WeSAHMI - Design of Experimentation (D9)

April 30, 2007

Abstract

This document describes an Airline Messaging System which can be run on WeSAHMI soft-
ware. The Airline Messaging System is an experimental implementation of a possible real life
system. This document discusses both hardware and software settings of the experimentation.

Contents
1 Introduction
2 Environment
2.1 Hardware

5

2.2 Software

Server-side Components

3.1 Database
3.2 Database Tables
3.3 Database API
3.4 Controller
3.5 External Model
3.6 Imterpreter.

3.6.1 ExternalModel API Implementation

3.6.2 Buffer API
REX Generator
Web Server

3.7
3.8

X-Smiles Browser
4.1 DRML Component
4.2 REX Interpreter

Summary

A Open source software and applying licenses

w w W

—
O W© O 00 00 =] U

10
11

11
11
11

11

13

1 Introduction

This document describes an experimental design of an Airline Messaging System [6] which is
implemented on the WeSAHMI software. The architecture of the WeSAHMI system is described in
detail in WeSAHMI Software Architecture and Interface Description document [1]. This document
focuses on application specific components of the system. The components are discussed in detail
in Sections 3 and 4. In addition, the document describes an intended hardware and network
environment of the experimentation as well as the required third party software to realize the
experimentation.

The architecture of the WeSAHMI system is depicted in Figure 1. The main components of
the architecture are:

e WeSAHMI Server,
e Browser (Client),

e Security Architecture, and

o WWW Server.

Fuego

Notfcaton Service
1
——1
\—!—1 ——1
A

WesahmiServer
Client

External Model

o
 E—
ExternalModel AP —

@\ < O~_ S_ o
~ ~ ~
Client faput ~ ~ ~ \

N
WWW [Server EEGIREN /
RSN /
1 [wwwserver AN
,,,,,,, Parts that contain

application specific code

Figure 1: WeSAHMI Architecture.

WeSAHMI Server has a central role as relaying data from the External Model to a Browser in
the Client and vice versa. It uses Fuego eventing service [7] to deliver only relevant notifications
to each Client. The main purpose of the WeSAHMI Server is to provide a backbone for the
whole platform. Client represents any client node using the X-Smiles browser [5] to connect to
WeSAHMI Server and WWW Server. The Client’s purpose is to provide a dynamic user interface
that can be updated by the WeSAHMI Server when relevant information becomes available from the
External Model that represents the existing real-world system to which the WeSAHMI framework
is connected. The Security Architecture is used to establish authentication and authorization
between Clients and the WeSAHMI Server. Furthermore it is used to protect integrity and secrecy
of the SIP communication. We use an unmodified Apache WWW Server [2] to host user interface
components and also to relay Client input to the WeSAHMI Server which then delivers it to the
External Model.

The architecture components that are highly dependent on the External Model design need
to be application specific (cf. Figure 1). These components include the External Model API,
WeSAHMI Database, SOAP/REX Generator, and the user interface stored on the Web Server.
This enables the framework to be adapted to support different External Models.

2 Environment

To demonstrate the system, at least two computer are needed. One for client software and the
other for the server side software. Figure 2, for one, represents a demo setting for two users where
Web server is separated from the rest of server side software. Our experimentation is equivalent
to the setting in the Figure 2. The following subsections describe the hardware environment of
the experiment and the third party software on which the system is run. The application specific
components, which are developed during the WeSAHMI project, are discussed in the following
sections.

Laptop 1 Laptop 2
User 1 User 2
oSIP & eXosip, oSIP & eXosip,
OpenSSL, OpenSLP, OpenSSL, OpenSLP,

X-Smiles

X-Smiles

Laptop 3
Wesahmi Server & Laptop 4
Fuego WWW Server
oSIP & eXosip, Apache Tomcat,
OpenSSL, MySQL, Java RMI

Java RMI, OpenSLP

Figure 2: The software components on the laptops in the demo.

2.1 Hardware

The hardware of the demo setting is comprised of portable computers. Both server-side and client-
side applications are executed on laptops. The Web server can be either on a separate computer
as in Figure 2 or on the same one with the system itself. Each client must have its own computer.
The computers are connected with each other via WLAN network. The computers are in Ad-Hoc
mode on the network.

2.2 Software

This section describes the software used in the system. The messaging, the SIP communication, the
secure connections, the Web server etc. are implemented with third party software and extended to
fulfill the requirements of the system. The computers are running on Linux operating system. Both
server and client side requires a Java virtual machine version 1.5. In addition, some components
are implemented in C programming language. The software components are discussed below and
their locations in the experimentation are depicted in Figure 2.

Fuego

Fuego is a Java based middleware platform implementing the publish/subscribe paradigm [7]. It is
directed mainly for mobile devices. In WeSAHMI project Fuego is used for filtering data updates
from the WesahmiDB to clients. It also enables distribution of the server architecture.

oSIP and eXosip

The Session Initiation Protocol (SIP) is an application-layer control (signalling) protocol for han-
dling sessions on Internet communication. oSIP is a low level SIP-library written in C language.
It provides functions for building and parsing SIP-messages. eXosip is a higher-level SIP-library
built on top of oSIP. It provides functions for easily setting up, modifying and ending sessions.
eXosip also supports SUBSCRIBE/NOTIFY-messages used in project.

OpenSSL

OpenSSL is an open source toolkit implementing the SSL and TLS protocols as well as a full-
strength general purpose cryptography library. In WeSAHMI project, OpenSSL is used to provide
TLS and DTLS support for the eXosip2 SIP-library.

MySQL

MySQL is an open source database management system. It supports database queries in Struc-
tured Query Language (SQL) and provides support libraries for multiple programming languages
including Java. In the WeSAHMI project experimentation, MySQL is used in the WesahmiDB
module as a cache for flight and client related information.

Java RMI

Java Remote Method Invocation (RMI) is a Java API that provides means for accessing objects
remotely. It enables servers to register references for their objects to a RMI registry from where
clients may discover them. WeSAHMI project experimentation uses RMI to enable servlets hosted
on the web server to communicate with the server implementation.

OpenSLP

OpenSLP[4] is an open source C language implementation of SLPv2 defined by IETF in [3]. SLPv2
is a protocol that enables clients to discover service locations dynamically either directly or through
service directories. The implementation of OpenSLP used in the WeSAHMI project has been
modified to provide Passive (service) Discovery (PD) functionality. It enables the WeSAHMI
server to advertise the SIP service with broad/multicast messages and thus clients can discover it
by only listening to these advertisements.

Apache Tomcat

Tomcat is a Web server that supports Java Servlets and JavaServer Pages (JSP). Both of them
allow to add dynamic content to a Web server using the Java platform. In the WeSAHMI project,
we are using servlets to process user input and create Web pages. The servlets use system’s client
API to submit the input for the system.

X-Smiles

X-Smiles is an open source XML browser. It supports several XML languages and their com-
binations natively. In this project, we utilized the support of XHTML, XForms, Scalable Vector
Graphics (SVG), and Cascading Style Sheets (CSS). In addition to the existing features of X-Smiles,
we have extended it for the project. The extensions are discussed in Section 4.

3 Server-side Components

3.1 Database

WesahmiDB module is a cache for application specific data in WeSAHMI architecture. Its main
function is to enable timely retrieval of data for new clients. It is based on MySQL database and
has an API that supports both data retrieval and storage. The actual mechanism for synchronizing
the WesahmiDB with the External Model is left open due to the fact that it is highly dependent
on the APIs provided by the Finnair backend system, which we do not have access to. Instead, we
assume that the state of the module is initially synchronized with the External Module when the
experimentation is demonstrated. Database tables that contain the actual data are discussed in
Section 3.2 and the functionality of the Database API implemented by the application specific code
in WesahmiDB is presented in Section3.3. Data is identified in user interface and in the database
with specific identifiers that are listed in Table 1.

Table 1: List of Data IDs Used in the Experimentation.

Data ID Description

flightNumber A number ID for each flight, does not identify a flight alone. Used in
combination with sdt.

sdt Scheduled Departure Time; fixed original time of departure used to
identify flights

route Description of the flight, consists of the departure city and destination
city

gate Name of the departure gate

boardingTime The time when the boarding starts

edt Estimated Departure Time; the actual time of departure, intially
same as sdt

clientID Identifies each client globally and uniquely

baggage The number of baggage for each client

seat The identifier of any seat in a plane

clientSeat The identifier of the client’s seat (for messages)

reserved The reservation status; boolean value as an integer.

3.2 Database Tables

Data stored in the database is divided to four tables: flights, flight_boarding, flight_seats,
and client_baggage. This section describes their contents in detail. Each table field is defined in
terms of Field Name, Datatype, NVA, Key Type, and Default Value. Where NVA is an abbrevia-
tion for “Null Value Allowed” that indicates whether the field can have value NULL or not.

The contents of table flights is listed in Table 2. Field £1ightID contains an unique identifier
for each flight matching a composite key consisting of flight number, stored in field £1ightNumber,
and scheduled departure time, stored in field sdt. An example table is presented in Table 3.

Table 2: List of Fields in Table flights.

Field Name | Datatype NVA | Key Type | Default Value
flightID int (10) unsigned | no unique

flightNumber | varchar (10) no primary

sdt datetime no primary

Table 3: Example Contents of Table flights.

flightID | flightNumber | sdt
1 FID1 2007-02-01 15:00:00
2 FID2 2007-02-01 20:00:00

The contents of table f1ight_boarding is listed in Table 4. Field £1ightID contains an unique
key for data associated with each separate flight. Field route contains a description of the flight:
the departure city and the destination city. Field gate contains the name of the gate from which
the flight is boarded. Field boardingTime contains the date and time of the flight boarding in
SQL DATETIME format. Field edt contains the date and time of the estimated departure time
of the flight in the same format. An example table is presented in Table 5.

Table 4: List of Fields in Table flight_boarding.

Field Name | Datatype NVA | Key Type | Default Value
flightID int(10) unsigned | no primary

route varchar (60) no

gate varchar (10) yes null

boardingTime | datetime yes null
edt datetime yes null

Table 5: Example Contents of Table flight_boarding.

flightID | route gate | boardingTime edt
1 helsinki - stockholm | G14 2007-02-01 13:40:00 | 2007-02-09 22:00:00
2 helsinki - madrid G21 2007-02-01 14:50:00 | 2007-02-01 19:30:00

The contents of table flight_seats is listed in Table 6. Fields £1ightID and seat contain
a combination key for data associated with a seat on a certain flight. Field reserved contains a
boolean value indicating the reservation status of the seat. Field clientID contains an identifier
of the client whom the seat is reserved to. An example table is presented in Table 7.

Table 6: List of Fields in Table flight_seats.

Field Name | Datatype NVA | Key Type | Default Value
flightID int(10) unsigned | no primary

seat varchar (10) no primary

reserved tinyint (1) yes null

clientID varchar (60) yes null

Table 7: Example Contents of Table flight_seats.

flightID | seat | reserved | clientID
1 Al 1 14528

1 B2 0 null

1 C3 0 null

1 D4 1 18093

Database table client_baggage contents are listed in Table 8. Fields £1ightID and clientID
contain a combination key identifying each client on a certain flight whose baggage information is
currently stored in the cache. Field baggage contains an integer value indicating the number of
baggage the client has handed over at the baggage drop counter. An example table is presented in
Table 9.

Table 8: List of Fields in Table client_baggage.

Field Name | Datatype NVA | Key Type | Default Value
flightID int(10) unsigned | no primary

clientID varchar (60) no primary

baggage int (10) unsigned | yes null

Table 9: Example Contents of Table client_baggage.

flightID | clientID | baggage
1 14528 1
2 14529 null

3.3 Database API

This section presents the implementation specific functionality of a Database API. It is imple-
mented by the WesahmiDB module and provides means for retrieving data from the database
with method getData as well as updating data in it with method putData. The API uses Java
ArrayLists of Wesahmi specific container classes ModelElements to carry data in both directions.
Each ModelElement has two fields: String name, which is holds the description of the data element
and String value, which holds the value of the data element.

getData

Enables data retrieval from the database for a given set of keys and tags. The tags are an Array
of ModelElements that have null value field but contain data IDs in their name fields

Return value: ArrayList
Returns an array of ModelElements containing the requested data or null if data is not
available or an error occurs.

Arguments: ArrayList keys, ArrayList tags

Parameter keys is an array of ModelElements containing key’s names and values. They are
used as keys in the SQL query. Parameter tags is an array of ModelElements containing field
names. They are used as selected fields in the SQL query.

The method’s functionality is described in the following pseudocode:

select flightID from table flights
where flightNumber and sdt equal keys;

if(tags contains "seat"){

select seat, reserved from table flight_seats
where table.flightID equals flightID;

return Array(seat, reserved)

}else if(tags contains "clientSeat") {

select seat from table flight_seats

where table.flightID equals flightID and table.clientID equals keys(clientID);
return Array(seat)

Yelse {

while(curTag in tags){

select curTag from tables flights, flight_boarding
where flightID equals flights.flightID and
flights.flightID equals flight_boarding.flightID;
add curTag to resultArray

X

return resultArray

}

putData

Enables data storage to the database based on given set of keys and data elements.

Return value: boolean
Returns true if operation succeeds or false otherwise.

Arguments: ArrayList keys, ArrayList elements

Parameter keys is an array of ModelElements containing key’s names and values. They are
used as keys in the SQL query. Parameter elements is an array of ModelElements containing
SQL table field names and values to be stored in them. They are used in a SQL query.

The method’s functionality is described in the following pseudocode:

select flightID from table flights
where flightNumber and sdt equal keys;

if (elements contain "clientSeat"){

update table flight_seats set table.reserved to
elements(reserved) and table.clientID to
elements(clientID) where table.flightID equals
flightID and table.seat equals elements(seat);

}else if(elements contain "baggage"){

update table client_baggage set table.baggage to
elements(baggage) where table.flightID equals
flightID and table.clientID equals keys(clientID);

}else if (elements contain "newFlight"){

while(elements contain curElement){

insert into tables flights and flights_boarding (table.element)
values (elements.element);

}

Yelse{

update tables flights and flights_boarding set
table.element to elements.element

where flights.flightID equals flightID and
flights.flightID equals flight_boarding.flightID;
X

publish updated elements with Fuego

3.4 Controller

The Controller is a central entity in the Wesahmi Server architecture handling all incoming mes-
sages and relaying information between elements such as Views and the WesahmiDB. It is also
responsible for handling client input and storing it into WesahmiDB. Due to the Database API
implementation presented in Section 3.3, the Controller needs to be aware of the possible keys
in incoming messages. Therefore it needs to identify ModelElements named flightNumber, sdt
(scheduled departure time), and clientID and give them to the putData or getData methods in
ArrayList keys.

3.5 External Model

The External Model in the Wesahmi architecture represents the system backend to which the
rest of the architecture is connected to. It is simulated in the WeSAHMI experimentation by a
command line tool. The tool enables user to send XML messages to the Interpreter either by giving
their contents on the command line or by giving a path to a file containing several messages.

The tool is called extModel and it takes two command line switches -m and -f. The switch
-m must be followed by space separated list of element element-value pairs. Each given pair is
separated and stored in to a DOM node as a child for a message node. The DOM tree is then

written out as XML and given to the Interpreter as message parameter of sendMessage method.
Command syntax:

extModel -m elementl=valuel element2=value2 ...

The switch -f must be followed by a single file path addressing the file that contains the messages
in XML format. The whole file is read to a DOM tree and each of the message nodes is then
transformed to XML and sent to the Interpreter using sendMessage method in order but with
random delays. Command syntax:

extModel -f messages.txt
The file containing the messages is of the following syntax:

<message>
<elementl>valuel</elementi>
<element2>value2</element2>

</message>
<message>

</message>

3.6 Interpreter

The Interpreter functions as the mediator between the External Model and the Wesahmi Server
implementation. It interprets XML messages received from the External Model to ArrayLists of
ModelElements and uses the Database API to store them to the cache provided by the WesahmiDB
module. It also formulates XML messages based on the ArrayLists of ModelElements in order to
allow client input to be delivered to the External Model. Furthermore the Interpreter uses FIFO
buffer to store outgoing messages. The XML messages accepted and formed by the Interpreter are
of the following form:

<message>
<elementl>valuel</elementi>
<element2>value2</element2>

</message>
3.6.1 ExternalModel API Implementation

API allows XML messages to be sent to the Interpreter as well as message retrieval from it.

sendMessage

Delivers a given message to the Interpreter for parsing.

Return value: void

Arguments: String message

Parameter string contains the incoming message as String object.

The Interpreter uses DOM parser to formulate a DOM tree from the XML message. The DOM
tree is then used to formulate an ArrayList of ModelElements that can be stored to the WesahmiDB
cache using the putData method of the Database API. The Interpreter needs therefore to be able
to identify keys f1ightNumber, sdt, and clientID. The method has no return value.

retrieveMessage

Retrieves the next message in the FIFO buffer of the Interpreter and removes it.
Return value: String
Arguments:
Return value contains the next message of the buffer as a String.

3.6.2 Buffer API

API provides a method for adding outgoing messages to the Interpreter’s FIFO buffer.

bufferMessage

Stores given message in XML format to the FIFO buffer of outgoing messages.

Return value: Boolean

Arguments: ArrayList message

Parameter message contains the contents of the outgoing message as an ArrayList of ModelEle-
ments.

The Interpreter formulates a DOM tree based on the input parameter and writes an XML
message based on the tree. A String containing the XML message is then added to the end of the
FIFO buffer. The method returns true on success or false otherwise.

3.7 REX Generator

The SOAP/REX Generator is an application specific component used by the Views. It creates the
content of the notifications based on the provided data and interprets client input gotten via the
messaging service.

Creating Messages

Fuego provides the notifications for the View as name-value pairs. The View delivers the pairs
further to the Generator, which generates the SOAP messages. To generate the content, the
View calls public String generateMessage(Hashtable data) method on the Generator. The
argument of the method is a Java Hashtable which contains the name-value pairs. The method
returns a String object which is the SOAP message. The payload of the SOAP message is either
a URL or REX message depending on the input data. An example of the SOAP message carrying
URL:

<env:Envelope xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<env:Body>
<wes:0OpenLocation xmlns:wes="http://www.tml.hut.fi/Research/wesahmi">
<wes:service>finnair</wes:service>
<url>http://www.tkk.fi</url>
</wes:0penLocation>
</env:Body>
</env:Envelope>

Below is an example of creation of a REX message. The generator receives a name-value pair
from the View, e.g., a new departure time:

(edt, 14:30)

The generator creates a markup, which is sent to the user interface. From the above name-value
pair, a following XHTML element is created:

<p id="edt">14:30</p>

The element is transported into the UI via REX event. The REX contains the element itself
and, in addition, target element in the document and type of the mutation event. To replace the
existing departure time in the document, the REX would look like:

<rex xmlns=’http://www.w3.org/ns/rex#’>
<event target=’id("edt")’ name=’DOMNodeRemoved’>
<p id="edt">14:30</p>
</event>
</rex>

10

The REX is sent within a SOAP message to the client side.

<env:Envelope xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<env:Body>
<wes:ContentChanged xmlns:wes="http://www.tml.hut.fi/Research/wesahmi">
<wes:service>finnair</wes:service>
<rex xmlns=’http://www.w3.org/ns/rex#’>
<event target=’id("edt")’ name=’DOMNodeRemoved’>
<p id="edt">14:30</p>
</event>
</rex>
</wes:ContentChanged>
</env:Body>
</env:Envelope>

Interpreting Client Input

The View calls public Hashtable getData(String message) to receive the client input as name-
value pairs. The generator receives the name-value pairs within a SOAP message, which it parses
and returns the pairs in a Hashtable.

3.8 Web Server

The Web server provides the user interfaces for the system. The implementation is the Apache
Tomcat servlet container. The Web Server responds to the browser’s page requests and handles
the client input. The client input is forwarded to the Controller of the system via client API.

The Web Server creates the user interfaces according to the page requests. The page request
identifies the user and the task. The changing content for a Ul is added on client side when the
browser gets a corresponding notification. The notification is a respond to an order made by the
browser. The browser places the order based on a DRML document which is embedded into a Ul
document.

4 X-Smiles Browser

4.1 DRML Component

Data Reference Markup Language (DRML) specifies the content which is fetched from the data
base for the Ul through the messaging service. The DRML Component on the browser handles the
DRML documents. It recognizes the data references in a document and orders the content from
the messaging service via Browser Subscriber. See WeSAHMI Architecture document for DRML
specification.

4.2 REX Interpreter

As mentioned above, the data update notification contains a SOAP message, which identifies the
document the update is targeted. The REX message within the SOAP message identifies the
element within the document and the mutation event on it. The REX Interpreter parses the REX
messages and modifies the document according to the event.

5 Summary

This document introduces the Airline Messaging System implementation on the WeSAHMI soft-
ware. We have defined both the hardware and the software which are required to demonstrate the
use case implementation. To fully utilize all the capabilities of the software, one needs at least
two client side computers to simulate multi-user system. Also, we propose to separate the WWW
Server from the Application Server because it seems to be a current industry practice. That is,

11

at least four portable computers are needed to demonstrate the system. It is noteworthy that
along with the WeSAHMI software and application specific components, a number of third party
software is needed in the system. They are also discussed in this document.

References

WeSAHMI Software Architecture and Interface Description. Technical report, WeSAHMI
Project, 2007.

Apache website. At http://www.apache.org, February 2006.

E. Guttman, C. Perkins, J. Veizades, and M. Day. Service location protocol, version 2. RFC
2608, IETF, June 1999.

OpenSLP Project Group website. At http://www.openslp.org, April 2004.

K. Pihkala, M. Honkala, and P. Vuorimaa. A browser framework for hybrid xml documents.
In Internet and Multimedia Systems and Applications, IMSA 2002. IMSA, August 2002.

Mikko Pohja and Matti Alanne. WeSAHMI Messaging System. Technical report, WeSAHMI
Project, December 2006.

Sasu Tarkoma, Jaakko Kangasharju, Tancred Lindholm, and Kimmo Raatikainen. Fuego:
Experiences with mobile data communication and synchronization. In 17th Annual IEEE
International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).

12

A Open source software and applying licenses

Table 10: List of Open Source Software and their Licenses.

Software License Usage

GNU oSIP Library LGPL Low layer SIP-
library

eXosip - the eXtended | GPL Higher layer SIP-

osip Library library built on top
of oSTP

OpenSLP BSD Bootstrapping of

environment

X-Smiles browser

The Telecommunications Software and Multime-
dia Laboratory, Helsinki University of Tehcnol-
ogy Software License, Version 1.0 (based on the
Apache Software License Version 1.1)

Web browser

Apache Tomcat Apache License, Version 2.0 Web server

OpenSSL OpenSSL license Open Source
toolkit implement-
ing the SSL and
TLS protocols
as well as a full-
strength ~ general

purpose cryptogra-
phy library.

Software Developed by | MIT Deliverable
Wesahmi

Fuego MIT Eventing system
MySQL GPL Database manage-

ment system

13

