WeSAHMI System Specification

April 11, 2006

Abstract.

This is the technical specification of the infrastructure for wireless interactive
applications to be defined and implemented in the WeSAHMI research project.
The document includes descriptions of utilized technologies and software com-
ponents to be adapted or implemented. Application-level functionality is illus-
trated through an example usage scenario.

Contents
1 Introduction 2
2 Short description of application-level functionality 3
3 Summary of technologies to be used 4
3.1 Dynamic configuration of IPv4 addresses 4
3.1.1 Overview 4
3.1.2 Selecting an address 4
3.1.3 Conflict detection 4
3.2 Service Location Protocol 5
3.3 The Session Initiation Protocol Family 6
3.3.1 Instant Messaging and Presence 7
3.3.2 Distributed SIP 9
3.3.3 Security Support 10
3.4 SOAP e 11
3.5 HTTP e 11
3.6 Web Technologies 12
3.6.1 XHTML o 12
3.6.2 XForms 12
3.6.3 SVG e 12
3.6.4 Compound Document Formats 12
3.6.5 XBL 13
3.6.6 CSS 13
4 Overview of the infrastructure 13
5 Infrastructure: Network 14
6 Infrastructure: SLP 14

7 Infrastructure: SIP 15

8 Infrastructure: SOAP 18
9 Infrastructure: client side 19
9.1 X-Smiles XML browser. 19
9.2 XForms with SOAP, 20
9.3 X-Smilesin WeSAHMI 20

10 Infrastructure: server side 20
11 Security Considerations 21
11.1 Requirementso 22
11.2 Building Blocks for Security L. 22
11.2.1 End-to-End Measures 22

11.2.2 SIP Security 23

11.2.3 Web Services Security 23

11.2.4 Identity Federation 24

11.3 Security Specification o 0L 24
11.3.1 Overview 24

11.3.2 Bootstrapping Trust 24

11.3.3 Client Security 25

11.3.4 Gateway Securityo 26

11.3.5 Secure Push L. 26

11.3.6 On Attacks 27

11.4 Implementation Plans 27

12 Detailed application-level description 28
13 Implementation schedule 28
Bibliography 31

1 Introduction

The goal of the WeSAHMI project is to define and implement an experimental
infrastructure for interactive wireless applications that can operate in an ad-hoc
networking environment. In addition to the infrastructure, a demo application
suite for an airport environment is to be implemented.

Some of the features of the infrastructure include identification of mobile
users and tracking of their presence, delivery of content, notifications, and status
updates to mobile users in a server-initiated fashion, and managing and updating
the state of both clients and servers in real time.

State of the art web technologies such as AJAX support asynchronous, real-
time updates of client state, but lack support for purely server-initiated inter-
actions. For example, an airline might might want to provide its passengers the
option to electronically check in using their wireless terminals, but not require
that the users spontaneously navigate to the proper web address to do that.
The airline would rather send a notification to the passenger once he arrives at
the airport. In addition, the client would probably like to receive state updates

(such as real-time updates to the seating situation on a plane) without having
to use polling.

The infrastructure to be developed extends the classical web architecture by
catering for highly interactive applications, mobile clients, and targeted asyn-
chronous information delivery, while retaining full server-side control over busi-
ness logic.

This document serves as a system-level technical specification for the We-
SAHMI infrastructure. The utilized technologies and how they are to be adopted
in the project are described. System-level functionality is further explained
through the use of an application-level usage scenario. This document is however
not intended as an application-level functional specification, and the depicted
scenario does not necessarily correspond directly to a final demo application.

2 Short description of application-level function-
ality

On application level the system provides mobile check-in service for passengers
on the airport. It is an alternative for the traditional procedures performed
either at the check-in desk or kiosk. The users of the system could then be able
to perform all necessary functions with their own mobile devices without having
to queue. These functions would then be:

1. request to check-in,
2. registration for a flight (with predefined seat),
3. guidance to baggage drop, and

4. guidance to security gate.

In addition to these the system keeps information of the passenger’s flight(s)
on a separate page. This information is first shown after the passenger has com-
pleted registration. It contains official time of departure, boarding time, seat
number, and gate number and it can then be updated by the check-in service
according to changes that are noticed in the Finnair’s core system Amadeus.
When a flight is delayed or the gate is changed the new information is automati-
cally updated to the information page. Also when boarding starts a notification
about it is displayed on the page.

Two-Dimensional Bar Code (2DBC) can be used to store passenger’s name,
flight number, airline code, date, and official time of departure. The code could
then be presented on the screen of the mobile device for reading at the baggage
drop and the security gate. Alternatively the mobile device could tell the same
information directly to the terminal at these locations.

3 Summary of technologies to be used

3.1 Dynamic configuration of IPv4 addresses
3.1.1 Overview

The dynamic configuration of IPv4 link local addresses is specified by RFC
3927 [4]. It defines a mechanism for how a node on the network can configure
an IPv4 address without the use of external services such as DHCP server.
The address is defined to be link local which means that it can be used to
communicate with nodes in the same link. Being on the same link means that
the nodes can communicate directly with each other so that the link-layer packet
payload arrives unmodified. Address block 169.254/16 is registered for link local
addresses.

3.1.2 Selecting an address

The basic mechanism for obtaining an address is following;:

1. Selection — a host selects an address using a pseudo-random number
generator with a uniform distribution in the range from 169.254.1.0 to
169.254.254.255 inclusive.

2. Probing — the host tests if the selected IPv4 link-local address is already
in use. On a link-layer such as IEEE 802 that supports ARP [17], conflict
detection is done using ARP probes. The ARP probes query which host
has a specific IP address and the owner responds to it. The probe is
repeated a few times with small delays. If any host claims to own the
address by sending an ARP reply, or tries to find out the owner in similar
manner, the address is considered taken and the algorithm returns to
previous state to select a new address.

3. Announcing When a host has found an available IP address it announces
the new address to the network. It broadcasts a number of ARP announce-
ments. The announcements are like probes but the sender and target 1P
addresses are both set to the host’s newly selected IPv4 address.

An example of the mechanism is shown in Figure 1.

3.1.3 Conflict detection

Address conflict may occur at any time of the operation, not only during the
address selection. For example, two hosts may select the same address when
they do not have connectivity between them and later become aware of each
other. At any time, if a host receives an ARP packet on an interface where the
‘sender TP address’ is the IP address the host has configured for that interface,
but the ’sender hardware address’ does not match the hardware address of that
interface, then this is a conflicting ARP packet, indicating an address conflict.
On a conflict, a host has two possible options:

e The host may immediately configure a new IPv4 link-local address.

: New host : Existing hosts

: ARP Probe

: ARP Probe

: ARP Probe

: ARP Announcement

Figure 1: New host selects an address. All messages are broadcasted.

e The host may attempt to defend its address by recording the time that
the conflicting ARP packet was received, and then broadcasting one single
ARP announcement, giving its own IP and hardware addresses as the
sender addresses of the ARP. Having done this, the host can then continue
to use the address normally without any further special action. However, if
this is not the first conflicting ARP packet the host has seen, and the time
recorded for the previous conflicting ARP packet is recent, the host must
immediately cease using this address and configure a new IPv4 link-local
address.

Forced address reconfiguration may be disruptive, causing TCP connections
to be broken. However, it is expected that such disruptions will be rare. Before
abandoning an address due to a conflict, hosts should actively attempt to reset
any existing connections using that address.

3.2 Service Location Protocol

Service Location Protocol[9] is protocol specified by IETF. It is targeted to
search services from the network based on type of service and attributes. Thus
SLP provides a dynamic configuration mechanism without the need to precon-
figure service addreses. The services are represented as URLs. URLs consist of
type of the service and the address where the service is available. Additionally

the services can be grouped together with scopes and they can have attributes
assigned.
SLP includes three entities that perform service discovery functions:

e User Agents (UA) perform service discovery.
e Service Agents (SA) advertise the location and attributes of the services.

e Directory Agents (DA) store and distribute service information.

When performing a search for a service the UA sends a multicast or broadcast
Service Request (SrvRgst) to which SAs with corresponding services reply with
unicast Service Reply (SrvRply). An example of these is on figure 2. It shows
how a UA multicasts or broadcasts a service request and a SA replies with
unicast. In the second example, the UA has found a DA and uses it as a proxy
to find services. On the third example a DA informs of its existance when a UA
or SA performs multi- or broadcast traffic.

Multi- / Broadcast SrvRgst

UA SA
Unicast SrvReply

Unicast SrvRqst Unicast SrvReg
UA DA SA
Unicast SrvReply Unicast SrvAck

Multi- / Broadcast SrvRqst

____________ >

Unicast DAAdvert
Multicast DAAdvert

UA or SA DA

Figure 2: SLP agents and most common protocol messages.

3.3 The Session Initiation Protocol Family

The Session Initiation protocol (SIP) is a multi-purpose and flexible signaling
protocol for session-based communications in IP networks. SIP only handles the
session management phase, and once a session has been established, different
communication applications can be used, e.g., Voice over IP, video conferencing,
and instant messaging.

The architecture of the Session Initiation Protocol (SIP) [7] is based on
centralized entities. Two logical elements play a key role in the architecture,
registrar and proxzy servers. Registrars are the SIP entities where SIP users
register their contact information once they connect to the network. In a basic
registration scenario, a SIP user agent communicates to its registrar server (the
registrar IP address is usually preconfigured) the SIP user name of the user(s)
using the device, referred to as SIP address of records (AOR) for that user,

and the addresses where the user is reachable. Usually, contact information
is stored in the form of IP addresses or resolvable names, but other kinds of
contact information, such as telephone numbers can be registered as well.

An association between a SIP AOR and a contact address is called a binding.
SIP registrars exploit an abstract service, called location service, and return the
bindings for the STP AORs falling under their domain of competence to the SIP
entities issuing a binding retrieval request.

Proxy servers are needed because SIP users cannot know the current com-
plete contact information of the callee but only its AOR. SIP presupposes that
the AOR (SIP user ID) of the party to contact is known in advance, analogously
to what happens when sending instant messages or e-mails. A basic SIP session
involves the calling user agent contacting the calling side proxy server, which in
turn will forward the message to the proxy server responsible for the domain of
the called user agent. The called side proxy server retrieves from the called side
registrar (i.e. utilizes the location service) the bindings for the called user and
eventually delivers the request to the intended recipient.

Registrars and proxies are logical entities, and it is not an uncommon con-
figuration for them to be co-located in the same node. Usually, user agents have
a preconfigured outbound proxy server where all the outgoing requests are sent
and through which all the responses to the issued requests, or new requests, are
received.

A typical SIP session is set up as follows (Fig. 3). Alice tries to start session
with Bob. Alice’s phone uses a proxy server that is in atlanta.com domain as it’s
outbound proxy and Bob’s phone uses proxy server in biloxi.com domain as it’s
outbound proxy. Alice starts by sending sending an INVITE request (1) which
is received by Alice’s outbound proxy. This proxy appends a via-header field
containing it’s address to the request and forwards it to proxy in the domain of
Bob’s phone (2). Alice’s outbound proxy can use DNS to locate the inbound
proxy which is in the biloxi.com domain. The proxy server at biloxi.com receives
the INVITE request, also appends a via-header field to request, and forwards
it to Bob’s phone (3). The proxies also send messages back to Alice to inform
that they have forwarded the request(4,5).

When Bob’s phone receives the INVITE request it sends a message telling
that the request has been received by the device and is ringing (6). Message
is routed back to Alice’s phone through same proxies that the request arrived.
This is done by information in requests via-header fields. Via-header fields are
removed from the request message in reverse order by each proxy in the route.
When Bob answers the session invitation, a final response message is sent to
Alice (7), which Alice confirms with an ACK message (8). the ACK message is
sent directly to Bob’s phone, because both Alice’s and Bob’s phones know each
others addresses after the INVITE message exchange procedure and no address
lookups are needed by proxy servers anymore. The Session is now established.
The session is closed with a BYE-200 OK message exchanged (9,10).

3.3.1 Instant Messaging and Presence

SIP is essentially a signaling solution. Once the session is set up, an applica-
tion is started to perform the actual communication between the users. A very
popular type of communication between people is instant messaging. SIP has
also been extended to support instant messaging and presence (IMP) services.

atlanta.com biloxi.com

Alice proxy proxy Bob
INVITE
INVITE
100 Trying INVITE
100 Trying
180 Ringing
180 Ringing
180 Ringing 200 OK
200 OK
200 OK
ACK
Media Session
BYE
200 OK

Figure 3: Example SIP session setup

The IMP architecture proposed by the SIMPLE working group builds on top
of the SIP Event Notification Framework [2] and realizes a specific event in-
stantation called presence [18]. The general concept is that SIP entities can
subscribe to the presence resource state owned by another entity. The entities
that have accepted a subscription request send notifications when their presence
state changes, to all the (authorized) entities.

Subscriptions and notifications are done using two newly defined SIP meth-
ods, SUBSCRIBE and NOTIFY [2]. Both methods are SIP requests; in the
event package, the entity that processes such requests, thus handling the pres-
ence state of an entity, is called Presence Agent (PA). Usually, the PA is run in
a centralized server, to facilitate presence management when a SIP user accesses
the network from several different (presence) user agents simultaneously. The
presence state made available by a user can contain, e.g., profile information,
such as, interests, and hobbies.

The transfer of messages between two users is done with the Message Ses-
sion Relay Protocol (MSRP) [6], the protocol designed in SIMPLE for session
mode instant messaging sessions. An MSRP IM session is signaled using SIP,
exactly like any other media (e.g., audio, video) session. During the SIP session
negotiation, the end peers exchange a URI, which will be used throughout the
MSRP session as unique peer identifier. Once one party has received the URI
identifying the remote peer, the MSRP session can start. The actual instant
messages are exchanged in the body of the MSRP messages.

3.3.2 Distributed SIP

Decentralized SIP (dSIP) [13] is a solution that allows deploying SIP without
support from centralized servers: MANETs are an example of target network
environment for dSIP. The key idea of dSIP is of embedding in each enabled
device a basic subset of SIP proxy and registrar server functionalities, so that
dSIP users are self-capable to discover and contact other users in a MANET.
Decentralized SIP is particularly suited for small MANETS, with few dozens of
nodes at most, a size that constitutes a realistic deployment scenario for ad-
hoc networks [19]. We refer to such particular type of MANETS as proximity
networks, and here we use the term proximity interchangeably with MANET.

The software architecture of dSIP is shown in Fig. 4: the modules bordered
within solid lines are standard SIP modules in a device. The dashed modules
are instead the additions made to enable SIP in proximity networks. In a
standard SIP client, only the user agent (UA) side of the stack would be
present. In MANETSs, the server module is added, and the server standard
capabilities are enhanced with proximity functionalities. More details on the
role of each module are provided in [13].

1 Proximity manager " New SIP i
' Application ' Application !

Standard SIP
Application

|, - ===

Enhanced
User Agent PrOX|r_n|ty Server Proxm_wlty
extensions: extensions:
N e
A 4 * A 4 +

A - 1

Figure 4: Software Architecture for decentralized SIP

The main point is that proximity capabilities are not realized by modifying
the existing software modules of a SIP device; rather, they are enabled by adding
new submodules. This choice allows interoperability of dSIP UAs with standard
SIP clients: in fact, a standard SIP application can be deployed on top of dSTP
as well as an application that exploits the proximity enhancements. A native
SIP application is unaware of the presence of a modified SIP stack in the device,
since it only utilizes the standard SIP features. Moreover, a native application
can be utilized in MANETS, since the underlying proximity-aware middleware
is able to handle all the SIP messages sent by the application in the proper way.

The working principle of dSIP is that in MANETS, the user agent registers
with the co-located registrar server, according to standard SIP procedures, by
sending a REGISTER. message. The server will then register the SIP user to

the network spreading a SIP message; message spreading can be done in sev-
eral ways, broadcast, flooding, or multicasting to the SIP well known multicast
address. The server modules in the proximity network receive a REGISTER,
update their cache entry with the binding, and can reply to the registering node
by sending a 200 OK message. The registering node server module updates
its cache with the bindings received from the other nodes. With this proce-
dure, the SIP location service functionalities, usually handled by a centralized
entity, the SIP registrar, are distributed among all the MANETSs nodes. A na-
tive SIP application would register to its predefined external registrar server;
the proximity enhanced modules "intercept" this message and route it to the
local server, transparently for the application. With this approach it is ensured
interoperability.

Inviting a peer to a SIP session is similar: the INVITE message is forced to
the co-located server, which checks in its cache if it has a binding for the queried
user (i.e., it is exploiting the location service), and forwards the INVITE to the
correct address in case a match is found. Furthermore, a proximity aware SIP
application may explicitly query the local server for the list of users in the
proximity network; the server collects the list of currently stored bindings and
sends them back, locally, so that a user in MANETS is able to begin sessions
also with previously unknown users. The request and reply for user list is done
by means of SIP messages: server and user agent modules are not bound by any
function calls.

3.3.3 Security Support

Session management with SIP has various security issues, e.g., authentication of
the parties, integrity of the messaging, and confidentiality. Because SIP is based
on application layer routing, the integrity and confidentiality of SIP messaging
is typically handled independently between two hops. Therefore, we concentrate
on security issues related to SIP ad-hoc networking, and on how a SIP nodes
are able to authenticate each other.

The main security concern in ad-hoc networks is making sure of the identity
of the remote party, and the security of the signaling itself. Application data
flows can be secured independently of the signaling messages. Veryfing SIP
users’ identity can be handled by the SIP authenticated identity [16] extension
to SIP. The key idea of the extension is that SIP UAs connect and authenticate
to a SIP server, which runs an authentication service. Once the authentication
service receives a message from an authorized UA, it signs the message using
its domain certificate. The signature is computed by hashing certain relevant
header fields of the message and added into the new SIP Identity header field.
The UA receiving the signed message can verify it using the authentication ser-
vice domain certificate; the certificate is either previously stored at the receiving
UA, or fetched at the address provided by the authentication service in another
new Identity Info header field. The receiving UA trusts the authentication ser-
vice, so by verifying the signature, it can be sure of the identity of the sender
of the request and of the message integrity.

We have modified this approach so that each node in an ad-hoc networks
signs all the SIP messages sent to the gateway (or to another node) with a self-
signed certificate. The gateway node receives the signed message and verifies it
using the ad-hoc user’s certificate; if signature verification fails, or the gateway

10

can not find the user’s certificate, the ad-hoc user is denied the gateway access.
Similarly, if the ad-hoc node has stored the gateway certificate in advance, it
can verify its authenticity and trust it for accessing the Internet. The ad-hoc
user’s certificate can be retrieved from a well-known repository in the Internet,
or could be previously stored at the gateway; this would be the case of a gateway
managed by a network operator, which only provides access to subscribed users
with pre-shared certificates. The gateway node, in this case, does not need to be
a moving device, but it could be a node connected to the infrastructured network
with one interface, and to the ad-hoc network with another. This scenario could
find application in hot-spots, such as, airports or internet cafes; we deem it very
interesting as it gives to ad-hoc networking a business value even for network
operators.

3.4 SOAP

SOAP is xml-based lightweight protocol for exchanging information in a de-
centralized and distributed environment. Typically SOAP-messages are carried
over HTTP-protocol but other protocols may also be used. Messages may travel
from SOAP sender to SOAP receiver through SOAP intermediaries, which may
do some processing with the message.

The three main elements of SOAP-messages are envelope, header and body.
Envelope is the top level element. SOAP header must be the first element inside
envelope, but it is an optional element. SOAP header may contain child elements
which are called header blocks. These header blocks can be used for passing
information that can be used by SOAP intermediaries. SOAP intermediaries can
inspect, remove and add SOAP headers to the messages. After SOAP header
there is a mandatory SOAP body. SOAP body is the place for the information
that is meant for the ultimate receiver of the message.

Envelope

Header

Header block 1

Header block 2

Body

Element 1

Element 2

Figure 5: Structure of the SOAP-message

3.5 HTTP

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for
distributed, collaborative, hypermedia information systems. It is used for data

11

transfer in WWW. The HTTP protocol is a request /response protocol. A client
sends a request to the server in the form of a request method, URI, and protocol
version, followed by a MIME-like message. The server responds with a status
line, including the message’s protocol version and a success or error code, fol-
lowed by a MIME-like message. Usually, HTTP communication is initiated by
a user agent. [8]

3.6 Web Technologies

The user interfaces (UIs) of the applications are build using novel Web tech-
nologies, which are mainly XML-based markup languages. The technologies are
discussed in the following subsections.

3.6.1 XHTML

XHTML, the XML-based counterpart of the traditional HTML, is used to define
layout and structure of Web documents. XHTML’s layout model (flow layout),
makes it easy to create user interface for all sizes of devices. That is, the layout
is not tied to absolute positions and sizes. XHTML is modularied. Thus, one
can use desired subset of it and add modules from other languages, if needed.

3.6.2 XForms

XForms 1.0 Recommendation [5] is the next-generation Web forms language,
designed by the W3C. It solves some of the problems found in the HTML forms
by separating the purpose from the presentation and using declarative markup
to describe the most common operations in form-based applications [3]. It can
use any XML grammar to describe the content of the form (the instance data).
Thus, it also enables to create generic editors for different XML grammars with
XForms. It is possible to create complex forms with XForms using declarative
markup, without resorting to scripting. XForms needs a host language, which
defines the layout of a form.

3.6.3 SVG

Scalable Vector Graphics (SVG) is a format for two-dimensional graphics. Since
it is vector graphics, it can be rendered optimally on all sizes of device. SVG
drawings can be interactive and dynamic. Animations can be defined and trig-
gered either declaratively (i.e., by embedding SVG animation elements in SVG
content) or via scripting.

3.6.4 Compound Document Formats

Several XML vocabularies have been specified in W3C. Typically, an XML lan-
guage is targeted for a certain purpose (e.g., XForms for user interaction or
SVG for 2D graphics). Moreover, XML languages can be combined. An XML
document, which consists of two or more XML languages, is called compound
document. A compound document can specify user interface of an application.

12

3.6.5 XBL

XML Binding Language (XBL) provides mechanisms to bind an arbitrary XML
element to a binding element. The binding element defines the behavior and/or
presentation of the arbitrary element. For instance, an XForms control can be
bind to a SVG control, which is displayed if a device is capale to do that. XBL
has three main usage scenarios. They are:

1. Extending a document.
2. Presentation and behavior encapsulation.

3. Presentation and behavior inheritance.

3.6.6 CSS

Cascading Style Sheets (CSS) is a mechanism for adding style to Web docu-
ments. CSS enables separation of style and content of the Web documents.
That makes site maintenance easier and simplifies Web authoring.

4 Overview of the infrastructure

An overview of high-level system components can be seen in Figure 6.

" ‘ad hot .*'corporate- .
network ‘.. R . . network or
"""" i internet

Application
server

|
X-Smile (SIP
browser daemon

\ J

1

1

| T

| 1

| |

2 X

T !

S :
: ’_I_ | Gateway

| 1

| 1

| 1

| 1

| |

| 1

)

SLP
daemon

Figure 6: System components.

Passengers’ client devices are enabled to find the check-in service through
SLP passive service discovery. This functionality is implemented in the SLP
daemon process. The SLP daemon passes information of discovered services to
the SIP daemon, which subscribes to SIP event notifications from the service.
These notifications can be used for pushing interaction initiations (i.e. URLs
to be loaded) or relaying real-time update notifications from the service to the

13

client. The dynamic user interface is implemented in the X-Smiles browser that
is capable of handling SOAP messages passed to it by the SIP daemon. SVG is
used to provide more specialized controls for the forms that are bound to them
by XBL.

5 Infrastructure: Network

The environment of the WeSAHMI project consists of an ad-hoc network with
mobile nodes using services from the fixed infrastructure network using one or
multiple gateway nodes. The ad-hoc network uses WLAN as low-level trans-
port. The possible modes of operation are Managed using Access Points to or
Ad-hoc that does not use Access Points. The network protocol is IPv4 using
autoconfiguration (section 3.1).

There are two possibilities using the services from the fixed infrastructure
side: creating a direct IP connection or using application level proxies. Using
services from multiple providers makes pure IP connection difficult because the
node has to route packets to several different IP gateways. Because of this,
the services will be used trough proxies and the IP spaces will be completely
separate.

On the first phase the addresses can be set manually using private IP ad-
dress blocks and making the gateway node as the default route. The gateway
node performs NAT on the connections and allows direct IP connections to
the fixed network. The NATted connection can also be used with autoconfig-
ured addresses by setting only the route manually. However, later the direct
connections should be removed.

6 Infrastructure: SLP

SLPv2 open source C implementation OpenSLP version 1.0.11 [15] was used in
the service discovery scheme of SESSI project, the predecessor of WeSAHMI.
It was then deemed to be suitable for dynamic ad-hoc networks and is light
enough to run in mobile devices with limited resources. It also provides a non-
blocking service discovery implementation for the clients in the sense that the
applications are able to function normally while they receive updated service
information. Within SESSI project a Passive Discovery (PD) functionality for
SLP was implemented. It provides a method for bootstrapping the SIP service
in the infrastructure while the address of the client is unknown.

The bootstrapping of the SIP service is implemented as SA initi-
ated service discovery. The SIP service is registered by server side SIP
implementation by calling Service Discovery Module (SD Module) func-
tion SD_enablePassiveDiscovery which in turn calls LibSLP function
SESSI_SLPPassiveReg. It constructs and sends a control message PDSrvReg
to SLPD. SLPD will then broadcast SrvAdvertisement messages containing
the STP-address of the registered service. The SIP service can be unregistered
by calling SD API function SD_disablePassiveDiscovery. It calls LibSLP
function SESSI_SLPPassiveDeReg that constructs and sends a control message
PDSrvDeReg to SLPD. SLPD responds with GeneralReplyMsg and both func-
tions SESSI_SLPPassiveDeReg and SD_disablePassiveDiscovery return suc-

14

cessfully. The advertisement messages can be signed by the server side SIP if the
advertised services need to be authenticated on SD level. The clients are thus
able to verify them. The registration and deregistration processes are illustrated
in Figure 7.

The SIP daemon running in the client initiates passive service discovery by
calling SD Module function SD_registerSrvAdvListener which in turn calls
LibSLP function SESSI_SLPRegFilter that constructs and sends a control mes-
sage PDSrvRgst to SLPD. It registers a listener that then sends back a service
address to LibSLP in another control message called PDSrvRply whenever it
receives a SrvAdvertisement message that contains a service of the observed
service type. LibSLP proceeds then to call a callback function registered by
SD Module when it receives such an control message. The SD Module in turn
then calls a callback registered by the SIP daemon to return the service found
new service information. The SIP daemon stops passive discovery by calling SD
Module function SD_unregisterSrvAdvListener which calls LibSLP function
SESSI_SLPDeregFilter that closes the control message socket. When SLPD
notices that the socket is closed it removes the SrvAdvertisement listener. The
listener registration and deregistration are illustrated in Figure 8.

The SIP service used in Wesahmi is registered with ID finnair and attribute
event that contains the name of the event to which it can subscribe to. The SIP
daemon may use SD Module function SD_getAttribute to obtain it separately.

Application SD Module LibSLP SLPD

N " |
|
SDienabIePasslveDlscovery()N

SESSI_SLPPassiveReg()

PDSrvReg

GeneralReplyMsg (ok)
SrvAdvertisement

\/

Return SESSI_SUCCESS
- - - - - -

SrvAdvertisement

\

Y

SrvAdvertisement

\/

PDSrvDeReg

>

! GeneralReplyMsg (ok)

Return SESSI_SUCCESS
- - - == == === -

|
N I EI !
Function calls | Function calls ! Control messages over
| |
| |

localhost socket

SLP messages
over WLAN

Figure 7: Registering and unregistering services for PD

'
|
|
|
|
|
|
|
I
|
|
|
|
1SD_disablePassiveDiscovery()
]
|
|
|
|
|
|
|
I
|
|
|
I

7 Infrastructure: SIP

In WeSAHMI SIP is used for registering to the services of a service provider,
e.g., Finnair, and for receiving event notifications. Client must first subscribe
to server to tell that it is online, and willing to receive event notifications. After
subscription client receives notifications about events that it has subscribed for.
In the first phase these notification carry information that some information has
changed and browser should refresh the viewed page.

15

The server side must be able to process SUBSCRIBE-messages for event
“resource-update’and send NOTIFY-messages. NOTIFY-messages will carry
SOAP-messages in the body part of the message and the SOAP-message will
have more detailed descriptions of the event. Here is an example of SUBSCRIBE
message.

SUBSCRIBE sip:server.example.com SIP/2.0
To: <sip:server.example.com>

From: <sip:user@example.com>;tag=xfg9
Call-ID: 2010@host.example.com

CSeq: 17766 SUBSCRIBE

Max-Forwards: 70

Event: resource-update

Accept: application/soap+xml

Contact: <sip:user@host.example.com>
Expires: 600

Content-Length: 0

At the client side there is SIP-daemon process which is responsible for han-
dling the SUBSCRIBE /NOTIFY-messages. The daemon process will receive an
SLP-advertisement to inform that there is a notification service available. The
advertisement has the SIP-address of service and the daemon process may then
do a query for the attributes of this service. The notification service will have
an attribute that tells the notification event type. When the daemon process
has received the advertisment and made a query for the attributes it sends a
SUBSCRIBE-message to the address that was in the advertisement with Event-
field set to value “resource-update”.

The client side has actually two processes for handling SIP-messages. SIP-
proxy and the SIP-daemon itself. This is because we are using the distributed

Application SD Module LibSLP SLPD

|
|
SD_registerSrvAdvListener() |

\

|
|
l
|
h 1
I k I
1 ! PDSrvRgst |
! ! Return SESSI_SUCCESS >) |
I Return SESSI_SUCCESS :4— ———————————— I SrvAdvertisement X |
| 1
- = = = = = = = - - - = . PDSrvRply X ,] |
! PD Callback X -~ | SrvAdvertisement X)
! Appl. Callback X Found h PDSrvRply X T |
:‘ PD Callback X - 1 SrvAdvertisement Y \
| - PDSrvRply Y 1= 1
)
! PD Callback Y < !
| - ! SrvAdvertisement X !
. Appl. Callback Y Found h <

[

D_unregisterSrvAdvListener()

SLPD removes
SrvAdvertisement
listener when socket
is closed.

SLP messages
over WLAN

<Socket is closed>

|
I
|
[
I
|
I
|
[
! PD Callback X
|
|
|
|
|
\
|
|
I
|

Return SESSI_SUCCESS

|
|
AN | AN
Function calls | Function calls
|

|
|
|
|
|
L
|
|
|
|
1
I
:
I
|
|
! PDSrvRply X
|
!
|
|
|
|
|
|
L
|
|
|
|
|
|
|

Ry SREEE

Control messages over
localhost socket

Figure 8: Discovering services with PD

16

version of sip (dSIP) implemented in SESSI-project and it has local STP-proxys
on client machines. All the STP-messages are sent and received through the
local SIP-proxy. If we wouldn’t want to use dSIP the SIP-daemon and local
SIP-proxy could be replaced by single SIP-daemon which would receive the
NOTIFY-messages and send the SOAP-part of the message to the browser.

_______________ NOTIFY + SOAP

NOTIFY 1+ SOAP

Figure 9: Processes responsible of handling SIP and SOAP messages in the
client side.

Notification server receives the SUBSCRIBE-message and after that it will
send NOTIFY-messages back to the client when there is some change which the
client needs to be notified, e.g., changes in flights. These NOTIFY-messages also
have an Event-field which is set to value “resource-update” and also a SOAP-
body which has a more detailed description of event. Here is an example of
NOTIFY-message.

NOTIFY sip:user@host.example.com SIP/2.0
From: <sip:server.example.com>;tag=ffd2
To: <sip:user@example.com>;tag=xfg9
Call-ID: 2010@host.example.com

Event: resource-update
Subscription-State: active;expires=599
Max-Forwards: 70

CSeq: 8775 NOTIFY

Contact: sip:server.example.com
Content-Type: application/soap+xml
Content-Length: 242

<SOAP-body>

The SIP-daemon receives the NOTIFY-message (which is received through
local SIP-proxy) and by looking the value of the Event-field it knows how to
handle the message. SIP-daemon forwards only the SOAP-body of the message
to the browser application which should be able to process it. The SOAP-
message is sent via a local socket to browser. If the browser is not running
the daemon will create a new instance. In the case the browser is running, the
daemon opens a new tab to the browser window. This could be done, e.g., by
giving a command line parameters to the browser.

The new components here are the daemon process and server side applica-
tion which is able send SUBSCRIBE-messages and handle incoming NOTIFY-
messages. In the first phase the server side can be a simple test application

17

which receives SUBSCRIBE-messages and can send NOTIFY-messages by users
command.

The daemon process will use a modified version of the eXosip library for

handling SIP-messages and Service Discovery module for listening service ad-
vertisements. eXosip is modified to support dSIP.

8

Infrastructure: SOAP

SOAP-messages are carried in the body part of the NOTIFY-messages. SOAP-
message itself contains the detailed information aboud the event. Here’s example

of

NO
Fr

To:

the NOTIFY-message

TIFY sip:user@host.example.com SIP/2.0
om: <sip:server.example.com>;tag=ffd2
<sip:user@example.com>;tag=xfg9

Call-ID: 2010@host.example.com

Ev

ent: resource-update

Subscription-State: active;expires=599
Max-Forwards: 70

CS
Co
Co
Co

<S

eq: 8775 NOTIFY
ntact: sip:server.example.com

ntent-Type: application/soap+xml
ntent-Length: 242
0AP-body>

In NOTIFY-message there is Event-header field which value is set to

“resource-update”. This header field indicates the type of the event which re-
ceiver needs to know to process it correctly. Content-Type header is set to value
“application/soap+xml” to tell that the payload is SOAP-message.

If

When the SIP-daemon receives the message it checks the Event-header field.
it matches to “resource-update” it launches the browser (if it is not already

running) and sends the SOAP-message to the browser via socket.

In the first phase the SOAP-message contained in the body has only infor-

mation that something has changed and the browser should refresh the user
interface by retrieving the viewed page from the server. Later the SOAP-
messages can contain more detailed information about what has changed so
that browser can update the user interface only by using the information in the
SOAP-message. The SOAP-message can now be something simple like

<S

</

0AP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:ContentChanged xmlns:m="Some-URI">
<url>http://www.site.com/page.html</url>
</m:ContentChanged>
</SOAP-ENV:Body>
SOAP-ENV:Envelope>

18

General GUI MLEFC specific GUI

________________ R

User interface E MLFCs ;
and interaction i source|tree XSL FO SMIL SVG :
{MLFQMLFC | MLFC MLEC | yvipc |

@resentatio® (_ Config kPresentation [ECMAScript
interpreter +

|
5 5 n = H A
Rendering XPresentatiop [C Renderm§ > : extensions
1
1

o
Rendering 3

O S i g

LFC mgmt. & retrievaD CECMAScript Handling
Browser core
functionality Event Broker
General Functionality Browser Configuration
'y DOM Interface
v
XML DOM Builder SAX Interface
Processing XML Parser I XSL Processor

Figure 10: X-Smiles architecture

In the body-part of the SOAP-message there is a ContentChanged-element
which tells that something has changed and user interface needs to be refreshed.
The url-element inside the ContentChanged-element tells the url-address where
to retrieve the page.

9 Infrastructure: client side

9.1 X-Smiles XML browser

X-Smiles! is an open source XML browser developed at the Helsinki Univer-
sity of Technology. The main components of the X-Smiles browser can be di-
vided into four groups: XML processing, Browser Core Functionality, Markup
Language Functional Components (MLFCs) and ECMAScript Interpreter, and
Graphical User Interfaces (GUIs). They are depicted in Figure 10.

The core of the browser controls the overall operation of the browser. It in-
cludes browser configuration, event handling, XML Broker, etc. MLFCs handle
different XML languages and render the documents. There are several GUIs
in the X-Smiles distribution. They are used to adapt the browser to various
devices or as virtual prototypes, when prototyping content targeted to diverse
range of devices. [20]

In WeSAHMI project, we are using X-Smiles to render the Uls. We will use
compound documents, which consist of XHTML, XForms, and SVG. XBL is
used to tie custom controls to the documents. X-Smiles is extended as a part
of the project to support required Uls. The extensions are discussed below.

1X-Smiles, available online http://www.x-smiles.org

19

Submission

Instance
Data

Figure 11: XForms main aspects.

9.2 XForms with SOAP

XForms consists of data instance, XForms model, and UI (cf. Figure 11). The
model modifies the XML-based data instance. There can be more than one
data instance for a form. It is possible to sent data instances and parts of them
asynchronously all the time. Inputs and outputs of the UI are bound to elements
of the data instances. Thus, the UI can be kept updated all the time.

Since SOAP messages are also XML-based, they can be used directly as a
XForms data-instance. In the form, it is possible automatically to add SOAP
header to the instance to be sent. An addition, a subtree of an instance can be
moved to another instance. Thus, a set of SOAP messages can be collected to
an instance and, on the other hand, a part of the instance can be extracted to
a SOAP message and submitted.

9.3 X-Smiles in WeSAHMI

By the summer, we will implement the interaction with SIP daemon and X-
Smiles browser. The interaction is realized through the socket. At this phase,
the daemon informs the browser that it should refresh the UI. For the user
interface, we will use compound documents by inclusion. That is, SVG elements
included directly to an XHTML document.

Later, the SIP daemon will send SOAP messages through the socket and
the messages are used as a part of XForms data instances as explained above.
Thus, the whole interface has not to be updated every something changes. Some
of the XForms controls will be replaced by custom controls through XBL. The
controls will be realized with SVG.

10 Infrastructure: server side
The server side infrastructure is depicted in Figure 12. The server side contains

primarily the Web server. In addition, there is a need for Web Application
server, and later perhaps also a Workflow server. The Web server is a standard

20

Client]

- XML Browser |m I:l
- SIP Daemon
-SLP UA A

%A ;%A [

YA AN YA AN £ AN

Web Server Application Server SLP SA
-Web Pages - Business Logic - Service
- Server Side SIP Advertising

Figure 12: Server side infrastructure.

web server, which stores the web pages of the use case. The most common web
server is Apache HTTP server, which also an open source server. Thus, it can
be used also in WeSAHMI project.

The Web Application server runs the actual business logic. The Web Appli-
cation server provides the service advertisement information to the SLP SA. In
addition, it receives the service registration information from the SLP SA. The
web application also processes the SIP SUBSCRIBE and NOTIFY messages.
After the SIP session has been established, the Web Application server can ex-
change SOAP messages with the client. The Web Application server processes
also the HTTP request, while the actual content comes from the Web server.

For example, Apache Tomcat can be used as the Web Application server. In
that case, either Java Servlets or JavaServer Page can be used for coding the
actual web application logic. In addition, interfaces to the SLP SA and server
side SIP user agent have to be developed (777).

11 Security Considerations

Security is an important part of distributed system requirements in today’s
world. Authentication and authorization play central roles in service provision
in both fixed and wireless environments. It is expected that hybrid networks
require novel security solutions, because the assumption on the existence of a
dedicated and static security server must be relaxed for ad hoc and peer-to-peer
operation.

The security considerations presented in this section are based on the airline
scenario described in this document and we highlight the designs needed for
secure operation in this environment. The airline scenario is an example of a
single hop hybrid network. The security solutions needed for multi-hop hybrid
networks are based on similar concepts, but this environment is more complex
and requires further analysis.

21

11.1 Requirements

In the airline case, a number of servers offer services to mobile and wireless
clients. The servers may be located on the fixed network, or they may employ
a single-hop wireless protocol, such as the wireless LAN protocol, in order to
communicate with the clients. The interactions in this environment have three
phases: First, there is the discovery phase. Second, there is a registration
phase. Third, there is the communication phase, which is either client-driven or
server-driven. In client-driven communication, the client requests information,
which is provided by a server. In server-driven communication, a server pushes
information to the client terminal.
The basic requirements of the security solution are as follows:

e Model for user/client identities and their federation.

e Authentication of clients at servers.

e Authorization and access control for authenticated users.

e Authentication of servers and control messages at client systems.
e Confidentiality of client interests and delivered content.

e Basic Denial-of-Service attack prevention both at clients and servers. Se-
cure push functionality.

The non-functional requirements are as follows:

e Identification and elimination of performance bottlenecks.

e The employed solutions should be energy-efficient.

e The solutions should impose minimal state requirements for nodes.

e The solutions should integrate well with the X-Smiles browser and the STP
and SOAP security models.

11.2 Building Blocks for Security

The basic security building blocks are provided by the different standardiza-
tion organizations, namely W3C and TETF. A key observation is that security
is needed on multiple layers. Basic network and transport-layer security en-
sure data confidentiality and they may also be used for mutual authentication.
Session and application layer security is needed for environments with multiple
security domains, for example, environments with gateways and different service
providers.

11.2.1 End-to-End Measures

Transport Layer Security (TLS) provides session-layer security with mutual
certificate-based authentication. IP Security (IPsec) and Internet Key Exchange
(IKE) (RFC 2409) may be used to set up security association for network layer
security. The Host Identity Protocol defines a namespace for hosts that is based
on public keys and integrates this new namespace with the transport layer APIs
and network layer security.

22

11.2.2 SIP Security

SIP security solutions leverage S/MIME, digest authentication, and transport-
layer security. The digest mechanism is the SIP baseline technique for authen-
tication. S/MIME encryption requires that the public key (X.509 certificate) of
the recipient is known. S/MIME may also be used to encrypt the payload of
the Session Description Protocol.

11.2.3 Web Services Security

W3C has a number of XML-related security specifications. The base specifi-
cations are the XML Encryption and XML Signature, which allow flexible en-
cryption and signing of elements in XML documents. The signature operation
is more difficult of the two, because of challenges in XML document canoni-
calization. These two specification may be used with the SOAP protocol, for
example, for flexible header-based security.

The WS-Security specification defines the SOAP security header [14]. SOAP
messages can contain security tokens with authentication information. This kind
of support is needed for coping with multiple security contexts.

A security token represents a set of claims. In the WS-Security model a
trusted third party, the Security Token Service, issues these tokens. A security
token may be self-generated, as in the case of username/password, or it may be
given by a trusted third party.

The security tokens should be signed and encrypted. In this case, the WS-
Security model prevents unauthorizes accesses and modifications also in the
presence of untrusted intermediaries.

A standard Web services interface is needed for creating, exchanging, and
validating security tokens issued by other domains. This is specified in WS-
Trust [12]. In addition, a set of concrete security policy documents are needed
that allow sites and services to document their security requirements. A secu-
rity policy might require that a message should be encrypted using a specific
algorithm and have a certain key length.

There are two interaction models for establishing trust. First, we have the
pull model and then the push model. In the pull model, the receiver contacts a
security token service when it receives a token. In the push model, the sender
contacts the token service and obtains a signed token. In this latter case the
receiver does not have to contact the security service. The Kerberos Ticket
Granting Ticket (TGT) is an example of the latter strategy. The push model
is more efficient in terms of network operation, but the signed tokens may be
revoked. The revocation requires that the token service is contacted at some
point.

Using asymmetric cryptography in each message is computationally demand-
ing. The WS-SecureConversation [11] specification defines a session-key-based
model for WS-Security. The model is based on Security Context Tokens issued
by servers or generated by the requesters. The SCT contains a shared secret.

Each Web service endpoint implements a trust engine that understands the
WS-Security and WS-Trust model [12]. For the hybrid network environment,
each peer must implement a trust engine and be able to process security tokens.

23

11.2.4 Identity Federation

WS-Federation defines a federated identity and mechanisms to broker and feder-
ate identity, trust, and claims about them [10]. Single-sign-on means the ability
to use federated services without reauthentication by signing into one of the
federations.

In addition to WS-Federation, the Open Mobile Alliance (OMA) has defined
a system for identity-federation [1].

11.3 Security Specification
11.3.1 Overview

Figure 13 presents an overview of the interactions in the airline case. In the
first phase, the terminal receives an SLP advertisement from the gateway. The
advertisement message is signed. The client authenticates the service using a
pre-installed certificate (2).

Then, the client accesses the service URI that is specified in the advertise-
ment (3). This may be standard web browsing or multi-hop message-based
interaction. In the former case, TLS is used for end-to-end security. In the
latter case, either SIP (S/MIME) or WS-Security needs to be used for security.

The service authenticates and authorizes the client. Authentication may be
perfomed through challenge/response, client signature, or a security token. The
service access results in the desired content or an authentication failure (5).

Terminal Gateway Service

1. Advertisement

2. Authenticate gateway and service

3. Service access

4. Authenticate and

. authorize client
5. Service reply

<

Figure 13: Overview of interactions.

11.3.2 Bootstrapping Trust

A key design choice in the security specification is how trust between clients
and servers is bootstrapped. Clearly, a solution is needed to enable the mutual

24

authentication of these different systems. In the first prototype, trust is estab-
lished through digital certificates issued by a trusted third party. This is the
conventional way of enabling security in web browsers.

Currently, the requirement for end-user certifications is seen as a serious
scalability limitation in a distributed system. End-user certificates are difficult
to provide and maintain on a global scale. Self-signed certificates avoid this
scalability limitation, but are prone to man-in-the-middle attacks.

One key assumption that we need to make is whether or not random en-
counters should be supported. Man-in-the-Middle (MiM) attacks cannot be
prevented unless trust is bootstrapped somehow. For some scenarios, ssh-like
security is enough. This type of approach can be used to ensure future trust in
an entity.

The following three trust obvervations form the base of the proposed security
solution.

e Service and gateway certificates are shared by all entities. Certificates are
issued by a trusted third party.

e (lient terminals have a self-signed certificate or a certificate issued by a
trusted third party. In the former case, application-level interaction is
required to verify identity. In the latter case, these are known to the
gateway and the services. In both cases the client certificate is used for
authentication and message security.

e For message intensive operation, a temporal session key may be derived
using asymmetric crypto to improve performance.

11.3.3 Client Security

Figure 14 illustrates how a client contacts a server and the server verifies the
identity of the client. The interaction proceeds as follows:

e Client contacts server using a secure connection (TLS) (1-2).

e Server certificate is verified. The client may also issue a self-signed certifi-
cate that asserts its SIP identity (3).

e Client account is verified. The server needs to know the client SIP URI
for push functionality. Alternatively a phone number for SMS / email
address is needed. The SIP URI will then be the identifier of the user.

e The server issues a reverse-routability test message (4). The client must
respond succesfully to this message in order for the accound to be acti-
vated. This test ensures that the client is reachable through the SIP URI
it has provided (5).

Security techniques used for subsequent communications depend on the em-
ployed protocol. The transport connectivity is protected using TLS and this
supports secure web browsing. Any SIP messages between the client and the
server are signed and encrypted.

For subsequent messaging, each message needs to be transmitted over SSL
or encrypted and signed separately. This may be optimized by generating a
temporal session key as follows: The server sends a signed message to the client

25

Terminal Service

1. Create self-
signed certificate
or use given key-

pair 2. Service access

3. Authenticate and
authorize client

4. Reverse routability challenge

5. Reverse routability reply >

Figure 14: Bootstrapping client identity

that contains a temporal symmetric key. The services authenticate the client
using this temporal key. The key has a life-time after which the client must
retrieve a new key. The key generation mechanism should guarantee perfect
forward secrecy. After the temporal symmetric key is established between the
client and the server, public key crypto is not needed for messages between
the systems, but rather each end-to-end communication is encrypted using the
session key. If the session is key is expired, the server may push a new session
key to the client.

11.3.4 Gateway Security

The gateway may or may not be a trusted entity. The SLP advertisement
messages broadcasted by the gateway may be secured using S/MIME or using
signatures. This requires that the public key of the gateway and the server
providing the advertised service are known. If the gateway simply advertises
services, it is enough to verify that the advertised message is not bogus.

11.3.5 Secure Push

Figure 15 illustrates secure push. A service sends a push message to the client
(1). The client is identified using a SIP URI. The server should have previously
verified using some mechanism that this SIP URI belongs the the intended
recipient.

The client verifies the push message (2). Since asymmetric crypto is com-
putationally expensive it is also possible to use HMAC here to drop bogus
messages. The message signature is checked and if the check fails the message
is silently dropped. Otherwise, the client terminal accepts the message and it
is processed according to the local message processing rules.

In the airline scenario, the push message results in a web resource being used
(3). This entails also some level of client authentication and authorization (4)
at the server. Finally, content is delivered for legitimate client systems (5).

26

Push messages are handled by the security system and they are passed to
higher levels only after their authenticity has been established.

Terminal Service

1. Push message
2. Validate <
push
message 3. Service access

5. Service reply

4. Authenticate and
authorize client

Figure 15: Secure push

11.3.6 On Attacks

In the hybrid environment a malicious entity may attempt to disrupt a service.
Typical attacks include registration hijacking, server impersonation, message
dropping, and message tampering.

Given the closed nature of the airline scenario and that an out-of-band trust
mechanism is employed, it is difficult for an attacker to impersonate a server,
hijack sessions, replay messages, tear down sessions (inject BYEs), or tamper
messages. These attacks become difficult when the service revolves around a
known service, whose certificate is trusted, and the well-known authentication,
encryption, sequence number techniques are used.

However, an attacker may disrupt the communication in various ways by
dropping messages, injecting bogus messages, and simply flooding the network.
SIP creates a number of opportunities for distributed DoS attacks. Especially,
the SIP technique of forking may result in a message being replicated to multiple
recipients.

11.4 Implementation Plans

The first prototype is implemented without security features. The prototype
is then used to study the environment and the airline scenario. Subsequent
implementation work focuses on securing the SLP advertisements, mutual au-
thentication of the client and server with Web browsing techniques, and securing
SIP push messages.

The implementation of the client authentication mechanism is an important,
part of this work. The simplest strategy is to use TLS and username/password
for browsing and server certificate for SIP push messages. A more advanced
implementation uses a client certificate for authentication, and security tokens

27

for messaging. Any client authentication solution needs to be compatible with
the X-Smiles browser.

12 Detailed application-level description

Figure 16 gives an overview of application functionality in the flight check-in
service case.

Application execution starts with bootstrap phase (1). The application
server requests that the gateway starts to advertise the check-in service (message
SLPPassiveReg(CHECKIN SRV), where CHECKIN SRV stands for the URL
and service parameters of the service). The Gateway will start to broadcast pas-
sive service advertisements in the ad-hoc network. Eventually the mobile device
of a passenger will receive an advertisement (SrvAdvertisement). The SLP dae-
mon process in the device forwards the service URL to the SIP daemon process
that sends a SUBSCRIBE message to the application server.

After the bootstrap, the application server can push the front page of the
check-in service to the passenger (2). This is accomplished using a SIP Notify
message that carries a SOAP message instructing the browser to load the check-
in front page. The page asks the passenger whether he wants to check in on his
flight.

When the user selects the positive option, the actual check-in page is loaded
(3). Here the passenger supplies the relevant information, such as number of
baggages. In return, the user receives his electronic boarding pass together with
instructions on where to drop baggage.

When the application server receives a notification that the baggage has been
dropped?, boarding instructions are pushed to the passenger (4). This includes
information on how to find the security check point and the gate.

Later the system receives information that the flight has been delayed. A
flight status update is thus pushed to the passenger (5).

The pre-flight interaction ends when the application server receives a notifi-
cation that the passenger has boarded.

The interaction depicted in Figure 16 corresponds to phase 1 functionality
of the WeSAHMI infrastructure. Later in the project it will e.g. be possible to
send partial view updates to user terminals.

13 Implementation schedule

Currently the implementation schedule is divided into two phases:

1. Initial phase: functionality to be completed by the summer of 2006.

2. Final phase: functionality to be completed during the rest of the project.

Initial phase

The functionality to be completed in the initial phase corresponds to that de-
scribed in Figure 16 in the previous section.

2The availability of such information is not known. This notification is not essential, but
makes the interaction smoother.

28

Corporate network/
Internet

Ad-hog network

.

.

SLPPassiveReg(CHECKIN_SRV) \

SrvAdvertisement *\. _bootstrap

Found(CHECKIN_SRV) B — ,+*“phase
SUBSCRIBE(CHECKIN_SRV)|

NOTIFY(SOAP(LoadPage(CHECKIN_FRONTPG))) Y >
SOAP(LoadPage(...) “~._push
GET(CHECKIN_FRONTPG .+ front
J page
[WECKINERQNTPG — — - L | o ___ I K

o
*.,_supply

lOCHECKINRG — = = L L o o o o o — — - — - = - e U U
POST(CHECKIN | . C:\Wfi(k\n
= [
|BOARDING PASS+BAGGAGE DROPINSTR — — — — = = - = e U U S
Baggage
dggpped
NOTIEY(SOAP(l 0adPage(ROARD) INSTRI) N
QAP(l oadPage() “‘ 4.
GET(ROARDING_INSTRY *+,_Boarding
P N ‘o ______1l______________Z =" Tinstruction
Flight
di ayed
NOTIFY(SOAP(LoadPage(FLIGHT JUPDATE)))
QAP(1 0adPage()) vos
GETI(FIIGHT_UPDATE *s, . Flight
/7 status
|LIGHLUPDATE - — = = L b m m m m o oo - m— = - FF=-=-=-=-========q4ft-="====="=-"==-=-=-=-= - update
Passenger
bgarded
T T T T T

Figure 16: Sequence diagram of application behavior.

By the summer we will have ready an implementation that is able to boot-
strap the SIP service for an arbitrary mobile node.

Final phase

The final phase will be divided into subphases after the completion of the initial
phase. Some of the planned improvements are described in the following. This
is, however, not a complete treatise of the overall technical goals of the project.

The Web Application server can be partly replaced by a Workflow engine.
The idea is that the business logic is expressed using some workflow modeling
language, which is then executed in the Workflow engine. The Workflow engine
receives SOAP /SIP messages, processes them according the modeling language
and sends further messages. It also keeps track of the different activities, active
processes and their stage. This simplifies the development and maintenance of
complex business processes.

29

References

1]

2]

13]

4]

[5]

6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

Open Mobile Alliance. Oma network identity federation framework speci-
fication, 2006.

Roach A. B. Session initiation protocol (sip)-specific event notification.
Request for Comments (Standards Track) 3265, Internet Engineering Task
Force, June 2002.

Richard Cardone, Danny Soroker, and Alpana Tiwari. Using XForms to
simplify web programming. In WWW ’05: Proceedings of the 14th inter-
national conference on World Wide Web, pages 215 224, New York, NY,
USA, 2005. ACM Press.

Stuart Ceshire, Bernard Aboda, and Erik Guttman. Dynamic configuration
of link-local ipv4 addresses. RFC 3927, Internet Engineering Task Force,
March 2005.

Micah Dubinko, Leigh L. Klotz, Roland Merrick, and T. V. Raman.
XForms 1.0. W3C Recommendation, 2003.

Campbell B. ed., Mahy R. ed., and Jenning C. ed. The message session relay
protocol (msrp). Internet draft (work in progress), Internet Engineering
Task Force, December 2005.

J. Rosenberg et al. SIP: Session initiation protocol. RFC 3261 (Standards
Track), IETF, June 2002.

R. Fielding et al. Hypertext Transfer Protocol — HTTP/1.1. Technical
report, IETF, June 1999.

E. Guttman, C. Perkins, J. Veizades, and M. Day. Service location protocol,
version 2. RFC 2608, IETF, June 1999.

IBM, BEA Systems, Microsoft, et al. Web Services Federation Language
(WS-Federation), 2003.

IBM, BEA Systems, Microsoft, et al. Web Services Secure Conversation
Language (WS-SecureConversation), 2005.

IBM, BEA Systems, Microsoft, et al. Web Services Trust Language (WS-
Trust), 2005.

S. Leggio, J. Manner, A. Hulkkonen, and K. Raatikainen. Session initiation
protocol deployment in ad-hoc networks: a decentralized approach. In 2nd
International Workshop on Wireless Ad-hoc Networks (IWWAN), London,
May, 2005.

OASIS. Web Services Security (WS-Security), 2004.

OpenSLP Project Group website. At http://www.openslp.org, April
2004.

J. Peterson and C. Jennings. Enhancements for authenticated identity
management in the session initiation protocol SIP. Internet draft (work in
progress), Internet Engineering Task Force, October 2005.

30

[17]

18]

[19]

[20]

David C. Plummer. An ethernet address resolution protocol. RFC 826,
November 1982.

J. Rosenberg. A presence event package for the session initiation protocol
SIP. Request for Comments (Standards Track) 3856, Internet Engineering
Task Force, August 2004.

C. Tschudin, P. Gunningberg, H. Lundgren, and E. Nordstrom. Lessons
from experimental MANET research. FElsevier Journal on Ad-Hoc Net-
works, 3(3):221 233, March 2005.

Juha Vierinen, Kari Pihkala, and Petri Vuorimaa. XML based prototypes
for future mobile services. In Proc. 6th World Multiconf. Systemics, Cyber-
netics and Informatics, SCI 2002, pages 135-140, 2002.

31

