WeSAHMI SDK Description (D8)

October 31, 2007

Abstract.

WeSAHMI SDK Description is the WeSAHMI deliverable D8. It describes the application specific parts
of the platform and thus assists developers in creating new interactive services for mobile devices. The
document contains descriptions of application specific code in Wesahmi Server, Web Server, and Browser.

Contents
1 Introduction 1
2 Overview 2
3 WesahmiServer 2
3.1 Data Identifiers 2
3.2 Datalnput e 2
3.3 Data Storage e 3
3.4 Eventing Service e 4
3.5 Controller 5
3.6 Other Application Specific Parts 7
4 Web Server 8
4.1 Denoting updateble data L 8
4.2 Sending client input 9
5 Browser 9
Bibliography 10

1 Introduction

The purpose of this document is to provide information about application specific parts of the Wesahmi
framework described in [1]. It is aimed for developers who intend to develop new applications based
on the system. The document lists all methods that contain sections that need to be modified in the
WesahmiServer module, discusses servlet development, and application specific parts of the Browser.

2 Overview

This document is structured as follows: Section 3 identifies application specific segments inside the
WesahmiServer module, Section 4 presents application specific functionality in servlets, and finally Sec-
tion 5 discusses application specific elements of the Browser.

3 WesahmiServer

This Section presents all application specific elements in the WesahmiServer module. It deals with data
identifiers in Section 3.1, application specific regions in classes that handle data input in Section 3.2,
database encapsulation in Section 3.3, eventing service encapsulation in Section 3.4, bits of application
specific code of Controller class in Section 3.5, and remaining application specific parts in 3.6.

3.1 Data Identifiers

Each data item that is passed through the WesahmiServer module has a specific data identifier attached
to it. Each servlet residing on the Web Server has a set of these identifiers describing their dynamic
content. The identifiers are used also as filters in the FUEGO eventing service subscriptions made for
each servlet.

Furthermore, the identifiers are used as column names of tables in the module’s database. The
Interpreter also expects same identifiers to be the names of the XML elements in the messages but it
can be modified to perform a transformation if necessary.

In Controller, identifiers of database keys are stored in String List dbKeys_ and identifiers associated
with messages that should not be stored in the database are stored in String List dmIndicators_.

3.2 Data Input

This Section represents the application specific implementations of methods presented by interfaces
ExtModelAPI and ClientAPI They are both used to exchange data with external modules.

ExtModelAPI

The Interpreter class of the WesahmiServer module implements the ExtModelAPI Java Remote Method
Invocation (RMI) interface. It transforms the XML messages to Arrays of application specific data
containers and buffering messages from the WesahmiServer architecture to the External Model. Method
sendMessage is presented in Table 1.

Table 1: sendMessage method of ExtModelAPI

Method Signature:

void sendMessage(String message) throws RemoteException;

Parameters:
String message XML formatted message

Return value:

void

Modifications:

Application specific part of this method is encapsulated in the private
processSpecialMessages method of the same module. It is used to perform
message specific tasks. The sendMessage uses String List keyIdentifiers_ to
identify message elements used as the database keys and String List
dmIdentifiers_ to identify elements of messages that must be sent directly to
all associated Clients and not stored in the database.

The general format of an input XML message is:

<ExtMessage>
<keyl>valuel</keyl>
<key2>value2</key2>

</ExtMessage>

ClientAPI

The Controller class of the WesahmiServer module implements the ClientAPI RMI interface. It allows
Servlets residing on the web server to provide input from the Client. Method sendClientInput is
presented in Table 2.

Table 2: sendClientInput method of ClientAPI

Method Signature:
boolean sendClientInput(Map input) throws RemoteException;

Parameters:
Map input Client input data as a Map of String keys and

Object values.

Return value:

true if successful, false otherwise

Modifications:

The method uses String Array dbKeys_ to identify input elements that are
used as database keys. Additionally the method uses a String List
dmIndicators_ that contains key values associated with messages that must
be sent directly to the ExternalModel using the BufferAPI and not be stored
in the database.

3.3 Data Storage

This Section discusses application specific implementations of methods presented by interface Database.
In the WesahmiServer module they are located within the WesahmiDB class. Method getData is presented
in Table 3 and method putData is presented in Table 4.

Table 3: getData method of Database interface

Method Signature:
List getData(List<ModelElement> keys,

List<ModelElement> tags) throws Exception;

Parameters:
keys A List containing database query keys as
name-value pairs
tags A List containing queried database table

columuns, i.e. data identifiers, as names with
null values

Return value:

List containing database query results as name-value pairs

Modifications:

The method is used to retrieve data from the database. The implementation
of this method is thus highly dependent on the underlying database schema. It
should be divided to suitable submethods, e.g. one for each distinct database
operation.

Table 4: putData method of Database interface

Method Signature:
boolean putData(List<ModelElement> keys,

List<ModelElement> elements) throws Exception

Parameters:
keys A List containing database query keys as
name-value pairs
elements A List containing target database table

columns, i.e. data identifiers, as names with
new values

Return value:

true if database operation was successful, false otherwise

Modifications:

The method is used to update (put) data in the database. The
implementation of this method is thus highly dependent on the underlying
database schema. It should be divided to suitable submethods, e.g. one for
each distinct database operation.

3.4 Eventing Service

This Section discusses application specific implementation of a notifyIncoming! method presented by
interface fuegocore.notify.core.Notifiable. In the WesahmiServer module it is implemented in
Subscriber class. The method is presented in 5.

Table 5: notifyIncoming method of Fuego’s Notifiable interface

Method Signature:
void notifyIncoming(Notification n)

Parameters:
n An instance of Notification class representing

an incoming notification

Return value:

void

Modifications:

The method is called by the EventingService module to deliver notifications.
It contains an application specific region of code that filters out database keys
(flightNumber, sdt, and clientID) and a Fuego specific type elements from

the notification before passing it on. This should be modified to resemble the
implementation’s requirements.

3.5 Controller

The Controller class of the WesahmiServer module has several implementation specific parts. They are
listed in Table 6.

Table 6: The methods containing application specific code in Con-
troller class

Method Table
run 7
processSubNew 8
processSubRefresh 9
processClient 10
getView 11
storeView 12

processFlightData 13

Table 7: run method of Controller class

Method Signature:
void run()

Parameters:
None

Return value:

void

Modifications:

The method contains the main loop of the Controller. It has references to
data identifiers used as keys for the database.

clientIDStr = (String) contentsTable.get("clientID");
flightNumberStr = (String) contentsTable.get("flightNumber") ;
sdtStr = (String) contentsTable.get("sdt");

Additionally it has references to methods that use these identifiers:

List<Flight> flights = new ArrayList();
flights = processFlightData(contentsTable) ;
processSubNew (sub,clientIDStr, flights);
processSubRefresh(sub, contentsTable);

Table 8: processSubNew method of Controller class

Method Signature:

void processSubNew(fi.wesahmi.notification_service.Subscription sub
String clientID, List<Flight> flights)

Parameters:
sub The SIP subscription to be processed.
clientID A data identifier for the client, used as a db
key
flights A list of data storage helper classes.
Return value:
void

Modifications:

The method is used to process a new SIP subscription. It holds references to
application specific data identifiers (clientID, flightNumber, and sdt) and
uses them to construct an initial URL to be sent for the Browser as a response.

Table 9: processSubRefresh method of Controller class

Method Signature:

void processSubRefresh(fi.wesahmi.notification_service.
Subscription sub, Map contentsTable)

Parameters:
sub The SIP subscription to be processed.
contentsTable The contents received in the body of the SIP
subscription
Return value:
void

Modifications:

The method is used to process SIP subscription refreshes. It holds references
to application specific data identifiers (clientID and flightNumber) and calls
application specific methods:

flights = processFlightData(contentsTable);
client = processClient(sub, clientID, flights);
storeView(newView, client);

Table 10: processClient method of Controller class

Method Signature:

Client processClient(fi.wesah.mi.notification_service.
Subscription sub, int clientID, List<Flight> flights)

Parameters:

sub The SIP subscription to be processed.

clientID A data identifier for the client, used as a db
key

flights A list of data storage helper classes.

Return value:

An instance of Client class that corresponds to the identified old client or a
new client.

Modifications:

The method checks whether a client is old or new and returns an Client
instance. It holds references to data identifier clientID and Flight helper
classes.

Table 11: getView method of Controller class

Method Signature:

View getView(long viewID, List<Flight> flights)

Parameters:

viewID identifier for the View instance
flights list of Flight instances associated with the
View

Return value:

Instance of View that matches the parameters.

Modifications:

The method retrieves a View instance that matches the given parameters. It
holds references to Flight helper class.

Table 12: storeView method of Controller class

Method Signature:

boolean storeView(View view, Client client)

Parameters:
view Instance of View to store.
client Instance of Client to associate with the view.
Return value:
void

Modifications:

The method stores view if it is a new one and associates the given client with
it. It holds references to application specific Flight class and calls application
specific getView method.

View curView = getView(view.getID(), (List<Flight>)view.getFlights())

Table 13: processFlightData method of Controller class

Method Signature:

List processFlightData(Map contentsTable)

Parameters:
contentsTable Contents of the SIP subscription body.

Return value:

Returns a list of Flight instances containing flight specific data found in the
contentsTable.

Modifications:

The method retrieves flight specific data from the SIP subscription contents.
It is fully application specific method.

3.6 Other Application Specific Parts

This Section discusses other application specific regions of the WesahmiServer implementation. View
class has one method, initNotification, that contains application specific code. It is presented in
Table 14. Furthermore, the WesahmiServer module contains classes RexGenerator and Flight that are
almost entirely application specific.

Table 14: initNotification method of View class

Method Signature:

void initNotification(Client client)

Parameters:
client The Client instance to be notified of the

View’s initial contents.

Return value:

void

Modifications:

The method sends initial notification to the target client. It holds references
to Flight class.

4 Web Server

Web server is completely application specific component in the Wesahmi system, because every application
has its own Web pages. Since it is completely separate component, it can be basically implemented on any
technology. In the Wesahmi project, we used Apache Tomcat Servlet container. In addition to ordinary
Web server, the Wesahmi Web server must add DRML elements into the Web pages and send client input
via Java RMI to Wesahmi server.

4.1 Denoting updateble data

The DRML elements identify what data on a Web page can be updated by Wesahmi system. A browser
automatically orders data updates from the Wesahmi server according to the DRML declarations. The
DRML documents are added into head section of an XHTML document. Below is a simplified XHTML
document example, which is created on Web server. In lines 3-7 resides a DRML document. It specifies
on lines 4-6 that elements which have IDs edt, gate, and boardingTime can be updated by Wesahmi server.
The elements are located in lines 13, 15, and 16, respectively. The corresponding data on Wesahmi server
are labeled with the same IDs as in the DRML document.

1: <html xmlns="http://www.w3.org/1999/xhtml">

2 <head>

3 <dref xmlns="http://www.x-smiles.org/ns/drml">

4: <item>edt</item>

5: <item>gate</item>

6 <item>boardingTime</item>

7 </dref>

8 </head>

9: <body>

10: <h1>Boarding pass</h1>

11: <div>

12: <table>

13: <tr><td>Flight: London - Helsinki16:15</td></tr>
14: <tr><td>Passenger:</td><td>Joe Carmichael</td></tr>

15: <tr><td>Gate:</td><td>23</td></tr>

16: <tr><td>Boarding:</td><td>15:45</td></tr>
17: </table>

18: </div>

19: </body>

20: </html>

4.2 Sending client input

User submission of a form is received as a set of name-value pairs on the Web server. These pairs can
be sent further to the Wesahmi server if required by the application. They are submitted via ClientAPI.
The ClientAPT is built on top of JAVA RMI technology. The ClientAPI defines one method:

boolean sendClientInput(Map input) throws RemoteException;

The name-value pairs are stored in the Map object, which is then sent to the Wesahmi server. An example
of sending user input via ClientAPI from a Servlet is listed below. That must be done before browser’s
page request is returned. In the example, the number of traveler’s baggages and a seat she has selected
is stored in the Map. The Map is submitted to the Wesahmi server which has TP address 10.1.0.107 in
this example.

Map hash = new HashMap();
hash.put ("baggages", baggage);
hash.put("clientSeat", seat);

try {
ClientAPI capi = (ClientAPI)Naming.lookup("rmi://10.1.0.107/ClientAPI");
capi.sendClientInput (hash);

}

catch (Exception e) {
e.printStackTrace();

}

5 Browser

The browser does not need any application specific components. It only interpreters DRML documents
and REX events. In addition, it is integrated into SIP client stack. These all are system specific features,
so the X-Smiles browser can be used as such for any application implemented on the Wesahmi system.

X-Smiles must be configured before used for the Wesahmi system. It is done in X-Smiles configuration:

1. Run X-Smiles.

2. Open Edit — Configuration

3. From Main page see Wesahmi system

4. Select Enable the service and set SIP Address

5. Restart X-Smiles

When you have finished the configuration start first the client daemon and then X-Smiles.

In the Wesahmi demo system, we integrated an electronic flight ticket into the browser. It was used to
hold the identity information (i.e., clientID, flight number, and departure time) for the server. Also this
data could be set via X-Smiles configuration as explained above. This is naturally an application specific
component on the browser, but, it is noteworthy, that identification could be done for instance by log in
to the Web server to avoid any specific components on client side. In other words, that is not compulsory
configuration setting for the browser.

References

[1] WeSAHMI Software Architecture and Interface Description. Technical report, WeSAHMI Project,
2007.

10

