
1

Local Key and Certificate Storage in JDK 1.3 *

Oskari Pirttikoski
Helsinki University of Technology
Department of Computer Science
FIN-02015 HUT, Espoo, Finland
oskari.pirttikoski@hut.fi

Yki Kortesniemi
Helsinki University of Technology
Department of Computer Science
FIN-02015 HUT, Espoo, Finland

yki.kortesniemi@hut.fi

Abstract *

Cryptographic algorithms have already become a
basic technique used in many application areas, like
confidentiality and content protection. However, the
big question of key management still remains unan-
swered. As a part of it, to efficiently use public key
cryptography, we require a good local storage sys-
tem to guarantee the confidentiality and availability
of keys and certificates.
In this paper, we take a look at local key and certifi-
cate storage in JDK 1.3. We discuss the requirements
for such systems, evaluate the standard JDK solution,
KeyStore, and finally propose an improved solu-
tion that does not suffer from the many shortcomings
of KeyStore.

1. Introduction
Open, unprotected networks and the emergence of
digital content have brought problems such as confi-
dentiality and content protection to the lives of more
and more people. As we no longer can rely on the
physical protection of the communication lines or the
distribution media, we have to find new solutions to
guarantee the security where necessary.

The standard solution seems to be the use of cryptog-
raphy. Cryptography used to be difficult and ineffi-
cient, known only to the experts, but today there exist
numerous well-documented algorithms for solving
many standard security problems. However, there
still remains a big obstacle hindering widespread use
of cryptography, namely key management. Sure, we
can create keys, but how do we store and distribute

* This work was partly funded by the TeSSA research project at Helsinki
University of Technology under a grant from Tekes.

them efficiently? Public key cryptography was sup-
posed to solve many of these questions, but, in fact, it
only transformed the question. Earlier, the question
was: how do I confidentially transmit the key to the
intended recipient? Now, the question goes: how do I
know, to whom this key really belongs?

Public Key Infrastructure (PKI) and digital identity
certificates are the current answer to the latter ques-
tion, but they also have problems. They often imply a
trust model not suitable to all applications, as a
Trusted Third Party in the form of a Certification
Authority (CA) is used to issue the certificates. The
use of a CA is not always practical, because of the
management overhead involved and the trust prob-
lems introduced. Furthermore, we can get the key
directly from the person in question, so no CAs are
required to assure us, that the key really came from
that person.

Some PKIs also support authorisation certificates,
which are used to bind authorisation to a public key.
Authorisation certificates are not concerned with us-
ers name, but her rights and, hence, complement the
identity certificates. With authorisation certificates, it
is possible to implement access control systems that
support anonymity, delegation and dynamic distrib-
uted security policy management.

We have used the JDK 1.3 to implement different
applications that are based on authorisation certif i-
cates, and, in the process, also looked at the included
key and certificate management solution,
KeyStore. KeyStore relies on some good princi-
ples, but has also some severe limitations, which pre-
vent its use in many cases.

In this paper, we take a look at the requirements a
good local key and certificate storage system should

2

fulfil, evaluate the KeyStore in the light of these
requirements and, finally, present our solution that
does not suffer from the limitations pointed out.

One important aspect to bear in mind is the intended
platforms for this solution. As PDAs and other small
devices become more commonplace, so does the
need for security solutions that take into account their
limitations. As the certificate based access control
systems are in some ways particularly well suited for
these small devices, it is important that the proposed
storage solution can be adapted to their limitations, as
well.

The improved storage solution that we are to present
in this paper is designed and implemented medium
and small storage needs in mind. It will be optimal
for client side software. We do not suggest this solu-
tion to be used on a server used by thousands of us-
ers.

The rest of the paper is organised as follows: section
2 gives some background on public key cryptography
and digital certificates. Section 3 discusses the re-
quirements for a local key and certificate storage
system. In section 4, we evaluate the existing solu-
tion, as well as discuss related work. Section 5 pres-
ents our design rational and section 6 goes over our
implementation. Then, section 7 evaluates this solu-
tion, section 8 proposes future work, and, finally,
section 9 presents our conclusions.

2. Cryptography and certificates
There are two basic types of cryptography: secret key
and public key cryptography. Secret key cryptogra-
phy is the older. It is based on the use of a single key
known to all participant and to no-one else. With this
key, it is possible to scramble and, later, unscramble
information to guarantee its confidentiality. Secret
key cryptography is fast, but distributing the keys and
keeping them stored safely are big problems.

The more modern type of cryptography is based on
the concept of a key pair - it contains a public key
and a private key. The two keys are mathematically
related but the private key can not be resolved from
the public one without enormous computation. Pri-
vate keys are the secret of the system and the security
of the whole system lies in maintaining the confiden-
tiality of the private keys. The public key, on the
other hand, can be made public. Here, the big prob-

lem is still in the distribution, but this time it is not
confidentiality, but authentication: how do we know,
which public key belongs to which user.

The standard solution is to use a PKI and digital cer-
tificates. Formally, a digital certificate is a fixed form
digital document cryptographically signed by the
document issuer. The two main types of certificates
are the identity and the authorisation certificate. In a
PKI, a trusted CA issues identity certificates binding
the user’s name and her key - in many ways, it re-
sembles a usual proof of identity issued by official
government authority. The idea is that once this
trusted CA has vouched for the key belonging to the
named user, we can operate securely. X.509 [1] is the
most popular format for identity certificates at the
moment.

An authorisation certificate is more like a ticket that
lets its holder to use some service. Here, the author-
ising ticket is usually issued by the more or less unof-
ficial provider of the service itself, not some official
CA. Then again, the certificate is meant to convince
the issuer: later on, the users present their tickets to
the issuer which then verifies the tickets and serves
the justified users.

Currently, the most actively promoted authorisation
certificate system is the Simple Public Key Infra-
structure (SPKI) [2]. It is an initiative for a more
flexible PKI freed from the requirement of an
obligatory CA system. It is being prepared by the
SPKI working group in the IETF.

2.1. SPKI authorisation certificates
In an SPKI authorisation certificate, there are five
essential fields: issuer, subject, tag, delegation and
validity. The certificate is signed by the issuer’s pri-
vate key and the subject i.e. the receiver of the
authorisation can be a public key or a hash of it, an
identity or a hash of some object. As no names have
to be used, it is possible to operate anonymously.

The actual right granted is expressed in a tag-field
and it is completely application dependent. The
delegation field is used to express, whether the re-
ceiver can further grant the rights or not. This ability
to support delegation is a big benefit, as it facilitates
distributed management and other interesting appli-
cations. Finally, the validity field is used to limit the
validity granted in the tag field.

3

Certificate chains are a result of delegating authori-
sation further. A receiver of SPKI authorisation can
delegate the authorisation or a subset of it to another
entity. Authorisation can be delegated by issuing a
certificate in which the party that already gains the
authorisation is the issuer and the subject is the to be
authorised entity. A chain of certificates is a sequence
of certificates where the subject of the previous cer-
tificate is the issuer in the next certificate. The chain
originates from the first certificate issued by the
owner of the resource which is followed by certif i-
cates delegating the authorisation further to the final
subject.

When the final recipient in the chain wants to use the
right, the whole chain has to be presented to the
owner of the resource for verification. Now, creating
a valid certificate chain from a multitude of certif i-
cates is equal to finding a path trough a directed
graph. The chaining problem is not trivial and is dis-
cussed in [3].

Cryptography will allow many new applications if a
user can create and sign new certificates on location
e.g. in some bureau or shop. In particular, with small
personal device such as a PDA, that are nowadays
capable to perform the required signatures, these new
kinds of applications become quite feasible. The
benefits of using a PDA are due to the following two
facts: the device does not have to reveal the key as it
can perform encryption securely by itself and the user
can trust her own personal device more than some
terminal operated by the shop owner.

3. Criteria for a local repository
The need for an all-round local repository is evident
if we intend to utilise cryptography on a more large
scale in the future. This section tries to point out the
general local repository functions that would be use-
ful for applications using cryptographic keys and
certificates. In particular we want to be able to use all
kinds of certificates, not just identity certificates.

It should be noted that storing certificates locally is
not the only way to have them available. Certificates
can also be distributed over the Internet, for instance,
by storing them in the DNS as presented in [4]. Dis-
tributed storage has great benefits such as providing
fresh up to date certificates and ability to search
trough numerous certificates available online. Down-

side is that we have to be online to use the certificates
and even then the availability can not be guaranteed.
In [4] the bandwidth consumption and response de-
lays are considered not to bother the DNS certificate
storage system in many applications.

3.1. Attached information
Keys and certificates have to be stored in such a way
that they can be efficiently found among all the saved
items. Traditionally, simple index or alias has been
used to keep a repository organised. However that
does not seem to be sufficient because one key or
certificate can be used by several applications for
several purposes. It is necessary to be able to attach
additional describing information to the item to find
and use it later. This is because the keys and certif i-
cates themselves can be everything but informational.

The attached information can be useful both for the
user as well as for applications. The user might want
to write down a description of the purpose of the key
or certificate so that she knows how to apply the key
or what rights the authorisation certificate grants and
to whom. The user might also want to set an expira-
tion date for the item so that applications know when
the key or certificate should not be used anymore. An
application, on the other hand, might want to attach
data related to the usage of the key or certificate in
this or some other application. Keeping all that in
mind we find that the nature of attached information
will vary considerably and therefore it should be pos-
sible to add new attachable types when necessary.

⇒ Criterion 1 Possibility to attach versatile infor-
mation to stored items.

3.2. Key management
In key management, the secure storage of private and
symmetric key material is the most important func-
tion of a local repository. The private keys must be
kept secret otherwise the whole PKI collapses and the
public keys and certificates are of no use.

⇒ Criterion 2 Security of private key material.

Another important function to the private key secu-
rity is the ability to store public keys with or without
a certificate. Public keys and certificates do not need
the same security as private keys because they do not
contain any secrets. A public key is usually accom-

4

panied by a certificate where some CA guarantees in
various degree the trustworthiness of the key. Sup-
pose one creates a new pair of keys and sends them to
a CA to be certified. Until the CA replies there is
certainly a need to store the key pair without a cer-
tificate. And furhermore, in some cases the reliability
of a public key is not related to a certificate from a
CA. Take PGP[5] key fingerprints for an example.
There is no need for a CA certificate when you have
received a hash of the key in person from your coun-
terpart. Therefore, saving public keys without certifi-
cates is definitely a mandatory function in a reposi-
tory.

⇒ Criterion 3 Possibility to store public keys with-
out certificate.

3.3. Certificate management
From the certificate management point of view, the
most important feature is the ability to search for a
desired certificate by various properties of the certif i-
cate. For instance, that is necessary to be able to
make a chain of certificates. When chaining the cer-
tificates, the searched property can be the subject, the
issuer or the validity of the certificate. If it would be
possible to search by various properties the certificate
chaining would be more efficient. The more efficient
chaining is possible because we would have more
means to limit the number of certificates in the search
graph.

⇒ Criterion 4 Possibility to search the repository
by varying properties.

3.4. Other storable material
Even though key and certificate management is what
the repository is mainly for, the repository could also
store related information. By related we mean that
the information is needed to be able to use the keys
and certificates. One example of this related infor-
mation could be revocation lists or other type of va-
lidity information. This material is somewhat dy-
namic by its nature and is usually downloaded over
the network. Even though the validity material is
bound to change sooner or later, it might be worth
saving just to avoid unnecessary traffic. The benefits
of storing all related material behind one interface
include facilitated application development and better
interoperability between applications. On the down-
side, it makes the repository more complicated and

there is the trouble of finding the right material as
separate applications might store similar type of ma-
terial in the repository.

⇒ Criterion 5 Possibility to store the diversity of
related material.

3.5. The platform
A repository should naturally be optimised for a plat-
form that is capable of encryption and decryption i.e.
using the stored material, which includes practically
all the standard Java Virtual Machines. The reposi-
tory should also be as generally available as SUNs
KeyStore is with the JDK API.

In small hand held devices, it is necessary to control
the size of the repository. That is because the devices
usually come with limited memory and storage ca-
pacity. The total storage need can also be reduced by
using one repository for all the related material as
mentioned earlier. The gain here is due to avoiding
the overhead of several systems.

⇒ Criterion 6 Possibility to control the total size of
repository.

4. Related work
KeyStore [6] is the default JDK solution for stor-
ing cryptographic material locally. The material
saved in KeyStore is divided into to two catego-
ries: key entries and trusted certificate entries. Key
entries include a private key accompanied with its
certified public key. Public keys without certificate
can not be stored in the KeyStore. Trusted certif i-
cate entries, on the other hand, are to store identity
certificates including public keys or other type of
certificates such as authorisation certificates. The en-
try categorisation is clearly designed only with iden-
tity based PKIs in mind, as public keys supposed to
be only within certificates. Furthermore, every entry
is given a string alias which can later be used for re-
trieving the entry. The entries in the KeyStore can
be browsed only by their aliases.

Compared to other interfaces and abstractions in Java
Cryptography Extension (JCE), the interface of
KeyStore class loses the generality and serves only
one purpose, the identity certificate based infrastruc-
ture. Therefore, the problem with KeyStore is the
constricted interface. And that problem can not be

5

solved or worked around by providing new imple-
mentations even though that is made possible by the
provider architecture.

The KeyStore interface does not allow search by
multiple properties which has been mentioned to be
essential when creating a certificate chain. Therefore,
KeyStore fails to satisfy criterion number 4. Nei-
ther does the KeyStore satisfy criterion number 1
as it does not allow one to attach information to
stored items. Furthermore, KeyStore limits the set
of storable information to be private keys and certifi-
cates so it is impossible to store a public key without
a certificate or to store some other related material.
Therefore, KeyStore also fails to satisfy criteria 3
and 5. Actually the only criterion it fulfils is number
2 as there is no support for controlling the size of a
repository which is demanded as criterion number 6.
One criterion out of six is not a very good score and
obviously the KeyStore could be improved in
many ways.

Of course, if the usage is solely based on X.509 cer-
tificates alone, KeyStore can be regarded to pro-
vide the minimum set of functions, but the result still
lacks many features to make it truly usable.

To have some perspective, we looked at solutions
developed on some other platform than Java and we
found that the lack of such interfaces defined in JCE
forces the solutions to be tailor made for the applica-
tions. The tailor made solutions are likely to increase
the inertia in utilising cryptography in applications as
even the most basic components have to be done
again and again.

As an example, Distributed Computing Environment
(DCE) stores symmetric keys in a keytab file [7].
This is certainly a tailor made solution as only sym-
metric keys are stored. However the interesting point
here is the information saved with the keys. Every
saved key is accompanied with a name of the key
holder, a key version number and a timestamp. The
version number and timestamp can be considered as
examples of the attachable information that can be
useful for applications using the key.

A more commonly known key management solution
is the PGP [5] keyring. The keyring provides means
for managing trust rather than just a way to store
keys. No describing information can be added to the
stored keys but the searching is somewhat more

flexible than from KeyStore, as keys can be recov-
ered with only a fragment of the user identifier string.
All kinds of keys can be added to keyring without a
certificate, as all saved keys are internally certified
for their use in the keyring.

PGP keyring provides functionality way beyond what
we have defined here for a repository. On the other
hand, it is only able to store keys, which have to be
keys from a fixed set of algorithms such as RSA and
DSS depending on the version and implementation of
PGP. Therefore, keyring is still a tailor made solu-
tion, even though PGP in general does not hinder the
use cryptography, and can not be considered as gen-
eral purpose repository.

5. Design choices
Once we came to the conclusion that a new reposi-
tory solution was required, we were faced with sev-
eral questions.

One of the first was, how to store the Java objects
representing keys and certificates. The Java environ-
ment provides a general serialisation scheme which
allows one to save an object and its state and then
recover the object with the same state later. The
saved data includes all the other objects that can be
reached from the first object. Although Java seriali-
sation scheme is available for most objects, it might
not be as effective as possible. The user might know
a much more efficient way to store the relevant in-
formation in the object and leave the irrelevant out.
This is why we decided that the user should provide a
class that contains the knowledge of how to encode
and decode the object she wishes to save. This makes
possible for the user to use serialisation or some more
optimised encoding whichever she prefers.

Another choice of design was how to provide a con-
venient way to protect every private key with a sepa-
rate passphrase. The choices were to encrypt the pri-
vate key with another passphrase or to encrypt it with
another key. If another key is to be used then the en-
cryption should be done on a trusted portable device
i.e. PDA which will store the key. Otherwise there is
not much sense using another key because the prob-
lem of storing the key would remain the same. In the
end, we decided to support both of these ways. An-
other passphrase can be applied or the user can get
the private key bytes, encipher them with a portable

6

device and then store the encrypted key bytes in the
repository.

Then there was the question of how the repository
should be searched. Instead of integrating the
searching functionality to the repository seamlessly
we decided to provide it as a separate utility. In our
opinion, this made the repository interface more ra-
tional. And as we thought more about the searching,
it became evident that we should not fix the proper-
ties of the stored material that were searched for. Af-
ter all, we were looking for a solution where the user
could quite freely store various type of material and
attach just as various type of information to the mate-
rial. The application dependent tag field of SPKI cer-
tificate is a good example of a property that can vary
greatly in structure. The varying structure makes it
impossible to fix some method for searching SPKI
certificates by tag. So it was not possible nor rational
to enumerate all the searchable properties of all the
potential material. Hence, we had to let the user de-
fine for what properties she wanted to search.

One a bit controversial feature that we came upon is
whether the repository should remove automatically
all the expired material or not. There is more than one
angle to look at this problem. The benefit of auto-
matic removal would be smaller repository with no
cryptographic garbage around. However, on the
downside we can see problems arising, if we have the
liability to justify our action years after they took
place. One example here could be access control to a
database. Suppose the access is gained by presenting
a valid authorisation certificate. If some online test is
used to confirm the validity of the certificate then the
online test results used making decisions should be
stored. Otherwise it is later impossible to prove, why
someone gained access and someone did not, if they
both have valid certificates but the other did not pass
the online test. If the database is popular, the reposi-
tory will grow huge in size but that is the price to
pay, if it is necessary to later justify the decisions
made.

The scenario in last example is quite realistic as
cryptographic signatures are no longer underrated in
the court. Choosing between the two removing poli-
cies seemed not to be rational so we ended up with
the following compromise: all the material is kept in
the repository but the expiration date is easily avail-
able for every saved item. This way the expired mate-

rial can be avoided when searching or examining the
repository but is still available if necessary.

6. LocalRepository
LocalRepository is an interface that defines a
key and certificate repository which we propose as an
alternative for the Java KeyStore. We have also an
implementation of the repository, which provides the
same functionality as KeyStore and some more.

6.1. Implementation
LocalRepository is an open repository which
demands the saved material to be wrapped in an im-
plementation of a simple LocalRepositoryEn-
try interface but does not limit the type of material
in any other sense. Furthermore, we have defined
another straightforward interface AttributeEn-
try for the attachable extra information which we
call the attributes. The repository can be searched
with a separate search engine LRSearchEngine
which accepts very versatile set of search criteria.
The relation the repository has with the search engine
and entries is illustrated in figure 1.

Figure 1 The architecture of LocalRepository and
LRSearchEngine

6.2. Security
The repository as a whole is protected with one
passphrase. Furthermore, we provide more finer
grained security as we have made it possible to pro-
tect every private or symmetric key with a passphrase
of its own or by encrypting the key bytes with a PDA
like device. For those keys that another passphrase

7

does not seem to be enough, the encryption with
trusted portable device should do.

6.3. LocalRepositoryEntry interface
The classes that implement LocalRepository-
Entry interface include the key, certificate or some
other item and the knowledge of how to save the
item. The LocaRepositoryEntry inherits the
Entry interface as depicted in figure 2. Entry de-
fines two methods getEncoded() and getIn-
stance(byte[]). The first is to encode the whole
entry to bytes and the later is to retrieve the entry
from the same bytes. To recover the saved key, cer-
tificate or some other object from the entry, a
getItem() method is defined in the LocaRe-
positoryEntry interface. The getItem()is a
method which has no counterpart for setting the item,
as the item is supposed to be given to the constructor
of the implementing class. Methods for attaching,
retrieving and detaching the AttributeEntry’s
are also defined in the LocalRepositoryEntry
interface.

Figure 2 The structure of repository entries and attrib-
utes

6.4. AttributeEntry interface
Attributes are external information that will help both
the user and applications to utilise the saved key,
certificate or other material. The main purpose of a
class that implements the AttributeEntry inter-
face is to bring in the knowledge of encoding and
decoding the attached information. That is why At-
tributeEntry inherits the same getEn-
coded() and getInstance(byte[])methods
that were defined in the Entry interface. Further-

more, attributes have two properties: the name of the
attribute and the value. We have defined the name to
be a string. The name of an attribute is unique in the
sense that several attributes can not be attached to
one LocalRepositoryEntry with the same
name. Therefore, the name can be used to retrieve the
desired attributes unambiguously from an entry. The
value of an attribute is of type Object because we
do not want to limit the type of attribute in any way.
In subclasses that implement the AttributeEn-
try interface the type of the value should be limited.
One implementing class is DateAttributeImpl
which encodes a Date object efficiently to bytes.

6.5. LRSearchEngine
Repository is a sort of a black box which includes
useful material. To utilise the material one needs to
search the box thoroughly. How thoroughly the
search is to be done is left for the user to decide. The
search engine we implemented provides only a way
to browse trough all the entries in the repository.

The most important interface used searching the re-
pository is the Criteria interface. It’s implemen-
tation is provided by the user and it is used by the
search engine to decide which entries are chosen
from the repository. The only method Criteria
interface defines is satis-
fies(LocalRepositoryEntry) which will
return true or false depending on whether the given
entry satisfies the criteria or not. So the rules by
which a Criteria chooses the right entries are ex-
pressed in Java rather than as a set of keywords and
special characters. This allows the rules to be very
complex and dynamic. Furthermore, by implement-
ing the Criteria interface the user is able to ex-
amine all the necessary properties in an entry. This is
possible because all the properties are available to the
satisfies method as the given repository entry
includes the saved item itself and all the attached at-
tributes. Hence, all the stored information can be
used in the search and it can be examined in complex
ways only limited by the Java language.

We have also implemented a way to define logical
AND and OR relations between Criteria objects.
More complex logical relations can be expressed with
Java in a class implementing the Criteria inter-
face. AND relations are presented as an array of

8

Criteria. This array of Criteria is put in a
class called CriteriaCollection. OR rela-
tions are then presented as an array of Criteria-
Collection.

7. Evaluation
In this section we are going to first evaluate the re-
pository against the presented criteria and then dis-
cuss the performance in the light of the tests we ran
on the repository.

7.1. Evaluation against the criteria
We found 6 criteria for a repository in section 3. Now
it is time to check which of those criteria our Lo-
calRepository fulfils.

Criterion 1 Possibility to attach versatile informa-
tion to stored items.
The criterion number 1 is met as our repository not
only allows to attach information but also does not
limit the type of attached material in any way.

Criterion 2 Security of private key material.
This as already mentioned is the first and the most
important criterion for a repository and is treated with
the proper respect in our implementation. A private
key can be protected with two passphrases or one
passphrase and an external encryption. Passphrases
might not be considered as the most secure way to
protect secret material but encryption on a trusted
device will provide a protection that will be more
than enough for this application. Keeping all that in
mind the LocalRepository can store the private
key material without compromising its confidentia l-
ity.

Criterion 3 Possibility to store public keys without a
certificate.
This criterion is satisfied in our implementation as we
provide possibility to store almost any type of data in
our repository.

Criterion 4 Possibility to search the repository by
varying properties.
This criteria is not exactly fulfilled by the repository
itself, but is dealt with the search engine we provide.
The LRSearchEngine allows the user to define
the searched properties with absolutely no limita-

tions. This is possible when the user implements the
Criteria interface.

Criterion 5 Possibility to store the diversity of re-
lated material.
Our repository allows this because we defined a sim-
ple interface to implement for all items to be stored.
Any arbitrary material can be stored just as well as
the material that the repository was designed for.

Criterion 6 Possibility to control the total size of
repository.
The LocalRepository has yet no support for
limiting or monitoring the size of the repository.
However, as the repository could be used in such de-
vices just as well, we feel that this is a imperfection
in our implementation and we are interested in add-
ing this functionality later on.

7.2. The performance of LocalRepository
To evaluate the performance of the LocalReposi-
tory implementation, the duration of storing opera-
tions and also the storage overhead were tested for.
Where possible, the same tests were also performed
on the KeyStore to get some perspective. The pre-
cision in timing was 10 ms and some operations
lasted less than that.

The test setup was a 550 Mhz PC with Java 1.3 Run-
time Environment including the Hot Spot virtual ma-
chine. The Java Cryptography Extension we used
was implemented by Australian Business Access.
The implementation of JCE probably effects the du-
ration of saving and loading the repository because
the repository is saved as cipher text. The
KeyStore implementation used was the default
JKS implementation that comes with JDK.

As table 1 shows, the add and remove operations
were fast enough. Furthermore, a complicated search
by certificate subject performed also well enough.
The search engine of LocalRepository was used
for this search and it only took 10 ms to find the right
certificate from the multitude of 50 stored certifi-
cates. KeyStore does not provide this functionality
so there is no result to compare.

The saving and loading operations were likely to take
some time as they include encryption or decryption
of the repository in addition to the file operations.
That in mind, the results of LocalRepository are

9

excellent compared to those of KeyStore. The
storing operation is executed over ten times faster in
the LocalRepository than in the KeyStore.

Table 1 Durations of basic repository and KeyStore
operations

Operation Repository KeyStore
Adding one entry to the
store

<< 10 ms << 10 ms

Removing one entry << 10 ms << 10 ms
Finding a certificate by
subject among 50 certifi-
cates

10 ms N/A

Storing of 50 certificates
on disc

100 ms 1180 ms

Reading of 50 certifi-
cates from the disc

215 ms 1150 ms

The results of measurements on repository size and
storage overhead are presented in table 2 and 3. As
key pairs without certificates can not be stored in
KeyStore the results concern only LocalRe-
pository.

In table 2, the results indicate high overhead percent-
age when storing key pairs in the repository. This is
partly due to the basic attributes that are added to an
entry automatically. If two more attributes of 150
characters are added the overhead reaches 140 per
cent which as high it is can still be considered rea-
sonable and tolerated in the majority of applications.

Table 2 The repository size and overhead for a reposi-
tory of 50 1024 bit RSA key pairs

50 RSA key pairs (1024
bit)

Total
size

Size per
item

Over
head

Key pairs 40 kB 0,8 kB N/A
Key pairs stored in the
repository

71 kB 1,4 kB 75 %

Key pairs stored in the
repository with additional
attributes

94 kB 1,9 kB 140
%

Table 3 presents the results of storing 50 SPKI cer-
tificates into both repository and KeyStore. The
stored certificates include four public RSA keys
which tend to determine the size of the certificate.
The repository overhead percentage is considerably
lower compared to table 2. This is due to the fact that
the overhead in bytes stays pretty much the same

even if the size of the stored item is increased. On the
other hand, KeyStore reaches overhead of 0 per cent,
which is remarkable and might be due to some more
efficient coding than what is used with LocalRe-
pository. Nevertheless, the results of LocalRe-
pository are reasonable and bearable in most ap-
plications.

Table 3 The overhead of a repository and a KeyStore of
50 SPKI certificates

50 SPKI certificates Total
size

Size per
item

Over-
head

Certificates 106 kB 2,1 kB N/A
Certificates stored in
repository

123 kB 2,4 kB 13 %

Certificates stored in
KeyStore

106 kB 2,1 kB 0 %

Certificates stored
with additional at-
tributes

145 kB 2,9 kB 36 %

The results presented here imply that LocalRe-
pository can be used as an alternative for
KeyStore without compromising performance. As
overhead produced by LocalRepository is
somewhat greater than that of KeyStore, but still
resonable, the versatility and speed of operations
compensate for the LocalRepository.

8. Future work
After the blueprints for a repository are set here, it is
possible to continue the development with more ad-
vanced features.

The small portable devices with limited memory set
new demands on the repository. These demands such
as ability to control the size of the repository and
possible problems with performance should be dis-
cussed more thoroughly.

The garbage collection in the repository is one non-
trivial issue that should be considered. As discussed
earlier, garbage collection is the art of balancing be-
tween the optimal repository size and filing all the
important material for long periods of time. Using the
attributes we presented in this paper it is possible to
categorise material by its importance and thus per-
form garbage collection in much more rational way.

10

9. Conclusions
A flexible and secure local repository is a basic re-
quirement for efficient application of cryptography.
In this paper, we have glanced at services provided
by a repository and discussed the requirements for a
good repository.

We then evaluated the standard JDK 1.3 key and cer-
tificate repository, the KeyStore, against these re-
quirements and found it to be limited in its usability
in some application areas, because it makes some
limiting assumptions. In particular, it assumes that all
public keys are always stored in an identity certif i-
cate, and that a single alias is sufficient additional
information to describe any key or certif icate.

To overcome these limitations, we then proposed a
new local repository, discussed our design rational
and described our implementation. Finally we evalu-
ated our solution against the criteria and found it ca-
pable of fulfilling most of them. We also measured
the performance of our implementation and found it
to come close with KeyStore in storage overhead
and outdo it in the speed of operations.

With this new repository, we have been able to im-
plement several applications using public keys and
SPKI certificates and feel, that it is a significant im-
provement over the standard implementation.

For small portable devices, support for limiting the
size of the repository is still required and in the fu-
ture, we shall look into this matter further.

10. References

[1] R. Housley, W. Ford, W. Polk, D. Solo:
Internet X.509 Public Key Infrastructure Certificate
and CRL Profile, January 1999.

http://www.ietf.org/rfc/rfc2459.txt
[2] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, T. Ylönen: SPKI Certificate Theory IETF
SPKI Working Group, September 1999.

http://www.ietf.org/rfc/rfc2693.txt

[3] Tuomas Aura: Comparison of graph-search
algorithms for authorization verification in delega-
tion networks, in the proceedings of 2nd Nordic

Workshop on Secure Computer Systems
NORDSEC'97, Espoo, Finland, November 1997.

http://www.tcs.hut.fi/Publications/
papers/aura/aura-nordsec97.ps

[4] Tero Hasu, Yki Kortesniemi: Implementing
an SPKI Certificate Repository within the DNS,
Poster Paper Collection of the Theory and Practice in
Public Key Cryptography (PKC 2000), 18-20 January
2000, Melbourne, Australia.

http://www.tcm.hut.fi/Research/TeSS
A/Papers/Hasu-Kortesniemi
/ImplementingAnSPKICertificateRepos
itoryWithinTheDNS.ps

[5] Philip Zimmermann: PGP User's Guide, Re-
vised 11 October 94.

http://www.tml.hut.fi/Opinnot/Tik-
110.350/Tehtavat/pgp/index.html

[6] Sun Microsystems: Java Cryptography Ar-
chitecture API Specification & Reference, December
1999.

http://www.java.sun.com/j2se/1.3/do
cs/guide/security/CryptoSpec.html#K
eyManagement

[7] IBM Transarc Lab: Keytab file, [Refered 7
August 2000]

http://www.transarc.com/Support/dce
/admin_examples/security/keytab.htm
l

