � � � � ' �
 � � � 	 � � � � � �
 �
: ; , 3 � , F #) - G (? #

3 � , : 9 E F G #) - G (? G

@ E ' � � � �
 � � 	 � � � � � � �
 � � � 	 �
 � � � �
 � � � � � � � �
 � 	 � � � �
 � � � � �
 � 	 � �
 � � � ! � � �) % �
@ + 1 H � � 	 � � � � � �
 � � �
 �
 � � � �
 C � + : � � � � � � � � � � � � � �
 � � � � � � � � � � � � �
 � � � 	 �
 � � � �
@ � � � 	 � � � � � � � � � � � � � �
 � � � � �
 � � � � � � � � � �

� � � � � � � � � � � � �
 ' � � F (" � � �
 � 	 � � F - � � 2 F) � � F � � 	 � � F � � � � � + �
� � � � � � � � � � � 	
� � � � � � � � � � � �
� � � � � � � � � � �

@ . � � � � � � � � + � � , � �
 � � � � 	 � 	 � � � � � � � � �
 �
 � � � � � � � �
0
 � � 0 � � � � 0 � � � � 	
 � � � � � � � � � � �

@ � �

 � � � � � � � � � � � �

 �
0
 � � 0 � � � � 0 � � � � 	
 � � � � � � � � � � � � � � �

 �

@ � �

 � � � � � 	 � � � � � � � � �

 	 � � � � � �
 � � � � � � � � 	 � � � � � � � � � �
@ / 7 / � 	 	 � �
 � � � �
 � � � � 	 � � � � � �
 � � � � � �
0
 � � 0 � � � � 0 � � � � 	
 � � � � � � � � � � � � � � �

 I 3 � , : 9 E
0
 � � 0 � � � � 0 � � � � 	
 � � � � � � � � � � � � � � � � / 7 /

@ *
 � � + � � , ! � � �) % � � � �
 � � � �
0
 � � 0 � � � � 0 � � � � 	
 � � � � = � � � � I : ; , 3 � ,

@ & � ' � � � - 0 (� � �
 � 	 � � � � � � � �
 � � � � 	 � � � � �
@ � � & � � � � & . � � � � � �
 	 �
 � � � � � � � �
 � � � � � � & �
0
 � � 0 � � � � 0 � � � � 	
 � � � - > � � �
 � � � � � � � 	
0
 � � 0 � � � � 0 � � � � 	
 � � � (> � � �
 � � � �
 � � � �

@ � �

 � � � � � 	
 � �
 ' � �
 � � � � � � �
0
 � � 0 � � � � 0 � � � � 	
 � � � � 	
 � � � � � � � � �

@ 1 � � + � � � � � 	 � � �
 � �
 � � � � � � � � 	
 � � � � � � � � � � � A
0
 � � 0 � � � � 0 � � � � 	
 � � � � 	 � � � � � � � � � � �

@ E � � � �

 �
@ 0
 � � 0 � � � � 0 � � � � 	
 � � �
 �
 � � � �

 � � � � (

@ E � � 	 � � � � � 	 � � � � � '
0
 � � 0 � � � � 0 � � � � 	
 � � 	 � � � � � ' � � � �

@ � � � � � � �
 � � 	 � � �
 � � �
 � � � � 	 �
0
 � � 0 � � � � 0 � � � � 	
 � � � � � � � � � � � � � � � + � �)

@ + � 	 � � � � � � �
 �
 �
 � � � � � � � � � � � � � � � �
 � �
 � � � �
� � 	 � � � � � � � � �) < - �) " ? � D �) � � � �
 � � � � �
) < - �) " ? � D � - � �
 � � � � - G G � - G G � - G G �
 �

@ & �
 C � � �

 � � � �

 �

0
 � � 0 � � � � 0 � �

 � � � � � � � �
) < - �) " ? � D � - � � � �

The most positive thing using RawIP encapsulation is that RawIP does without

the use of a protocol such as X.75, HDLC or PPP. So we do not have to use

pppd or ipppd demons which would have made big problems on ATM side

since they send their frames with the data. No demons are used at ISDN side at

all! When using RawIP encapsulation are TCP/IP packets directly exchanged.

This fact makes it possible to transfer data between ISDN and ATM trough the

switch using normal IP addresses. Other positive things about RawIP are: No

handshaking (faster connections), authorization by Caller ID (fast, safe, no

password) and fixed IP address (a broken connection can be continued by

redialing).

5.2ATM Linux software

When finding out a proper software on ATM side the situation was much the

same as on ISDN side. There was just one good software available,

ATMonLinux. ATMonLinux and valuable information and help on it can be

found for instance at: http://icawww1.epfl.ch/linux−atm/ . On ATM side of the

demonstration too the first step is to configure the kernel. The following kernel

configuration works fine with our Efficient (eni) ATM cards, kernel (2.2.14),

Linux Redhat6.1 and ATMonLinux version 0.59.

6 7 8 . � ' � 	 � � � � �
 � E � � � � � � � 3 � � � ! . E 3 � * J � * 1 + 3 * , E . & %
6 7 8 9 � � / � � � / � � � �
 �
 	

 � �
6 7 8 � � � � � � 	 � � + � � � � � . E 3
6 7 8 � � , : E � � � � + � 3 � � � � � � � � � � � �
 �

5 3 4 & . , * �
 � �
 � � � ! & . , * % �
 � � � �

5 3 4 3
 �
 � � � � �
 � 	 � � : � � � . E 3 ! 3 � : . % �
 � � � �

After configuring the kernel and the modules they are to be compiled by the

following way:

0
 � � 0 � � 	 0 � � �
 � 0 4 � � � � � � �
 	 � � � � �
0
 � � 0 � � 	 0 � � �
 � 0 4 � � � � � � � 	 � � � �
0
 � � 0 � � 	 0 � � �
 � 0 4 � � � � � = + � � � �
0
 � � 0 � � 	 0 � � �
 � 0 4 � � � � � � �
 � � �
0
 � � 0 � � 	 0 � � �
 � 0 4 � � � � � � �
 � � � > � � �
 � � �

There is one thing to mention about kernels and glibc versions: Our UNI3.1

and ATMonLinux’s Linux UNI3.1 (running as atmsigd = ATM signaling

demon) could not communicate if the kernel version was 2.2.14 but glibc was

version 2.1.2−11 which came with the kernel 2.2.14 packet. The glibc version

had to be updated to 2.1.3−15 to make signaling work properly. The version

number of ATMonLinux version is as low as is because if newer version

would have been used a kernel update should have been done. Version 0.59

works fine so there no need to update everything just because of one software.

The ATMonLinux software is easy to install. Just download the software from

internet, for instance from ftp://icaftp.epfl.ch/pub/linux/atm/dist/atm−

0.59.tar.gz and normally extract it by shell command in the atm directory:

0
 � � 0 � � 	 0 �
 � 0 4
 � � � � = �
 � � � G < �
 � � � � =

On /usr/src/linux directory then exract the ATM related patches. If ATM

signaling demons work fine this step may be skipped.

0
 � � 0 � � 	 0 � � �
 � 0 4 � �
 	 � � � � �) 5 0
 � � 0 � � 	 0 �
 � � � �
 	 �

Now compile /usr/src/atm/ and all the directories under it if makefile under

atm/ does not make it itself and you have an ATM support on your Linux PC.

Now we just have to do some scripting. The ATM interface for the ATM cards

should be set 0. It is set atm0 automatically if just on ATM card is installed.

But because atm daemon (atmsigd) and linux kernel does not seem to be able

to handle 2 atm cards on same Linux PC there should be just one ATM card on

one Linux PC.

Now that we have the software we can start running it. First we should

configure the ATM address used by our Linux PC. ATM addresses should be

configured in /etc/hosts.atm file and should look like this:

D � G � ? K K *) K - K # .) G � - * . (� " - � � � � � � �
 	 � � �
 �
D � G � ? K K *) K - K # .) G � - * . - . * K � �
 �
 �
 	 � � �
 �

After address configuration the address used on your Linux PC must be told to

your ATM software so it can be used later:

0
 � � 0 � � 	 � � 0 � � � � 0 4 � 0 �
 � � � � � � � � � � � � �
 	 � � �
 �

At this time we should start running our switch signaling UNI. There is switch

control software (sw) included in our UNI so starting it now makes it possible

to connect trough switch on later parts. Our UNI also makes communication

between two atmsigd’s on different Linux PC’s possible by handling the

signaling between them trough the switch. As seen UNI loads its ORB

configuration from file orbacus.cfg.

L 0 � 	 � � � 0 � � � 0 �

 0
 � � 4 � 0
 � � �

 � : 1 � 	 � � � � � � � � � 	
 � � 	 � �

UNI and switch related configuration files are found at:

L 0 � 	 � � � 0 � � � 0 �

 0
 � � 0 � � � � � � � � 	 � �
L 0 � 	 � � � 0 � � � 0 �

 0
 � � 0 � � �
 	 � � 	 � �

The most important demon on Linux ATM is atmsigd which communicates

with our switch related UNI3.1. ATM signaling demon is started the following

way. The option −d means debugging and 0.0.50 are interface number and last

are VPI (Virtual Path Identifier) and VCI (Virtual Channel Identifier). VPI and

VCI are explained in chapter 4.

0
 � � 0 � � 	 � � 0 � � � � 0 4 � 0 �
 � � � � � � � � � G

To make it possible for ATM and ISDN to contact with IP addresses must

Classical IP over ATM (CLIP, defined in RFC1577) be configured. It is done

by starting the ATM ARP demon and defining the ATM ARP options:

0
 � � 0 � � 	 � � 0 � � � � 0 4 � 0 �
 � � � � � � �

Next we create atm0 interface with help of ATM ARP:

0
 � � 0 � � 	 � � 0 � � � � 0 4 �
 � � � � � 	 �
 �

And ifconfig is used to raise the interface just created for certain IP address:

� � 	 � � � � � �
 �) < - �) " ? � " �) � �
 � � � � - G G � - G G � - G G �
 �

Next we have to configure atmarp addresses. The first one configures Mikki

(192.168.6.1) as ARP server and the second one just tells Mikki theré s Hupu

on IP 192.168.6.2 and ATM address

47.0005.80FFE1000000F20F4A15.0020EA002AEF.00.

�
 �
 � 0
 � � 0 � � 	 � � 0 � � � � 4 � 0 �
 � � � � � �) < - �) " ? � " �)
D � G � ? K K *) K - K # .) G � - * . (� " - � � � � � � �

� � � � � � 0
 � � 0 � � 	 � � 0 � � � � 4 � 0 �
 � � � � � �) < - �) " ? � " � -
D � G � ? K K *) K - K # .) G � - * . - . * K �

Usable ATM ARP information can be found in following files:

0 � � � 0 �
 � 0 �
 � � � � � �
 � � � �
0 � � � 	 0 �
 � 0 � � �

5.3SCOMS and Switch Software

The SCOMS and switch softwares handle the signaling trough the switch and

the switch configuration. The handling of signallation, the switch control and

what happens when the connection is taken is explained later on chapter 4: The

Principles of Connecting ATM and ISDN trough the SCOMS switch. The

protocols themselves are not configured anywhere after coding because it is

not needed and the protocols fulfil the specifications requirements given by

ITU−T and ETSI and ATM Forum. The SCOMS protocols used handle the

signaling between ATM and ISDN on any cases. Addresses and switch must be

configured though. Linux ATM (ATMonLinux) and ISDN (isdn4linux)

softwares are configured before in chapters 3.1 ISDN Linux Software and 3.2

ATM Linux Software. ATM and ISDN addresses used with the switch are

configured in ~/scoms/bin/iut/uni/address.cfg and should look like this:

@ L 0 � 	 � � � 0 � � � 0 �

 0
 � � 0 � � � � � � � � 	 � �
@ 3 � �
 � � � ' � � � � �
 � � � � � � � � � � � � �
@ � � � � � �
 � � � � ' 3 � � �
 � 3 B � � � B M � � : 3 �
@ � � �
 	 � � � �
 � � � � � � � �
)
@ 3 � � � � � � � � �
 -
@ �
 �
 � � � � �
 (
@ 1 � � � � � � � � �
 #
@ . �
 � � � � �
 G

� * N + , . � � 1 * � � * �
@ � � �
 � � � � � � � � � � �

-) # D � G � ? K K *) K - K # .) G � - * . (� " - �
() # D � G � ? K K *) K - K # .) G � - * . - . * K �
) # D � G � ? K K *) K - K # .) G � - * . - . K ? �
G) # D � G � ? K K *) K - K # .) G � - * . - . K G �

* , �

@ 3 � � � � ! . E 3 %
@ �
 �
 ! . E 3 %
@ 1 � � � � ! + � � , %
@ . �
 ! + � � , %

Ports are switch ports. ATM cards are on ports 1, 2 and 3 and ISDN cards are

on ports 4 and 5. Switch control is on port 1, Mikki is on port 2, Hupu on port

3, Roope on port 4 and Aku on port 5. Certain addresses are bound to certain

ports. So if an address is called the switch knows to which port it makes the

connection and recognizes the card type (ISDN/ATM) on that port.

The switch itself is configured in file ~/scoms/bin/iut/uni/switch.cfg and it

should look like this:

@
@ � � �
 	 � 	 � � � � �
 � �
 � � � � � � �
@ � � � � � �
 � � � � ' 3 � � �
 � 3 B � � � B M � � : 3 �
@

@ � � �
 � � � � � �
 � � � � 	 �
 � � 	 � �
 � � � � � � C � ! � � % 	 � �
 � � � � � �
 ! � � � �
 �
 %
� : , E 1 : & > � : 1 E

@ K � � � � 	 	 � �
 � � � � � �
 � � � � 	 �
 � � � � � � � 	 ! � � �
 	 � � � � � � � � � % 	 � �
 � � � � � �

@ � � � � � 	 � �
 � � � � � � � � 	 � � � � 	
 � �
 � ! � � � �
 �
) %

K . � 1 + � > � : , E 1 : & > � : 1 E -

@ O � + 0 O � + � � �
 � � ! � � � �
 �
 0 G %
� + N , . & + , N > O � +
� + N , . & + , N > O � + G

@ � � � � � � � � � O � + 0 O � + � � �
 � � ! � � � �
 �
 0) G %
. � + > O � +
. � + > O � + " #

@ 3 � � � �
 � � � � � � � � �
 � � � �
 � � � � � O � + 0 O � + � � �
 � � � � � �
 � 	 � � � � � � �
@ E � � � O � + � � � � � 	 � � � � � � �
 � � 	
 � � � �
 � � �
 � �
 � � � � � � � � � � �
 � �
@ ! � � � � 	 � � � � � � ' � � �
 	 � � � � � � � � � 	 % � �

 � �
 � �
 � � � � � �
@ : � � ' O � + F � � �
 � � � �
 � � � �
 � O � + � � �
 � �
@ � � � � � � � � � � 	
 ! � � � �
 �
 O � + � � � � � (- � " G G (G % �

3 + , > O � +
3 . J > O � +
3 + , > O � + (-
3 . J > O � + " G G (G

@ � � � � � � �
 � � � � � � � � 	 � � � O � + � � � � � � �
 � � �
@ ! � � � �
 �
 � � � � � � � � � � � � � � � � � 	 � � � # � � � � � � + & 3 + � 	 � " %
� + N , . & + , N > O � + > � . � * #

@ � � � � 	

 � � � � � �
 � � � ! � � � �
 �
 � � �
 � � � � � � � � � � C
 � � � C !) % %
+ & 3 + > 9 � * �

� � D > 9 � * �

@ � � � � 	
 � � � � � 	 	 � �
 � � � �
 � 	
 � � � ! N � 3 � � . � + � , : E > 9 � * � %
K . � 1 + � . � +

@ 1 �

 � � � ! � + 3 � & * � E 1 � %
@ � � � �
 �
 � �

 � � � � � � + 3 � & * � �

 � � � �

1 : 9 E + , N � + 3 � & *

@ 3 . , � . E : 1 P 	 � � � � � � � � � � � � � � : + , E > � : � * ! � � � � � �
 �
 � � �
 � � � � � � � � � � %
@ E � � � � � D � � � �
 	 � � � � �
 � � � � � � � � � � � : 1 � . , � � � � � � � � 	 �
 � � � � �
 � � '
@ � � � �
 	 � � � �
 � � 	 �

� : + , E > � : � *)

@ , �
 � � � � � � � � � �
 � � � � � � � � � � � � � � � � �
 � �
 � � �
@ ! � � � � � �
 �
 � � �
 � � �
 ! � � �
 ' �
 � � � � % %

, * E > � 1 * K + J # D � G � ? K K *) K - K # .) G

@ � � �
 �
 � � 	 � , 9 & & � � : 9 E � K + & * � � : 1 � . ! � � � �
 �
 � � � � � ! , 9 & & % %
@ , �
 � � : � � ' � : 9 E � � � �
 � 	 � � � �
 � � � � � �
 � � � � � � �
 � � � � �
 � � � � � � , 9 & &
@ � � �
 � � � � � � � � � �) � - � (! � � � �
 �
 � � � � �
 2
 � �
 !) % %

� * � 9 N > E 1 . � * � : 9 E
� * � 9 N > & * O * & (

@ � � �
 �
 � � � � � �
 � � � � � � & � �
 � � � �
 �
 � � � � � !
 � � � K � 1) G G � � �

 ' � � % �
@ , : E * � + � K . � 1 + � � � , : E > 9 � * � �
 � 	
 � � � 	 �
 � �
@ � � �
 	 � � � � � � � � � � � � � � �
 � � � � � � �
 � �

 � � �
 � 	 � � � ' �

� * N + , � : 1 E �
@
 ' � � � � �
 �
 � � � � �

. E 3) - (
+ � � , # G

* , �

@ & � � � �
 � � � � � �
 � � � � � � & � �
 � � � �
 ' � � � � � �
 �
 � � � � � � � � � � � �
 � � � � �
@ , , + � � � � � � � � � � � � � � � � �
 	 � � � � �
@ , : E * � + � 	 � � � � � � � � � � � � � � �
 � � � � � �
 � � �
 � � � � � � � � 	 � �
 � � � � � � � � � � �
@ � � � � � �
 �
 � � � �
 � � � � � � � � �

� * N + , & + , $ �
@ � � �
 � � � �
 ' � � 6 � � � �
 	 � � � 8
@ . E 3 ! 9 , + () � 9 , + # � � � � - � � + � 9 � %

-) 9 , + ()
() 9 , + ()
) � � �)
G) � � �)

* , �

� * N + , � � D > 9 � * 1 �
E � . �

� + � 9 �
+ � 9 �

* , �

� * N + , 3 E � (> 1 : 9 E * �
@ �
 � �
 � � � �
 	 � � � � � � � � � � �
 	 � � � � � � �
 �
 � � � � � � � � � �
 � � � �

- - -)
((()
)
G G G)

* , �

@ + � + & 3 + > 9 � * � � � � �
 !) % �
 � 	
 � � � 	 �
 � �
. � � 1 * � � > K + & * > , . 3 * � � � � � � � � 	 � �

Each part of the configuration file is explained above in corresponding place.

6. Connecting ATM and ISDN Trough the SCOMS

Switch

On common ISDN connection and in our system there are two Bearer (B) and

one signaling (D) channels. Protocols used on ISDN B/D channels on our

demonstration are on D Channel: EDSS1/DSS1 and HDLC/LAPD. Linux

EDSS (Euro ISDN) corresponds DSS1 (specifications: ITU−T Q.931) and

Linux HDLC corresponds LAPD (specifications: ITU−T Q.921).

B channel is for transferring raw data. On ATM there are no B or D channels

but the data transmission is handled trough the Virtual Channels and signaling

is handled by signaling to certain VPI/VCI. Two virtual ATM channels with

own VPI/VCI values both make much the same as B channels on ISDN side.

When the signaling is done is the data transferred as is through the switch via

data channel. For instance MP3 sent from ISDN arrives as sent at ATM side.

The connections may be taken by IP address. These facts make this system

very usable.

The following picture shows the main idea of interworking of ISDN and ATM

trough the FSR/SCOMS switch. The explanation of what is happening in the

picture follows the pic.

PICTURE 5: Interworking of ATM and ISDN, point of view 1.

ATM Linux PC (from ip 192.168.6.1) is trying to contact the ISDN Linux PC

with IP address, say 192.168.7.1. Linux PC ATM card is connected to one of

the ATM ports on switch. ATM card sends signaling information to switch by

VPI/VCI 0.50. Switch is controlled by switch control Linux PC which is

running API (Application Program Interface). API is the software controlling

the switch. API runs on a Linux PC with ATM card and it controls the switch

by signaling via permanent VPI/VCI. Right when the API is started are the

protocol stacks established from CPCS to UNI on ATM side and from CPCS

to LAPD on ISDN side. When connection establishment request is received

from the incoming link (UNI at this case) sends the coordination protocol a

SETUP message to call control (CC). After the setup arrives at CC it

recognizes itself as originating side (CC−O). It reserves the resources from

incoming link and demands a route to be established with help of switch and

switch (sw) software (includes FCF). SwSwitch has an STL map which

includes link interworking possibilities. The state of SCC is controlled by

swSwitch. Different states of SCC contain different connection possibilities.

Routing returns the identification to an outgoing link (DSS1) which CC−O

uses to to send an establishment command to an outgoing link trough SCC.

SCC part switches the signaling to a form understandable on ISDN side. When

establishment command arrives at ISDN side an ISDN stack is established and

the whole signaling stack is now established.

Now signaling reaches the with help of routing made by switch Linux PC

ISDN card and is in understandable form to it. The signaling route is now

established and the data channel will be opened to transfer data right trough the

switch. Since the data channel is opened it stays permanent until closed by

signaling. Data transferred trough the switch is raw and stays the unchanged on

its way to the Linux ISDN PC. The connection just made acts like a normal IP

connection.

ISDN side’s IP address (at this case 192.168.7.1) and ISDN cards MSN

number are configured with help of isdnctrl software to isdn0 interface. The

same MSN number just like all other MSN numbers and ATM addresses (on

atm0) are configured in address.cfg file with corresponding FSR/SCOMS

switch port numbers. Classical IP Over ATM addresses are configured as

explained before. Signaling channel must be opened before connecting with

IP. It is done from ATM Linux PC by calling to a certain ATM address which

is bound to a known ISDN port. When calling the certain number the switch

and its control software knows between witch cards on switch to open the

connection. The first of two connected cards of course is the card that makes

the call. Switch and address configuration files are explained better on chapter

3: Introduction And Configuration of Software Used at Demonstration Project.

After the connection is opened by calling to a certain ATM address or MSN

number may IP features be fully used.

The same thing is explained from a little different point of view using a little

different combination in the following picture. The explanation of what is

happening in the picture follows the pic.

PICTURE 6: Interworking of ISDN and ATM, point of view 2.

On the left side there is Linux ATM PC running ATM signaling demon called

atmsigd and it handles the Linux UNI signaling. On the same Linux PC we run

UNI coded in SCOMS software (specifications made by ATM forum). Our

UNI and Linux UNI signal trough the lower ATM layers UNI−SSCF and

SSCOP. Linux UNI and our UNI both are able to handle the signaling trough

UNI−SSCF and SSCOP The signaling on ISDN (right) side is handled much

the same away. Isdn4linux EDSS1 (Euro ISDN) contacts our DSS1

(specifications made by ITU−T) trough the lower layer LAPD. The signaling

trough LAPD is handled by starting HDLC layer 2 protocol on ISDN Linux

PC. HDLC signals with LAPD so that signaling between DSS1 and EDSS1 is

possible. Switch and SCC handle the interconnection of ISDN and ATM just

like described in the chapter before. Both ATM and ISDN sides have their own

subnets. When the data channel is opened by signaling may the both sides

connect to each other’s IP addresses and the network just created works just

like a normal IP network and any IP software can be used such as MP3 server

being able to be connected from side to side.

As seen on the picture the switch is controlled by ATM and ATM network is

designed to work as a backbone of the networks connected to switch. The

connections taken via switch base on ATM SVC connections. That is why the

switch control Linux PC is connected to ATM port too. Switched Virtual

Circuits (SVCs) are connections that are established dynamically, and are then

torn down when the connection is no longer needed. When using SVCs, a host

must pass information to the ATM switch, declaring its intent to set up a

connection with another host. The term for connection setup is signaling. The

ATM protocol used between a host and a switch is the user−network−interface

(UNI) signaling standard.

7. Maybe the Most Important Part of Project: SW

Module

The SW module provides the framework for ATM switch software. It provides

facilities to access the cards, physical interfaces, logical signaling interfaces

and other resources in the switch. The SW module implements a main program

for ATM switch software and it is implemented to delegate operations to

proper modules. We have a runtime access to configure switch parameter and

resources via CORBA interface which is very clearly seen in PICTURE 8: The

Structure of the SCOMS stack too.

I myself have coded a big part of SW switch control module. In the following

chapters I will describe the architecture and some implementation details about

the SW module.

The PICTURE 7 shows the switch architecture. Management protocol

implementations, SNMP and ILMI and configuring interface implementation

are CORBA adapters to support access to ATM MIB and other system

variables. Routing resources are implemented in other module and it is

distributed also with CORBA. The switch class has different prototypes and

common objects as attributes, e.g. SS7 stack, and cloneable prototypes of

signaling protocols. The architecture of the switch framework consists of

following classes or collections of classes: system, switch, routing, card,

physical interface, logical signaling interface, subscription, call, virtual path

and virtual channel. More about these entities is described further on further

chapters.

PICTURE 7: SW

System provides a singleton for a global access point for the switch

framework. The system can contain several switches that can be accessed

through the system. The system may be implemented using several separate

singletons if needed.

Switch is an object that provides an access point to a switch and resources of

the switch. The interface of the switch provides access to line interface cards,

physical interfaces in those cards, logical signaling interfaces in those physical

interfaces and virtual paths and channels in physical interfaces in addition to

other physical or logical resources. Routing is an object that makes routing

decisions based on the information given from the switch.

P O R TSW I T C H

C O N F I G S N M P I L M I

F C F

L I N K

R O U T I N G

P O R T

F A C T O R Y

P R O T O T Y P E S
M U X E S

E T C . C O M M O N

S S 7

S T A C K

G S M P

C O R B A

F i g u r e 1 . S w i t c h a r c h i t e c t u r e .

The routing contains a static route database. The switch informs routing about

dynamic changes in routes such as congestion, blocking and route failures.

Card is an object that models a physical line interface card attached to the

switch. One card can contain one or several physical interfaces. Activation or

deactivation of a card activates or deactivates physical interfaces contained in

the card. Other operations performed on the card can be propagated to

physical interfaces as well.

Physical interface (port) is an object that models a physical network interface

that is connected to the switching fabric. The physical interface has several

properties that describe characteristics of the interface such as line speed and

the number of virtual paths and channels supported.

Logical signaling interface (link) is an object that models the signaling

capabilities of the whole physical interface or one logical channel inside the

physical interface. The logical signaling channel supports one of various

signaling protocol stacks such as UNI signaling stack. The UNI signaling

stack contains ATM, CPCS, UNI−SSCF and UNI 3.1. I coded links to ISDN

and fixed ATM links.

Subscription is an object that models subscribed services in local interfaces. It

contains a user service profile.

Call is an object that models the ongoing call and resources associated to it.

The call can be SVC or PVC.

Virtual path is an object that models virtual path connection in a physical

interface. This object is used for unallocated and allocated virtual paths.

Virtual paths can be switched if that is supported by the hardware.

Virtual channel is an object that models virtual channel connection in a

physical interface. This object is used for unallocated and allocated virtual

channels. Virtual channels can be switched if that is supported by the

hardware.

A port factory creates ports using registered port prototypes (identified with a

string). A fabric control function (FCF) is module that includes a generic

interface, which hides the concrete switching protocol or API, e.g. ATM FCF

implementation uses API to make fabric connections in a switching hardware.

8. The Structure of the SCOMS Stack

To understand more about SCOMS software and its future must the whole

SCOMS stack be introduced. In the following picture there are all the

protocols used at SCOMS project in stack.

PICTURE 8: The Structure of the SCOMS Stack

In the picture, the ISDN and ATM stacks described better before are very

clearly seen. In the future the stack will change so that MTP−2 reaches the

bottom of MTP−3 under ISUP. We can here also see the importance of Linux

ATM when communicating with the SCOMS switch. The Call Control’ s

meaning as a highest level protocol is now also clearly seen. The signaling

protocols UNI, DSS1, BISUP and ISUP are right under SCOMS interworking

Call Control. The protocols on the right side are for future to be used with

intelligent networks.

9. The Future

At the moment only ATM and ISDN interworking works on SCOMS/FSR

switch but in the future, more different networks will be available to be

connected to SCOMS/FSR switch. The future of the switch lies on that fact

that it is constantly updated. Next step will be connecting Ethernet IP and

MPLS IP networks to the switch. MPLS is a protocol that uses ATM hardware

in physical transmission and IP technology in routing. So it completely acts

like an IP network which once again makes big things possible.

With the hardware, Linux and IP knowledge gained during the SCOMS project

it should be relatively easy to start coding new network protocols to be used by

switch. Making the new hardware work with Linux PC’s should not be a

problem either. Of course, when making big things big problems may occur

but the point is that now that the backbone is set and the biggest problems are

solved all the problems that occur are solvable.

All the connection oriented networking protocols have the same main idea of

signaling and data transfer, there is always a signaling channel in a form or

another and a data channel in a form or another. The switch has been designed

by that fact also. That fact makes it even easier to code new protocols and

attach new networks to the switch.

The word of the future of all kind of networks is service so on service must we

concentrate too. The visions of future include Media Servers, Service Control,

Billing and Customer Control on MPLS IP networks which will be directly

connected to the switch and the services that way brought to other networks

connected to switch. About Ethernet IP networks we have a vision too. Normal

user terminals will off course be connected to switch via Ethernet but also

many other kind of things like TV sets and portables for instance.

The following picture describes two of the future networks to be connected to

switch. On left side is ethernet IP and on the right is MPLS based IP network.

Router/switch

Routing/
switching
control

User
terminals

TV sets

Portables

IP
network

IP
network

Service
control

. .

. .Customer
control

. .

. .

. .

. .

Billing

Media servers

. .

. .. .
. .. .

. .. .
. .. .

. .

IP
network

IP
network

Parameter
conversion

server

Access
server

. .

. .
. .
. .

. .

. .

PICTURE 8. Two future networks to be connected to switch: Ethernet on the

left and MPLS on the right side.

In the future MPLS, ATM and Ethernet networks will all use Classical IP

features to make IP access over the switch even easier. I coded the CLIP

OVOPS++ interface to MPLS, ATM and ethernet. The interface bases on

ATMonLinux CLIP.

There are many visions in the future and many will be implemented but the

next sentence describes my feelings about the future quite well. The world of

visions is infinite on possibilities. Sadly, the world of reality is not infinite on

funding.

10.Problems I Met

One of the problems was that UNI3.1 specified by ATM Forum did not run

with glibc−2.1.2−11. Our UNI3.1 and ATMonLinux’s Linux UNI3.1 (running

as atmsigd = ATM signaling demon) could not communicate if the kernel

version was 2.2.14 but glibc was version 2.1.2−11 which came with the kernel

2.2.14 packet. The glibc version had to be updated to 2.1.3−15 to make

signaling work properly. The version number of ATMonLinux version is as

low as is because if newer version would have been used the kernel update

should have been done. Version 0.59 works fine so is there no need to update

everything just because of one software.

One big problem was making the ATM cards work. It was finally found out

that ATM drivers and ATM software on Linux still have many bugs. You just

cannot add two ATM cards on same machine unless you fix the kernel sources.

The other ATM related problem was that the interfaces created with atmarp

and bound to IP with ifconfig never were fully removed on reset. This problem

was found out to be a driver bug.

Of course, in this kind of work I met dozens of software configuration

problems. Everything had to work with our specific hardware in our specific

network environment. Configurations finally found out working and

explanations to them can be found on chapter 5. This really was not the easiest

part though someone who have not struckled with configurations might easily

think so. The point here is that if every part is not all right the whole thing just

will not work.

ATM sure was not the only thing that made me sit long days at work. There

were problems with ISDN too. The first ISDN cards and their drivers were so

buggy I brought the cards back to the store right away. The second ones,

Telewell´s work fine. Of course, bugs on Telewell drivers are found too but

they do not make networking impossible.

The main problem so to say was making the IP features work on ISDN, ATM

and then finally over the switch and the whole system. The configurations on

this are found in chapter 5 and the explanation on the whole system is found in

chapter 6 so it is not necessary to explain it all again here.

Making sw module work also made some problems. The one to mention is

ISDN and ATM links. All the links were not easily implemented. Due to lack o

f time ISDN stack did not end up such as planned. We had to make it support

only one connection from one device because coding the support to many

devices would have taken too much time. This feature will be implemented

soon in future.

11.What Did I Actually Do?

Q SW Links
Q Parts of SW Protocol
Q Parts of UNI3.1 Protocol
Q Parts of DSS1 Protocol
Q Parts of LAPD Protocol
Q Switch SVC and PVC testing softwares
Q ATM CLIP interface to OVOPS++
Q Hardware configuration
Q Software configuration
Q Fixed dozens of things
Q Endless hours of testing and then again configuring
Q This paper

12.Final Words

Puuh! It is done at last, the job is done and this paper is written. I must admit

that I have not always had fun doing this project. There were situations nothing

seemed to work and the project seemed to be impossible to accomplish. Hard

work and a strong belief in own capabilites made writing this final chapter

finally possible. The positive feeling take the advance now that all is done but

of course, during the project there were plenty of good times too. Always when

you get something radical work, something you see with your own eyes it

makes you happy.

There were many problems but they were solvable and here we are. What else

can I say? I am happy it is done.

Special thanks to Antti M. Nissinen (TKK/TLM maintenance) for helping me a

lot with Linux and hardware stuff.

