
WeSAHMI Software Arhiteture and Interfae Desription(D6,D7)
February 28, 2007Abstrat.WeSAHMI Software Arhiteture and Interfae Desription doument ontains two Wesahmi deliverablesD6 and D7. It desribes the software arhiteture and interfae design for a platform that enablesdevelopment of highly interative servies for mobile devies. The doument ontains desriptions ofserver, browser, and seurity arhitetures. Additionally, it presents also SIP, Client, Eventing, andDatabase interfaes. Appliation spei� omponents and interfaes are disussed separately as well asfew minor open issues that are to be solved.Contents1 Introdution 22 Overview 33 Server Arhiteture 43.1 Wesahmi Database . 43.2 Controller . 43.3 Subsriber . 43.4 View . 73.5 SOAP/REX Generator . 74 Browser 74.1 Browser Subsriber . 84.2 SLP Handler . 84.3 DRML Component . 94.4 REX Intepreter . 94.5 Submissions . 95 Seurity Arhiteture 95.1 Edge Proxy . 105.2 Mobile Host . 115.3 Noti�ation servie . 111

6 SIP API 116.1 Overall arhiteture . 126.2 SIP UA API on Client Side . 126.3 SIP UA API on Server Side . 147 Client API 158 Eventing API 169 Database API 1610 Appliation Spei� Components and APIs 1610.1 External Model API . 1710.2 Database Design . 1710.3 Operation of the SOAP/REX Generator . 1710.4 Web Server . 1811 Open Issues 18Bibliography 20A Open soure software and applying lienses 21B Data Referene Markup Language (DRML) 22B.1 Introdution . 22B.2 Struture of a DRML Doument . 22B.3 Proessing DRML Douments . 221 IntrodutionThis doument de�nes the software arhiteture and interfaes designed by the WeSAHMI projet for aplatform that enables development highly interative servies for limited mobile devies. The platformsupports separation of user interfae and the atual ontent to two hannels. This dual hannel approahallows granular ontent updates in real-time thus enabling riher user experiene than traditional ap-proahes. Furthermore it enables more omplex appliations to be built over the platform. The WesahmiServer is also designed to sale in order to support high-tra� solutions. Most of the internal elementsan be run in parallel on separate nodes to balane load e�etively.The WeSAHMI use ases [7℄ identi�ed two prinipal need for ommuniation between the Finnair ap-pliation server and the ustomers: pull- and push servies. Both of these servies to appliations areprovided through SIP. SIP enables lients to register to ertain servies. One registered, lients aneither pull information out from the appliation server, or the server an send asynhronous noti�ationsto the lients. These noti�ations an arry appliation-spei� data, e.g., in XML form. The noti�a-tions an be also be used to inform the ustomer that ertain information would be available, and theustomer an deide when she wants to pull the information to her devie. One example ould be arelatively large applation payload, whih waits for the ustomer's approval before being sent (throughustomer-initiated pull) to her devie.The WeSAHMI use ases identi�ed information that is valuable for stakeholders. Moreover, the availabil-ity of the push servie is valuable for stakeholders. In this doument, arhiteture for seure push servieover inseure wireless environment will be desribed.2

This doument is strutured as follows. Setion 2 presents a general overview of the doument ontents. InSetion 6 we disuss SIP API and in Setion 7 an API for lient input is presented. Setion 3 disusses theore server arhiteture and Setion 4 disusses the lient's browser design. Next, in Setion 5 a seurityarhiteture is presented. Then, Setion 10 disusses all appliation spei� parts of the arhiteturedesign. Finally, Setion 11 disusses few open issues that will be solved as the projet progresses.2 OverviewA general overview of Wesahmi Arhiteture is presented in Figure 1. The main omponents of thearhiteture are:
• Wesahmi Server,
• Browser (Client),
• Seurity Arhiteture, and
• WWW Server.Wesahmi Server has a entral role as relaying data from the External Model to Browser in Clients and vieversa. It uses Fuego eventing servie [8℄ to deliver only relevant noti�ations to eah Client. The mainpurpose of the Wesahmi Server is to provide a bakbone for the whole platform. Client represents anylient node using its X-Smiles browser [6℄ to onnet to Wesahmi Server and WWW Server. The Client'spurpose is to provide a dynami user interfae that an be updated by the Wesahmi Server when relevantinformation beomes available from the External Model that represents the existing real-world system towhih the Wesahmi framework is onneted. The Seurity Arhiteture is used to establish authentiationand authorization between Clients and the Wesahmi Server. Furthermore it is used to protet integrityand serey of the SIP ommuniation. We use an unmodi�ed Apahe WWW Server [1℄ to host userinterfae omponents and also to relay Client input to the Wesahmi Server whih then delivers it to theExternal Model. The arhiteture omponents that are highly dependent on the External Model designneed to be appliation spei�. These omponents inlude the External Model API, Wesahmi Database,SOAP/REX Generator, and the user interfae stored on the Web Server. This enables the framework tobe adapted to support di�erent External Models.

WesahmiServer

REX Generator
Database APIEventing API

WesahmiDB

Subscriber InterpreterControllerView

Fuego

Notification Service FuegoServer

Client

Browser

External Model

MessageBus

WWW Server

WWW Server

ExternalModel API

SIP API (Notifier)

Client Input

Fuego API

1

0..*

10..*
1 1

0..*

1

1

0..*

Figure 1: Wesahmi Arhiteture.The arhiteture ontains the following main interfaes:
• SIP APIs,
• Client API,
• Eventing API,
• Fuego API, 3

• Database API. and
• External Model API.SIP APIs are used by Browser and the ore server omponents to ommuniate using SIP SUBSCRIBE-NOTIFY framework. Client API is used to relay lient input from the WWW Server to the WesahmiServer. Eventing API is used by the Wesahmi Database to publish updates when hanges in its stateour. The Controller that implements this API uses in turn Fuego API to perform the atual publiation.Database API is used by Controller to retrieve data from the Wesahmi Database and also to store data.The API is used also by Interpreter to store data to the Wesahmi Database. External Model API is anappliation spei� interfae that enables the External Model to send messages to the Wesahmi Serverand also to retrieve messages from it.The data delivery push provided through SIP leverages seurity mehanisms on multiple layers. Authen-tiation solution inludes transport layer seurity protool to authentiate networking omponent loatedat the trusted WeSAHMI domain. In addition, SIP registration proedure provides user agent authen-tiation. Furthermore, appliation level seurity measures an be used to provide end-to-end seurityqualities.3 Server ArhitetureThis setion desribes the ore omponents of the Wesahmi Server arhiteture: Wesahmi Database,Controller, View, Subsriber, and REX Message Generator. They implement the logi whih keeps trakof eah lient's state information, delivers targeted updates, and forwards lient's input to the ExternalModel. A general usage senario is presented in Figures 2 and 3.3.1 Wesahmi DatabaseThe Wesahmi Database operates as a loal ahe for data of the External Model, whih is the operationaldatabase whose ontents is the soure of real life data. Wesahmi Database is based on MySQL database [5℄,enables persistent data storage, and implements Database API that provides methods for data retrievaland data updating. The API is presented in Setion 9. Simple ModelElement lass is used to ontainname-value pairs.Database is appliation spei� omponent in the infrastruture and thus the implementation of bothfuntions desribed in this setion are dependent on the struture of the database.3.2 ControllerController is a entral element of the Server arhiteture. It is responsible for initializing the WesahmiDatabase and SIP Noti�ation servie. It also establishes onnetion to the Fuego server and reates awesahmi hannel used to onvey update messages from the Wesahmi Database to Subsriber instanes.The Controller uses SIP API funtion hekForSubsriptions to poll for new subsriptions. When asubsription is reeived, it uses loal newClient funtion to initialize a new Client instane and stores itloally. Then it uses SIP interfae to send an initial noti�ation to the lient's browser ontaining the URIof the �rst user interfae page on the Web Server. When the browser sends in a request for a new page,the Controller retrieves the View's initial ontents from the WesahmiDB based on the tags in the requestmessage. Controller then initializes a new View instane and gives it SIP interfae, Client, the tags andthe initial ontents as parameters. Controller provides also an Eventing API for the Wesahmi Database.It provides means for publishing updates through the Fuego eventing system. A detailed desription ofthe API is in Setion 8.3.3 SubsriberThe Subsriber enapsulates the Fuego interfae. It reates noti�ation subsriptions to the Fuego servieand uses SIP API to deliver noti�ations to subsribers.At initialization Subsriber sets EventConnetion parameters and opens a new EventSession to the Fuegoserver. Then it uses the orresponding View's keys and tags to reate Fuego subsription template vetor,and reates a new subsription using the EventSession and the template vetor.4

Figure 2: Operation of Wesahmi Server Arhiteture part 1/2.5

Figure 3: Operation of Wesahmi Server Arhiteture part 2/2.6

Subsriber implements Fuego's Notifiable interfae and thus alsopubli void notifyInoming(Notifiation n) method whih is alled every time Fuego re-eives a noti�ation that mathes the Subsriber's subsription. The method stores the ontentsof the noti�ation into an array of ModelElements and then either forwards this array diretly tothe parent View or stores it into a bu�er of reeived noti�ations. Subsriber provides methodboolean hasNextNotifiation() that returns true if one or more noti�ations are bu�ered or falseotherwise. Subsriber provides also method ArrayList getNextNotifiation() that returns the nextarray of ModelElements orresponding a bu�ered noti�ation or null if the bu�er is empty.3.4 ViewEah View instane in the Wesahmi Server represents one lient spei� open view to the system. Viewreeives noti�ations, transforms and forwards them to the lient browser. The View ould also beextended to perform data transformation or �ltering based on Client's pro�le.When a View instane is initialized it reeives as parameters Client, array of tags as ModelElements, andinitial ontents as an array of ModelElements. First, View initializes a Subsriber that makes noti�ationsubsriptions for Fuego on its behalf based on the tags. After this View heks for new noti�ationsby alling the hasNextNotifiation and getNextNotifiation methods of the Subsriber. View hasmethod boolean notify(ArrayList notifiation) whih is alled by the Subsriber to deliver newnoti�ations. The parameter notifiation is an array of ModelElements and ontaining the new noti-�ation. The method returns true if it ompletes suessfully and false otherwise. The method usesREX message generator to form a new REX-message based on the noti�ation and then enapsulates itto a SOAP message. The SOAP message is then sent to the lient's browser using the SIP API.3.5 SOAP/REX GeneratorThe SOAP/REX Generator is an appliation spei� omponent used by the Views. It reates the ontentof the noti�ations based on the provided data and interprets lient input gotten via the messaging servie.Creating MessagesThe View provides the data for the Generator as name-value pairs. The pairs are stored in a Hashtable.To generate the ontent, the View alls publi String generateMessage(Hashtable data) method.The method returns a String objet. The ontent is a SOAP message. The payload of the SOAP messageis either a URL or REX message depending on the input data. Examples of messages are shown inSetion 10.3.Interpreting Client InputThe View alls publi Hashtable getData(String message) to reeive the lient input as name-valuepairs. The generator reeives the name-value pairs within a SOAP message, whih it parses and returnsthe pairs in a Hashtable.4 BrowserThe browser needs to support several tehnologies to be able to utilize the WeSAHMI messaging servie.It must be able to register for the servie aording to the SLP advertisements, order data updates bydata referenes, handle data update feeds, and make partial submissions. The required omponents andtheir relations to the other lient side omponents are depited in Figure 4. The general browser oreomponents are not shown in the �gure.The interation of the lient side omponents and with the servers are shown in Figure 5. The browseromponents are disussed in more detail in the following subsetions.7

SLPHandlerDRMLComponentSLPUASIPSubscriber
Browser
BrowserSubscriberXHTMLComponent
REXIntepreterXFormsComponent

Figure 4: Required omponents on the browser.:Browser :SIPSubscriber:SLPUA:ApplicationServer:WWWServer
3:registerToService(service,username)

17:ReturnvalueOK

2:Advertisement
7:checkForNotifications(notification)9:XForms+XHTML 11:NewView(addr,tags)13:checkForNotifications(notification)15:checkForNotifications(notification)16:SubmitclientinputinXML18:unregisterFromService(id)19:Closeview(ViewID)

10:sendSubscriptionRefresh(subscriptionId,data)
4:SUBSCRIBE6:NOTIFY(addr,0)8:FetchUIContent
1:Advertisement

12:NOTIFY(viewcontent,viewID,msgnumber)14:NOTIFY(dataelement,viewID,msgnumber)

5:InitialNOTIFY

Figure 5: Interation of the lient side omponents.4.1 Browser SubsriberThe Browser Subsriber implements the SIP Subsriber API. All the browser omponents uses the BrowserSubsriber to ommuniate with the SIP Subsriber. When the Browser Subsriber has registered tothe servie, it polls the SIP Subsriber for the new noti�ations. The Browser Subsriber reeives thenoti�ations as SOAP messages whih inludes a REX [3℄ message or a URL. The URL points to anew doument whih browser is to open. The Browser Subsriber forwards the URL to the XHTMLComponent, whih opens the doument. The REX message, for one, is forwarded to the REX Intepreter.4.2 SLP HandlerThe browser reeives an initial advertisement of the servie from SLP UA. The SLP UA ommuniateswith the browser via prede�ned soket. The SLP Handler listens the soket. When an advertisement8

arrives, the Handler subsribes to the servie via Browser Subsriber. The ad inludes a servie ID anda user name whih are used for the registration to the servie.4.3 DRML ComponentData Referene Markup Language (DRML) spei�es the ontent whih is fethed from the data basefor the UI through the messaging servie. The DRML Component on the browser handles the DRMLdouments. It reognizes the data referenes in a doument and orders the ontent from the messagingservie via Browser Subsriber. See Appendix B for DRML spei�ation.4.4 REX IntepreterAs mentioned above, the data update noti�ation ontains a SOAP message, whih identi�es the dou-ment the update is targeted. The REX message within the SOAP message identi�es the element withinthe doument and the mutation event on it. The REX Intepreter modi�es the doument aording tothe REX message.4.5 SubmissionsThe traditional HTTP POST method is used to submit omplete forms to the Web Server. The WebServer forwards them to the Controller through Client API (f. Setion 7). It is also possible to submitsmaller data fragments via the messaging servie. The XForms Component submits the data to theBrowser Subsriber, whih reates name-value pairs from the data and sends them to the servie withina SOAP message.5 Seurity ArhitetureThis setion desribes seurity arhiteture of the data delivery push from trusted WeSAHMI environ-ment to inseure wireless network environment. Whether the used aess network inludes third partyaddress translators or network level aess ontrollers allowing lient-initiated onnetions, an additionalnetworking element (Edge Proxy) is applied to enable seure data delivery push.

Figure 6: Layer view of the systemEnd-to-end onsiderations of this arhiteture inlude both the ommuniation and seurity aspets.Figure 6 shows the ase in whih end-to-end ommuniations take plae on the appliation level. Thisis the ase when address translator is plaed in the aess network. If translators do not exist, the levelof end-to-end ommuniations an take plae at the lower level, preferably on the transport or networklevel.This arhiteture leverages seurity mehanisms on multiple layers. Transport layer seurity protool(TLS/DTLS) is used to authentiate networking element loated at the trusted WeSAHMI domain. Inaddition, transport layer seurity protool an also be used to authentiate the mobile host. Authentia-tion of the mobile host is always initiated by the server side, in this ase by the Edge Proxy. Authentiationon this level is based on signature veri�ation. Furthermore, SIP registration proedure provides useragent authentiation ahieved using a hallenge-response protool inside a on�dential ommuniation.Appliation level seurity measures an be used to provide end-to-end seurity qualities.9

Shape of the tra� in the push system is asymmetri. Depending on the amount and frequeny ofinoming data from the noti�ation servie, ongestion an our on the additional networking element.Overloading of the additional networking elements in the network an ause derease in system availability.In this arhiteture, server-side seurity protool proessing is not needed on the mobile host. This de-reases mobile host's proessing load, yet inreases proessing load and amount of states in the additionalnetworking element. On the other hand, the proessing load of the additional networking element anbe balaned over several physial hosts. Furthermore, the derease of the mobile host's proessing loaddereases mobile host's energy onsumption.The additional networking element serves as a barrier against denial-of-servie attaks. In this arhi-teture, mobile hosts will not ontat noti�ation servie diretly. For example, ratio of ommuniationattemps may be limited at the Edge Proxy. Coarse grained aess ontrol is best suited on lower networklayers. Fine grained ontrol mehanisms an be implemented on the signaling and appliation layer.This arhiteture favors soft-state signaling and aims to avoid additional, inonsistent hard-states innetwork, whih have to be expliitly leaned up due to sudden UA disonnetion or reboot. Thus,this arhiteture leverages reently proposed SIP outbound extension [4℄ that arries additional statealong with requests and responses. In addition, this arhiteture enourages to push states that are dueommuniation and seurity mehanisms to the edges of the system. In network, states are due theadditional networking element (Edge Proxy) onsisting of transport and seurity mehanisms. If thesemehanisms of the additional networking element fail, the data delivery push is not available for themobile hosts. Nonetheless, multiple networking elements an be deployed to derease the possibility oflost noti�ations due the element failure.5.1 Edge ProxyEdge Proxy forwards inoming noti�ation messages to mobile host's user agent over impliitly authen-tiated �ows.In aordane with SIP outbound extension [4℄, a �ow is oneptually onsidered as a bidiretionalstream of UDP/DTLS datagrams or a TCP/TLS onnetion. The reation of these �ows requires UAauthentiation by logial SIP registrar.A method to assoiate �ows with inoming requests is by using a token. This token, denominated '�owtoken', will be reated at the edge proxy when the UA REGISTER message rosses the edge proxy andwill ontain enough information suh as the origin and destination IP addresses and ports as well as theprotool in use as illustrated in Figure 7. The �ow token will be added to the body of the REGISTERmessage in order to let the registrar to store it along with other information related to the UA.
K 20-octet secret crypto random

S byte array
enum protocol

local ip:port

remote ip:port

flow

flow tokenFigure 7: Flow token, eq. 1
flowtoken = BASE64(HMACK,SHA1−80(S)||S) (1)A future noti�ation message delivered to ertain UA (identi�ed by a SIP URI) will require a searh intothe registrar ontent that will return the ontat information about where the message must be forwardedand also a respetive �ow token related to the UA that must be reahed. In addition, a Path vetor valueis used to indiate to whih Edge Proxy the inoming noti�ation should be sent.When the message reahes the Edge Proxy, it identi�es the presene of a �ow token from the SIP bodyand deodes it in order to know over whih �ow the inoming noti�ation must be sent to reah the UA.Other system elements are mobile host and noti�ation servie. Both of these inlude SIP user agentfuntionality that proess stateful SIP transations.10

UA EP

8. NOTIFY

Registrar

6. NOTIFY

2. lookup

UA

4. return

UA
EP

RegistrarUA

1.

5.

7.

9.

3.

Figure 8: Notify over authentiated �ow5.2 Mobile HostThe mobile host as a SIP user agent (UA) an initiate a �ow to Edge Proxy by sending REGISTERrequest to the registrar as shown in the step 1-5 in Figure 9. Then the registrar will hallenge the mobilehost for authentiation. After suessful registration indiated by reeiving 200 OK response as shownin the step 6-9 in Figure 9, the mobile host sends STUN Binding requests over the same �ow for sendingSIP messages to keep the �ow alive. This established and ongoing �ow an later be used for seure push.
UA EP

2. REGISTER

8. 200 OK

UA/R

4. REGISTER

6. 200 OK

EPUA
UA/R

1.

3.

5.

7.

9.

Figure 9: Authentiated �ow establishmentReliability is ahieved by having the mobile host form multiple �ows to the Edge Proxy. Eah mobilehost is pre-on�gured with a set of outbound-proxy-URI. For eah outbound proxy URI in the set, themobile node should send a REGISTER request. If any of these �ows fails, the mobile node has to reoverthe �ow by using bako� mehanism to avoid avalanhe restart on the Edge Proxy.5.3 Noti�ation servieAs illustrated in Figure 8 step 1-4, the noti�ation servie user agent fethes the ontat address of themobile host by querying the registrar. Step 5-9 shows the proedure of pushing NOTIFY request to themobile host. The NOTIFY request is proxied to the Edge Proxy and then the Edge Proxy forwards it tothe mobile host through the existing �ow initiated by the mobile host before hand.6 SIP APIThe SIP Spei� Event Noti�ation extension [2℄ is used to provide a messaging servie to lient and serverside appliations. The appliations an tell what noti�ations they are interested. A daemon on both11

end points keeps trak of appliations and what events they are interested in. The daemon handles theSIP-message transfer, and passes the noti�ation to appliation (e.g., a SOAP body). The fundamentalonept is that the user-level appliations are SIP unaware, i.e., they do not need to understand how theSIP protool works. The API desribed in this spei�ation ahieves this.6.1 Overall arhitetureThe SIP Event Noti�ation Servies supports by default PUSH-operations, that is, the ontent serveran push data to the lient. Figure 10 shows the operation of the SIP-based PUSH servie. First thelient must register to the servie it is interested in. The lient �rst registers with the loal daemon,and the daemon sends a SUBSCRIBE message, whih the ontent server aknowledges with a NOTIFY.After the lient has registered, it an query the loal daemon for messages. If a message from the ontentserver has arrived, the daemon will deliver the message to the lient appliation
Application Daemon

Register

Init

Poll

Data

Poll

Data

NOTIFY (data)

NOTIFY (data)

NOTIFY (initialization)

SUBSCRIBE

Server

Figure 10: Operation of data PUSH.Here the body on the NOTIFY is opaque to the SIP protool. Any ontent an be delivered between theend points. Yet, in WeSAHMI we mainly fous on XML and SOAP messages.The support for PULL-servies is similar. The lient �rst registers with the loal daemon, and eventuallywith the ontent server. In order for the lient to make a PULL-request, it must know what ontent topull from the server. In our design, the ontent server an send desriptions of available ontent. Eahontent is desribed and identi�ed with an event ID. When reeiving these ontent or event noti�ations,the lient an deide whih ontent to feth (pull) and when. For example, there ould be some ratherlarger ontent available, and it is up to the lient to deide whether it wants to reeive it. For example,the lient is onneted to a low-speed GPRS network, and an deide that one the devie is onnetedto a high-speed network, it will request the ontent to be delivered.Again, the body of the event noti�ation and the atual ontent data are opaque to the SIP stak. Theevent ID is inluded in the noti�ation body and used by the appliation.The logi of the PULL-servie on the SIP protool layer is presented in Figure 11. Here the ontent serversends a NOTIFY message whih arries in the body a desription of the available ontent, and a eventID. One the lient is ready to reeive the otent, it sends a (refresh) SUBSCRIBE message arryingthe ontent event ID. This instruts the ontent server to deliver the requested ontent in a subsequentNOTIFY message.6.2 SIP UA API on Client SideOur SIP protool stak in implemented in C. The existing interfae an be used diretly by C-languageappliations. Yet, in order to support Java-based appliations, we have a Java library that ommuniateswith the loal daemon using sokets. This setions presents the API alls for this library.12

Application Daemon
Register

Init

NOTIFY (data=event ID)

NOTIFY (initialization)

Server

Data=event ID

Poll

SUBSCRIBE

SUBSCRIBE (event ID)

Data
NOTIFY (data)

Poll

Figure 11: Operation of data PULL.Subsriber-lassThis lass provides the methods for using the noti�ation servie to lient. Client an use this lass forreeiving noti�ations from server. Here are the methods provided by the Subsriber lass.registerToServieRegisters to the loal noti�ation lient daemon. After the registration subsriber will reeive noti�ationsfrom the servie it has subsribe.Return value: intReturns an identi�er for registration or 0 if registration fails.Arguments: String address, String servie, String urlAddress is a SIP-address used for subsription. Servie is the servie name that subsriber is interested.Url is the url of the servie that subsriber is interested.unregisterFromServieUnregisters from the loal noti�ation lient daemon. After unregistration subsriber will not reeive anynoti�ations.Return value: booleanReturns true if unregistration sueeded.Arguments: int idId is the identi�er of the registration.hekForNoti�ationsCheks if there is a noti�ation waiting.Return value: Noti�ation noti�ationReturns an objet ontaining information about the reeived noti�ation. Null if there was no noti�ationwaiting.Arguments: No arguments 13

fethContentFethes the event data. Client an feth the data when if it reeives a noti�ation telling that there isdata waiting to be fethed at server side. Data will be reeived as a new noti�ation. This is for eventpull.Return value: booleanTrue if the query was sent to server.Arguments: Noti�ation noti�ationNoti�ation is the objet ontaining the noti�ation data. This is the objet reeived fromhekForNoti�ations-method.Noti�ation-lassThis lass is just small lass for holding information about reeived noti�ations. There is only one publimethod for the user.getBodyWith this method user an get the body of the reeived noti�ation.Return value: StringThe body of the noti�ation.Arguments: No arguments6.3 SIP UA API on Server SideIn order to support Java-based server side appliations, with have implemented the interfae betweenthe appliation and the SIP daemon as a Java Native Interfae (JNI). This setions presents the Javamethods available to the server appliation programmer.Noti�er-lassThis lass provides the methods for using the noti�ation servie to server. Server an use this lass forreeiving subsriptions and sending noti�ations. Here are the methods provided by the Noti�er-lass.initializeServieThis method initializes the servie. Must be alled before any other methods.Return value: booleanReturns true if initialization sueeded.Arguments: No argumentshekForSubsriptionsCheks if there is a inoming subsription waiting.Return value: SubsriptionReturns an objet ontaining the subsription data.Arguments: No arguments 14

sendNoti�ationSends a noti�ation message with SOAP-message in a body to subsriber.Return value: booleanTrue if the sending of the noti�ation sueeded.Arguments: int subsriptionId, String bodySubsriptionId is the identi�er for whih the noti�ation is sent. Body is the message body for thenoti�ation.Noti�ation-lassThis lass is just small lass for holding information about reeived subsriptions. There are no methods,but few publi member variables.int idIdenti�er for the subsription.String sipAddressThe sip-address of the subsriber.String servieThe servie name the subsriber wants to subsribe.String bodyThe body of the subsription-message.7 Client APIThe Client API enables the Web Server to submit lient input to the WeSAHMI messaging servie andfurthermore to the WesahmiDB. The ommuniation is enabled with Java Remote Method Invoation(RMI) API.The Web Server reeives the lient input as XForms instane. It parses the instane and forms name-valuepairs from the input. The pairs are stored in a Hashtable. The Hashtable is sent to the Controller onWeSAHMI Server via sendClientInput method. The method is implemented in the Controller and anbe alled from the Web Server through Java RMI.The Client API Spei�ationThe Controller implements the java.rmi.Remote interfae.sendClientInputProesses the HashTable ontaining the lient input and transforms it into an array of ModelElements.It is then forwarded to the Wesahmi Database and eventually to the External Model.Return value: booleanReturns true if operation sueeds or false otherwise.Arguments: HashTable inputParameter input ontains the lient input. 15

8 Eventing APIEventing API is provided by Controller and enables Wesahmi Database to publish updates of hangesmade to its data.Eventing API Spei�ationpublishUpdateConstruts a Fuego noti�ation based on the ModelElements given to it and publishes the noti�ation.Return value: booleanReturns true if operation sueeds or false otherwise.Arguments: ArrayList elementsParameter elements is an array of ModelElements ontaining the data to be published.9 Database APIDatabase API is provided by Wesahmi Database and enables Controller and Interpreter to retrieve datafrom the database and to store data to the database.Database API Spei�ationgetDataEnables data retrieval from the database based on given set of keys and tags.Return value: ArrayListReturns an array of ModelElements ontaining the requested data or null if data is not available or anerror ours.Arguments: ArrayList keys, ArrayList tagsParameter keys is an array of ModelElements ontaining key's names and values. They are used as keysin the SQL query. Parameter tags is an array of ModelElements ontaining �eld names. They are usedas seleted �elds in the SQL query.putDataEnables data storage to the database based on given set of keys and data elements.Return value: booleanReturns true if operation sueeds or false otherwise.Arguments: ArrayList keys, ArrayList elementsParameter keys is an array of ModelElements ontaining key's names and values. They are used as keysin the SQL query. Parameter elements is an array of ModelElements ontaining SQL table �eld namesand values to be stored in them. They are used in a SQL query.10 Appliation Spei� Components and APIsIn order to make the Wesahmi arhiteture support various External Models, the External Model API,Wesahmi Database, SOAP/REX Generator, and the user interfae stored in the Web Server need to be16

appliation spei� omponents.10.1 External Model APIExternal Model API, i.e. the API between Wesahmi Server and Finnair systems, will be implemented asthe Interpretor lass. It transforms messages reeived from the external model to Wesahmi messages andvie versa. Both transformations have a FIFO message queue. Either the Interpretor lass is modi�eddepending on the format of the handled messages or we use a plugin based message transformation.Further studies and material are needed to design implementation for the Finnair ase. Contents of theinoming messages need to be analyzed and the format of the outgoing messages has to be agreed on.ExternalModel API Spei�ationAPI provides the External Model means for sending messages to the Interpreter and to register as amessage reeiver.sendMessageDelivers a given message to the Interpreter for parsing.Return value: voidArguments: String messageParameter string ontains the inoming message as String objet.retrieveMessageRetrieves the next message in the FIFO bu�er of the Interpreter and removes it.Return value: StringArguments:Return value ontains the message as a String.10.2 Database DesignThe database design is de�nitely appliation spei� sine it depends on the data of the external model.As in ase of any database, it requires a set of tables and primary (and seondary) keys to be set up basedon the requirements set by the appliation. Also the ode related to SQL queries need to be modi�edaordingly.In ase Finnair, we have initially deided to use one main table that ontains all general informationregarding the �ights suh as �ight id, gate(s), boarding time, departure time et. We are also planningto use one table per eah �ight to store the seat reservation status. Flight ID and departure time areused as a primary key to identify information onerning a ertain �ight.10.3 Operation of the SOAP/REX GeneratorThe Generator API is disussed in detail in Setion 3.5. In this setion, the appliation spei� funtion-alities are desribed. The generated message an ontain either a URL or a REX message. An exampleof the SOAP message arrying URL:<SOAP-ENV:Envelopexmlns:SOAP-ENV="http://shemas.xmlsoap.org/soap/envelope/"SOAP-ENV:enodingStyle="http://shemas.xmlsoap.org/soap/enoding/"><SOAP-ENV:Body> 17

<m:OpenLoation xmlns:m="Some-URI"><servie>finnair</servie><url>http://www.finnair.fi/servie.html</url></m:OpenLoation></SOAP-ENV:Body></SOAP-ENV:Envelope>Below is an example of reation of a REX message. The generator reeives a name-value pair from theView, e.g., a new departure time:(712021, 14:30)The generator reates a markup, whih is sent to the user interfae. From the above name-value pair, afollowing XHTML element is reated:<p id="712021">14:30</p>The element is transported into the UI via REX event. The REX ontains the element itself and,in addition, target element in the doument and type of the mutation event. To replae the existingdeparture time in the doument, the REX would look like:<rex xmlns='http://www.w3.org/ns/rex#'><event target='id("712021")' name='DOMNodeRemoved'><p id="712021">14:30</p></event></rex>The REX is sent within a SOAP message to the lient side.<SOAP-ENV:Envelopexmlns:SOAP-ENV="http://shemas.xmlsoap.org/soap/envelope/"SOAP-ENV:enodingStyle="http://shemas.xmlsoap.org/soap/enoding/"><SOAP-ENV:Body><m:ContentChanged xmlns:m="Some-URI"><servie>finnair</servie><rex xmlns='http://www.w3.org/ns/rex#'><event target='id("712021")' name='DOMNodeRemoved'><p id="712021">14:30</p></event></rex></m:ContentChanged></SOAP-ENV:Body></SOAP-ENV:Envelope>10.4 Web ServerThe Web server provides the user interfaes for the system. The Web Server implementation is theApahe Tomat servlet ontainer. The Web Server responds to the browser's page requests and handlesthe lient input. The lient input is forwarded to the Controller as disussed in Setion 7.The Web Server reates the user interfaes aording to the page requests. The page request identi�esthe user and the task. The hanging ontent for a UI is added on lient side when the browser gets aorresponding noti�ation. The noti�ation is a respond to an order made by the browser. The browserplaes the order based on a DRML doument whih is embedded into a UI doument.11 Open IssuesThe SIP transport for the PULL- and PUSH-servie is urrently based on polling done by the the lientand server side appliations. One idea that has ome up during the design and implementation phase is18

asynhronous operation. Currently the end points query their own daemon when they want for events.This provides a simple design for the implementer. Yet, it would be also useful to be able to provideasynhronous events. For example, the lient appliation would be triggered in some way when a NOTIFYmessage arrives (whether the ontent is ontent data or just an event ID does not a�et the SIP stak).Similarly, the server side appliation ould reeive noti�ation when a lient wants to register, or whenthe lient sent a request as a SUBCRIBE indiation that the server should send the lient a given ontent.There are many ways to implement this funtionality, therefore, we must arefully analyze the designoptions, and leave it as a future extension later this year.

19

Referenes[1℄ Apahe website. At http://www.apahe.org, February 2006.[2℄ Roah A. B. Session initiation protool (sip)-spei� event noti�ation. Request for Comments(Standards Trak) 3265, Internet Engineering Task Fore, June 2002.[3℄ Robin Berjon. Remote Events for XML (REX) 1.0. Working Draft, W3C, Otober 2006.[4℄ C. Jennings and R. Mahy. Managing lient initiated onnetions in the session initiation protool(SIP). Internet draft (work in progress), IETF, January 2007.[5℄ Mysql website. At http://www.mysql.om, February 2006.[6℄ K. Pihkala, M. Honkala, and P. Vuorimaa. A browser framework for hybrid xml douments. InInternet and Multimedia Systems and Appliations, IMSA 2002. IMSA, August 2002.[7℄ Mikko Pohja. WeSAHMI Use Cases. Tehnial report, WeSAHMI Projet, April 2006.[8℄ Sasu Tarkoma, Jaakko Kangasharju, Tanred Lindholm, and Kimmo Raatikainen. Fuego: Experieneswith mobile data ommuniation and synhronization. In 17th Annual IEEE International Symposiumon Personal, Indoor and Mobile Radio Communiations (PIMRC) [8℄.

20

A Open soure software and applying liensesTable 1: List of Open Soure Software and their Lienses.Software Liense UsageGNU oSIP Library LGPL Low layer SIP-libraryeXosip - the eXtended osipLibrary GPL Higher layer SIP-library built on topof oSIPOpenSLP BSD Bootstrapping of en-vironmentX-Smiles browser The Teleommuniations Software and MultimediaLaboratory, Helsinki University of Tehnology Soft-ware Liense, Version 1.0 (based on the Apahe Soft-ware Liense Version 1.1) Web browserApahe Tomat Apahe Liense, Version 2.0 Web serverOpenSSL OpenSSL liense Open Soure toolkitimplementing theSSL and TLS pro-tools as well as afull-strength generalpurpose ryptogra-phy library.Software Developed by We-sahmi MIT Deliverable

21

B Data Referene Markup Language (DRML)B.1 IntrodutionThe Data Referene Markup Language (DRML) is an XML grammar representing data referenes inthe WeSAHMI messaging servie. The referenes indiate whih data in the data base is displayed in auser interfae (UI). The data is identi�ed by ID both in the data base and in the UI. When user agent(UA) enounters DRML fragment, it registers itself into a WeSAHMI messaging servie with the datareferenes. The servie will send updates to orresponding data when needed. An example of a ompleteDRML doument below.<dref xmlns="http://www.x-smiles.org/ns/drml"><item>701256</item><item>432587</item><item>673564</item></dref>B.2 Struture of a DRML DoumentThe namespae of the DRML is: http://www.x-smiles.org/ns/drml.All DRML douments must be ontained within a dref element. DRML douments may be ontainedwithin other XML elements in other namespaes, but eah DRML fragment must still have a dref elementas its root.The dref elementThe dref element serves as the root ontainer for the DRML doument. It must be always present andit must ontain one or more item elements. Otherwise it is in error and the user agent must ignore itentirely.The item elementThe item element must have a dref element as parent.The item element must ontain a text node. The text node is intended to be a single ID, whih referenesto a data. DRML does not speify where the data is stored nor what the data atually is.B.3 Proessing DRML DoumentsWhen the DOM of the doument, whih ontains a DRML doument, is reated, the UA must orderdata updates from the WeSAHMI messaging servie. In the order, the UA delivers the IDs, whih areembedded into the item elements of the DRML doument, to the servie. The UA uses the SIP Subsriberlass to register to the servie.

22

