Adding SPKI Certificates to JDK 1.2

Jonna Partanen Pekka Nikander

jonna.partanen@hut.fi pekka.nikander@ hut.fi
Helsinki University of Technology Helsinki University of Technology

Abstract still use the words "certificate” and "identity certif-
icate" as synonyms.
The Java Development Kit (JDK) has included the However, if we take a more general view to the
concepts of cryptographic keys, signatures and cematter, a certificate essentially is a digitally signed
tificates since version 1.0, and they have been infecord that states some information about the entity
proved and extended in JDK 1.2. However, théhe certificate was issued to. The entity may be a
certificate interfaces still only cover identity certifi- public key, a name, a person, a piece of software,
cates. As more and more security software makey anything else as long as it can be stated in the
use of authorization certificates, we feel that thesertificate in a meaningful way. The information
concept of an authorization certificate and its im-may be the entity’s name, address, favourite colour,
plementation need to be added to the Java Securityhat the entity is allowed to do, or something else.
API. The Java runtime environment seems to be the
In this paper, we analyze the certificate model ofirst widely accepted architecture for running
the JDK 1.2. We also describe an extension to théownloadable content. This is mostly because it
JDK 1.2 cryptography architecture, providing sup- has addressed the security issues from the very be-
port for authorization certificates in general and ginning. The core of the Java security is built on
SPKI certificates in particular. top of a set of cryptographic services such as dig-
In the future, we intend to use the extensions détal signatures and certificates, provided by the
scribed in this paper to customize the JDK 1.2 poleryptography API. However, this API also seems to
icy management to be easier to distribute. Inbe based on the misbelief that identity certificates
particular, we are going to replace the identity are the only kind of certificates, or at least the only
based security management that is configure#ind of practical use.
through a configuration file, with a capability
based alternative that uses SPKI certificates. The rest of this paper is organized as follows. In the
next section, we present the concept of authoriza-
. tion certificate and one concrete type of authoriza-
1 Introduction tion certificates, the SPKI (Simple Public Key
- _ _ Infrastructure) certificates. In Section 3, we de-
The word "certificate” was first used in 1978 byscribe the Certificate class and other related classes
Loren Kohr_n‘elder to refer to a d_|g|tally S|gn_ed of JDK 1.2. In Section 4, we show how the JDK
record holding a name and a public key [5]. Sinceertificate class can be modified to be a superclass
then, certificates were long considered to be &y authorization certificates as well as identity cer-
equivalent to identity certificates, serving only thegificates, and how the JDK API could support SPKI
purpose of cryptographically binding a globally certificates. Section 5 describes how we imple-
unique name to a key and thus certifying an idenmented SPKI certificates in JDK 1.2. Finally, in
tity. In fact, many computer security professionalssection 6, we present our conclusions from this

work.

2 Authorization Certificates « D is the delegation bit, indicating whether the
subject has the right to further delegate the

Authorization certificates, or signed credentials, rights granted in this certificate.

are signed statements of authorization. In other A is the authorization field (also called tag)

words, whereas identity certificates bind a name that denotes the actual rights granted by the Is-

to a cryptographic key, authorization certificates suer to the Subject. This field may also consist

bind a capability to the key. The capability is then of other information.

used directly to gain the access in question, int V is the validity field of the certificate. Typi-

stead of looking up the name in some access con-cally, it is a time range, but it may also indicate

trol list. Thus, an unnecessary step of indirection "one-time" validity.

is removed from the access control procedure.

Furthermore, as an authorization certificate does Let us consider an example. Alice has an ac-

not necessarily need to carry any human undecount X in the bank B. The bank wants to grant

standable information about the identity of theAlice the on-line access to her account. Conse-

subject, i.e., a name, authorization certificategjuently, the bank creates a SPKI certificeigs ,

can also be used in situations where anonymity iKx , Yes, access to account X, alwayard gives

desired. The concept of authorization certificated to Alice. Alice can now use the certificate to ac-

was first independently described in the SDSkess her account, but to do so, she has to prove

[11] and PolicyMaker [3] prototype systems andthat she holds the private key corresponding to

the SPKI [4] initiative. the public key K. Since the delegation bit of the
certificate is set, Alice can also give her brother
2.1 SPKI Certificates Carl the right to pay her bills while she is on va-

cation. However, she does not want Carl to be
SPKI certificates are currently being standardable to delegate the right to anyone else. To do
ized by the IETF. In the SPKI framework, all this, Alice produces Carl the following certifi-
principals are keys. Delegations are made to @ate:<Kp, K¢, No, access to account X for pay-
key, not to a keyholder as in identity certificatesing bills, the time of the vacationhese two
Thus, SPKI certificates are conceptually closer tgertificates form a chain that delegate the access
capabilities than to identity certificates. However right to Carl. Carl, too, has to show that he holds
there is also a difference between capabilities andhe private key corresponding to-Koefore the
SPKI certificates. In traditional capability basedbank will accept the certificate chain and let him
systems, the capability is a secret ticket thapay the bills.
grants authority to anyone possessing it, so the
capabilities need to be strictly controlled. TheCertificate reduction. Two SPKI certificates,
SPKI certificate, however, only grants authority<l; , S, D1, A1,V >and <}, S, Dy, Ay,
to the key specified in the certificate. Thus, itV,>, form a valid chain that can be reduced iff:
does not need to be treated as secret and to beS; = I»
strictly controlled. * Dy =true

The certificate resulting from the reduction is

Format. A SPKI certificate consists of several <I, S, D, A, V>, where | isq, Sis $, D is D,, A
fields, the five most important being: issuer, subis the intersection of Aand A, and V is the in-
ject, delegation, authorization and validity. Theytersection of \ and \4.
are often described as five-tuples <I, S, D, A, V>, The forming of delegation chains and chain re-

where: duction of the corresponding certificates are key
« | is the public key or a hash of the public keyproperties of SPKI. Reduction certificates can be
of the certificate’s Issuer. used to improve chain reduction performance by

« S is the Subject of the certificate, typically ashortening the chains to be verified. [4] [5]
public key, a secure hash of a public key, or a
secure hash of some other object. It may alsblame certificates. In addition to the normal
be a name denoting a public key or a group o6PKI certificates that define authorization, the
them. SPKI definition includes a form of identity certif-
icates called name certificates. They bind names
to keys, allowing late binding of symbols into

keys [5] and easier management by humans. Thaktended byX509Certificate class and the
is, the administrator can create a certificate byPublicKey interface is extended by
specifying the subject as a name instead of a keRSAPublickey and DSAPublickey inter-
and an other certificate binds the name to a keyaces. Finally, the actual implementation is sup-
The latter certificate does not have to exist at thelied by one or more providers that include the
time the first certificate is created, but can be creactual functionality. The default provider that
ated later on, if needed. If a certificate uses aomes with JDK and implements most of the
name that has not yet been bound to a key, or ttencepts included in the architecture is named
name certificate specifying the binding is not"SUN".
found, the certificate is considered invalid.

3.1 Certificates in JDK 1.2

3 JDK 1.2 Cryptography Architecture e java.security.cert.Certifi-

_ cate class is an abstract superclass for identity
The Java Cryptography Architecture (JCA) hasgriificates. It has several methods that are sup-
been built around the design principles of impley,seq to be common to all identity certificates,
mentation independence and interoperability, anﬂamely: equals, getEncoded, getPublicKey, get-

algorithm independence and extensibility. TheType, hashCode, toString, and two verify meth-
aim is to let users of the API to use cryptographigyg.

cpncepts, _such as d_igital signatures and Messag@\iany uses for certificates require maintaining
digests, without having to think about the imple-4 |ist of certificates that have been revoked before
mentations or even the algorithms being used tgheir validity period is over. They are called Cer-

implement these concepts. [13] tificate Revocation Lists (CRL). JDK also in-
The Java documentation explains that algog|yges an abstract class for this purpose.

rithm independence is achieved by defining types Tne certificate 's only subclass in JDK

of cryptographic services called "engines”, and; s thex509Certificate class. It is also
defining classes that provide the functionality ofypyctract and serves as the API for all X.509 cer-
these cryptographic engines. TBegnature tificate implementations. The related classes in-

and MessageDigest classes are supposed 0¢jyde the X509CRL class for certificate

be examples of such an engine, but they both rggyocation lists and thé509Extension inter-
quire that the algorithm is specified when thezce for the X.509v3 extensions.

class is instantiated. Apparently the design prin- \yhereas all certificates have the getEncoded
ciple of algorithm independence was t00 hard tQnethod that returns the transfer representation of
follow in practise. - _ _ the certificate, they do not include a method that
~ Implementation independence is achieved usyqyid create a new certificate from this encoded
ing a "provider"-based architecture. The termymat. This is the job of ertificate-
"provider" refers to a package or set of packagepactory

that implement one or more cryptographic serv- |5 jpK 1.2 the certificates play an important

ices. The user may have several providers iNyyje in access control. Each class may have one
stalled, and new providers can be installedy, several certificates attached to it, and these
dynamically. When the user needs a particulageriificates are used in defining what access
cryptographic service, she can request it withoUfigpts the classes get. The certificates are given to
specifying the implementation and get the defaulfe ¢lass in the class loading phase by the
provider, or she can request the service from garverifier . TheJarVerifier parses the

specific provider's implementation. jar file, verifies the signatures, and places the cor-

In practise, this means that the architecture hgg,sponding certificates to the class’ set of certifi-
several levels. The upmost level consists of g€Nsates.

eral interfaces and abstract classes:

vateKey , Signature , MessageDigest

and so on. The second level consists of interfaceSeriificates are generally long lived objects that
and abstract classes for different subtypes of thgye siored in files or databases and transfered be-

general concepts, specifying different algo-yyeen different computer systems. JDK provides
rithms. For example, th@ertificate class is

a certificate storage functionality as a part of keyfy the signature. Nevertheless, having the same
management. In JDK, th€eyStore class rep- method to return completely different parts of the
resents a storage facility that can contain keysertificate, depending on which type of certificate
and certificates. The actual implementation caiis in question, is obviously not a good idea.
be chosen from some of the providers available, We propose that the getPublicKey method in
just as one would choose an implementation of ¢he Certificate class is changed to getSub-
signature algorithm, for example. JDK includesjectKey. Furthermore, since all certificates’ sub-
one implementation of the KeyStore: theva- jects do not have a public key, the method should
KeyStore class that stores the objects in an enthrow a NoSuchFieldException if the public key
crypted file using a proprietary file format. does not exist. We also suggest that a method
The KeyStore is also somewhat oriented tocalled getlssuerKey would be added to the
wards identity certificates and specially X.509,Certificate class. This method would return
but can fairly easily be used to store other typethe public key that can be used to verify the cer-
of certificates as well. Although the default im- tificate’s signature.
plementation uses files, providing an implemen- We also propose that, since most if not all cer-
tation that uses a distributed database is equalljficate types have some kind of validity informa-
possible. tion, a validity check method should be added to
the Certificate class. It could be named checkVa-
) .. lidity according to the example set by the
4 Extending the Certificate Class X509Certificate class, or its name could be
) -~ o -~ simply isValid. The method would return a
Identity certificates and authorization certificates)ygjean value depending on whether the certifi-
have several common features. They are DotRyie js yvalid at the moment when the checking is
signed records, so they have a signature. Theyone. If some certificate type, that we are una-
also have a transfer representation, an encodggh e of does not have any validity information at

form common to all implementations. In addi- 5 jts implementation of this method should al-
tion, they have an issuer, and the issuer has a k@\)’ays return "true".

pair to be able to sign the certificate. Further-

more, the certificates have a subject, i.e., SOMg 1 The Superclass for SPKI Certificates
entity that the certificate was issued to. However,

the type and properties of this subject may varyj st as all X.509 certificate implementations in

Finally, they have validity information, usually in j5y5 have a common, abstract superclass called
the form of "not before” and "not after” dates. xsogcertificate , all the SPKI certificate
The java.security.cert.Certifi- implementations should have an abstract super-
cate class has, as mentioned before, severalass that extends ti@ertificate class. We
methods. Like all objects, it has the methods,aye called this classPKICertificate . The

equals, hashCode and toString. These methodgherclasses for certificate implementations are
are obviously common to identity and authoriza-pown in Figure 1.

tion certificates. The getEncoded method returns
the encoded transfer representation of the certifi-

cate, and is also common to all certificate types. Certificate

Likewise, the getType and verify methods have {abstract}

the same intuitive meaning and serve an impor- / \

tant purpose in both identity and authorization

certificates. The last method, getPublicKey, is X509Certificate SPKICertificate
more problematic. In identity certificates it is {abstract {abstract}

used to get the subject’s public key from the cer-
tificate. In authorization certificates the subject
may not even have a public key. However, in all -~ -~
certificates the issuer has to have a public and The SPKICertificate specifies the meth-

private key to be able to sign the certificate. Thus0ds that any SPKI certificate implementation
the most logical key to be returned by the get_must have. _(m addition to the methods specified
Publickey method in authorization certificatesPY theCertificate class). These methods are
would be the issuer’s key that can be used to veferived from the SPKI specification according to

Figure 1: The certificate superclass hierarchy

Certificate
{abstract}

i

SPKICertificate
{abstract}

i

SPKICert

/

A\

Cert

1

Issuer

1

Subject

0.1

Signature

0.1

Comment

Deleg

Tag

Valid

Figure 2: SPKI certificate object structure

the principle that there must be at least one ac- The SPKICertificateFactory

definition, the Tag object consists of a TagBody,
which in turn can be either a TagStar-object or a
TagExpression. The TagStar is used to denote
any authorization, or "everything". The TagEx-
pression is a recursive definition of a more re-
stricted authorization, allowing the specification
of capability groups, capability ranges and indi-
vidual capabilities. An UML diagram of the Tag
object hierarchy is shown in Figure 3. Again, the
lowest levels of the hierarchy have been left out
from the diagram.

Other classes in our prototype include the
SPKIProvider and SPKiICertificate-
Factory . They are described in the rest of this
chapter.

5.1 Creating a Provider for SPKI

As we explained in Section 3, Java uses a class
calledProvider to find the classes implement-
ing particular services. To register our implemen-
tation of the SPKI functionality, we must create a
provider of our own. Our provider is call&P-
KIProvider It extends thejava.secu-
rity.Provider class, and specifies the
names of the classes implementing the function-
ality for handling SPKI certificates, namely, the
SPKICertificateFactory class.

is an en-

cess method for each field of the certificate: th%ine class that is used to creSteK|Certifi-
method for viewing the field contents. We havecate opjects from the canonical s-expressions,
named these methods getVersion, getissuer, g8k encoding format for SPKI certificates. It ex-

Subject, getDelegation, getTag, getValidity,;angs theCertificateFactorySpi

class.

getComment, getlssuerinfo and getSubjectinfo. a ility class, SPKIParser\Visitor is used in pars-

5 Implementing SPKI Certificates

The core of our implementation are the classes
SPKICertificate and SPKICert . The
SPKICertificate is the abstract superclass
for all SPKI certificates. Th8PKICert class is
our actual implementation. It is a subclass of the
SPKICertificate class.

The simplified UML diagram of the SPKI cer-
tificate class hierarchy is shown in Figure 2.
Three components of th@ert class have been
left out of the diagram for clarity: these are the
Version, the Issuerinfo and the Subjectinfo. They
are optional, but recommended fields of the SPKI
certificates.

The components of th€ert class are them-
selves complex hierarchies of relatively simple
components. For example, according to the SPKI

Tag

V1

TagBody

{interface} \

TagStar

*

*

TagExpression
([0.1 /)..1 & l

SimpleTag

TagString

TagSet

e

ByteString

TagPrefix

TagRange

Figure 3: The Tag object structure

ing the canonical format into the SPKI objectclass in the JDK library. This, obviously, is not a
structure. desirable feature if we want to distribute our au-

Because we are going to use the SPKI certifithorization certificate packages as a regular ex-
cates to do fully distributed Java policy managetension to JDK.
ment, our provider should also include a The Certificate class needs some minor
distributed KeyStore implementation. At the timechanges to be suitable as a superclass for authori-
of this writing, this functionality is still under zation certificates. The getPublicKey method has
construction. no intuitive meaning in authorization certificates,
or at least the interpretation is not the same as in
identity certificates. We propose renaming this
method to getSubjectkKey and letting it throw a
As mentioned in Section 3, the classes in a jalNoSuchFieldException if the certificate’s subject
file may be signed. When such classes are loadésinot a public key. In addition, since every certif-
into the JVM, theJarVerifier verifies the icate has an issuer, and every issuer must have a
signatures and if the check reveals no problemgublic key to sign the certificate, we suggest add-
decorates the loaded classes with correspondirigg a getlssuerKkey method to the
X.509 certificates. These certificates in turn areCertificate class.
used to determine what permissions the class The class hierarchy of the SPKI package is
should get. fairly complex, due to the number of fields in the

This approach is suitable for the traditional accertificate and the great variety of possible con-
cess control that is based on identity certificategents to the fields. However, the classes them-
and ACLs. However, if we want to use authoriza-selves are relatively simple and straight forward.
tion certificates for determining what access In the future we are going to use the authoriza-
rights the classes have, the regular signaturdfon certificate infrastructure created in this re-
could and should be replaced with authorizatiorsearch to implement distributed access control
certificates to avoid unnecessary steps in clagsanagement in JDK 1.2. [9]
loading and access control.

Unfortunately, theJarVerifier has not References
been designed to be extendable. It seems to exi t]
solely for the X.509 architecture, and even th

5.2 JarVerifier

E. Amoroso,Fundamentals of Computer Se-
curity TechnologyPrentice Hall, Englewood

signature algorithms that can be verified have
been hard coded in the implementation. Thus WEZ]
cannot even replace the standard signature algo-
rithms of the Java library with some other algo-
rithm, let alone replace them with a SPKI 3
certificate, unless we replace the whole clasg.
This is a major weakness in the otherwise rela-
tively well designed and easily extendable archi-
tecture.

[4]

6 Conclusions

The basic JDK 1.2 cryptographic architecture is a
fairly good starting point for adding new types of
certificates. We see the goals of extendibility and
implementation independence as worth pursuin
and have tried to further advance them in our d
sign.

However, not all parts of the JDK are well
thought and easily extendible. The
JarVerifier that reads and interprets jar files
and their signatures is inflexible. It is impossible
to extend its functionality without replacing the

Cliffs, New Jersey, 1994.

K. Arnold and J. GoslingThe Java Pro-
gramming Language Addison-Wesley,
1996.

M. Blaze, J. Feigmenbaum, and J. Lacy,
“Decentralized trust managementPro-
ceedings of the 1996 IEEE Computer Society
Symposium on Research in Security and Pri-
vacy Oakland, CA, May 1996.

C. M. Ellison, B. Frantz, B.Lampson,
R. Rivest, B. M. Thomas and T. Yl6nen,
Simple Public Key Certificatelnternet-
Draft draft-ietf-spki-cert-
structure-05.txt , work in progress,
Internet Engineering Task Force, March
1998.

C. M. Ellison, B. Frantz, B.Lampson,
R. Rivest, B. M. Thomas and T. Yl6nen,
SPKI Certificate Theory Internet-Draft
draft-ietf-spki-cert-theory-

02.txt , work in progress, Internet Engi-
neering Task Force, March 1998.

[6]

[7]

[8]

[9]

Li Gong, Java™
(JDK 1.2), DRAFT DOCUMENT (Revi-
sion 0.9) http://java.sun.com
/products/jdk/1.2/docs/guide

/security/spec/security- [11]
spec.doc.html , Sun Microsystems,
March 1998.

I. Lehti, SPKIl-based Access Control

Server Master's Thesis, Helsinki Univer- [12]

sity of Technology, January 1998.
I.Lehti and P. Nikander, “Certifying
trust”, Proceedings of the Practice and Theory

in Public Key Cryptography (PKC) '9&0ko- [13]

hama, Japan, Springer-Verlag, February
1998.

P. Nikander and J. Partanen, "Distributed
Policy Management for JDK 1.2", Pro-

ceedings of the 1999 Network and Distrib-
uted System Security Symposium, San
Diego, CA, Internet Society, Reston, VA,

February 1999.

Security Architecture [10] J. PartanenUsing SPKI certificates for

Access Control in Java 1.Rjaster’'s The-
sis, Helsinki University of Technology,
August 1998.
R. L. Rivest and B. Lampson, “SDSI -- a
simple distributed security infrastructure”,
Proceedings of the 1996 Usenix Security Sym-
posium 1996.
ITU-T Recommendation X.509 (1997 E):
Information Technology - Open Systems
Interconnection - The Directory: Authenti-
cation FrameworkITU-T, June 1997.
Java™ Cryptography Architecture API
Specification & Referencgn-line, refer-
enced 28 July 1998],
http://java.sun.com/products
/idk/1.2/docs/guide
/security/CryptoSpec.html
Microsystems, June 1998.

, Sun

