WeSAHMI Status Report

September 29, 2006

Abstract

This is the status report of the framework developed in the WeSAHMI research
project. The document covers the project deliverables D2-D4. It includes a
summary of used technologies, description of the current state of the subprojects,
and gives an overview of planned future work.

Contents
1 Introduction 2
2 Summary of technologies to be used 3
2.1 Dynamic configuration of IPv4 addresses 3
2.1.1 Overview 3
2.1.2 Selecting an address oL 3
2.1.3 Conflict detection 4
2.2 Service Location Protocol 5
2.3 The Session Initiation Protocol Family 8
2.3.1 Instant Messaging and Presence 9
2.3.2 Distributed SIPo 0o 10
2.3.3 Security Support 11
2.4 SOAP e 12
2.5 HTTP 12
2.6 Web Technologies 13
26.1 XHTML 13
2.6.2 XForms 13
2.6.3 SVG 13
2.6.4 Compound Document Formats 14
26.5 XBL 14
2.6.6 CSS 14
2.7 Network 14
3 Interaction model 15
3.1 Background 15
3.2 Mode of implementation, phase 1 15
4 SOAP and SIP binding 17
4.1 Subscribing to notification service 17
4.2 Receiving notificationso 17

5 Platform 18

51 Client e 18
5.2 Server 21

6 Security 23
6.1 Requirements L 23
6.2 Building Blocks for Security 24
6.2.1 End-to-End Measures 24

6.2.2 SIP Security o 25

6.2.3 Web Services Security 27

6.2.4 Identity Federation 28

6.3 Security Specificationo Lo 28
6.3.1 Overview 28

6.3.2 Bootstrapping Trust 0. 30

6.3.3 Secure Push 30

6.4 Security Domains oL oL 32
6.5 Privacy 33
6.6 DBrowser Integration0 00 33
6.7 Putting it Togethero 33
6.8 Implementation Plans 34

7 Detailed application-level description 35
7.1 User Story: Check-in 35
7.2 Pilot Environment Lo 0oL 37

8 Future Work 39
8.1 Pushlet Environment 39
8.2 Pushlet environment and SLP integration 41
8.3 X-Smiles and SIP integration 43
8.4 Security 44

9 Conclusions 44
Bibliography 46
A Used open source software and applying licenses 47

1 Introduction

During the spring 2006, project Wesahmi has been actively composing an inte-
grated system where components of already existing systems have been used.
The goal has been to provide a reference implementation where client-server
interaction is enhanced by allowing also servers initiate operations. An exist-
ing implementation was running in June 2006, and it was also demonstrated to
project’s steering group using the agreed case study as an example.

This paper documents the overall design and subsystems used in it. Each
subsystem is also associated with information about applicable open source
licences, where an already existing component is used. Moreover, the paper
defines the main open issues that will be addressed in the subsequent phases of

the project. Some of these are already under current work, but the majority of
them remains future work.

The structure of this report is the following. Section 2 provides an overview
of the technologies used in the implementation. Sections 3 provides a discussion
on the improved interaction model that is needed for allowing servers to send-
ing notifications to clients. Section 4 introduces how interaction is technically
implemented at messaging and protocol level, and Section 5 addresses client
and server design. Considerations regarding security are give in Section 6. A
detailed application level description on the demonstrated system is given in
Section 7. Then, in Section 8, we will list open issues that are currently under
work or to be solved in the future. Finally, conclusions are drawn in Section 9.
Open source licenses applicable to different subsystems that have been used on
composing the reference implementation are listed in Appendix A.

2 Summary of technologies to be used

This section covers all used technologies. It has the following structure. Section
2.1 presents a method for IPv4 address autoconfiguration. Section 2.2 gives
an overview of Service Location Protocol (SLP) and a passive discovery en-
hancement. Section 2.3 presents baseline Session Initialization Protocol (SIP)
and also a distributed version of SIP. Section 2.5 briefly introduces Hypertext
Transfer Protocol (HTTP) and Section 2.6 addresses several Web technologies
used to create user interface. Finally, Section 2.7 covers the target environment
network infrastructure.

2.1 Dynamic configuration of IPv4 addresses
2.1.1 Overview

The dynamic configuration of IPv4 link local addresses is specified by RFC
3927 [6]. It defines a mechanism for how a node on the network can configure
an IPv4 address without the use of external services such as DHCP server.
The address is defined to be link local which means that it can be used to
communicate with nodes in the same link. Being on the same link means that
the nodes can communicate directly with each other so that the link-layer packet
payload arrives unmodified. Address block 169.254/16 is registered for link local
addresses.

2.1.2 Selecting an address

The basic mechanism for obtaining an address is following;:

1. Selection — a host selects an address using a pseudo-random number
generator with a uniform distribution in the range from 169.254.1.0 to
169.254.254.255 inclusive.

2. Probing — the host tests if the selected IPv4 link-local address is already
in use. On a link-layer such as IEEE 802 that supports ARP [23], conflict
detection is done using ARP probes. The ARP probes query which host
has a specific IP address and the owner responds to it. The probe is
repeated a few times with small delays. If any host claims to own the

address by sending an ARP reply, or tries to find out the owner in similar
manner, the address is considered taken and the algorithm returns to
previous state to select a new address.

3. Announcing — When a host has found an available IP address it announces
the new address to the network. It broadcasts a number of ARP announce-
ments. The announcements are like probes but the sender and target IP
addresses are both set to the host’s newly selected IPv4 address.

An example of the mechanism is shown in Figure 1.

: New host : Existing hosts

: ARP Probe

: ARP Probe

: ARP Probe

: ARP Announcement

Figure 1: New host selects an address. All messages are broadcasted.

2.1.3 Conflict detection

Address conflict may occur at any time of the operation, not only during the
address selection. For example, two hosts may select the same address when
they do not have connectivity between them and later become aware of each
other. At any time, if a host receives an ARP packet on an interface where the
‘'sender IP address’ is the IP address the host has configured for that interface,
but the ’sender hardware address’ does not match the hardware address of that
interface, then this is a conflicting ARP packet, indicating an address conflict.
On a conflict, a host has two possible options:

e The host may immediately configure a new IPv4 link-local address.

e The host may attempt to defend its address by recording the time that
the conflicting ARP packet was received, and then broadcasting one single
ARP announcement, giving its own IP and hardware addresses as the
sender addresses of the ARP. Having done this, the host can then continue
to use the address normally without any further special action. However, if
this is not the first conflicting ARP packet the host has seen, and the time
recorded for the previous conflicting ARP packet is recent, the host must
immediately cease using this address and configure a new IPv4 link-local
address.

Forced address reconfiguration may be disruptive, causing TCP connections
to be broken. However, it is expected that such disruptions will be rare. Before
abandoning an address due to a conflict, hosts should actively attempt to reset
any existing connections using that address.

2.2 Service Location Protocol

Service Location Protocol[12] is protocol specified by IETF. It is targeted to
search services from the network based on type of service and attributes. Thus
SLP provides a dynamic configuration mechanism without the need to precon-
figure service addreses. The services are represented as URLs. URLs consist of
type of the service and the address where the service is available. Additionally
the services can be grouped together with scopes and they can have attributes
assigned.
SLP includes three entities that perform service discovery functions:

e User Agents (UA) perform service discovery.
e Service Agents (SA) advertise the location and attributes of the services.

e Directory Agents (DA) store and distribute service information.

When performing a search for a service the UA sends a multicast or broadcast
Service Request (SrvRgst) to which SAs with corresponding services reply with
unicast Service Reply (SrvRply). An example of these is in Figure 2. It shows
how a UA multicasts or broadcasts a service request and a SA replies with
unicast. In the second example, the UA has found a DA and uses it as a proxy
to find services. On the third example a DA informs of its existance when a UA
or SA performs multi- or broadcast traffic.

A Passive Discovery (PD) functionality was implemented for SLP within
SESSI project. It enables service providers to advertise their services through
broadcast advertisements in the ad-hoc network. The clients may then passively
accumulate a list of services they are interested in. The functionality is mainly
useful when the number of clients is significantly larger than the number of
service providers. PD is therefore a suitable method for bootstrapping the
Wesahmi framework. The operation of PD is illustrated in Figures 3 and 4.

Multi- / Broadcast SrvRgst

UA SA
Unicast SrvReply

Unicast SrvRqst Unicast SrvReg

UA DA SA
Unicast SrvReply Unicast SrvAck

Multi- / Broadcast SrvRqst

____________ >

Unicast DAAdvert
Multicast DAAdvert

UA or SA DA

Figure 2: SLP agents and most common protocol messages.

Application

|
| SD_enablePassiveDiscovery()

| GeneralReplyMsg (ok)

- -

|
I
I
|
)
= |
I
| ‘ -
| ! : PDSrvReg
| >
|
| | ! GeneralReplyMsg (ok) | N
¢
| I Return SESS|_SUCCESS | 1 SrvAdvertisement >
| Return SESSI_SUCCESS I e iy | !
- —mmm———— = d !
|
I |
|
| | : ! SrvAdvertisement
! ' >
|
| I ! I
|SD_disablePassiveDiscovery() ! : !
I I | : SrvAdvertisement
: SESSI_SLPPassiveDeReg() | | =
| o PDSrvDeReg 1
>
I
|
|
i
I
I
|
|
I
I
|
|
I
I
|
|
I

|
|
Function calls ! Control messages over SLP messages
! localhost socket over WLAN
|

Figure 3: Registering and unregistering services for PD

PDSrvRgst

listener when socket

- = = — - - - - -
Return SESSI_SUCCESS is closed.

[

Control messages over
localhost socket

SLP messages
over WLAN

|
I
I
I
I
|
|
|
|
i
I
. » |
! ! SrvAdvertisement X !
: PDSrvRply X == 1
< :
I | PD Callback X - ‘ SrvAdvertisement X |
| Appl. Callback X Found % 1 PDSIVRply X < ‘
‘t 1 PD Callback X I i SrvAdvertisement Y |
< | -
| < | PDSrvRply Y ! !
< :
I ! PD Callback Y <) !
| [! SrvAdvertisement X !
o Appl. Callback Y Found o 1 <
-] ! PDSrvRply X |
<€
I ! PD Callback X N 1
< |
| -
| | ! |
! |
ISD_unregisterSrvAdvListener() : | |
r >
| I SESSI_SLPDeregFilter() : |
| > |
| >
| ! : <Socket is closed> ! :&:idce’::;?m nt
| | Return SESSI_SUCCESS ‘ > ertiseme
|
|
|
|
I
I
|

|
|
| |

| AN
! Function calls | Function calls
|

|
l

Figure 4: Discovering services with PD

2.3 The Session Initiation Protocol Family

The Session Initiation protocol (SIP) is a multi-purpose and flexible signaling
protocol for session-based communications in IP networks. SIP only handles the
session management phase, and once a session has been established, different
communication applications can be used, e.g., Voice over IP, video conferencing,
and instant messaging.

The architecture of the Session Initiation Protocol (SIP) [10] is based on
centralized entities. Two logical elements play a key role in the architecture,
registrar and proxzy servers. Registrars are the SIP entities where SIP users
register their contact information once they connect to the network. In a basic
registration scenario, a SIP user agent communicates to its registrar server (the
registrar IP address is usually preconfigured) the SIP user name of the user(s)
using the device, referred to as SIP address of records (AOR) for that user,
and the addresses where the user is reachable. Usually, contact information
is stored in the form of IP addresses or resolvable names, but other kinds of
contact information, such as telephone numbers can be registered as well.

An association between a SIP AOR and a contact address is called a binding.
SIP registrars exploit an abstract service, called location service, and return the
bindings for the SIP AORs falling under their domain of competence to the SIP
entities issuing a binding retrieval request.

Proxy servers are needed because SIP users cannot know the current com-
plete contact information of the callee but only its AOR. SIP presupposes that
the AOR (SIP user ID) of the party to contact is known in advance, analogously
to what happens when sending instant messages or e-mails. A basic SIP session
involves the calling user agent contacting the calling side proxy server, which in
turn will forward the message to the proxy server responsible for the domain of
the called user agent. The called side proxy server retrieves from the called side
registrar (i.e. utilizes the location service) the bindings for the called user and
eventually delivers the request to the intended recipient.

Registrars and proxies are logical entities, and it is not an uncommon con-
figuration for them to be co-located in the same node. Usually, user agents have
a preconfigured outbound proxy server where all the outgoing requests are sent
and through which all the responses to the issued requests, or new requests, are
received.

A typical SIP session is set up as follows (Fig. 5). Alice tries to start session
with Bob. Alice’s phone uses a proxy server that is in atlanta.com domain as it’s
outbound proxy and Bob’s phone uses proxy server in biloxi.com domain as it’s
outbound proxy. Alice starts by sending sending an INVITE request (1) which
is received by Alice’s outbound proxy. This proxy appends a via-header field
containing it’s address to the request and forwards it to proxy in the domain of
Bob’s phone (2). Alice’s outbound proxy can use DNS to locate the inbound
proxy which is in the biloxi.com domain. The proxy server at biloxi.com receives
the INVITE request, also appends a via-header field to request, and forwards
it to Bob’s phone (3). The proxies also send messages back to Alice to inform
that they have forwarded the request(4,5).

When Bob’s phone receives the INVITE request it sends a message telling
that the request has been received by the device and is ringing (6). Message
is routed back to Alice’s phone through same proxies that the request arrived.
This is done by information in requests via-header fields. Via-header fields are

atlanta.com biloxi.com

Alice proxy proxy Bob
INVITE
INVITE
100 Trying INVITE
100 Trying
180 Ringing
180 Ringing
180 Ringing 200 OK
200 OK
200 OK
ACK
Media Session
BYE
200 OK

Figure 5: Example SIP session setup

removed from the request message in reverse order by each proxy in the route.
When Bob answers the session invitation, a final response message is sent to
Alice (7), which Alice confirms with an ACK message (8). the ACK message is
sent directly to Bob’s phone, because both Alice’s and Bob’s phones know each
others addresses after the INVITE message exchange procedure and no address
lookups are needed by proxy servers anymore. The Session is now established.
The session is closed with a BYE-200 OK message exchanged (9,10).

2.3.1 Instant Messaging and Presence

SIP is essentially a signaling solution. Once the session is set up, an applica-
tion is started to perform the actual communication between the users. A very
popular type of communication between people is instant messaging. SIP has
also been extended to support instant messaging and presence (IMP) services.
The IMP architecture proposed by the SIMPLE working group builds on top
of the SIP Event Notification Framework [4] and realizes a specific event in-
stantation called presence [26]. The general concept is that SIP entities can
subscribe to the presence resource state owned by another entity. The entities
that have accepted a subscription request send notifications when their presence
state changes, to all the (authorized) entities.

Subscriptions and notifications are done using two newly defined SIP meth-
ods, SUBSCRIBE and NOTIFY [4]. Both methods are SIP requests; in the
event package, the entity that processes such requests, thus handling the pres-
ence state of an entity, is called Presence Agent (PA). Usually, the PA is run in
a centralized server, to facilitate presence management when a SIP user accesses
the network from several different (presence) user agents simultaneously. The

presence state made available by a user can contain, e.g., profile information,
such as, interests, and hobbies.

The transfer of messages between two users is done with the Message Ses-
sion Relay Protocol (MSRP) [9], the protocol designed in SIMPLE for session
mode instant messaging sessions. An MSRP IM session is signaled using SIP,
exactly like any other media (e.g., audio, video) session. During the SIP session
negotiation, the end peers exchange a URI, which will be used throughout the
MSRP session as unique peer identifier. Once one party has received the URI
identifying the remote peer, the MSRP session can start. The actual instant
messages are exchanged in the body of the MSRP messages.

2.3.2 Distributed SIP

Decentralized SIP (dSIP) [19] is a solution that allows deploying SIP without
support from centralized servers: MANETSs are an example of target network
environment for dSIP. The key idea of dSIP is of embedding in each enabled
device a basic subset of SIP proxy and registrar server functionalities, so that
dSIP users are self-capable to discover and contact other users in a MANET.
Decentralized SIP is particularly suited for small MANETS, with few dozens of
nodes at most, a size that constitutes a realistic deployment scenario for ad-
hoc networks [30]. We refer to such particular type of MANETS as proximity
networks, and here we use the term proximity interchangeably with MANET.

The software architecture of dSIP is shown in Fig. 6: the modules bordered
within solid lines are standard SIP modules in a device. The dashed modules
are instead the additions made to enable SIP in proximity networks. In a
standard SIP client, only the user agent (UA) side of the stack would be
present. In MANETSs, the server module is added, and the server standard
capabilities are enhanced with proximity functionalities. More details on the
role of each module are provided in [19].

1 Proximity manager : New SIP |
' Application ' Application !

Standard SIP
Application

Enhanced

User Agent Proxm_uty | server Proxmlty
extensions: extensions:
Rhcar AR

A - 1

Figure 6: Software Architecture for decentralized SIP

The main point is that proximity capabilities are not realized by modifying

10

the existing software modules of a SIP device; rather, they are enabled by adding
new submodules. This choice allows interoperability of dSIP UAs with standard
SIP clients: in fact, a standard SIP application can be deployed on top of dSIP
as well as an application that exploits the proximity enhancements. A native
SIP application is unaware of the presence of a modified SIP stack in the device,
since it only utilizes the standard SIP features. Moreover, a native application
can be utilized in MANETS, since the underlying proximity-aware middleware
is able to handle all the SIP messages sent by the application in the proper way.

The working principle of dSIP is that in MANETS, the user agent registers
with the co-located registrar server, according to standard SIP procedures, by
sending a REGISTER message. The server will then register the SIP user to
the network spreading a SIP message; message spreading can be done in sev-
eral ways, broadcast, flooding, or multicasting to the SIP well known multicast
address. The server modules in the proximity network receive a REGISTER,
update their cache entry with the binding, and can reply to the registering node
by sending a 200 OK message. The registering node server module updates
its cache with the bindings received from the other nodes. With this proce-
dure, the SIP location service functionalities, usually handled by a centralized
entity, the SIP registrar, are distributed among all the MANETSs nodes. A na-
tive SIP application would register to its predefined external registrar server;
the proximity enhanced modules "intercept" this message and route it to the
local server, transparently for the application. With this approach it is ensured
interoperability.

Inviting a peer to a SIP session is similar: the INVITE message is forced to
the co-located server, which checks in its cache if it has a binding for the queried
user (i.e., it is exploiting the location service), and forwards the INVITE to the
correct address in case a match is found. Furthermore, a proximity aware SIP
application may explicitly query the local server for the list of users in the
proximity network; the server collects the list of currently stored bindings and
sends them back, locally, so that a user in MANETS is able to begin sessions
also with previously unknown users. The request and reply for user list is done
by means of SIP messages: server and user agent modules are not bound by any
function calls.

2.3.3 Security Support

Session management with SIP has various security issues, e.g., authentication of
the parties, integrity of the messaging, and confidentiality. Because SIP is based
on application layer routing, the integrity and confidentiality of SIP messaging
is typically handled independently between two hops. Therefore, we concentrate
on security issues related to SIP ad-hoc networking, and on how a SIP nodes
are able to authenticate each other.

The main security concern in ad-hoc networks is making sure of the identity
of the remote party, and the security of the signaling itself. Application data
flows can be secured independently of the signaling messages. Veryfing SIP
users’ identity can be handled by the SIP authenticated identity [21] extension
to SIP. The key idea of the extension is that SIP UAs connect and authenticate
to a SIP server, which runs an authentication service. Once the authentication
service receives a message from an authorized UA, it signs the message using
its domain certificate. The signature is computed by hashing certain relevant

11

header fields of the message and added into the new SIP Identity header field.
The UA receiving the signed message can verify it using the authentication ser-
vice domain certificate; the certificate is either previously stored at the receiving
UA, or fetched at the address provided by the authentication service in another
new Identity Info header field. The receiving UA trusts the authentication ser-
vice, so by verifying the signature, it can be sure of the identity of the sender
of the request and of the message integrity.

We have modified this approach so that each node in an ad-hoc networks
signs all the SIP messages sent to the gateway (or to another node) with a self-
signed certificate. The gateway node receives the signed message and verifies it
using the ad-hoc user’s certificate; if signature verification fails, or the gateway
can not find the user’s certificate, the ad-hoc user is denied the gateway access.
Similarly, if the ad-hoc node has stored the gateway certificate in advance, it
can verify its authenticity and trust it for accessing the Internet. The ad-hoc
user’s certificate can be retrieved from a well-known repository in the Internet,
or could be previously stored at the gateway; this would be the case of a gateway
managed by a network operator, which only provides access to subscribed users
with pre-shared certificates. The gateway node, in this case, does not need to be
a moving device, but it could be a node connected to the infrastructured network
with one interface, and to the ad-hoc network with another. This scenario could
find application in hot-spots, such as, airports or internet cafes; we deem it very
interesting as it gives to ad-hoc networking a business value even for network
operators.

24 SOAP

SOAP is xml-based lightweight protocol for exchanging information in a de-
centralized and distributed environment. Typically SOAP-messages are carried
over HT'TP-protocol but other protocols may also be used. Messages may travel
from SOAP sender to SOAP receiver through SOAP intermediaries, which may
do some processing with the message.

The three main elements of SOAP-messages are envelope, header and body.
Envelope is the top level element. SOAP header must be the first element inside
envelope, but it is an optional element. SOAP header may contain child elements
which are called header blocks. These header blocks can be used for passing
information that can be used by SOAP intermediaries. SOAP intermediaries can
inspect, remove and add SOAP headers to the messages. After SOAP header
there is a mandatory SOAP body. SOAP body is the place for the information
that is meant for the ultimate receiver of the message.

2.5 HTTP

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for
distributed, collaborative, hypermedia information systems. It is used for data
transfer in WWW. The HTTP protocol is a request /response protocol. A client
sends a request to the server in the form of a request method, URI, and protocol
version, followed by a MIME-like message. The server responds with a status
line, including the message’s protocol version and a success or error code, fol-
lowed by a MIME-like message. Usually, HTTP communication is initiated by
a user agent. [11]

12

Envelope

Header

Header block 1

Header block 2

Body

Element 1

Element 2

Figure 7: Structure of the SOAP-message

2.6 Web Technologies

The user interfaces (Uls) of the applications are build using novel Web tech-
nologies, which are mainly XML-based markup languages. The technologies are
discussed in the following subsections.

2.6.1 XHTML

XHTML, the XML-based counterpart of the traditional HTML, is used to define
layout and structure of Web documents. XHTML’s layout model (flow layout),
makes it easy to create user interface for all sizes of devices. That is, the layout
is not tied to absolute positions and sizes. XHTML is modularied. Thus, one
can use desired subset of it and add modules from other languages, if needed.

2.6.2 XForms

XForms 1.0 Recommendation [8] is the next-generation Web forms language,
designed by the W3C. It solves some of the problems found in the HTML forms
by separating the purpose from the presentation and using declarative markup
to describe the most common operations in form-based applications [5]. It can
use any XML grammar to describe the content of the form (the instance data).
Thus, it also enables to create generic editors for different XML grammars with
XForms. It is possible to create complex forms with XForms using declarative
markup, without resorting to scripting. XForms needs a host language, which
defines the layout of a form.

2.6.3 SVG

Scalable Vector Graphics (SVG) is a format for two-dimensional graphics. Since
it is vector graphics, it can be rendered optimally on all sizes of device. SVG
drawings can be interactive and dynamic. Animations can be defined and trig-
gered either declaratively (i.e., by embedding SVG animation elements in SVG
content) or via scripting.

13

2.6.4 Compound Document Formats

Several XML vocabularies have been specified in W3C. Typically, an XML lan-
guage is targeted for a certain purpose (e.g., XForms for user interaction or
SVG for 2D graphics). Moreover, XML languages can be combined. An XML
document, which consists of two or more XML languages, is called compound
document. A compound document can specify user interface of an application.

2.6.5 XBL

XML Binding Language (XBL) provides mechanisms to bind an arbitrary XML
element to a binding element. The binding element defines the behavior and/or
presentation of the arbitrary element. For instance, an XForms control can be
bind to a SVG control, which is displayed if a device is capale to do that. XBL
has three main usage scenarios. They are:

1. Extending a document.
2. Presentation and behavior encapsulation.

3. Presentation and behavior inheritance.

2.6.6 CSS

Cascading Style Sheets (CSS) is a mechanism for adding style to Web docu-
ments. CSS enables separation of style and content of the Web documents.
That makes site maintenance easier and simplifies Web authoring.

2.7 Network

The environment of the WeSAHMI project consists of an ad-hoc network with
mobile nodes using services from the fixed infrastructure network using one or
multiple gateway nodes. The ad-hoc network uses WLAN as low-level trans-
port. The possible modes of operation are Managed using Access Points to or
Ad-hoc that does not use Access Points. The network protocol is IPv4 using
autoconfiguration (section 2.1).

There are two possibilities using the services from the fixed infrastructure
side: creating a direct IP connection or using application level proxies. Using
services from multiple providers makes pure IP connection difficult because the
node has to route packets to several different IP gateways. Because of this,
the services will be used trough proxies and the IP spaces will be completely
separate.

On the first phase the addresses can be set manually using private IP ad-
dress blocks and making the gateway node as the default route. The gateway
node performs NAT on the connections and allows direct IP connections to
the fixed network. The NATted connection can also be used with autoconfig-
ured addresses by setting only the route manually. However, later the direct
connections should be removed.

14

3 Interaction model

3.1 Background

Interactive server-initiated services require an interaction model that differs from
traditional web-based applications. The most obvious difference is that while
web applications are based on "client pull", server-initiated services require
support for "server push." Furthermore, a scheme for registering, authenticating,
and authorizing users and services is required.

The use of a service consists of several messages passed between the server
and the client. For example, when an air passenger arrives at the airport, a
Finnair Plus server contacts him to suggest mobile check-in, which is followed
by a series of communications related to the actual check-in. Together these
communications form a session. By default, these sessions are initiated by the
server, while either party can be responsible for ending them. For example, the
user may choose to close his browser, which results in termination of the session.

3.2 Mode of implementation, phase 1

In the WeSAHMI project, SIP is used as the bearer for notifications. On a low
level, it is possible to use the SIP SUBSCRIBE/NOTIFY methods to implement
push services. Server-controlled sessions that can also be ended by the client
are also possible using the associated timeout mechanism, where a subscription
has to be renewed before a predefined time interval has passed.

In the initial phase of the project, the notifications mainly instruct the client
to load a page to begin a service session or to reload a page to obtain refreshed
status information.

Server Client
Servlet Web Client Application
Web Server Browser
Server Daemon Client Daemon
SLP SIP SLP SIP
Transport Layer

Figure 8: Current Infrastructure of the Framework.

The framework, whose main components are illustrated in Figure 8 and
general operation is illustrated in Figure 9, is divided between two primary
elements: server and client. In the server-end, Servlets provide the actual service
but do not interact with the lower level elements but the Apache web server.
Server daemon uses SLP to advertise the service and SIP to provide notifications
for clients that have subscribed to the service. In the client-end, client daemon

15

BlRQ NWQNS (7€

BIeQ WI04X 150d ‘1€

(Wwi04X) 0 00Z dLLH ‘8T

WI03X 22 r; 7

93 197

(T4N) Aj1ION jo
1u21U0) SPIEMIOS bT

(Peojo1) 19N 3U21IND 13D ST

WANS 0F
01 pakeidsia
wiio4x
pabueyd

03X 62

wio4X 102

WwiosX 8T r; 7

N3 LT

TUSAF 10§ YA

JION AN 2
AJILON dfS 22
AJION ppias T2
(WIo3X) YO 002 d11H 6T
TaN 130 9T
CT4N) AJION 30
530D SPIRAIOS ST
AJON MON P |
AJILON diS €T
AJON ppas 2T
AJILON dIS TT

AJAON

PV puas 0T

39RDSANS dIS 2

2qu2sqns 9

EENENEES

suondusang wan 103 f1od :3

S3IMAS 03 UBISI I T

JUBLIBSILIBAPY JIAI3S 1SBIPROIG

uoneaiddy 311D qam |

[4osmoug | [uowaeq iuais |

[@1530a10 |

[@1s a1

IS 191169y €

o

ZI[eniu] -2

ais sonios |

[a15 390035

uowaeq 12035 |

[49n135 aom WIAIBS

Figure 9: Operation of the Framework.

sets SLP to listen for service advertisents, and uses SIP to subscribe to the

Additionally it forwards notifications to the browser through

a predefined socket.

found service.

The notifications are then processed by the web client

application that changes the user interface when required. A detailed description

of the framework can be found in Section 7.

A user will interact with the web client application roughly the same way

16

as she would with a traditional web forms. The difference is that the data
presented to her may change in real time. For example if the gate or time of her
flight is changed the user interface will display the information immediately.

4 SOAP and SIP binding

4.1 Subscribing to notification service

In WeSAHMI SIP is used for registering to the services of a service provider,
e.g., Finnair, and for receiving event notifications. Client must first subscribe
to server to tell that it is online, and willing to receive event notifications. Af-
ter subscription client receives notifications about events that it has subscribed
for. At the moment notification carry information that some information has
changed and browser should refresh the viewed page. Notifications could also
carry more detailed information what has changed. Here is an example of
SUBSCRIBE-message sent to server.

SUBSCRIBE sip:server.example.com SIP/2.0
To: <sip:server.example.com>

From: <sip:user@example.com>;tag=xfg9
Call-ID: 2010@host.example.com

CSeq: 17766 SUBSCRIBE

Max-Forwards: 70

Event: resource-update

Accept: application/soap+xml

Contact: <sip:user@host.example.com>
Expires: 600

Service: finnair

Content-Length: 0

There is Event-header with value “resource-update” which tells the server
that client is subscribing to receive notifications about changes in some resource.
There is also a header field Service which specifies the service for which the client
wants to receive notifications if there is several different type of services in same
server.

4.2 Receiving notifications

After subscription server will send NOTIFY-messages back to the client when
there is some change which the client needs to be notified, e.g., changes in
flights. These NOTIFY-messages also have an Event-field which is set to value
“resource-update” and Service-field has the same value as in the SUBSCRIBE-
message. There is also a SOAP-body which has a more detailed description of
event. Value of Content-Type-field is set to “application/soap+xml” to indicate
that body contains a SOAP-message. Here is an example of NOTIFY-message.

NOTIFY sip:user@host.example.com SIP/2.0
From: <sip:server.example.com>;tag=ffd2
To: <sip:user@example.com>;tag=xfg9
Call-ID: 2010@host.example.com

17

Event: resource-update
Subscription-State: active;expires=599
Max-Forwards: 70

CSeq: 8775 NOTIFY

Contact: sip:server.example.com
Service: finnair

Content-Type: application/soap+xml
Content-Length: 242

<SODAP-body>

The body of the NOTIFY-message is a SOAP-message which can contain
detailed information about what has changed in resource and client can update
the user interface. For now the SOAP-message contains the URL-address where

client retrieve the updated page to be shown in a browser. Here is an example
of SOAP-body.

<SO0AP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:ContentChanged xmlns:m="Some-URI">
<service>finnair</service>
<url>http://www.finnair.fi/service.html</url>
</m:ContentChanged>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In the body-part of the SOAP-message there is a ContentChanged-element
which tells that something has changed and user interface needs to be refreshed.
The service-element inside the ContentChanged-element tells the service for
which this update notification belongs and the url-element the url-address where
to retrieve the page.

eXosip and osip are the SIP-libraries used in the current implementation.
eXosip is a higher level library built on top of osip which is low level SIP-
library. This system could be implemented also using any other SIP-library
which supports SUBSCRIBE/NOTIFY-messages.

5 Platform

The Wesahmi infrastructure is divided to client and server side implementations.
The following sections discuss their current implementation in detail.

5.1 Client

There are three components on the client side, namely X-Smiles browser, SLP
User Agent (SLP UA), and SIP client stack. They all interact with the different
server components. The interaction is depicted in Figure 10. To simplify the
Figure, all the server components are presented by a single entity in the Figure.

18

1
11 : Service Advertisement |
1

1
1
1
1
2 :SIP Address |
i

|
|

|

|

|

|

|

1 |

3 :8IP SUBSCRIBE !
1 |

|

|

|

|

|

|

|

1

T

1

1

I

1

1

1

T
4:SIP NOTIFY |

L 1 "l

, >

! 5 : SOAP message via socket

1

1

I

1

1

1
1
1
1
6 ::H'I'I'F’ Request for the :page
1 1]
1
1
1
T
1

7 : Server Respond !
1 |

; gi

Figure 10: Interaction between the server and the client side components.

L
1

When SLP UA discovers a correct service (action number 1 in the Figure
10), it receives a SIP address, which it gives to the SIP client (2). The SIP
client instantiates the session according to the address (3). During the session,
SIP client receives NOTIFY messages (4), which contain SOAP messages. The
system sends messages when it starts a new service with the user or updates
ongoing session. The SIP client transmits the SOAP messages to the browser
via a socket (5). There is a predefined socket port for communication between
the SIP client and the browser. The browser parses the SOAP message and
extracts the service id and the URL from it. Every session has its own view
within the browser and is identified by the service id. If the SOAP message’s
service id matches with one of the ids of the browser views, then the browser
reloads the current document of the view. Otherwise browser opens a new view
for the service and fetches a document from the given URL. The browser fetches
the documents via HTTP (6-7).

The implementation requirements are represented in Table 1. The Table
discusses the requirements for both current implementation and the general
case.

Table 1: Implementation Requirements.

19

Current Implementation

. The device must be able to run Java-based

X-Smiles browser.
The device must be able to run SLP client.

The device must be able to run SIP client
stack.

The device must be able to run client dae-
mon, which provides interfaces for other
components.

The device communicates with the server
over WLAN.

Generalization

The browser must support XForms.

. The browser must be able to communicate

with SLP client.

The browser must be able to communicate
with SIP client.

Needs a wireless connection to the server
(e.g., WLAN, GPRS, 3G)

20

5.2 Server

The infrastructure of the server side implementation is illustrated in Figure
11. The servlets provide the actual service but are isolated from the service
advertisement and client notification functions. They are managed by the server
daemon that utilizes both SLP and SIP.

Server Client

Servlet

Server Daemon

SLP SIP

Transport Layer

Figure 11: Structure of the server side implementation

The current implementation of server daemon sends broadcast advertise-
ments of its SIP service. When it has received a SIP subscription from a client
the SIP session ID is stored. All clients with open sessions are then informed
when a change is made to a given file on the server. The operation of the server
side operation is presented on a high level in Figure 12.

o] [] []

[
|
|
| 2. Registers a service (PD) | |
|
|
1
I

User gives
server daemon
observed file and
service details
as parameters at
initialization

1. Initializes

| 3. Service Advertisement message |

4. SIP SUBSCRIBE message

5. New subscription

6. Send notify

AN
Observed file
changes

SIP NOTIFY
is sent each time
the file changes

N
Client updates
current view

| |

T 1
i | |
	7. SIP NOTIFY message

Figure 12: Server side operation on a high level.

First, the server daemon initializes SIP and sets exosip to listen for UDP
traffic at given port (1.). Then it proceeds to register a local SIP service to
the SD module with service ID wesahmi, service type wesahmi.sip, node’s
own IP address as URL, and attributes service and event (2.). SD module
broadcasts the service advertisement messages (3.) and the server will listens for

21

SIP subscriptions (4.). It answers immediately with a notification to each new
subscribe message that has correct service field (4.)(5.)(6.)(7.). Additionally the
SIP session ID is stored. The server daemon will then check periodically if a
given file has been changed. Each time it detects a change in the modification
time of the file it will send a SIP notification message to all of them.

Table 2: Implementation Requirements.

Current Implementation

Service has to communicate directly with
the SLP and SIP. The server daemon takes
care of these actions in our example imple-
mentation.

Generalization

The environment must keep track of
all data associated with certain sessions,
views, and clients.

The environment must provide a notifi-
cation interface. Clients that are associ-
ated with certain information are auto-
matically notified when changes occur.

The environment must support integra-
tion with traditional web technologies.

The Service Discovery (SD) module, based
on SLP, must provide bootstrapping ser-
vice for the services using the platform.

An API must be implemented to enable
the java-based environment to communi-
cate with C based SD module.

22

6 Security

Security is an important part of distributed system requirements in today’s
world. Authentication and authorization play central roles in service provision
in both fixed and wireless environments. It is expected that hybrid networks
require novel security solutions, because the assumption on the existence of a
dedicated and static security server must be relaxed for ad hoc and peer-to-peer
operation.

The security considerations presented in this section are based on the air-
line scenario and we highlight the designs needed for secure operation in this
environment. The airline scenario is an example of a single hop hybrid net-
work. The security solutions needed for multi-hop hybrid networks are based
on similar concepts, but this environment is more complex and requires further
analysis. We focus on SIP security, but outline relevant Web service security
technologies as well.

6.1 Requirements

In the airline case, a number of servers offer services to mobile and wireless
clients. The servers may be located on the fixed network, or they may employ
a single-hop wireless protocol, such as the wireless LAN protocol, in order to
communicate with the clients. The interactions in this environment have three
phases: First, there is the discovery phase. Second, there is a registration
phase. Third, there is the communication phase, which is either client-driven or
server-driven. In client-driven communication, the client requests information,
which is provided by a server. In server-driven communication, a server pushes
information to the client terminal.
The basic requirements of the security solution are as follows:

e Model for user/client identities and their federation.

e Authentication of clients at servers.

e Authorization and access control for authenticated users.

e Authentication of servers and control messages at client systems.
e Confidentiality of client interests and delivered content.

e Basic Denial-of-Service attack prevention both at clients and servers. Se-
cure push functionality.

The non-functional requirements are as follows:

e Identification and elimination of performance bottlenecks.

The employed solutions should be energy-efficient.

The solutions should impose minimal state requirements for nodes.

e The solutions should integrate well with the X-Smiles browser and the STP
and SOAP security models.

The solution should work also in an environment where NAT is deployed

23

In the hybrid environment a malicious entity may attempt to disrupt a ser-
vice. Typical attacks include registration hijacking, server impersonation, mes-
sage dropping, and message tampering.

Given the closed nature of the airline scenario and that an out-of-band trust
mechanism is employed, it is difficult for an attacker to impersonate a server,
hijack sessions, replay messages, tear down sessions (inject BYEs), or tamper
messages. These attacks become difficult when the service revolves around a
known service, whose certificate is trusted, and the well-known authentication,
encryption, sequence number techniques are used.

However, an attacker may disrupt the communication in various ways by
dropping messages, injecting bogus messages, and simply flooding the network.
SIP creates a number of opportunities for distributed DoS attacks. Especially,
the SIP technique of forking may result in a message being replicated to multiple
recipients.

The Wesahmi system must be able to cope with a number of security is-
sues. The following list llustrates the main security issues and typical solutions.
Namely, DoS attacks, eavesdropping, message spoofing, message replaying, and
message integrity compromises.

Denial-of-Service (DoS) attacks Firewalls/NATs/packet filtering offer
some resistance. Efficient SIP message authentication prevents spoofed
messages

Traffic eavesdropping Data encryption
Message and packet spoofing Sender verification

Replay attacks Encrypt and sequence number messages. SIP CSeq and Call-
ID headers

Message integrity Authenticate messages and perform integrity checking

6.2 Building Blocks for Security

The basic security building blocks are provided by the different standardiza-
tion organizations, namely W3C and IETF. A key observation is that security
is needed on multiple layers. Basic network and transport-layer security en-
sure data confidentiality and they may also be used for mutual authentication.
Session and application layer security is needed for environments with multiple
security domains, for example, environments with gateways and different service
providers.

6.2.1 End-to-End Measures

Transport Layer Security (TLS) [7] provides session-layer security with mutual
certificate-based authentication. IP Security (IPsec) and Internet Key Exchange
(IKE) [13] may be used to set up security association for network layer security.
The Host Identity Protocol defines a namespace for hosts that is based on public
keys and integrates this new namespace with the transport layer APIs and
network layer security.

24

6.2.2 SIP Security

SIP security solutions leverage S/MIME [24], digest authentication, and
transport-layer security. The digest mechanism is the SIP baseline technique
for authentication. S/MIME encryption requires that the public key (X.509
certificate) of the recipient is known. S/MIME may also be used to encrypt the
payload of the Session Description Protocol. The main security mechanisms for
SIP are as follows:

S/MIME For encrypting message payloads. The public key of the recipient
must be known.

SIPS URI Tight coupling between SIP and TLS. Applications and proxies
need to be TLS aware. Integrates well with current browsing technologies.
Must be applied on a hop-by-hop basis with SIP intermediaries.

IPsec Tight coupling not required. IKE key agreement protocol is heavy. Must
be applied on a hop-by-hop basis with SIP intermediaries. NAT /firewall
traversal issues.

SIP over TLS daemon A single TLS session is used to tunnel SIP messages
between a terminal and the next hop SIP intermediary.

S/MIME is used to encrypt message payloads. It is useful for end-to-end
secrecy. RFC 3261 defines the SIPS URI that forces the communication over
a set of TLS connections. This provides end-to-end secrecy given that the
intermediaries are trusted. For this security mechanism, the applications need
to be aware of the SIPS URI. According to RFC 3261, in a Secure SIP (SIPS)
session, the SIP user agent contacts the SIP proxy server and requests a TLS
session. The proxy server then responds with a public certificate. The user agent
and the proxy exchange session keys. If there are multiple hops, the proxy then
contacts the next hop until the final destination is reached.

IPsec does not require a tight coupling between applications and the secu-
rity solution; however, in order to support SIP message forwarding, it must be
applied on a hop-by-hop basis rather than end-to-end. TPSec can be seen as a
heavier protocol than the session layer SSL due to complex key agreement and
there are also a number of NAT and firewall traversal issues.

The default SIP security mechanism for Wesahmi is TLS for the last hop
between the gateway and the trusted service domain. IPsec can also be used,
but it is less portable due to the coupling with network layer mechanisms. It is
expected that the Host Identity Protocol would also be useful in this case due
to its simple authenticated key agreement scheme and mobility support. TLS
support can be realized using at least three ways:

e SIPS URI in applications. The SIP stack handles the TLS connections
and authentication. RFC 3261 states that TLS is used until the message
reaches the SIP entity responsible for the domain portion of the destination
URLI. Inside the destination domain the use of TLS is up to the local policy.
The SIP framework does not guarantee true end-to-end security and the
SIPS scheme assumes transitive trust for intermediaries. A limitation of
this approach is that SIP clients must understand SIPS URIs and support
TLS. The specification mandates that a resource described using a SIPS

25

URI cannot be downgraded to a SIP URI. A SIP URI can be upgraded to
a SIPS URL

e Use transport URI parameters in Contacts in REGISTER. This is not
recommended by the SIP guidelines. The use of "transport=tls" is depre-
cated and the if the SIP registrar is co-located with the proxy it can infer
if TLS is used. In addition, TLS can be specified as the desired trans-
port protocol within a Via header field value or a SIP-URI. TLS is most
suited to architectures in which hop-by-hop security is required between
hosts with no pre-existing trust association. This may require that a TLS
server is present on the terminal for incoming connections.

e A client initiated communication channel using TLS. This requires con-
nection management at the client and at the edge proxy, but does not
require a server on the terminal.

We distinguish between client-initiated and server-initiated connections. In
order for a client to be reachable, it must have open listening TCP or UDP ports.
On some systems, open ports are not supported. Client-initiated connections
open a persistent connection with a server and the client can receive data from
the server through the connection without opening a server socket. We expect
that the terminal does not have TLS server functionality so for TLS a client-
initiated connection is needed. IPSec is realized on a lower layer than transport
layer so it may be used independently of how the client-server communication
is implemented on the higher layers.

On-going work at IETF is looking at client-initiated connections [17]. The
key idea of the specification is to re-use the connection that was used to send
the REGISTER request. This connection can be a bidirectional stream of UDP
datagrams, a TCP connection, or a some other type of transport protocol. It is
the responsibility of the UA to maintain connectivity. The UA may also employ
multiple flows to the proxy or registrar. In addition, a keep alive mechanism is
included so that the UA can detect when a flow has failed.

The proxy does not need to be colocated with the registrar. If they are dis-
tributed the edge proxy includes a Path header [31] with a unique flow identifier
to any REGISTER messages. Requests to the UA are routed through the edge
proxy. The flow identifier allows the edge proxy to find the correct flow for
messages.

None of the above schemes guarantee end-to-end integrity or secrecy if in-
termediaries cannot be trusted. It is stated in RFC 3261 that S/MIME may
also be used by the originating UAC to ensure that the original form of the To
header field is carried end-to-end. Another approach is to use the SIP Iden-
tity mechanism defined in [21]. SIP Identity creates a signed identity digest
which includes the AOR of the sender (from the From header) and the AOR
of the original destination (from the To header). In order to work in practice,
the vouching domain’s certificate has to be publicly available through some se-
cure channel. This means that the vouching domain’s HT'TPS server certificate
should be signed by a widely known certificate authority. Hence, SIP identity
mechanism is basically a trusted third party solution.

To provide flexibility in choosing different security schemes, Arkko et al. [2]
have defined a negotiation mechanisms between UA and its first-hop SIP entity.

26

In addition, RFC 3263 [27] defines a mechanism for locating TLS capable servers
using DNS NAPTR (Naming Authority Pointer).

As described above SIP supports hop-to-hop security with TLS and end-to-
end security using S/MIME. However, one limitation with S/MIME and pub-
lic key cryptography is the reliance on a certificate distribution infrastructure.
Jennings et al. [18] propose a new service combined with SIP Identity [21] spec-
ification for handling certificate distribution in a manner that does not require
well known certificate authority while still binding the user’s identity to the
certificate. The specification handles two cases. In the first case the service
stores just public certicates. Second, the service could store also credentials.
This would be advantage, when (mobile) devices with limited memory are used.
However, the system is highly dependant on trusting the operators of the service
and that the system is not compromised.

6.2.3 Web Services Security

W3C has a number of XML-related security specifications. The base specifi-
cations are the XML Encryption and XML Signature, which allow flexible en-
cryption and signing of elements in XML documents. The signature operation
is more difficult of the two, because of challenges in XML document canoni-
calization. These two specification may be used with the SOAP protocol, for
example, for flexible header-based security.

The WS-Security specification defines the SOAP security header [20]. SOAP
messages can contain security tokens with authentication information. This kind
of support is needed for coping with multiple security contexts.

A security token represents a set of claims. In the WS-Security model a
trusted third party, the Security Token Service, issues these tokens. A security
token may be self-generated, as in the case of username/password, or it may be
given by a trusted third party.

The security tokens should be signed and encrypted. In this case, the WS-
Security model prevents unauthorizes accesses and modifications also in the
presence of untrusted intermediaries.

A standard Web services interface is needed for creating, exchanging, and
validating security tokens issued by other domains. This is specified in WS-
Trust [16]. In addition, a set of concrete security policy documents are needed
that allow sites and services to document their security requirements. A secu-
rity policy might require that a message should be encrypted using a specific
algorithm and have a certain key length.

There are two interaction models for establishing trust. First, we have the
pull model and then the push model. In the pull model, the receiver contacts a
security token service when it receives a token. In the push model, the sender
contacts the token service and obtains a signed token. In this latter case the
receiver does not have to contact the security service. The Kerberos Ticket
Granting Ticket (TGT) is an example of the latter strategy. The push model
is more efficient in terms of network operation, but the signed tokens may be
revoked. The revocation requires that the token service is contacted at some
point.

Using asymmetric cryptography in each message is computationally demand-
ing. The WS-SecureConversation [15] specification defines a session-key-based

27

model for WS-Security. The model is based on Security Context Tokens issued
by servers or generated by the requesters. The SCT contains a shared secret.
Each Web service endpoint implements a trust engine that understands the
WS-Security and WS-Trust model [16]. For the hybrid network environment,
each peer must implement a trust engine and be able to process security tokens.

6.2.4 Identity Federation

WS-Federation defines a federated identity and mechanisms to broker and feder-
ate identity, trust, and claims about them [14]. Single-sign-on means the ability
to use federated services without reauthentication by signing into one of the
federations. In addition to WS-Federation, the Open Mobile Alliance (OMA)
has defined a system for identity-federation [1].

Peterson et al. [21] have proposed enhancements for SIP identity manage-
ment in interdomain context. Their proposal defines a mechanism for authen-
ticating the sender of SIP messages by introducing two new SIP header fields:
Identity and Identity-Info. This draft is used as a base for a few other internet
drafts such as SIP SAML Profile and Binding [29], Trait-based Authorization
Requirements for SIP [22], SPAM Prevention using SAML [28] and Certificate
Management Service for the SIP [18].

6.3 Security Specification
6.3.1 Overview

The system model consists of terminals, gateways, and services. Gateways ad-
vertise service access and services using SLP (passive mode). Terminals use
gateways to access services, and the gateways allow content to be pushed to
terminals. The security challenge is solved by requiring a secure connection
between terminals and gateways. Gateways and services may or may not have
a secure connection, depending on the environment and requirements.

The gateway performs the following functions:

e SIP proxy server, and optionally redirect server and registrar server (IETF
RFC 3261).

e An incoming and outgoing proxy, providing integrity checks for malformed
SIP messages, ensuring that only correctly formatted messages are for-
warded.

e NAT and firewall traversal for SIP messages.
e Limited SIP spam prevention (through mutual authentication).

We assume that communication in the SIP domain is trusted and monitored.
Therefore the weak point of the system is the final wireless hop and the gateway.
The gateway can provide privacy support for both clients in the ad hoc domain
and in the SIP domain by concealing, obfuscating, and encrypting SIP message
headers.

For the single service provider case without call control, it is expected that
general SIP anonymity support is not needed. According to RFC 3323 user
agents should indicate a Privacy header when network-provided privacy is re-
quired.

28

Figure 13 presents an overview of the interactions in the airline case. In the
first phase, the terminal receives an SLP advertisement from the gateway. The
advertisement message is signed. The client authenticates the service using a
pre-installed certificate (2).

Then, the client accesses the service URI that is specified in the advertise-
ment (3). This may be standard web browsing or multi-hop message-based
interaction. In the former case, TLS or IPSec is used for security. In the latter
case, either SIP (S/MIME) or WS-Security needs to be used for security.

The service authenticates and authorizes the client. Authentication may be
perfomed through challenge/response, client signature, or a security token. The
service access results in the desired content or an authentication failure (5).

Terminal Gateway Service

1. Advertisement

2. Authenticate gatewvay and service

3. Service access

4. Authenticate and

. authorize client
5. Service reply

<

Figure 13: Overview of interactions.

The secure connections can be realized using different techniques, for exam-
ple using network level IPSec security associations, transport level SSL/TLS,
or session-based mechanisms such as SIP security mechanisms. Each of these is
possible in our environment, but we propose to leverage session-based security
mechanisms in order to keep the system flexible.

The basic design of the Wesahmi SIP security is as follows:

e Bootstrap trusted identities with an identity provider. Either symmetric
keys or public key cryptography. Gateway certificates issued also by a
trusted third party.

e Communication is divided into control and content channels. Control
channel consists of SIP signalling. Security is provided explicitly for con-
trol channel.

e Use TLS for securing wireless hop (client/gateway).

e Use client-initiated connections to maintain client-gateway connectivity.
This does not require server functionality on the client and supports NATs
and firewalls better than IPsec. Keep alives are used to detect flow failures.

29

e Use S/MIME attachments or SIP Identity Digests for end-to-end security
and prevent message tampering.

The following pertain also to the security specification but are not considered
for implementation:

e Support SIP privacy options at the gateway to improve message privacy.

e SIPS URI can be used for better end-to-end security.

6.3.2 Bootstrapping Trust

A key design choice in the security specification is how trust between clients
and servers is bootstrapped. Clearly, a solution is needed to enable the mutual
authentication of these different systems. In the first prototype, trust is estab-
lished through digital certificates issued by a trusted third party. This is the
conventional way of enabling security in web browsers.

Currently, the requirement for end-user certifications is seen as a serious
scalability limitation in a distributed system. End-user certificates are difficult
to provide and maintain on a global scale. Self-signed certificates avoid this
scalability limitation, but are prone to man-in-the-middle attacks.

One key assumption that we need to make is whether or not random en-
counters should be supported. Man-in-the-Middle (MiM) attacks cannot be
prevented unless trust is bootstrapped somehow. For some scenarios, ssh-like
security is enough. This type of approach can be used to ensure future trust in
an entity.

The memory restrictions on mobile devices limit the number of stored cer-
tificates. A Credential Service is proposed to discover the certificates of other
SIP users and as well as store own certificates or even private keys remotely.

The following three trust obvervations form the base of the proposed security
solution.

e Service and gateway certificates are shared by all entities. Certificates are
issued by a trusted third party.

e Client terminals have a self-signed certificate or a certificate issued by a
trusted third party. In the former case, application-level interaction is
required to verify identity. In the latter case, these are known to the
gateway and the services. In both cases the client certificate is used for
authentication and message security.

e For message intensive operation, a temporal session key may be derived
using asymmetric crypto to improve performance.

6.3.3 Secure Push

Figure 14 illustrates secure push. A service sends a push message to the client
(1). The client is identified using a SIP URI. The server should have previously
verified using some mechanism that this SIP URI belongs the the intended
recipient.

The client verifies the push message (2). Since asymmetric crypto is com-
putationally expensive it is also possible to use HMAC here to drop bogus
messages. The message signature is checked and if the check fails the message

30

is silently dropped. Otherwise, the client terminal accepts the message and it
is processed according to the local message processing rules.

In the airline scenario, the push message results in a web resource being used
(3). This entails also some level of client authentication and authorization (4)
at the server. Finally, content is delivered for legitimate client systems (5).

Push messages are handled by the security system and they are passed to
higher levels only after their authenticity has been established.

Terminal Service

1. Push message
2. Validate
push

message 3. Service access

5. Service reply

4. Authenticate and
authorize client

Figure 14: Secure push

Figure 15 gives an overview of the secure push system model and the required
components on each of the three main entities, namely the terminal, gateway,
and push service. Each gateway keeps a location server up-to-date the current
users in its domain. This supports multi-mode delivery, in which the current
operating modes and the reachability of a user are determined, and then a
suitable push protocol is employed.

Terminal Gateway Push Service
. ID and connection
X/Smiles browser tracker Interface to WS
Certificate DB SLP Module -
Certificate
SIP Stack SIP Stack
SIP Stack
Security Daemon Security Daemon

Figure 15: Secure push system model

31

6.4 Security Domains

Figure 16 illustrates a single Wesahmi service domain. The gateway bridges STP
clients in the single-hop ad hoc network with the service domain. The service
domain consists of the SIP entities, the identity provider service (IdP), and a
number of services. The gateway consults the IdP in order to authenticate and
authorize clients. The gateway also updates the location server and performs
a SIP registration with the local SIP proxy on behalf of the client. After this
process, the SIP client is reachable through the gateway and messages may be

pushed to the client by the services.

Service

Termnal 1

GW

IdP

Termnal 2

Location

Termnal n

Figure 16: Single security domain

Figure 17 illustrates the Wesahmi service model with multiple domains and
federated identity providers. Each SIP client has one home identity provider,
which was used to bootstrap and verify the identity of the client. When the
client contacts a gateway at a different domain than the home domain, the local
IdP contacts the home IdP in order to authenticate and authorize the client.
After credentials have been established, the client is registered with the local
SIP proxy and the location databases are updated to reflect the current location
of the client.

Service Service

GW GW

IdP 1dP

Location Location

Figure 17: Two security domains

32

6.5 Privacy

User privacy is one of the key requirements for the Wesahmi system. Leakage of
confidential information must be prevented and it must not be possible to track
the location and behaviour of certain hosts. Privacy requires confidentiality and
integrity for messages.

RFC 3323 defines a privacy mechanism for SIP that prevents the dissemi-
nation of personal identity information. A new logical privacy service role is
defined for intermediaries. A user can request particular functions from a pri-
vacy service.

SIP identities are commonly carried in the form of SIP URIs and optional
display names. These identities are typically found in the To and From header
fields. There are also other fields that have privacy implications. Namely, the
Contact header field.

Simply encrypting all fields and data with potential privacy implications
does not suffice, because SIP agents and intermediaries must be able to forward
and route SIP messages. Moreover, proxy servers may add headers of their own,
such as Record-Route and Via headers, which can have potential privacy risks.

The baseline SIP specification supports some level of user controlled privacy.
For example, the From header in a request may be populated with an anonymous
value. A SIP body may be encrypted end-to-end thus concealing the contents
from intermediaries. Header information can be concealed from intermediares
by placing it in encapsulated 'message/sip’ S/MIME bodies [10].

The SIP client-initiated connection mechanism discussed previously [17] has
privacy enhancing properties. The mechanism allows inbound traffic from out-
side to an authenticated UA. The UA can be behind a NAT or firewall. It
follows that UA does not necessarily need to have a globally routable IP ad-
dress or hostname.

6.6 Browser Integration

The main integration points with the X/Smiles browser are the following:

e Securing SIP signalling from X/Smiles browser. This is accomplished by
the underlying security daemon and SIP stack.

e Certificate storage.

It is expected that the first point can be realized by intercepting any SIP
messages from the browser in the SIP stack and then using the appropriate
connection. Privacy extensions may also be applied at this point.

For the second point, the expectation is that the X /Smiles browser and the
underlying security daemon use the same certificate storage. This is mainly
motivated by the fact that both need access to the user’s key material when
initiating TLS connections and signing messages.

6.7 Putting it Together

Figure 18 illustrates the Wesahmi security architecture. Initial bootstrap is used
to create identities for users and gateways (1). The identity provider (IdP) is
trusted by all entities. After the bootstrap, the client system starts a secured

33

session with a gateway (3). This session is typically started after receiving an
SLP advertisement and checking that the advertisement is valid (2).

The secure channel is client-initiated and used to open ports for the client
in the gateway and to transfer SIP messages. Hence, the secure channel is
the SIP control plane. The baseline solution uses TLS and client initiated
connections [17]. SIP REGISTER message is sent to the gateway in order to
establish the secure channel. The registrar is updated at this point to reflect the
current gateway (4). The registrar may be colocated with the gateway. After
the secure channel has been setup, the channel is kept open by periodic keep
alives. When a keep alive fails, the channel is closed and port access for the
terminal is blocked.

I
Initial 1|
bootstrap |¢—1—p IdP
| 1./4.
I
2.1
" 1 | Gateway | & | Registrar
sing 3.)
system
SIP lchapnel -
T Ne—
|
</| | Content >:
N -
| I .
Client ! SIP domain
|

Figure 18: Putting it together

6.8 Implementation Plans

Implementation work for the second prototype focuses on securing the SLP ad-
vertisements, mutual authentication of the client and server with Web browsing
techniques, and securing SIP push messages. The implementation of the client
authentication mechanism is an important part of this work. The simplest strat-
egy is to use TLS and username/password for browsing and server certificate for
SIP push messages. A more advanced implementation uses a client certificate
for authentication, and security tokens for messaging.

34

7 Detailed application-level description

7.1 User Story: Check-in

When a user enters the airport she switches on her laptop, and starts the client
daemon and X-Smiles browser. After these actions the client daemon sets up
its SD module in order to receive service advertisements of a check-in service
provided by the airport server. After the daemon has received such advertise-
ment it will use SIP to subscribe to this service. The server will from now on
send a SIP notify message to the client whenever it notices that a certain file
has changed. In our current implementation the notify message just triggers a
page refresh operation in the browser. Now the user is able to go through the
check-in procedure and receive updated information on every form.

This implementation is a basis for stepwise design and development of our
platform. It has given us essential insight into issues associated with the new
interaction model and its implementation details.

Bootstrap

Corporate network/
Internet

Ad-hog network

.

.

SLPPassiveReg(CHECKIN_SRV) \
SrvAdvertisement *s._bootstrap
- .

phase

Found(CHECKIN_SRV)

SUBSCRIBE(CHECKIN_SRV)|

NOTIFY(SOAP(LoadPage(CHECKIN_FRONTPG))) 2
SOAP(LoadPage...)) ., .push
GET(CHECKIN_FRONTPG ,+" front
J page
[QECKINERQNIPG = = o L b o e e e e e e oo oo - O K
GET(DO_CHECKINPG) | |7y 5
l@ocueckes - - - L} o o oo oo R 1 A *s,.Supply
POST(CHECKIN | . ‘Cr?:fi(k\n
| EOARDING PASSHBAGGAGE PROPINSTE - = = = = = = = O K
Baggage
digbped
NOTIEY(SOAP(l 0adPage(ROARD) N TR))) N
QAP(l oadPage() “‘ 4

s, Boarding
“" instruction

JGRABDING NSTR. — = L b - o o o o oo e U U
Flight

ds ayed

QAP(1 0adPage()) vos
GET(FIIGHT_UPDATE *s, Flight

l@iGHT WRATE - - — -} L o o I I N A status

NOTIFY(SOAP(LoadPage(FLIGHT_JUPDATE)))

=" update
Passenger

bserded

Figure 19: Sequence diagram of application behavior.

Figure 19 gives an overview of application functionality in the flight check-in

35

service case. Application execution starts with bootstrap phase (1). The appli-
cation server requests that the gateway starts to advertise the check-in service
(message SLPPassiveReg(CHECKIN _SRV), where CHECKIN SRV stands for
the URL and service parameters of the service). The Gateway will start to
broadcast passive service advertisements in the ad-hoc network. Eventually the
mobile device of a passenger will receive an advertisement (SrvAdvertisement).
The SLP daemon process in the device forwards the service URL to the SIP
daemon process that sends a SUBSCRIBE message to the application server.

First Notification

After the bootstrap, the application server can push the front page of the check-
in service to the passenger (2). This is accomplished using a SIP NOTIFY
message that carries a SOAP message instructing the browser to load the check-
in front page. The page asks the passenger whether he wants to check in on his
flight and is presented in Figure 20. The NOTIFY message is received by the
SIP daemon process which forwards the SOAP body to the browser.

'nf”EJm prav— Tapillivea msag el =)

| hup/ floca.ssagexhmi |
[& back [> rorwara | \ a hnqu 4 retoad [np:ocaliost 5050 sorms e checkin.messzge s [5‘ <1

Airline Message

Do you want to check-in to a flight AY100 from Helsinki to

New York?
Later

Figure 20: Screenshot of the Checkin Message.

Normal User Interaction

When the user selects the positive option, the actual check-in page is loaded
(3). The page is presented in Figure 21. Here the passenger supplies the rele-
vant information, such as number of baggages. In return, the user receives his
electronic boarding pass together with instructions on where to drop baggage.

When the application server receives a notification that the baggage has been
dropped!, boarding instructions are pushed to the passenger (4). This includes
information on how to find the security check point and the gate. The actual
page is presented in Figure 22.

Update Notification

Later the system receives information that the flight has been delayed. A flight
status update is thus pushed to the passenger (5). The pre-flight interaction

IThe availability of such information is not known. This notification is not essential, but
makes the interaction smoother.

36

BE bteo/floca..cctimtt] =)

[nome [2 reoad [wp /1oaost 3050 storms arin checin |=]a[n]

Passenger: Mr Lorem Ipsum
Seat: 8C
Select number of luggages: 0|

\Change seat [Confirm Check-in

Figure 21: Screenshot of the Check-in Page.

==

[[@ s [@ e s s alals]

Boarding pass

Helsinki - New York 19:10
Passenger: Mr Lorem Ipsum
Seat: 8C

Gate: 23

Boarding: 18:40 Go to Gate

Take your baggages to baggage-drop
Check-in code

Figure 22: Screenshot of the Boarding pass.

ends when the application server receives a notification that the passenger has
boarded.

The interaction depicted in Figure 19 corresponds to phase 1 functionality
of the WeSAHMI infrastructure. Later in the project it will e.g. be possible to
send partial view updates to user terminals.

7.2 Pilot Environment

The pilot environment consists of one web server and two clients all running on
Linux laptops. Figure 23 shows the setup. Webserver laptop is also responsible
of advertising services (e.g. check-in service) to clients and sending update noti-
fications to clients when there is change in information that client is interested
(e.g. flight is delayed). Clients communicate with server using IEEE 802.11b
WLAN in ad-hoc mode.

On client machine there is x-smiles browser which shows the graphical user
interface to the user of the service. On the web server machine there is a Apache
web server and an application that keeps track if there is changes in information
like flight schedules. When there is change the applications is responsible of
informing clients that are interested about changes. This application also takes

37

—

Client 1

Client 2

Figure 23: Pilot environment.

care of advertising service to clients.

38

8 Future Work

This section discusses features that are to be implemented in the next phase
of Wesahmi project. First, Section 8.1 describes a “Pushlet” environment that
abstracts most common tasks related to the interaction model. Then, Section
8.2 presents an interface that is used to enable interaction between Java -based
“Pushlet”environment and the C -based server daemon. Then, Section 8.3 de-
scribes methods that can be used to integrate SIP with the XSmiles browser.
Finally, Section 8.4 addresses future work for the security subproject.

8.1 Pushlet Environment

To make writing server-iniated services easier, a programming model is required
that simplifies or hides tasks related to the interaction model on both client and
server sides. The term "pushlet" has been employed to refer to the general idea
of a managed runtime environment for push-based sessions.

On the client side, the browser needs to provide applications with a run-
time environment that transparently performs e.g. SIP SUBSCRIBE renewals
as long as a given Ul view is active. At the moment we think that it is natu-
ral to associate notification content types with UI views. The runtime should
also include an application programming interface (API) for passing notification
events from the infrastructure to the application.

On the client side there should be a session management interface that pro-
vides the application with a means of sending the necessary updates associated
with the active Ul views and clients. It should therefore internally store some
sort of information about the currently active views (based on SUBSCRIBE
events coming from the clients).

Ideally, a mechanism for high-level (declarative) specification of trigger con-
ditions form notifications should be included. For example, a change in a certain
EJB or object (e.g. representing in Finnair flight) would trigger the sending of
a notification to all clients meeting certain criteria (e.g. that they have a ticket
for this flight) and that have a certain Ul view active (e.g. the check-in view).

Preliminary the stucture of the environment is illustrated in Figure 24. The
Controller instance initializes instances of Session. Each Session has atleast one
associated instance of Client and may also have multiple instances of View.
Target is to also eventually support incremental updates on displayed Ul views.

1 _[Gontoller
——
I—

0..%
Session

View 0..% 1..%

—identif
-identifier identifier

T

Client

—identifier

Figure 24: High Level Structure of the Environment.

Operation of the environment is illustrated in Figure 25. After the environ-

39

ment is informed by the SIP stack that a new subscription has arrived (5.) it
will create a new Session instance (8.) and stores it in a dynamic data struc-
ture. The Session will in turn create instances of View (9.) and Client (10.)
and store them in dynamic data structures. The controller will also trigger SIP
(11.) to send a NOTIFY message to the client terminal (12.). This NOTIFY
will contain address to a first page of the service. When resource associated
with the Session changes it is informed and will trigger the controller (13.) to
send a notify message (14.) through an associated SIP session (15.). When
client sends a SIP SUBSCRIBE message with zero timeout (16.), the Controller
is informed that a subscription is cancelled (17.). It will then tell corresponding
Session to close the associated View (18.)(19.). When the SIP stack receives a
new SUBSCRIBE message (20.), it will inform Controller that a new subscrip-
tion has arrived (21.). It then instructs corresponding Session to open a new
View (22.)(23.). The Session may then again access the Client data (24.).

40

Client Client Terminal

1: Initializes

2: Registers a service

3: Service Advertisement
Client selects
to subscribe
to a service.
4: SIP SUBSCRIBE
5: New subscription
6: Initial Notification
7: SIP NOTIFY
8: Creates m
Session, View, 9: Creates
and Client are View
stored in E
dynamic data
SUUCIUTES] 10: Accesses
11: Notify Containing the First Page
12: SIP NOTIFY
Client receives
a new view.
Information
changes and
Session is
informed
13: Send notify
14: Notify
15: SIP NOTIFY
Client's open
view changes.
Client submits
16: SIP SUBSCRIBE the data and
timeout 0 closes the tab.
17: Subscription cancelled
18: Close view (COIieS:tbzzlﬁgés
19: Destroys gz:lloe(her
20: SIP SUBSCRIBE
21: New subscription
22: Open view
23: Creates
24: Accesses

Figure 25: Operation of the Environment in a Check-in Case.

8.2 Pushlet environment and SLP integration

Since the Pushlet environment will be Java-based and we are using C implemen-
tation of SLP as basis for our Service Discovery (SD) module, they will need
an additional adaptation layer between them. This layer could be implemented
either with SOAP or as a Java Native Interface (JNI).

41

The benefit of using SOAP would be that the SOAP skeleton can be im-
plemented independently of the stub. While the stub is tied to C language
the skeleton can be implemented with Java that enables it to be directly used
by the Pushlet environment. The structure of this alternative is illustrated in
Figure 26. The SOAP SD API stub could be implemented using gSOAP which
is an open source framework for developing C-based web services. The SOAP
SD API skeleton could then be implemented using Axis developed by Apache
[3]. It is a framework for developing Java-based web services. Axis provides a
tool that enables skeleton generation based on WSDL description of the original
stub.

Servlets

U

Pushlet Environment

SOAP SD API Skeleton
I 1

SOAP SD API Stub

Z X

SD Module SIP

{} {}

Transport Layer

Figure 26: Structure of Server-side Implementation.

JNI might provide a more efficient and compact solution but would be less
adaptive and limit the systems re-usability by binding it to Java. The structure
of this alternative is illustrated in Figure 27.

Servlets

U

Pushlet Environment

2

JNI SD API
SD Module SIP

{} {}

Transport Layer

Figure 27: Structure of Server-side Implementation.

42

Applications

(Chat) (File sharing

\—/

XML Communications Language

(XML Elements) (XML Actions
(DOM API) (XML Events

Communications API

\—/

\—/

File transfer Presence

i
il
I

Messaging

SIPComm JXTAComm IRCComm

SIP JIXTA IRC?

Figure 28: Overview of the X-Smiles Communication API.

8.3 X-Smiles and SIP integration

The current client side implementation was intended to give an general idea of
the functionality of the final system. However, it lacks some features, which will
exist in the final system. For instance, the browser does not utilize SIP at all.
That is, it does not initialize the sessions nor send or receive messages. Instead,
the SIP client maintains the sessions and uses a socket to deliver a content of
the messages for the browser.

X-Smiles already has Communication APT through which it can be inte-
grated with the SIP protocol. The overview of the Communication APT is
depicted in the Figure 28. Characteristics of the several communication proto-
cols are abstracted into the Communication API. On top of the API is the XML
Communications Language, whom elements, events, and actions represent fea-
tures of the API. Compounding the language with other XML languages (e.g.,
XHTML), it is easy to create different communication applications (e.g., chat,
file sharing etc.).

To use SIP via the communication API, one needs a external SIP client
stack integrated to the API. In the current demo, the SIP client stack was
implemented in the C programming language. Integrating it with X-Smiles
requires Java Native Interface (JNT) since X-Smiles is implemented in Java.

The JNI interface is not needed, if a Java-based SIP client is used. NIST
JAIN SIP is a Java-based SIP stack which could be a good option. In addition
to basic SIP-messages it also supports SUBSCRIBE and NOTIFY-messages.
There is also a Java-based SIP client implemented in the TML laboratory at
TKK [25]. Drawback is that it has limited feature set; it supports INVITE,

43

ACK, OPTIONS, MESSAGE, and REGISTER methods. In addition, it can
handle only one session at the time. That is, it may need further developing in
order to be used in the project.

Third option is to stick with the current setting and continue to use the
sockets to exchange messages between the SIP client and the browser. Then the
programming language would not be issue but, on the other hand, the browser
cannot control the SIP sessions at all.

8.4 Security

Future work for the security subproject includes IMS integration issues. Secure
push can be implemented using standard 3GPP IP Multimedia Subsystem (IMS)
technology and the Session Initiation Protocol (SIP), but this approach requires
that the services are deployed within IMS Application Server, and that the user
has an active IMS registration. The benefit of this approach is that the IMS
billing system can be used, but one crucial limitation is that access is coupled
to those 3G/WLAN base stations that are part of the ISPs access network or
whose operator has a roaming agreement with the home operator.

The proposed architecture for secure federated push supports common-of-
the-shelf (COTS) WLAN base stations that can be deployed in ad hoc manner.
This motivates the integration of the lightweight Wesahmi system with IMS
systems for improved service deployment and access flexibility. We are also
planning to examine how different service domains can be federated together to
form global service provision platforms.

9 Conclusions

This paper has described the current version of the system developed by project
Wesahmi. At this stage it is a fairly loosely integrated collection of technologies
and is mostly based on pre-existing open source components. The paper serves
also as a documentation of the first reference implementation demonstrated to
the steering group in June 2006.

The next phase of the project will be to design interfaces and components
that enable the building of a seamless software platform based on the current
implementation. The main target of the platform is to simplify the development
of new applications with our system by providing applications with advanced
services and transparent automation of commonly recurring tasks.

44

References

1

2]

3]
[4]

5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Open Mobile Alliance. Oma network identity federation framework speci-
fication, 2006.

J. Arkko, V. Torvinen, G. Camarillo, A. Niemi, and T. Haukka. Security
Mechanism Agreement for the Session Initiation Protocol (SIP). RFC 3329,
IETF, Jan 2003.

Axis website. At http://ws.apache.org/axis/, February 2005.

Roach A. B. Session initiation protocol (sip)-specific event notification.
Request for Comments (Standards Track) 3265, Internet Engineering Task
Force, June 2002.

Richard Cardone, Danny Soroker, and Alpana Tiwari. Using XForms to
simplify web programming. In WWW ’05: Proceedings of the 14th inter-
national conference on World Wide Web, pages 215-224, New York, NY,
USA, 2005. ACM Press.

Stuart Ceshire, Bernard Aboda, and Erik Guttman. Dynamic configuration
of link-local ipv4 addresses. RFC 3927, Internet Engineering Task Force,
March 2005.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.1. RFC 4346, IETF, Apr 2006.

Micah Dubinko, Leigh L. Klotz, Roland Merrick, and T. V. Raman.
XForms 1.0. W3C Recommendation, 2003.

Campbell B. ed., Mahy R. ed., and Jenning C. ed. The message session relay
protocol (msrp). Internet draft (work in progress), Internet Engineering
Task Force, December 2005.

J. Rosenberg et al. SIP: Session initiation protocol. RFC 3261 (Standards
Track), IETF, June 2002.

R. Fielding et al. Hypertext Transfer Protocol HTTP/1.1. Technical
report, IETF, June 1999.

E. Guttman, C. Perkins, J. Veizades, and M. Day. Service location protocol,
version 2. RFC 2608, IETF, June 1999.

D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC 2409,
IETF, Nov 1998.

IBM, BEA Systems, Microsoft, et al. Web Services Federation Language
(WS-Federation), 2003.

IBM, BEA Systems, Microsoft, et al. Web Services Secure Conversation
Language (WS-SecureConversation), 2005.

IBM, BEA Systems, Microsoft, et al. Web Services Trust Language (WS-
Trust), 2005.

45

[17]

[18]

[19]

[20]
[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

C. Jennings and R. Mahy. Managing client initiated connections in the
session initiation protocol (SIP). Internet draft (work in progress), IETF,
June 2006.

C. Jennings, J. Peterson, and J. Fisch. Certificate Management Service for
The Session Initiation Protocol (SIP). Internet-Draft draft-ietf-sip-certs-01,
IETF, Jun 2006.

S. Leggio, J. Manner, A. Hulkkonen, and K. Raatikainen. Session initiation
protocol deployment in ad-hoc networks: a decentralized approach. In 2nd
International Workshop on Wireless Ad-hoc Networks (IWWAN), London,
May, 2005.

OASIS. Web Services Security (WS-Security), 2004.

J. Peterson and C. Jennings. Enhancements for authenticated identity
management in the session initiation protocol SIP. Internet draft (work in
progress), Internet Engineering Task Force, October 2005.

J. Peterson, J. Polk, D. Sicker, and H. Tschofenig. Trait-Based Authorixa-
tion Requirements for the Session Initation Protocol (SIP). Internet-Draft
draft-ietf-sipping-authz-02, IETF SIPPING WG, Feb 2006.

David C. Plummer. An ethernet address resolution protocol. RFC 826,
November 1982.

B. Ramsdell. Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.1 Message Specification. RFC 3851, IETF, Jul 2004.

Jukka Rauhala. Universal sip client for consumer devices. Master’s thesis,
Helsinki University of Technology, Finland, April 2003.

J. Rosenberg. A presence event package for the session initiation protocol
SIP. Request for Comments (Standards Track) 3856, Internet Engineering
Task Force, August 2004.

J. Rosenberg and H. Schulzrinne. Session Initiation Protocol (SIP): Locat-
ing SIP Servers. RFC 3263, IETF, Jun 2002.

D. Schwartz, B. Sterman, E. Katz, and H. Tschofenig. SPAM for Internet
Telephony (SPIT) Prevention using the Security Assertion Markup Lan-
guage (SAML). Internet-Draft draft-scwartch-sipping-spit-saml-01, IETF
SIPPING WG, Jun 2006.

H. Tschofenig, J. Hodges, J. Peterson, J. Polk, and D. Sicker. SIP SAML
Profile and Binding. Internet-Draft draft-ietf-sip-saml-00, IETF SIP WG,
Jun 2006.

C. Tschudin, P. Gunningberg, H. Lundgren, and E. Nordstrom. Lessons
from experimental MANET research. FElsevier Journal on Ad-Hoc Net-
works, 3(3):221-233, March 2005.

D. Willis and B. Hoeneisen. Session Initiation Protocol (SIP) Extension
Header Field for Registering Non-Adjacent Contacts. RFC 3327, IETF,
Dec 2002.

46

A Used open source software and applying li-

censes

Table 3: List of Open Source Software and their Licenses.

Software License Usage

GNU 0oSIP Library LGPL Low layer SIP-
library

eXosip - the eX- | GPL Higher layer

tended osip Library SIP-library
built on top of
oSIP

OpenSLP BSD Bootstrapping

of environment

X-Smiles browser

The Telecommunications Software and
Multimedia Laboratory, Helsinki Uni-
versity of Tehcnology Software License,
Version 1.0 (based on the Apache Soft-
ware License Version 1.1)

Web browser

Apache Tomcat

Apache License, Version 2.0

Web server

47

