class pfNETLINKsocket

Juha Hyttinen

August 1, 2000

Abstract

OVOPS-++ has many kind socket interfaces. This document describes netlink socket
implementation in OVOPS+-+. It also describes how netlink socket is used and how there
can be added more capabilities to it. Netlink socket implementation work only with Linux.

Contents
1 Introduction

2 NETLINK ROUTE
2.1 Sending requests to kernel L L
2.2 Receiving information from kernel o o oo,
2.3 Some general information L L
2.4 Frameso e e e e e e e e e e e e e e e
2.4.1 Frame for GET requests and common header for all frame types
2.4.2 TPv4 Route information frame
2.4.3 IPv6 Route information frame
2.4.4 TPv4 Address information frameo L.
2.4.5 IPv6 Address information frame
2.4.6 Link information frame00
2.4.7 Message DONE frame
2.4.8 Errorframe L e e

3 Description for each of pfNETLINK class methods
3.1 class pfNETLINKsocket : public pfDevice
3.1.1 public: e e e

3.1.21 NETLINK ROUTE.
3.1.2.1.1 RTM_[ADD/DEL/GET]JROUTE
31212 RTM GETADDR
3.1.21.3 RTM GETLINK
3.1.2.1.4 route attribute parsing methods

4 Example code of netlink adapter: routeAdapter

1 Introduction

[y

CO 00 ~IO ULk h WWWNNDIN

pINETLINK class defines socket for netlink. Netlink can be used for handling kernel information
according different kind things. For example routetable information. When socket is opened, there

must be give family type for netlink. So when socket is opened

socket (AF_NETLINK, SOCK_RAW, _netlinkFamily)

_ netlinkfamily defines what kind information netlink handles.

For now there is implemented family types for NETLINK ROUTE for IPv4 and IPv6. Im-
plementation means porting information from pfFrame format to kernel message format and vice
verse. pfFrame format is used for route information presentation, because it is easy to use. pfFrame
structures are defined in section 2.4. Porting implementation is implemented in overwritten meth-
ods writeCallBack and readCallBack. pfNETLINK derives from pfDevice, which contains original
readCallBack and writeCallBack. There is only added switch -statement to these two methods,
which check what is netlink family type (family type is stored to object when new socket is opened).
And for matching family type is called right method. So there is now implementations only for
NETLINK ROUTE in readCallBack and writeCallBack methods.

2 NETLINK ROUTE

There is two cases when changing information with kernel through NETLINK. When sending
information to kernel and when receiving. When we are sending information to kernel we have
to parse information from pfFrame to kernel message and when receiving information we have
to parse information from kernel message to pfFrame. Both of these cases are divided in to two
phases.

2.1 Sending requests to kernel

So there is two level when parsing requests to kernel. In first level we parse from pfFrame one
request at time and build netlink message for single request. This netlink message is added to
sendbuffer, which contains hole kernel message. So pfFrame can contain several requests to kernel.

So when writeCallBack is called and netlink family type is NETLINK ROUTE then parseRequest-
ToNetlinkRoute(...)method is called. This method parses one request from received pfFrame and
then this one request is parsed by using correct method for it (listed below in section 2.4).

There is implemented for NETLINK ROUTE only RTM_GETROUTE, RTM _NEWROUTE,
RTM_DELROUTE, RTM _GETADDR and RTM__GETLINK message types. See manpages for
rtnetlink for other NETLINK ROUTE message types.

2.2 Receiving information from kernel

So there is two level when parsing information from kernel. In first level we parse from kernel
information (is in recvbuffer) one netlink message at time and then add its contained information
to end of pfFrame. So message which is received from kernel can contain several separated infor-
mation.

So when readCallBack is called and netlink family type is NETLINK ROUTE then is parse-
InformationFromNetlinkRoute(...) method called. This method parses one netlink message from
hole kernel message. Then it’s compared which kind information it is and committed parse method
for single netlink message (below is listed in section 2.4 all parse methods for single entry, from
pfFrame to kernel message and vice verse).

There is implemented for NETLINK _ROUTE only RTM _GETROUTE, RTM_NEWROUTE,
RTM_DELROUTE, RTM_GETADDR and RTM _GETLINK message types. See manpages for
rtnetlink for other NETLINK ROUTE message types.

Notice: If returned frame size is zero then there is bigger error in parsing. Normal errors from
kernel are received in specified format, which are ported to frame, which is defined in section 2.4.

2.3 Some general information

Lower method adds to netlink message the information for different message types, for example
RTM_ADDROUTE. It add one attribute at time. upper parses attributes from message.

void parseattr(struct rtattr **tb_, int max_, struct rtattr *rta_, int len_);
int addattr_1(struct nlmsghdr *nlHeader_, unsigned int maxLen_, int type_, void
xdata_, unsigned int alen_);

Former parses attributes from single netlink message for NETLINK ROUTE. Latter add one
attribute to netlink message for NETLINK ROUTE.

2.4 Frames

There is two pfFrame type implemented for NETLINK ROUTE. Another is for IPv4 and other
IPv6.

If information, which is can be received trough rtnetlink (NETLINK ROUTE), is compared
with implemented part in pfNETLINK, will be noticed that, that all information isn’t implemented
to parse routines. But if there is need to add additional information to pfFrame it can be added
to end of frame, then it won’t harm other methods (If we assume that “msg len field” in frame is
used to parse information at user plane. This is done by modifying methods which parses single
entry to another format (Next methods are for rtnetlink message and pfFrame parses):

parseNetlinkRouteInfoForRouteMsgToFrame(...) // Route parse Msg to Frame
parseNetlinkRouteInfoForRouteFrameToMsg(...) // Route parse Frame to Msg
parseNetlinkRouteInfoForAddrMsgToFrame(...) // Addr parse Msg to Frame
parseNetlinkRouteInfoForAddrFrameToMsg(...) // Addr parse Frame to Msg
parseNetlinkRouteInfoForLinkMsgToFrame(...) // Link parse Msg to Frame
parseNetlinkRouteInfoForLinkFrameToMsg(...) // Link parse Frame to Msg

Below is described frames. All frames has same kind heading, which contains netlink message in-
formation. There is additional information "msg tot len", which informs one informations (entry’s)
length in 32 bit words.

All right there is two fields which identifies each message. These are sequence number and pid
(program identifier) number. Notice that sequence number “0” is reserved for kernel. So when
kernel sends information considering changes in informations, will sequence number be 0.

2.4.1 Frame for GET requests and common header for all frame types

Get requests are implemented for RTM GETROUTE, RTM_GETADDR and RTM_GETLINK
message types.

0 1 2 3
01234567890123456789012345678901
R e S Y
| nl_msg type | nl_flags
s e s e e S S S
| sequence
S S S S
| pid
T S S s
[msg tot len (in 32 bit words)
+

|
+
I
+
I
+
|
T

| rtm_family = AF_INET/AF_INET6 |
tototototototototototototototottot ottt ottt ottt ottt -+

2.4.2 IPv4 Route information frame

This is for IPv4 route table entry information. Requests and received information is contained in
this frame. Implemented types are: nl _msg type = RTM_NEWROUTE, RTM DELROUTE

0 1 2 3
01234567890123456789012345678901
e S s e L

| nl_msg type | nl_flags
T S AP e S S T S
| sequence
e S O O O U M e S
I pid |
e e T Pt L
| msg tot len (in 32 bit words) |
e e T Pt L
| rtm_family = AF_INET
e O S AP e
| rtm_table | rtm_scope | rtm_protocol | rtm_type |
e O S AP e S S T
| rta_destination

e ot APt T
| rta_gateway

e ot APt T
| rta_generalmask
T S O AP e S S T
| rta_metric
e P e
| rta_priority
e e s e U
[rta_output interface
e e s e U
| rta_flags
e S At e L

2.4.3 IPv6 Route information frame

This is for IPv6 route table entry information. Requests and received information is contained in
this frame. Implemented type are: nl _msg type = RTM_NEWROUTE, RTM _DELROUTE

0 1 2 3
01234567890123456789012345678901
e e T aFC T

| nl_msg type | nl_flags
e O S AP e
| sequence
e O S AP e S S T
I pid |
e S O AP e S S Y T S
[msg tot len (in 32 bit words) |
e At e
| rtm_family = AF_INET6 I

s s J e S
| rtm_table | rtm_scope | rtm_protocol | rtm_type |
R e A S et St e S S
| rta_destination
et St I
[rta_destination
e P Y o S e s S S
[rta_destination
o e e
| rta_destination
s s J e
| rta_gateway
s s J e
I rta_gateway
e S S
I rta_gateway
ATt T e S Y Y S e
| rta_gateway
R e S e
| rta_generalmask
R e S e
| rta_generalmask

s At e J e
| rta_generalmask
e s S YA
| rta_generalmask
s s J e S
| rta_metric
s s J e S
| rta_priority
et St I
| rta_output interface

e Y
[rta_flags

e Y

2.4.4 IPv4 Address information frame

This frame is used to get address information. This means with this we will get information for
each hardware. Hardwares own information is received with RTM GETLINK messages which
is described after ADDR frames. Current there is implemented only request side: nl msg =
RTM GETADDR. Its mean that it’s only possible to get information but not change. So when
kernel sends information to up, will pfNETLINK parse information for addr-data to pfFrame,
which is showed below (Just one entry). pfFrame, which pfNetlink sends to up can contain more
than on e entry)

0 1 2 3
01234567890123456789012345678901
A T S S AP e S S S T S

[nl_msg type | nl_flags
e S O O O U M e S
| sequence
e S O O O U M e S
| pid |

S A e
| msg tot len (in 32 bit words) |
S S T e
| rtm_family = AF_INET
S S T e
[flags | scope | interface index
U T St U U S S e Ut
| interface address
s SHCT S T T S T g St
| local address
T S A S e
| broadcast addr
T S A S e
| anycast addr
s SRS S T e
| address mask

S O S S s S S AT S U S e ST
| prefix length | label length in bytes
S S S T
| label |
S S S T
| ce pads if needed
T S S e

Address mask is also informed as prefix length.

2.4.5 IPv6 Address information frame

This frame is used to get address information. This means with this we will get information for
each hardware. Hardware’s own information is received with RTM _GETLINK messages which
is described after ADDR frames. Current there is implemented only request side: nl msg =
RTM _GETADDR. Its mean that it’s only possible to get information but not change. So when
kernel sends information to up, will pfNETLINK parse information for address-data to pfFrame,
which is showed below (Just one entry.) pfFrame, which pfNetlink sends to up can contain more
than on e entry).Notice that in IPv6 there isn’t broadcast address.

0 1 2 3
01234567890123456789012345678901
A T S S AP e S S S T S

[nl_msg type | nl_flags
T S T AP e S S T S
| sequence
e S O O O U M e S
I pid |
e e S A U T Y
| msg tot len (in 32 bit words) |
S S O S S S et
I rtm_family = AF_INET |
e S A S AP e
| flags | scope | interface index
e S S AP e S S Y T S
| interface address

e ot APt T
| interface address
T S O AP e S S T

| interface address

ST S SO S S S M S S S
| interface address
B S S St S S SO S S S S T S O SR SR S S S S B
| local address

ST S S S S S S S S
| local address

ST S S S S S S A
| local address

SO S SO S ST S S S
| local address
B T T Y gt T ST S S SN SO ST ST ST T ST SO S ST ST ST BS
| anycast addr

S S M T S A A T S O RO RO SIS S S RS
| anycast addr

S S M T S A A T S O RO RO SIS S S RS
| anycast addr

ST A S S S S M ST S
| anycast addr
BB S S St T SO SO S S ST S Y ST T SR SR S ST ST ST B
| address mask
B S S S St T S S S S ST ST Y ST T ST SR S ST ST ST B
| address mask
B S S S St T S S S S ST ST Y ST T ST SR S ST ST ST B
| address mask

S S S S SO S N T S
| address mask

ST A S S S S S S S
| prefix length | label length in bytes
B S S S S S S S S S S T S T SR SR S S S S B
| label |
B S S S S S S S S S S T S T SR SR S S S S B
[.. pads if needed

ST S S S S S S S S

Address mask is also informed as prefix length.

2.4.6 Link information frame

This frame describes link layer hardware. Its return hardware address for example for network
device. Current there is implemented only request side: nl msg = RTM_GETLINK. Its mean
that it’s only possible to get information but not change. So when kernel sends information to
up, will pfNETLINK parse information for link-data to pfFrame, which is showed below (Just one
entry). pfFrame, which pfNetlink sends to up can contain more than on e entry)

0 1 2 3
01234567890123456789012345678901
Tt S O S AP e

| nl_msg type | nl_flags
e S S S T AP e Y T S A
| sequence
e S S S T AP e Y T S A
| pid |
e S o ats APt T
| msg tot len (in 32 bit words) |

ottt oottt b bbb bbb bbb bbbt
| rtm_family = AF_INET
T S S T S
| dev type | interface index |
T S S T S
I flags | 0 |
e ATy J e S S
| Link type | mtu |
AP R I R S S S I O A s S
| hardware addr length
S O S S S
[interface hware address
S O S S S
| . Pads if needed |
ST O I Ay N I TS S S S S S
| interface hware broadcast addr
e Ay I e e S
| - Pads if needed |
S S S
[0 | label length in bytes |
S S S
| label I
S S A S S
| ce pads if needed
AT S I S Sty S A A S

2.4.7 Message DONE frame

If there is no more information for sequence number, will be this kind information received.
When message done is received , will be next frame build with message type :

NLMSG_DONE

0 1 2 3
01234567890123456789012345678901
e e s, St U
| nl_msg type | nl_flags
e s e L
| sequence
T S T AP e S S T S
I pid I
e S O O U P e S
| msg tot len
e S O O U P e S

2.4.8 Error frame

When error is received will be this frame received. If error number is zero, it’s means success. So
when error frame is created it has message type set to: nl _msg type = NLMSG_ERROR. This
means that there is error in request. Notice that empty pfFrame is returned if there is error in

parsing methods. These two error cases are different kind.

0 1 2 3

01234567890123456789012345678901
e M e S e s e
| nl_msg type | nl_flags

nl msg type =

3

3.1

B S e S S ST S T St T S S ST S ST ST MY S S 8
| sequence
S S S S S T S S S SN S S
I pid |
S S S S S S S S S S SN S S
[msg tot len

S ST SO S S S
| error number

S A S S S S S S Y
| nl_msg type | nl_msg flags |
B S S S S T S T S S ST S ST ST MY S S 8
| sequence
B S S S S T S T S S ST S ST ST MY S S 8
| pid |
U S S S TS N S S S S &

Description for each of pfNETLINK class methods
class pfNETLINKsocket : public pfDevice

3.1.1 public:
e explicit pfNETLINKsocket(pfUlong bufferSize); : This is constructor for pfNETLINKsocket.

Given value is size of read- and writebuffers.

virtual "pfNETLINKsocket(void); : Destructor. This also free read -and writebuffers mem-
ories

virtual bool openDevice(int netlinkFamily); : Open netlink - socket for given netlink family
type. For Example NETLINK ROUTE

void setFamily(int netlinkFamily); : Saves given netlink family type to object
int getFamily(void); : Get saved netlinkfamily type from object

void setN1Addr(const struct sockaddr nl &addr); : Set netlink socket address struct to
object.

const struct sockaddr_nl &getN1Addr(void) const; : Get netlink socket address struct from
object.

virtual pfBoolean isUsingAcknowledge(void); : Return true if acknowledgement is “on” and
false if it is “off”. This is for requests, BUT NOT FOR GET REQUESTS. If you add, or
can be say that you request kernel to add, a route to system routingtable, acknowledgement
is received if this is “on”. Notice that if GET request is sent, there should be appear, after
information is received, NL._ MSGDONE message and acknowledgement is not needed.

virtual void setUsageOfAcknowledge(pfBoolean ack_); : Set acknowledge flag on/ off. See
above.

3.1.2 protected:

e void freeBuffers(void); : Free read -and writebuffers memories

e virtual int readFromSocket(void); : Lower level function for reading socket. This exactly

receives data from socket.

virtual int writeToSocket(char *start); : Lower level function for writing socket. This
exactly sends data to socket.

virtual void readCallback(void); :readCallback is called when OVOPS++ scheduler gives
time to netlink to read socket. This is overwritten, because we need to parse pfFrame
format to kernel message and vice versa. So these parse methods are called from callback
-methods. These call backs can be also called directly is polling status is “on”

virtual void writeCallback(void); :writeCallback is called when OVOPS++ scheduler gives
time to netlink to write socket. This is overwritten, because we need to parse pfFrame format
to kernel message and vice versa. So these parse methods are called from call back -methods.
These call backs can be also called directly is polling status is “on”.

3.1.2.1 NETLINK ROUTE

int parseRequestToNetlinkRoute(const pfFrame &fromBig , char *to_); : This method is
called from call back method for NETLINK ROUTE informations. This parses from given
pfFrame the one request at time and after it calls lower parse methods for that one entry.

pfFrame parselnformationFromNetlinkRoute(const char *information , const int size); :
This method is called from call back method for NETLINK ROUTE informations. This
parses from given kernel message the one info at time and after it calls lower parse methods
for that one entry.

3.1.2.1.1 RTM_[ADD/DEL/GET|ROUTE

int parseNetlinkRouteInfoForRouteFrameToMsg(const pfFrame &fromSub , char *to); :
Parses request considering route information from user program to kernel. All types imple-
mented. So can be added and deleted routingtable entries.

int parseNetlinkRouteInfoForRouteMsgToFrame(const struct nlmsghdr *h, pfFrame &frame);
: Parses information considering route information from kernel to user program. All types
implemented. So can be added and deleted routing table entries.

3.1.2.1.2 RTM_GETADDR

int parseNetlinkRouteInfoForAddrFrameToMsg(const pfFrame &fromSub_, char *to); :
Parses request considering link address information from user program to kernel. Only GET
request type is implemented.

int parseNetlinkRouteInfoFor AddrMsgToFrame(const struct nlmsghdr *h, pfFrame &frame_);
: Parses information considering link address information from kernel to user program. To
this direction all types are implemented. So returned msg type is RTM_NEWADDR. (can
also be RTM_DELADDR)

3.1.2.1.3 RTM_GETLINK

int parseNetlinkRouteInfoForLinkFrameToMsg(const pfFrame &fromSub , char *to); :
Parses request considering link information from user program to kernel. Only GET request
type is implemented.

int parseNetlinkRouteInfoForLinkMsgToFrame(const struct nlmsghdr *h, pfFrame &frame);
: Parses information considering link information from kernel to user program. To this di-
rection all types are implemented. So returned msg type is RTM_NEWLINK. (can also be
RTM _DELLINK)

10

3.1.2.1.4 route attribute parsing methods

e void parseattr(struct rtattr **tb_ | int max_, struct rtattr *rta_, int len_); : Parses from
one netlink msg’s payload the attributes. Notice that payload contains also rtnetlink msg,
which contains the rt_attr messages. (Look pfNetlink parse methods to make clear this
method functionality)

e int addattr _l(struct nlmsghdr *nlHeader , unsigned int maxLen , int type , void *data_,
unsigned int alen); : Parses to one netlink msg’s payload the attribute. Notice that
payload contains also rtnetlink msg, which contains the rt_attr messages. (Look pfNetlink
parse methods to make clear this method functionality)

4 Example code of netlink adapter: routeAdapter
Next there is one example how to use pfNETLINK in adapter. This adapter is made for routing

table information updates and to monitor routing information changes. Example is not included
to this document, but it should be in the same directory as this document is.

11

