Helsinki University of Technology
Espoo, Finland

CALYPSO GATEWAY SPECIFICATION ver. 0.07

Author: Alexey Mednonogov
Date: 28-JAN-2000

CONTENTS

1. Introduction

1.1. Architedure of Abstrad Test Suite
1.2 Grey-Box Testing Approach

1.3. Abbreviations

1.4. Prefixes

2. Registering Client and Server Objects

2.1. Mapping of IDL Interfaceto TTCN PCO
2.2, Registering Server Objeds

221 Dedaring PCOsfor Server Objeds
222 Dedaring Locdion of Server Objeds
2.23. Dedaring Registration PDU
224 Dedaring Constraint on Registration PDU
2.2.5. Isauing Registration PDU

2.3. Registering Client Objeds
231 Dedaring PCOsfor Client Objeds
232 Dedaring Location of Universal Servant
233 Dedaring Registration PDU for Client Objeds
2.34. Dedaring Constraint on Registration PDU
2.35. Isaiing Registration PDU

24. Discusdng Alternative Registration Schemes

3. Deregistering Server and Client Objects

4. Operation Calls to Server Objects

41. Dedaring Call PDU for Operation Invocation
4.2. Dedaring Constraint on Call PDU

4.3. Isauing Call PDU within Test Case

44, Dedaring Reply PDU for Operation Response
45. Dedaring Constraint on Reply PDU

4.6. Waiting for Reply PDU within Test Case

5. Operation Calls from Client Objects
6. Oneway Invocations

7. Declaring Parameters in Call PDU and Reply PDU
7.1. Conventions on PDU Field Names

7.2. Simple Types
7.2.1. Bounded String Type
7.3. Type Dedarations
7.4. Enumerated Type
7.5. Sequence Type

75.1 Unbounded Sequences
75.2. Bounded Sequences

7.5.3. Nested Sequences

7.5.4. Sequences with Zero Length

7.6. Array Type

7.7. Structured Type
7.8. Union Type
7.9. ANY Type

8. IDL Attribute Declaration

9. Exception Handling

9.1. Exceptions Defined by Gateway
9.2. Discusgon on Spedfied Exception Handling

10. Manual Control over SUT
11. Inheritance and Name Resolution

12. Handling Product Objects

12.1. Dedaring PCOsfor Product Objects

12.2. Dedaring Product ID for Product Objeds

12.3. Dedaring Registration PDU for Product Objeds
12.4. Dedaring Constraint on Registration PDU

125. Issling Registration PDU

1. Introduction

1.1. Architedure of Abstrad Test Suite

Weview SUT as acolledion of CORBA objeds. Each CORBA objed may ad either as a Server, or asaClient, or
both (Mixed), or asa Complex objed that incorporates zero or more Servers and zero or more Clients. Servers, Clients
and Mixed objeds are viewed as special cases of Complex objeds.

Mixed and Complex objeds are viewed as a amposition of severa Clients and several Servers. Hence, heredter only
interoperation of ATS with Clients and Serversis spedfied. ATS designer must logicdly decompaose Mixed and
Complex objedsinto Servers and Clients and then foll ow the spedfication.

One distinct type of objedsis Fadory which dynamicdly creaes new CORBA objects. Such oljedswill be later
referred to as Product objeds.

In the run of the whole spedfication we refer only to Clients, Servers and Products visible outside SUT. SUT may have
its own internal Servers, Clients and Products not observable by ATS. These ae left out of consideration.

Eadh Server, Client and Product must be associated with its own PCO. Each PCO must be associated with its own
objed, either Client, Server or Product, or it may be defined by ATS either for itsinternal purposes (e.g. asa CP) or for
testing mn-CORBA objeds.

Mixed and Complex objeds normally communicate with ATS via several PCOs.

All Servers are up and running before execution of Test Case starts and their locaion in the CORBA Universeis
known in advance.

Clients are conneded to ATS by an operator manually at ATS run-time oncethe gpropriate instruction isissued by the
ATS. By the moment of sending such an instruction, the Gateway is ready to supply location of Universal Servant to
the Client. For more detail s about Universal Servants, see sedion 2.3.

All Servers, Universal Servants and Products must be registered within InterfaceRepaository. This shall be done by
providing appropriate IDL descriptionsto the IR.

One or more PCOs may be grouped within a Test Comporent (TC). No rules or restrictions are defined for grouping
the PCOs, and it completely depends on ATS designer. Moreover, detail s describing creaing TCs and means of
communicaion between them are out of scope of this gedficaion.

The sample achitedure of ATSis siown on Fig. 1.
Figure 1. Sample achitedure of ATS:

PCO

--*--> Product

| PCO

--*--> Server

| PCO

|-> PTC-|<--*-- Client

| |

| | PCO

| [--*- >

| | PCO | M xed
| | < xee]

| PCO

|
| * CP
| | PCO
|-> PTC ---*--> Server
| PCO
[-> PTC ---*--- Non-CORBA objed

1.2 Grey-Box Testing Approach

Thefad that we view Mixed and Complex objeds as a compaosition o Servers and Clientslead usto a “grey-box’
testing approad, i.e. minor modifications to the code may be needed in order to initiate anormal communicaion of
SUT with ATS.

Consider the following example: Mixed CORBA objed under test will advertiseits erver-side IOR to the world only
after it obtains IOR of the server that will handle its client-side requests. In this case modifications to the code dmed to
change this stuation will be needed sinceit is pedfied that all server-side |IORs of SUT must be known BEFORE Test
Case starts exeaution, but Test Case will be &le to provide IORs that handle dient-side requests of the SUT only
AFTER it starts exeaution. Thus, Mixed objed must prepare its own server-side IOR beforehand and wait until server-
side IOR provided by ATS appeas.

It may also be neaded for operator to have some means to manually invoke Client requests, whenever a corresponding
IMPLICIT SEND operation is defined in ATS as described in sedion 10.

1.3. Abbreviations

Throughout the whol e spedfication, the foll owing abbreviations are used:
() CORBA-spedfic abbreviations:

CORBA - Common Objed Request Broker Architedure

- Dynamic Skel eton Interface
Interface Definition Language
I nt er operabl e Ohj ect Reference
hj ect Managenent G oup

hj ect Request Broker

353R08

(b) TTCN-spedfic abreviations:

ASN. 1 - Abstract Syntax Notation One

ATS - Abstract Test Suite

CcP - Coordi nati on Poi nt

LT - Lower Tester

MIC - Main Test Conponent

PCO - Point of Control and Qobservation

PDU - Protocol Data Unit

PIXIT - Protocol Inplenentation eXtra
Information for Testing

PTC - Parallel Test Conponent

SuUT - System Under Test

TC - Test Conponent

TTCN - Tree and Tabul ar Conbi ned Not ati on

TTCN.MP - TTCN, Machine Processable form

1.4. Prefixes

In consequent sedions, various prefixes for identifiers will be introduced, aimed at providing non-conflicting name
spaces for semanticdly distinct units. To fadlit ate referencing, here al these prefixes are enumerated and triefly
explained. For further detail s, see corresponding sedions:

X - prefix for PIXI T paraneter nanes

v - prefix for Test Case vari abl e nanes
c - prefix for constraint nanes

p - prefix for PDU nanes

PCO - prefix for PCO names

PAR - prefix for Call/Reply PDU fields
containing operation parameters
RET - prefix for Call/ Reply PDU fields
containing return value of operation
IDL - prefix for IDL simple type names
mapped to TTCN
TY PE - prefix for IDL complex type names
mapped to TTCN
GW - prefix for Gateway-specific type
definitions nmapped to TTCN
enum - prefix for IDL enumerated values
mapped to TTCN
seq - prefix for field identifiers of IDL
structured types mapped to ASN.1 SEQUENCE
ch - prefix for field identifiers of |DL
uni on types mapped to ANS.1 CHO CE

Reacmmended prefixes (not used in the current spedfication. However, their use is encouraged whenever needed):

t - prefix for timer identifier
tc - prefix for Test Case identifier
ts - prefix for Test Step identifier

2. Registering Client and Server Objects

In arder to enable invocation of CORBA operations within ATS, physicdly installed CORBA objeds must be
associated with their logicd representationinside ATS beforehand by means of registration process. Usually,
registration is done in the preamble of a Test Case. Please note that registering Fadory objed is Smilar to registering
Serversor Clients. Registration of Product objectsis covered in sedion 12.

2.1 Mapping o IDL Interfaceto TTCN PCO

ATS designer must know in advance how many CORBA objeds he is going to register or creae dynamicdly. He must
know also which IDL interfacedeclaration describes each objed. Each objed must be defined then as a PCO in PCO
dedarations part of ATS. Rulesfor dedaring a PCO are & follows:

(a) PCO Name ($PCO_Id in MP notation) must begin with the prefix:

["PCO’] [<Instance 1d>] [*_i”

Here <Instance_|d>isadedmal number aimed to distinguish between diff erent instances of one IDL interface
Note that even if you define the only instance @rresponding to asingle IDL interface, you are till not éligibleto
omit <Instance _|d>. Instances are enumerated in ascending order starting from 1.

(b) For each consequent dedaration d nested moduein IDL file the foll owing construct is appended to the end of the
$PCO _ld (<Module_Id> is aname of the modue):

[<Module 1d>] ["_i"]

(c) Interfaceidentifier completes definition of $PCO_Id by the following construct (<Interface |d> is aname of the
interface):

[<Interface |d>]

(d) Underscore characters (“_") in names of modues and interfaces are doubled in definition o $PCO_lId.
(e) PCO Type Identifier ($PCO_Typeld) must be CORBA_PCO both for Server and Client objeds.
(f) PCOrole ($PCO_Role) is aways defined as“Lower Tester” (“LT").

NOTE: Modul€e/interfacenames are separated from ead ather by “_i” sequence and all occurencesof “_”
charadersin modue/interfacenames are duplicated. Thisis done to make impossble such situation when diff erent
name scopes are mapped to the same PCO name. Here awell-known design pattern cdled “bit stuffing” is utili zed.
To remind the story, low-level network protocols use bit stuffing to mark end of transmisson, so that boundaries of
padkets are unambiguously recognized. Bit stuffing isintroduced herein order to mark boundhries of module
names. The same gproach will be used throughout the whole spedfication as needed.

Here are several examples of IDL-to-TTCN mapping for modules and interfacesiill ustrating concept of bit stuffing:

// 1DL: Dedaration of interface ‘ModA.ModB.IntC":
modue ModA {

modue ModB {
interface IntC {

s
s
b

/I TTCN.MP: Dedaring PCOs for two instances of interface ‘ModA.ModB.IntC":
$Begin_PCO_Dcls

$PCO_Ddl

$PCO_Id PCO1_iModA_iMadB_ilntC

$PCO_Typeld CORBA_PCO

$PCO _RoleLT
$Comment /* First instanceof “IntC” */

$End_PCO_Dcl
$PCO_Ddl

$PCO_Id PCO2_iModA_iModB._iIntC
$PCO_Typeld CORBA_PCO
$PCO_RoleLT

$Comment /* Second instanceof “IntC” */
$End_PCO_Ddl

$End_PCO_Dcls

/I |DL: Dedaration of interface ‘ModA_iModB.IntC”:
modue ModA_iModB {
interface IntC {

I

1
/I TTCN.MP: Dedaring PCO for the only instance of interface “ModA_iModB.IntC”:
$Begin PCO_Dcls

$PCO_Dcl

$PCO_Id PCO1_iModA__iModB_ilntC

$PCO_Typeld CORBA_PCO

$PCO_RoleLT

$Comment /* Instance of “ModA_iModB.IntC” */
$End_PCO_Dcl

$End_PCO_Dcls

/I |DL: Dedaration of interfaces“ModA__. ModB.IntC” and “ModA_ . ModB.IntC":
modue ModA__ {

modue _ModB {
interface IntC {

s
s
s

modue ModA_ {
modue__ModB {
interface IntC {

s
1
1
/I TTCN.MP: Dedaring PCOs for instances of “ModA__. ModB.IntC" and // “ModA_. ModB.IntC":
$Begin_PCO_Dcls
$PCO_Dcl
$PCO_Id PCO1_iModA i__ModB_ilntC

$PCO_Typeld CORBA_PCO
$PCO_RoleLT
$Comment /* Instanceof “ModA__. ModB.IntC” */
$End_PCO_Dcl
$PCO_Ddl
$PCO_Id PCO1 iModA___ i ModB_ilntC
$PCO_Typeld CORBA_PCO
$PCO_RoleLT
$Comment /* Instanceof “ModA_._ ModB.IntC” */

$End_PCO_Dcl

$End_PCO_Dcls

2.2. Registering Server Objeds

2.2.1. Declaring PCOsfor Server Objects

PCOs for Server objeds must be dedared exadly as defined in sedion 21. IDL description of a Server objed is taken
as abase for constructing PCO Name.

2.2.2. Declaring Location of Server Objects

Locaion o Server objedsin the CORBA Universe must be known before the exeaution of ATS starts, and this must
be known either as IOR (Form 1), or as IOR file locaion (Form 2), or aslocation of Server objed in Naming Service
(Form 3).

Note for Form 1 that as oon as host name, port number or objed key used by Server is changed, IOR changes and
appropriate change may be needed to be donein PIXIT proforma. Thus, it may be wise to have these parameters fixed
aslong as possble. E.g. in ORB ORBaaus you may launch your objeds with command-line params “-OAhost <host>"
and “-OAport <port>" for this purpose, and use Named Servantsin order to have objed key fixed.

Note for Form 2 that file path will be interpreted by Gateway, so dedaring e.g. “hello.ref” will force Gateway to search
for thisfile in Gateway’s current diredory.

Actual value of I0R, or IOR file locdion, or pasitionin Naming Service, is defined outside ATS in PIXIT proformain
OMG-spedfic manner. ATS itself only contains references to these external parametersin sedion “Parameter
Dedarations’. These must adhere to the foll owing format:

() Parameter Name ($TS_Parld) must foll ow the same rules as defined for the crresponding PCO Name ($PCO _Id),
except that it is prefixed by either “xIOR” (Form 1), or by “XRFILE” (Form 2), or by “XNSERV” (Form 3), but not
by “PCO”.

NOTE: <Instance_|d> does not necessary match corresponding value included in PCO name. Thisis because
although each PCO corresponds to oreinstance of CORBA objed within one Test Case, there may be many Test
Casesinside ATS, each using the same PCO for its own puposes (and for representing different instances of
CORBA objeas).

We later refer to this“modified” <Instance |d>as<TC_Instance |d>. It may be recommended that persistent pools
of <TC_Instance |d> values are assgned to ead Test Case for eat PCO representing CORBA objed.

(b) Parameter Type ($TS_ParType) must be either “I A5String” (Forms 1 and 2), or “GW_string array” (Form 3). For
definition of “GW_string_array” see sedion 9
(c) Only one of three dternative forms all be used per one Server objed.

Hereisan example:

/I |DL: Dedaration of interface ‘1ntC":
modue ModA {

modue ModB {
interface IntC {

1
I
/I TTCN.MP: Dedaring location of “ModA.ModB.IntC”, Server objed #1:

$TS ParDcl

$TS Parld XIOR1_iModA_iModB_ilntC

$TS ParType IA5String

$PICS PIXITref /* */

$Comment /* I0OR of the CORBA objed to be registered */
$ENd TS ParDcl

/I TTCN.MP: Dedaring locéion o “ModA.ModB.IntC”, Server objed #2:
$TS ParDcl

$TS Parld XRFILE2_iModA_iModB_ilntC
$TS ParType IA5String
$PICS_PIXITref /* Locaion of thefile mntaining IOR */
$Comment /* */
$End_TS ParDcl
/I TTCN.MP: Dedaring locaion of “ModA.ModB.IntC", Server objed #3:

$TS ParDcl

$TS Parld xXNSERV3_iModA_iModB_ilntC

$TS ParType GW_string_array

$PICS PIXITref /* */

$Comment /* Locaion of CORBA Objed in the Naming Service */
$ENnd TS ParDcl

2.2.3. Declaring Registration PDU

To associate Server objed with its PCO, ATS must issue a PDU through the PCO that isto be associated with CORBA
objed. Registartion PDU isdedared only oncefor all PCOs that are going to be associated with Server objeds. Exadly
threeforms of Registration PDU are defined below, and ATS shall use the most suitable one whil e registeging Server
objed. Semantics of the formsis the same as described in 22.2. Note that choice of form of Registration PDU must
match corresponding PIXIT parameter dedaration.

/I TTCN.MP : Dedaring Registration PDU (Form 1):
$Begin_TTCN_PDU_TypeDef

$PDU_Id pSREG_IOR

$PCO_Type CORBA_PCO

$Comment /* Registration PDU: Form 1, using IOR */
$PDU_FieldDcls

$PDU_FieldDcl

$PDU_Fieldid IOR
$PDU_FieldType IA5String

$Comment /* I0OR of the CORBA objed to be registered */
$End PDU_FieldDcl

$End_PDU_FieldDcls
$Comment /* */
$End_TTCN_PDU_TypeDef

/I TTCN.MP : Dedaring Registration PDU (Form 2):
$Begin_TTCN_PDU_TypeDef

$PDU_Id pSREG_RFILE

$PCO_Type CORBA_PCO

$Comment /* Registration PDU: Form 2, using IOR location */
$PDU_FieldDcls

$PDU_FieldDcl

$PDU_Fieldld RFILE

$PDU_FieldType |A5String

$Comment /* Location of the file containing IOR */
$End_PDU_FieldDcl

$End_PDU_FieldDcls
$Comment /* */
$End_TTCN_PDU_TypeDef

/I TTCN.MP : Dedaring Registration PDU (Form 3):
$Begin_TTCN_PDU_TypeDef

$PDU_Id pSREG_NSERV

$PCO_Type CORBA_PCO

$Comment /* Registration PDU: Form 3, using Naming Service*/
$PDU_FieldDcls

$PDU_FidldDcl

$PDU_Fieldild NSERV

$PDU_FieldType GW_string_array

$Comment /* Locaion of CORBA Objed in the Naming Service */
$End_PDU_FieldDcl

$End_PDU_FieldDcls
$Comment /* */
$End TTCN_PDU_TypeDef

2.2.4. Declaring Constraint on Registration PDU

In addition to PDU dedaration, a corresponding constraint must be defined. Parameterised constraint dedaration is
used for this purpose. Exadly threeforms of constraints are defined below, and ATS shall use the most suitable one
whil e registeging Server objed. Semantics of the formsis the same a described in 22.2. Choiceof constraint form

must match corresponding PIXIT parameter dedaration.

/I TTCN.MP : Constraint on Registration PDU (Form 1):
$Begin_TTCN_PDU_Constraint

$Consld cSREG_IOR (reference : 1A5String)

$PDU_Id pSREG_IOR

$DerivPath

$Comment /* Registration Constraint: Form 1, using IOR */

$PDU_FieldValues

$PDU_Fieldvalue

$PDU_Fieldid IOR

$ConsValue reference

$Comment /* IOR of the CORBA objed to be registered */
$End_PDU_FieldValue

$End_PDU_FieldValues
$Comment /* */
$End_TTCN_PDU_Constraint

/I TTCN.MP : Constraint on Registration PDU (Form 2):
$Begin_TTCN_PDU_Constraint

$Consld cSREG_RFILE (reffile: IA5String)

$PDU_Id pSREG_RFILE

$DerivPath

$Comment /* Registration Constraint: Form 2, using IOR location */
$PDU_FieldVaues

$PDU_FieldValue

$PDU_Fieldld RFILE

$ConsValuereffile

$Comment /* Location of the file containing IOR */
$End_PDU_FieldValue

$End_PDU_FieldValues
$Comment /* */
$End_TTCN_PDU_Constraint

/I TTCN.MP : Constraint on Registration PDU (Form 3):
$Begin_ TTCN_PDU_Constraint

$Consld cSREG_NSERV (nslocdion : GW_string_array)

$PDU_Id pSREG_NSERV

$DerivPath

$Comment /* Registration Constraint: Form 3, using Naming Service*/
$PDU_FieldValues

$PDU_FieldValue

$PDU_Fieldld NSERV

$ConsVaue ndocaion

$Comment /* Locaion of CORBA Objed in the Naming Service */
$End_PDU_FieldValue

$End_PDU_FieldValues
$Comment /* */
$End_TTCN_PDU_Constraint

2.2.5. Issuing Registration PDU

Now everything is ready for issuing a Registration PDU in Test Case. Thisisdornein amanner ill ustrated by an
example:

/I TTCN.MP : Issuing Registration PDU for Server objeds derived from IDL // interface ‘ModA.ModB.IntC”:

$BehaviourLine

$Labelld

$Line [0] PCO1 iModA_iModB_ilntC ! pSREG_IOR

$Cref cSREG_IOR (xIOR3_iModA_iModB_ilntC)

$Comment /* Noticethat parameter name does not strictly match
PCO name - seenate in sedion 2.2.2.(a) for explanation */
$End_BehaviourLine
$BehaviourLine

$Labelld

$Line[0] PCO2_iModA_iModB_iIntC ! pSREG_NSERV $Cref cSREG_NSERV
(XNSERV5_iModA_iModB_ilntC)

$End_BehaviourlLine

Upon recept of this PDU, Gateway will associate dready running Server object with the PCO through which
Registration PDU has been sent. Sincethen, al operations going through this PCO will be relayed to the registered
CORBA objea.

Gateway will respond with a standard Gateway Exception PDU indicaing how successful an gperation was. Format
and semantics of Gateway Exception PDU will be covered in a separate sedion (note that CALL_ID in thiscaseis
always st to 0).

2.3. Registering Client Objeds

Clients need to know locaion of the server that is going to handle their requests. Thus, registering Clients will normally
go through the following steps:

(a) ATS sends a Registration PDU to the Gateway. Upon recept of this PDU, Gateway will creae auniversal CORBA
servant capable of handling requests from Clients expressed in arbitrary form (by using DSI interface). Gateway
will also associate newly creaed Servant with PCO through which Registration PDU has been sent. Gateway will
either creae file containing IOR of the servant or put it into Naming Serviceto advertise its presence to the Client.

(b) Client may regularly check awell-defined locaion in order to deted whether 10R fil e has been creaed. As soon as
IOR file gpeas, Client may may conred itself to Universal Servant. The same is possble for Naming Service.
Alternatively, ATS may express amanual control over SUT (seesedion 10), i.e. as soon as al relevant Universal
Servants are creaed, ATS may ask operator to conned Clients to them to manually by isaiing a corresponding
Manual PDU.

(c) Sincethen, Universal Servant will convert all requests coming from Client into TTCN PDUs foll owing well -
defined rules described in consequent seaions. It will then further relay them to ATS. Uponrecept of such PDU,
ATSwill handleit and respond badk to Client by some other PDU via PCO assciated with Universal Servant. In
other words, Test Suite introduces functionality to the Universal Servant. Thus, Universal Servant together with
ATS emulate behaviour of ared servant.

2.3.1. Dedaring PCOsfor Client Objeds

PCOsfor Client objeds must be dedared exadly asdefined in sedion 21. IDL description of a corresponding
Universal Servant istaken as abase for constructing PCO Name.

232 Dedaring Location of Universal Servant

Parameter dedaration foll ows the same rules as defined in 2.2.2., except that only Forms 2 and 3 can be used.
233 Dedaring Registration PDU for Client Objeds

Dedaration of Registration PDU foll ows the same rules as defined in 2.2.3., except that PDU Name ($PDU_ld) is
prefixed by “pCREG”, not by “pSREG”, and orly Forms 2 and 3 can be used.

2.34. Dedaring Constraint on Registration PDU

Dedaration of constraint on Registration PDU foll ows the same rules as defined in 22.4., except that Constraint Name
($Consld) is prefixed by “cCREG”, not by “cSREG”; PDU Name ($PDU_1Id) is prefixed by “pCREG”, not by
“pPSREG”; only Forms 2 and 3 can be used.

2.35. Isaiing Registration PDU

Now everything isready for issuing a Registration PDU in Test Case. Thisisdonein amanner ill ustrated by an
example:

/I TTCN.MP : Issuing Registration PDU for Client objed(s) to be mnneded // to the Universal Servant derived from
IDL interface ‘ModA.ModB.IntC”:

$BehaviourLine
$Labelld
$Line [0] PCO1_iModA_iModB_iIntC ! pCREG_RFILE $Cref cCREG_RFILE
(XRFILE7_iModA_iModB_iIntC)
$Comment /* Noticethat parameter name does not strictly match
PCO name - seenate in sedion 2.2.2.(a) for explanation */
$End_BehaviourLine

All the preliminary dedarations necessary to launch the example dove aelisted below:

/' 1DL: Dedaration of aUniversal Servant interface ‘ModA.ModB.IntC” that // handles requests of Client(s):

modue MaodA {
modue ModB {
interface IntC {

s
s
s

/I TTCN.MP: Dedaring PCO for Universal Servant “ModA.ModB.IntC":

$PCO_Ddl

$PCO_Id PCO1_iModA_iModB_jIntC

$PCO_Typeld CORBA_PCO

$PCO_RoleLT

$Comment /* First instance of “IntC” */
$End_PCO_Dcl

/I TTCN.MP: Dedaring locaion of Universal Servant IOR file:

$TS_ParDcl

$TS Parld xRFILE7_iModA_iModB_iIntC
$TS ParType IA5String
$PICS PIXITref /* */
$Comment /* */
$End_TS ParDcl

/I TTCN.MP : Dedaring Registration PDU for al Universal Servants:

$Begin_TTCN_PDU_TypeDef
$PDU_Id pCREG_RFILE
$PCO_Type CORBA_PCO
$Comment /* Dedaration of Registration PDU */
$PDU_FieldDcls

$PDU_FieldDcl

$PDU_Fieldid RFILE

$PDU_FieldType |A5String

$Comment /* File with IOR of the Universal Servant */
$End_PDU_FieldDcl

$End_PDU_FieldDcls
$Comment /* */
$End_TTCN_PDU_TypeDef

/I TTCN.MP : Constraint on Registration PDU for al Universal Servants:

$Begin_TTCN_PDU_Constraint

$Consld cCREG_RFILE (reffile: IA5String)

$PDU_Id pCREG_RFILE

$DerivPath

$Comment /* Dedaration of constraint on Registration PDU */
$PDU_FieldValues

$PDU_FieldValue

$PDU_Fieldld RFILE

$ConsValue reffile

$Comment /* IOR locaion of the CORBA objed to be registered */
$End_PDU_FieldValue

$End_PDU_FieldValues
$Comment /* */
$End_TTCN_PDU_Constraint

Upon recept of this PDU, Gateway will creae aUniversal Servant and saveits IOR to file spedfied in “RFILE” field
of the PDU. It will respond with a standard Gateway Exception PDU immedately if there was an error in creaing
Servant. Now it is expeded that corresponding Client(s) will be mnneded to Servant provided that the IOR of the
Universal Servant is aready saved into file.

24. DiscussngAlternative Registration Schemes

There have been several other proposals for registration process, namely:

(a) launching Gateway with appropriate options;

(b) using definitions of TTCN operationsinside ATS.

However, current design has been chosen finally due to the following reasons:

First approach was not approved since Gateway is viewed as afixed system constantly running in CORBA Universe.
Lauching a Gateway every time ATS isto be executed is viewed as something very undesirable.

Seoond approach has been dedined for the sake of leaving Tester part of the Test System as generic as posshle.
Overloading Tester with new operations and introducing umecessary complexity to it has not been prefered either.

Present design leaves al detail s of handling registration processto the Gateway, what seem to be the most natural
solution. Moreover, Test Case refleds gages of registration in aclea and urderstandable manner.

3. Deregistering Server and Client Objects

Test Case shall not worry about deregistration of association between PCOs and Servers/Clients. Thiswill be done
automaticdly by the Gateway upon completion d a Test Case. All proxiesfor Serverswill be removed, aswell asall
Universal Servants creaed for Clients.

4. Operation Calls to Server Objects

4.1. Dedaring Call PDU for Operation Invocation

In arder to invoke an operation, ATS must send a Call PDU to Server objed throughthe PCO associated with it. TTCN
PDU dedaration must adhere to the foll owing format:

(a) Call PDU isdedared only oncefor all invocaions of one explicit operation belonging to one explicit interface
(b) PDU Name foll ows the same rules as defined in sedion 21., except that:

[1] It isprefixed by “pCALL", not by “PCO”;
[2] <Instance Id> construct is omitted;
[3] PDU Nameis posfixed by the following construct:

["_i"] [<Op_Name>]

Here <Op_Name> is the name of the operation asit isdefined in IDL. All underscore charadersin the <Op_Name>
must be doubled.

(c) PCO Type must be dedared as“CORBA_PCO”.

(d) Thefirst field of the PDU must be cdled CALL_ID and be of type INTEGER.

(e) The second field of the PDU must be cdled CONTEXT and be of type GW_string_array, in case “context”
dedaration is present in the definition of the mrresponding operation. For definition of type “GW_string_array” see
sedion 9 Thisfield isomitted in case no “context” is dedared for this operation. If “context” is declared, then
CONTEXT field contains array with even amount of string dbjeds. String objeds with even indeces in this array
correspond to property names and string objeas with odd indeces correspond to property values. Noticethat during
invocation it is not prohibited to omit properties even if they are listed in “context” clause of operation. However,
thaose properties that are not mentioned there will not be passed neither to Server from ATS, nor from Client to
ATS. Even if al properties were omitted, CONTEXT field shall be present anyway, and it shall contain blank array
of string objeds.

(f) Consequent fields describe in and inout parameters in the same order as they are defined in IDL. Out parameters
and return value of the operation are omitted in PDU declaration. Explicit format of these fields is described in
sedion 7.

Hereis an example:

/I 1DL: Dedaration of Server operation “ModA.ModB.IntC.operD”:
modue MaodA {
modue ModB {
interface IntC {
...operD (...);

s
s

/I TTCN.MP : Dedaring Call PDU for invocdion of operation “operD” of // interface ‘ModA.ModB.IntC":

$Begin_TTCN_PDU_TypeDef

$PDU_Id pCALL_iModA_iModB_ilntC_ioperD
$PCO_Type CORBA_PCO

$Comment /* Dedaration of Call PDU */
$PDU_FieldDcls

$PDU_FieldDcl

$PDU_Fieldid CALL_ID

$PDU_FieldType INTEGER

$Comment /* Helpsto distinguish between consequent invocations of
operation “operD” of instance #1 of interface ‘ModA.ModB.IntC” */

$End_PDU_FieldDcl

$End_PDU_FieldDcls
$Comment /* */
$End TTCN_PDU_TypeDef

4.2. Dedaring Constraint on Call PDU

Constraints on Call PDU must be dedared as foll ows:

(a) New constraint must be dedared for each invocaion of an gperation.
(b) Constraint Name foll ows the same rules as defined for PDU Name in 4.1., except that it is prefixed not by
“pCALL", but by the foll owing construct:

['c”] [<Invocation_|d>] ["CALL"] [<TC_Instance_|d>]

Here <Invocaion_Id>isadedma number enumerating consequent invocaions of one explicit method within one
Test Case. Invocations are enumerated in ascending order starting from 1. <TC_Instance |d> has the same
semantics as described in sedion 22.2.(a).

(c) PDU Name is aname of the correspording PDU (seesedion4.1.).

(d) Value of CALL_ID field must be unique for each new invocation of any Server operation within asingle Test Case.
(e) CONTEXT field (if any) contains operation context as defined in OMG CORBA spedfication.

() All other feaures of constraint definition (including parametrizaion) are left at the will of ATS designer.

Hereisan example:

/I TTCN.MP : Constraint on Call PDU for invocation #3 of operation “operD” // of instance#5 o interface
“ModA.ModB.IntC":

$Begin_TTCN_PDU_Constraint

$Consld c3CALL5_iModA_iModB_ilntC_ioperD
$PDU_Id pCALL_iModA_iModB_ilntC_ioperD
$DerivPath

$Comment /* Dedaration of constraint on Cal PDU */
$PDU_FiddValues

$PDU_FidldValue

$PDU_Fieldid CALL_ID

$ConsVaue 27

$Comment /* 1D of an operation invocation within a Test Case */
$End_PDU_FieldValue

$End_PDU_FieldValues
$Comment /* */
$End_TTCN_PDU_Constraint

43. Isauing Call PDU within Test Case

Now everything isready for issuing a Call PDU in Test Case. Thisisdonein amanner ill ustrated by an example:

/I TTCN.MP: Issuing 3-rd Call PDU for Server objed #5:

$BehaviourLine
$Labelld
$Line[0] PCO1_iModA_iModB_ilntC ! pCALL_iModA_iModB_ilntC_ioperD
$Cref c3CALL5_iModA_iModB_ilntC_ioperD

$End_BehaviourLine

Gateway will creae aDynamic Invocaion Request (DIR) and invoke remote CORBA operation. It will wait until: (a)
operation returns or (b) exceptionisthrown ar © Test Caseisfinished. In first two cases Gateway will respornd to
Tester either with Reply PDU, or with Exception PDU. Format of Exception PDU is covered in sedion 9. Gateway
may a so respond with Fatal Gateway Exception PDU in case of error caused by testing environment rather than by
SUT.

4.4. Dedaring Reply PDU for Operation Resporse

Once operationisinvoked by issuing Call PDU, it will normally respond badk with Reply PDU. Its dedaration foll ows
the samerules as defined in sedion 4.1., except that it is prefixed by “pREPLY”, not by “pCALL”.

CONTEXT field is always omitted and fields after CALL_ID describe out and inou parameters in the same order as
they are defined in IDL. Explicit format of these fields is described in sedion 7. Field right after CALL_ID describes
return value of the operation andis always called “RET_value”. If return valueis*void”, then thisfield is omitted.
“In” parameters are omitted in PDU dedaration.

4.5, Dedaring Constraint on Reply PDU

Constraint dedaration isthe same & defined in section 4.2., except that it is prefixed e.g. by “c3REPLY”, not by
“c3CALL", and refersto Reply PDU, not to Call PDU. Gateway guarrantees that CALL _ID field will match the value
contained in the corresponding Call PDU.

46. Waitingfor Reply PDU within Test Case

Thisisdone asill ustrated by an example:

/I TTCN.MP : Waiting for 3-rd Reply PDU from Server objed #5:

$BehaviourLine

$Labelld
$Line[1] PCO1_iModA_iModB_ilntC ? pREPLY _iModA_iModB_ilntC_ioperD
$Cref cBREPLY5_iModA_iModB_iIntC_ioperD

$End_BehaviourLine

NOTE: Gateway may also respond with Fatal Gateway Exception PDU in case of error caused by testing environment
rather than by SUT.

5. Operation Calls from Client Objects

Operation cdls from Client objeds obey exadly the same rules as defined in section 4, except the following:

(8) ATS must first wait for Call PDU coming from SUT and then reply with an appropriate Reply PDU.

(b) CALL_ID isassigned by the Gateway a unique value for ead new operation cdl coming from Client. However, it
may occasionally colli de with CALL_ID vaues assigned by ATS for Server operation cdls. No conflict problems
arise from this fad, however.

CALL_ID field must be stored by ATS as avariable and used in corresponding Reply PDU.

(c) CALL_ID field of constraint on Call PDU must contain “?”, i.e. “any value’, since ATS normally never knows
excplicit value of thisfield generated by the Gateway. Gateway guarrantees only uniqueness of thisfield within a
singe Test Case.

(d) <Invocaion_ld> parts of constraint names as defined in sedion 4.2. must be identicd for corresponding pairs of
Call and Reply PDUs.

6. Oneway Invocations

In case operation cdl isdefined in IDL with “oneway” attribute, ATS is expected to behave as foll ows:

(a) If “oneway” isdedared in server-side IDL of SUT, then ATS shall not expect any response from Gateway upm
sending a Call PDU to SUT, except maybe Gateway or CORBA Exception. Gateway will make abest effort to
deliver a cdl to SUT - but no guarrantee No spedal care shall be taken in order to inform the Gateway about
oneway nature of invocation since Gateway may obtain that kind of information from I nterface Repository.

(b) If “oneway” isdedared in server-side IDL of ATS (i.e. in dedaration of Universal Servant), then ATS shall not
respond with Reply PDU or any other PDU upon receipt of Call PDU. No speda care shall be taken in order to
inform the Gateway about oneway nature of invocation since Gateway may obtain that kind of information from
InterfaceRepository.

7. Declaring Parameters in Call PDU and Reply PDU

First thing to remember about parameter typesisthat all of them are defined using ASN.1. Thisis becaise native
TTCN types provide poor means for mapping of IDL to TTCN. On the other hand, definitions of ASN.1 structured
types do not all ow embedding of native TTCN types.

7.1. Conventions on PDU Field Names

Each PDU Field Name ($PDU_Fieldid) that corresponds to a spedfic operation parameter must be constructed as
follows:

(a) It isprefixed by “PAR_" substring.
(b) It is postfixed by parameter name & defined in IDL interface

E.g. for IDL parameter “in string hostName” the foll owing line will be present in PDU dedaration:
$PDU_Fieldid PAR_hostName

7.2. Simple Types

Thefollowing simple IDL types must be defined in ATS exadly in the manner represented below. Parameters of
simple types defined inside Call PDU or Reply PDU must later refer to these definiti ons whil e dedaring parameter

type.

/I TTCN.MP : Dedaration of simple IDL types
$ASNL TypeDefs

$Beg| n_ASN1_TypeDef

$ASNL Typeld IDL_short

$ASNL_TypeDefinition INTEGER (-32768.32767)

$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL short type*/
$End_ASNL_TypeDef

$Begin ASN1_TypeDef

$ASN1_Typeld IDL_long

$ASNL_TypeDefinition INTEGER (-214743648..2147483647)

$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL long type */
$End_ASNL_TypeDef

$Begin ASN1_TypeDef

$ASN1_Typeld IDL_long_long
$ASNL_TypeDefinition INTEGER (9223372038547 75808..9223372036854775807)

$End_ASN1_TypeDefinition
$Comment /* Definition of IDL long long type*/

$End_ASN1_TypeDef
$Begin_ASN1_TypeDef

$ASNL Typeld IDL_unsigned_short

$ASN1_TypeDefinition INTEGER (0..65535)

$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL unsigned short type */
$ENd_ASN1_TypeDef

$Begin_ ASN1_TypeDef

$ASN1 Typeld IDL_unsigned_long
$ASN1_TypeDefinition INTEGER (0..42949672%)
$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL unsigned long type */
$ENd_ASN1_TypeDef

$Begin ASN1_TypeDef

$ASN1_Typeld IDL_unsigned_long_long
$ASN1 TypeDefinition INTEGER (0..18446744073709551615)

$End_ASN1_TypeDefinition
$Comment /* Definition of IDL unsigned long long type */

$End_ASNL_TypeDef
$Begin ASN1_TypeDef

$ASN1 Typeld IDL_char

$ASNIL_TypeDefinition |A5String(SIZE(1))

$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL char type */
$ENd_ASN1_TypeDef

$Begin ASN1_TypeDef

$ASN1 Typeld IDL_wchar

$ASNL TypeDefinition BMPSring(SIZE(1))

$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL wchar type */
$End_ASN1_TypeDef

$Begin ASN1_TypeDef

$ASN1 Typeld IDL_string

$ASN1_TypeDefinition IA5String

$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL string type */
$ENd_ASN1_TypeDef

$Begin ASN1_TypeDef

$ASNL Typeld IDL_wstring

$ASNL TypeDefinition BMPSring

$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL wstring type */
$End_ASNL_TypeDef

$Begin ASN1_TypeDef

$ASN1 Typeld IDL_octet

$ASN1_TypeDefinition OCTET STRING (SIZE(1))

$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL octet type */
$ENd_ASN1_TypeDef

$Begin_ASN1_TypeDef

$ASNL Typeld IDL_boolean

$ASNL_TypeDefinition BOOLEAN

$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL boolean type */
$End_ASNL_TypeDef

$Begin_ ASN1_TypeDef

$ASNI1 Typeld IDL_float
$ASN1_TypeDefinition REAL
$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL float type */
$ENd_ASN1_TypeDef

$Begin ASN1_TypeDef

$ASN1 Typeld IDL_double

$ASNL_TypeDefinition REAL

$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL double type */
$End_ASNL_TypeDef

$Begin ASN1_TypeDef

$ASN1 Typeld IDL_long_double

$ASN1_TypeDefinition REAL

$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL long double type */
$ENd_ASN1_TypeDef

$Begin ASN1_TypeDef

$ASN1 Typeld IDL_fixed

$ASNL_TypeDefinition REAL

$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL fixed type */
$End_ASNL_TypeDef

$Begin ASN1_TypeDef

$ASN1 Typeld IDL_objed

$ASN1 TypeDefinition INTEGER

$ENd_ASN1_TypeDefinition

$Comment /* Definition of IDL objed reference type */
$ENd_ASN1_TypeDef

$End ASN1 TypeDefs

Noticethat isaso possbleto send IDL octet from Tester to SUT in the form of INTEGER (-128.255), athough
conventional way of doing this (i.e. using OCTETSTRING) is still preferred. IDL octet always arrives from SUT to
Tester in the form of OCTETSTRING, as defined in ASN.1 type IDL_octet.

7.2.1. Bounded String Type

It ispossblein IDL to define abounded string type, i.e. string type with maximum size spedfied. If necessary, ATS
designer must spedfy an appropriate type in Test Suite in amanner ill ustrated by an example (note that Type Namein
TTCN isprefixed by “TYPE " indicaing mapping from IDL type definition):

/I'1DL : Definition of abounded string type:
interface Mobilel P {
typedef string<100> packet;

1
/I TTCN.MP : Definition of abounded string type:
$Begin_ASN1_TypeDef

$ASNL Typeld TY PE_iMobil el P_ipacket
$ASNL TypeDefinition |A5String(SIZE(0..100))

$ENd_ASN1_TypeDefinition
$Comment /* Definition of IDL bounded string type */
$ENd_ASN1_TypeDef

7.3. Type Dedarations

Mapping of IDL type dedaration (“typedef”) to TTCN isill ustrated by an example from sedion 7.2.1. Notethat in
order to avoid name scoping problems with type dedarations, definition of “padket” typeis prefixed by name scope for
the locaion where this type is defined. This obeys the rules smilar to those defined in sedion 2.1.

There is another thing worth to remember about type declarationsin IDL. If thereis no explicit type dedaration in IDL
file for acomplex type like enum, struct, union, sequence, array, bounded string etc., ATS designer must make any
reasonable aaumption about how this definition could have looked like and dedare it in a manner as described in an
example from sedion 7.2.1.

7.4. Enumerated Type

Mapping of enumerated types from IDL to TTCN is decribed by an example below. Again, take anotice of measures
taken to avoid name scoping conflicts (note dso that all enumerated values are precealed by a name scope to avoid
name scope conflicts):

/I'1DL : Definition of enumerated type:
interface Mobilel P {

enum colors{ red, green, blue};

s

/I TTCN.MP : Definition of enumerated type:
$Begin_ ASN1_TypeDef
$ASNL Typeld TYPE_iMobilelP_icolors
$ASN1 TypeDefinition ENUMERATED { enum_iMobilelP_ired(0),
enum_iMobhilelP_igreen(1), enum_iMobilel P_iblue(2) }
$ENd_ASN1_TypeDefinition
$Comment /* Definition of IDL enumerated type */
$End_ASN1_TypeDef

Noticethat is also posdgble to send IDL enumerated value from Tester to SUT in the form of INTEGER
(0..4294967295), although conventional way of doing this (i.e. using ENUMERATED) is 4gill preferred, aslong as it
promotes higher level of ATS readability.

7.5. Sequence Type

7.5.1. Unbounded Sequences

Mapping of unbourded sequencetypes from IDL to TTCN isill ustrated by an example below:

/I'1DL : Definition of unbounded sequence type:
interface Mobilel P {

typedef sequence<octet> packet;

s

/I TTCN.MP : Definition of unbaunded sequence type:
$Begin_ ASN1_TypeDef

$ASNIL Typeld TY PE_iMobil el P_ipacket
$ASN1_TypeDefinition SEQUENCE OF IDL_octet
$ENd_ASN1_TypeDefinition
$Comment /* */

$ENd_ASN1_TypeDef

7.5.2. Bounded Sequences

Mapping of bounded sequencetypesfrom IDL to TTCN isill ustrated by an example below:

/I'1DL : Definition of bounded sequencetype:
interface Mobilel P {

typedef sequence<octet, 100> packet;

H

/I TTCN.MP : Definition of bounded sequencetype:

$Begin ASN1_TypeDef
$ASN1 Typeld TYPE_iMobil el P_ipacket
$ASN1_TypeDefinition SEQUENCE SIZE(0..100) OF IDL_octet
$ENd_ASN1_TypeDefinition
$Comment /* */

$ENd_ASN1_TypeDef

7.5.3. Nested Sequences

It isposshblein IDL that a sequence type may be used as the type parameter for another sequencetype. Thisis possble
in TTCN also:

/I'1DL : Definition of nested sequencetype:
interface Mobilel P {

typedef sequence<sequence<long> > registry;

H

/I TTCN.MP : Definition of nested sequencetype:
$Begin ASN1_TypeDef
$ASNI1 Typeld TY PE_iMobil el P_iregistry
$ASNL_TypeDefinition SEQUENCE OF SEQUENCE OF IDL_long
$ENd_ASN1_TypeDefinition
$Comment /* */
$ENd_ASN1_TypeDef

7.5.4. Sequenceswith Zero Length

Noticethat IDL does naot prohibit sequencesto be of zero length at runtime. If thisisthe cae, corresponding
definition of constraint shall contain brackets“{” and“}” with blank content inside bradkets, rather than omit the whole
structure & all.

7.6. Array Type

Mapping of array types from IDL to TTCN isill ustrated by an example below:

/DL : Definition of array type:
interface Mobilel P {
typedef long table[10][5];

s

/I TTCN.MP : Definition of array type:
$Begin_ASN1_TypeDef
$ASN1_Typeld TYPE_iMobilelP_jtable
$ASNL_TypeDefinition SEQUENCE SIZE(10) OF SEQUENCE SIZE(5) OF IDL_long
$ENd_ASN1_TypeDefinition
$Comment /* */
$ENd_ASN1_TypeDef

7.7. Structured Type

IDL structured type mapsto TTCN as ill ustrated by an example (note that all field names are preceded by underscore
charader “_” to avoid conflicts with TTCN and ASN.1 reserved words):

/I'1DL : Definition of structured type:
interface Mobilel P {

struct human

{
short age;
string name;
I
1

/I TTCN.MP : Definition of structured type:
$Begin ASN1_TypeDef
$ASNL Typeld TYPE_iMobilelP_ihuman
$ASNL TypeDefinition SEQUENCE { seq_age IDL_short, seq name IDL_string }
$ENd_ASN1_TypeDefinition
$Comment /* */
$End_ASN1_TypeDef

7.8. Union Type

IDL union type mapsto TTCN asill ustrated by an example (note that all field names are preceded by underscore
charader “_” to avoid conflicts with TTCN and ASN.1 reserved words):

/I'1DL : Definition of union type:
interface Mobilel P {
union register switch (char)

{

case'd: case'b’: short AX;
case'C': long EAX;
default: octet AL;
1
1
/I TTCN.MP : Definition of union type:
$Begin ASN1_TypeDef

$ASNL Typeld UNION_iMobilel P_iregister
$ASN1 TypeDefinition CHOICE
{

ch AX [0] IDL_short,
ch EAX [1] IDL_long,
ch AL [2] IDL_octet
}
$ENd_ASN1_TypeDefinition
$Comment /* */
$ENd_ASN1_TypeDef

$Begin ASN1_TypeDef

$ASNL Typeld TYPE_iMobilel P_iregister
$ASNIL TypeDefinition SEQUENCE
{

seq_discriminator IDL_char,
seq_value UNION_iMobil el P_iregister
}
$ENd_ASN1_TypeDefinition
$Comment /* */
$ENd_ASN1_TypeDef

Note that in order to access “default” sedion of “union”, “seq_discriminator” shall contain any value not mentioned in
“case” sedions.

7.9. ANY Type

Present spedfication does not provide any support for IDL any type. Nowadays any typeisviewed asagap in asystem
spedfication, necessary only for low-level system design.

If ANY typeispresent in dedaration of CORBA operation under test, it is reammended to implement a Decorator (as
it isdefined in design patterns language) which will contain one of more operations, each having ANY replaced with
concrete IDL type, as neaded by one or more corresponding test steps. In thisway, decorator set of operations will
provide equivalence transformation d operation in question into acaptable form. Implemented Decorator shall be
viewed as an integral part of SUT intended to fadlit ate SUT testing.

8. IDL Attribute Declaration

Dedaration of IDL attribute is equivalent to get/set pair of IDL operations as described in OMG CORBA specificaion.
Hence, no additional rules shall be introduced with concern to attributes and their handling.

We draw reader’ s attention to the fad that OMG IDL spedfication implicitly assumes that the name of the parameter
passd as agrument to set() operation cdl shall be equivalent to the first letter in the name of the corresponding
attribute. Making this assumption explicit, we require from set() operation cal to assgn name of the argument exadly
as described above.

9. Exception Handling

In arder to be &leto throw an exception or to handle an exception, ATS must dedare Exception PDU. It isdedared
only oncefor all exceptions thrown and for all exceptions caught and isused in the ATS later multi ple times with
appropriate nstraints.

ATS shall be prepared to catch exceptions dedared after “raises’ keyword. It shall be prepared also to cacch CORBA
System Exceptions snce any operation may throw them without explicit dedaration. Gateway may throw its own
exceptions as well. In case an exception isthrown by a Server during geration invocation, ATS shall not exped any
other response from this operation, nor shall it respond to a Client in any other way in caseit decidesto throw itsown
exception as aresponse to a Client request.

9.1 Handing CORBA System Exceptions

Exadly the following definitions must be present in ATS in order to handle CORBA System Exceptions:

/I DL Definition of CORBA standard exception body:
modue CORBA {
interface SystemException {
enum completion_status

{ COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE};
#define ex_body { unsigned long minor; completion_status completed; }

s

/I TTCN.MP : Definition of “completion_status’ enumerated type:

$Begin ASN1_TypeDef
$ASNL Typeld TYPE_iCORBA _iSystemException_icompletion _status
$ASN1 TypeDefinition ENUMERATED {

enum_iCORBA _iSystemException_iCOMPLETED__YES(0),
enum_iCORBA _iSystemException_iCOMPLETED__NO(1),

enum_iCORBA _iSystemException_ iCOMPLETED__ MAYBE(2) }
$ENd_ASN1_TypeDefinition
$Comment /* Definition of “completion_status’ enumerated type */

$End_ASN1_TypeDef

/I TTCN.MP : Definition of “ex_bady” structured type:

$Begin_ ASN1_TypeDef
$ASNL Typeld TYPE_iCORBA _iSystemException_iex__body
$ASN1 TypeDefinition SEQUENCE {

seq_minor IDL_unsigned_long,

seq_completed TY PE_iCORBA_iSystemException_icompletion__status }
$ENnd_ASN1_TypeDefinition

$Comment /* Definition of “ex_bady” structured type */
$ENd_ASN1_TypeDef

9.2. Gateway-Spedfic Type Definitions

Exadly the foll owing Gateway-spedfic definitions must be present in ATS:

$Begin ASN1_TypeDef

$ASNL Typeld GW._string array

$ASN1 TypeDefinition SEQUENCE OF IA5string

$ENd_ASN1_TypeDefinition

$Comment /* Definition of Gateway-spedfic array of IDL strings */
$End_ASN1_TypeDef

$Begin ASN1_TypeDef
$ASN1 Typeld GW_void _exc body
$ASNL TypeDefinition SEQUENCE { seg_error_code IDL_long }
$ENd_ASN1_TypeDefinition
$Comment /* Definition of “void” exception bady */
$ENd_ASN1_TypeDef

9.3. Dedaring Exception PDU

Exadly the foll owing definition for Exception PDU must be present in ATS:

$Begin_TTCN_PDU_TypeDef

$PDU_Id pRAISE

$PCO_Type CORBA_PCO

$Comment /* Dedaration of Exception PDU. */
$PDU_FieldDcls

$PDU_FieldDcl

$PDU_Fieldid CALL_ID

$PDU_FieldType INTEGER

$Comment /* 1D of the operation cdl that has thrown an exception. */
$End_PDU_FieldDcl

$PDU_FieldDcl

$PDU_Fieldild EXC_SCOPE

$PDU_FieldType IDL_string_array

$Comment /* Name scope where exception has been initially defined. */
$End_PDU_FieldDcl

$PDU_FieldDdl

$PDU_Fieldid EXC_NAME
$PDU_FieldType IA5String
$Comment /* Exception name. */
$End_PDU_FieldDcl

$PDU_FieldDcl

$PDU_Fieldld EXC_BODY
$PDU_FieldType PDU

$Comment /* Exception body. */
$End_PDU_FieldDcl

$End_PDU_FieldDcls
$Comment /* */
$End_TTCN_PDU_TypeDef

CALL_ID identifies operation that caused exception. In case exception is thrown by the Gateway or it isimpossble to
deted which operation thrown an exception, CALL_ID is st to Q.

EXC_SCOPE contains ®quence of modues and interfaces forming a name scope for an exception dedaration. NOTE:
Gateway assumes that all standard CORBA exceptions are defined within an interface ‘CORBA.SystemException”.
Gateway may throw its own exceptions, and these are defined within an interface cHied “ GatewayException”.

EXC_NAME contains name of an exception thrown.
EXC_BODY isabody of exception.

9.4. Dedaring Body of Exception PDU

Dedaration of EXC_BODY isill ustrated for CORBA System Exceptions:

/[1DL: Definition of CORBA System Exceptions:
modue CORBA {
interface SystemException {

exception UNKNOWN { unsigned long minor; completion_status completed; } ; exception BAD_PARAM {
unsigned long minor; completion_status completed; };

.
s

/I TTCN.MP : Dedaring bady for CORBA System Exception PDU:
$Begin_TTCN_PDU_TypeDef

$PDU_Id pRAISE_BODY _iCORBA _iSystemException
$PCO_Type CORBA_PCO

$Comment /* Dedaration of Exception PDU body. */
$PDU_FieldDcls

$PDU_FieldDdl
$PDU_Fidldid EXC_BODY
$PDU_FieldType TY PE_iCORBA_iSystemException_iex__bady
$Comment /* Exception body. */
$End_PDU_FieldDcl
$End_PDU_FieldDcls
$Comment /* */
$End TTCN_PDU_TypeDef

EXC_BODY isabody of exception as defined in a corresponding IDL definition. Exception body isaways
interpreted as IDL structure and is mapped to TTCN as defined in sedion 7.6. If exception has no bady, it isassgned a
default body of type GW_void_exc_body as defined in sedion 9.2. Field “seq_error_code” aways contains 0. Structure
of EXC_BODY may vary for different exceptions.

9.5. Dedaring Constraint on Exception PDU

Assumethat ATS s eager to cach all CORBA System Exceptions that may be thrown by any of currently invoked
operations. In this case it should wait for recept of Exception PDU constrained by the foll owing construct:

/I DL Definition of CORBA System Exceptions:
modue CORBA {
interface SystemException {

exception UNKNOWN { unsigned long minor; completion_status completed; }; exception BAD_PARAM {
unsigned long minor; completion_status completed; };

.
s

/I TTCN.MP: Catching all CORBA System Exceptions:
$Begin_ TTCN_PDU_Constraint

$Consld c3RAISE_iCORBA _iSystemException

$PDU_Id pRAISE

$DerivPath

$Comment /* Dedaration of constraint on Exception PDU */
$PDU_FieldValues

$PDU_Fieldvalue

$PDU_Fieldid CALL _ID
$PDU_ConsValue?
$End PDU_FieldvVaue

$PDU_FieldValue
$PDU_Fieldld EXC_SCOPE
$PDU_ConsVaue{ “CORBA”, “ SystemException” }
$End_PDU_FieldValue
$PDU_Fieldvaue

$PDU_Fieldid EXC_NAME
$PDU_ConsValue ?
$End_PDU_FieldValue

$PDU_FieldValue

$PDU_Fieldld EXC_BODY
$PDU_ConsValue?
$End_PDU_FieldValue

$End_PDU_FieldValues
$Comment /* */
$End_TTCN_PDU_Constraint

Hereis an example of catching a user-defined exception:

/I 1DL: Definition of an exception “PadketTooBig”:

modue MaodA {
modue ModB {
interface IntC {

exception PacketTooBig{ };

I
/I TTCN.MP: Catching an exception “PacketTooBig":
$Begin_ TTCN_PDU_Constraint

$Consld c3RAISE_iModA_iModB_ilntC_iPacketTooBig

$PDU_Id pRAISE

$DerivPath

$Comment /* Dedaration of constraint on Exception PDU. */
$PDU_FieldVaues

$PDU_FieldValue

$PDU_Fieldid CALL_ID
$PDU_ConsVaue?
$End_PDU_FieldValue

$PDU_FieldValue

$PDU_Fieldld EXC_SCOPE
$PDU_ConsVaue{ “ModA”, “ModB”, “IntC” }

$End_PDU_FieldValue
$PDU_FieldValue

$PDU_Fieldld EXC_NAME
$PDU_ConsValue “PacketTooBig”
$End_PDU_FieldValue

$PDU_Fieldvalue

$PDU_Fieldld EXC_BODY
$ConsValue ?
$End_PDU_FieldValue

$End_PDU_FieldValues
$Comment /* */
$ENd_TTCN_PDU_Constraint

9.6. Exceptions Defined by Gateway

Currently, the foll owing exceptions are defined by the Gateway. Their description is given in IDL-style:
modu e GatewayException {

/I Exceptions defined here indicae successul events:

interface Recoverable {

/I This exception is generally thrown for successful events: exception General { } ;

b
/I Exceptions defined here indicae fatal events:
interface Fatal {

/I This exception is generally thrown for fatal events: exception General { } ;

s
s

9.7. Discusson onSpedfied Exception Handing

Alternative approaches to handling CORBA exceptionsin ATS are, of course, posshle. However, present design have
been chosen finally due to foll owing reasons:

(a) Exception PDU contains information sufficient to detea which exception has been thrown and in which name scope
it is defined.

(b) It contains information sufficient to detea which operation has thrown an exception.

(c) Body of exception is present asaPDU field.

(d) Groups of exceptions can be caught easily within a Test Case by defining an appropriate constraint, asill ustated by
an example aove.

10. Manual Control over SUT

It may sometimes be needed for ATS to tell operator to manually perform some adions, e.g. invoke Client requests of
Universal Servant operations. Thisisdone by IMPLICITly SENDing Manual PDU to the Gateway. Format of Manual
PDU isasfollows:

/I TTCN.MP : Dedaring Manual PDU:
$Begin_TTCN_PDU_TypeDef

$PDU_Id pMANUAL

$PCO_Type CORBA_PCO

$Comment /* Dedaration of Manua PDU */
$PDU_FieldDcls

$PDU_FidldDcl

$PDU_Fieldld MESSAGE

$PDU_FieldType IA5String

$Comment /* Message to the operator attached */
$End_PDU_FieldDcl

$End_PDU_FieldDcls
$Comment /* */
$End TTCN_PDU_TypeDef

Upon recept of this PDU, Gateway will display a message to the operator contained in MESSAGE field direding him
to perform some adions. In will also append a string: “Upon succesful completion of the operation, pressY. Upon
faulty completion o the operation, pressN.” Once operator completes an operation and responds with an adion,
Gateway will respond badk to ATS either with Reaverable or with Fatal Gateway exception, depending on human’s
response.

ATSisexpeded to wait for receipt of Exception PDU coming from Gateway.

11. Inheritance and Name Resolution

IDL permits redefinition of inherited types, constants and exceptions. Since present spedfication requires that type,
operation and exception dedarations sall contain all necessary information about the scope where they have been

defined, we figure out that no difficulties dhall arisein mapping of IDL resolution operator (“::”) to TTCN. This
operator simply defines a different name scope for operation, exception or whatever it is. ATS designer shall not also
experience any problems concerned with IDL inheritance mechanism.

E.g. if resolution operator is applied to operation invocaion, then Call PDU shall be send through the same PCO that
would have been used in case of normal invocation, but detail s of defining PDU Name, constraint etc. shall consider a
diff erent name scope of an operation.

12. Handling Product Objects

Recdl from sedion 11. that one distinct type of objedsis Fadory which dynamicdly creaes new CORBA aobjeds.
Werefer to such oljeds as Product objeds. Currently, Product objeds can be aeated only by SUT and can not be
creged by ATS.

The procedure involving credion and operation invocation of Product objedsis asfoll ows:

(a) Fadory operation isinvoked, and it creaes Product objed. Gateway will map return value of the operation
representing referenceto Product objed to parameter of type IDL_objed (seesedion 7.2. for definition of this
type). For valid Product objedsthisis guarranteed to be aunique positive integer value. ATS shall save thisvalue
asaTest Case variable. Thisvalue will be later referred to as Product ID.

(b) ATS shall i ssue Registration PDU through the PCO assigned to Product object. Registration processis smilar to
described in sedion 2 and will be covered in next sedionsin detail .

(c) Now ATS operations of Product objed can be invoked exadly in the same manner as described in sedion 4.

(d) Before completing Test Case, ATS must take aare of destroying all ocated Product objeds by itself. Gateway will
not dedl ocete them automaticaly.

121. Dedaring PCOsfor Product Objeds

PCOsfor Product objeds must be dedared exadly as defined in sedion 21. IDL description of a corresponding
Product objed istaken as a base for constructing PCO Name.

12.2. Dedaring Product ID for Product Objeds

Product ID obtained from Fadory operation shall be saved to locad Test Case variable. Variable dedaration resembles
definitionof ATS RAXIT parameter covered in sedion 2.2.2. and isill ustrated by an example:

/I |DL: Dedaration of Product interface 1ntC”:
modue ModA {

modue ModB {
interface IntC {

1
I
/I TTCN.MP: Dedaring Product ID of “ModA.ModB.IntC”, objed #5:

$TC VarDd

$TC Varld viD5_iModA_iModB_ilntC

$TC VaType|DL_objed

$TC VarVaue

$Comment /* Product ID obtained from Fadory operation */
$ENd_TC VarDcl

123. Dedaring Registration PDU for Product Objeds

Dedaration of Registration PDU followsrules gmilar to defined in 22.3. Speda PDU of Form 4 isintroduced, and
thisisthe only way to register Product objed:

/I TTCN.MP : Dedaring Registration PDU (Form 4):
$Begin_TTCN_PDU_TypeDef

$PDU_Id pPREG_ID

$PCO_Type CORBA_PCO

$Comment /* Registration PDU: Form 4, using Product ID */
$PDU_FieldDcls

$PDU_FieldDcl

$PDU_Fieldld ID

$PDU_FieldType IDL_abjed

$Comment /* Product ID obtained from Fadory operation */
$End_PDU_FieldDcl

$End_PDU_FieldDcls
$Comment /* */
$End TTCN_PDU_TypeDef

124. Dedaring Constraint on Registration PDU

Dedaration of constraint on Registration PDU follows rules similar to defined in 22.4. Speda Form 4 of constraint is
introduced, and thisisthe only way to put constraint on Product registration:

/I TTCN.MP : Constraint on Registration PDU (Form 4):
$Begin_TTCN_PDU_Constraint

$Consld cPREG_ID (productid : IDL_objea)

$PDU_Id pPREG_ID

$DerivPath

$Comment /* Registration Constraint: Form 4, using Product ID */
$PDU_FieldValues

$PDU_FieldValue

$PDU_Fieldid ID

$ConsValue productid

$Comment /* Product ID obtained from Fadory operation */
$End_PDU_FieldvVaue

$End_PDU_FieldValues
$Comment /* */
$End_TTCN_PDU_Constraint

125. Isaling Registration PDU

Now everything is ready for issuing a Registration PDU in Test Case. Thisisdonein amanner ill ustrated by an
example:

/I TTCN.MP : Issuing Registration PDU for Product objed derived from IDL // interface “ModA.ModB.IntC":

$BehaviourLine

$Labelld

$Line[0] PCO1_iModA_iModB_ilntC ! pPREG_ID

$Cref cPREG_ID (vID5_iModA_iModB_ilntC)

$Comment /* Noticethat variable name does not strictly match
PCO name - seencte in sedion 2.2.2.(a) for explanation */
$End_BehaviourLine

