

Adding SPKI Certificates to JDK 1.2
Jonna Partanen

jonna.partanen@hut.fi
Helsinki University of Technology

Pekka Nikander

pekka.nikander@hut.fi
Helsinki University of Technology
-

e
ed
tity
 a
re,
the
n
ur,
e.
the
g
 it
 be-
n
ig-
he
to
es
ly

he
za-
a-
y
e-
ses
K
ass
r-
I

le-
n
is
Abstract

The Java Development Kit (JDK) has included the
concepts of cryptographic keys, signatures and cer-
tificates since version 1.0, and they have been im-
proved and extended in JDK 1.2. However, the
certificate interfaces still only cover identity certifi-
cates. As more and more security software makes
use of authorization certificates, we feel that the
concept of an authorization certificate and its im-
plementation need to be added to the Java Security
API.

In this paper, we analyze the certificate model of
the JDK 1.2. We also describe an extension to the
JDK 1.2 cryptography architecture, providing sup-
port for authorization certificates in general and
SPKI certificates in particular.

In the future, we intend to use the extensions de-
scribed in this paper to customize the JDK 1.2 pol-
icy management to be easier to distribute. In
particular, we are going to replace the identity
based security management that is configured
through a configuration file, with a capability
based alternative that uses SPKI certificates.

1 Introduction

The word "certificate" was first used in 1978 by
Loren Kohnfelder to refer to a digitally signed
record holding a name and a public key [5]. Since
then, certificates were long considered to be a
equivalent to identity certificates, serving only the
purpose of cryptographically binding a globally
unique name to a key and thus certifying an iden-
tity. In fact, many computer security professionals

still use the words "certificate" and "identity certif
icate" as synonyms.

However, if we take a more general view to th
matter, a certificate essentially is a digitally sign
record that states some information about the en
the certificate was issued to. The entity may be
public key, a name, a person, a piece of softwa
or anything else as long as it can be stated in
certificate in a meaningful way. The informatio
may be the entity’s name, address, favourite colo
what the entity is allowed to do, or something els

The Java runtime environment seems to be
first widely accepted architecture for runnin
downloadable content. This is mostly because
has addressed the security issues from the very
ginning. The core of the Java security is built o
top of a set of cryptographic services such as d
ital signatures and certificates, provided by t
cryptography API. However, this API also seems
be based on the misbelief that identity certificat
are the only kind of certificates, or at least the on
kind of practical use.

The rest of this paper is organized as follows. In t
next section, we present the concept of authori
tion certificate and one concrete type of authoriz
tion certificates, the SPKI (Simple Public Ke
Infrastructure) certificates. In Section 3, we d
scribe the Certificate class and other related clas
of JDK 1.2. In Section 4, we show how the JD
Certificate class can be modified to be a supercl
for authorization certificates as well as identity ce
tificates, and how the JDK API could support SPK
certificates. Section 5 describes how we imp
mented SPKI certificates in JDK 1.2. Finally, i
Section 6, we present our conclusions from th
work.

e
e

)
Is-
ist

e

c-
nt
e-

-
ove
to

er
-

be
do

-

ess
ds

m

s

e-
ey
be
by

e

es
2 Authorization Certificates

Authorization certificates, or signed credentials,
are signed statements of authorization. In other
words, whereas identity certificates bind a name
to a cryptographic key, authorization certificates
bind a capability to the key. The capability is then
used directly to gain the access in question, in-
stead of looking up the name in some access con-
trol list. Thus, an unnecessary step of indirection
is removed from the access control procedure.
Furthermore, as an authorization certificate does
not necessarily need to carry any human under-
standable information about the identity of the
subject, i.e., a name, authorization certificates
can also be used in situations where anonymity is
desired. The concept of authorization certificates
was first independently described in the SDSI
[11] and PolicyMaker [3] prototype systems and
the SPKI [4] initiative.

2.1 SPKI Certificates

SPKI certificates are currently being standard-
ized by the IETF. In the SPKI framework, all
principals are keys. Delegations are made to a
key, not to a keyholder as in identity certificates.
Thus, SPKI certificates are conceptually closer to
capabilities than to identity certificates. However,
there is also a difference between capabilities and
SPKI certificates. In traditional capability based
systems, the capability is a secret ticket that
grants authority to anyone possessing it, so the
capabilities need to be strictly controlled. The
SPKI certificate, however, only grants authority
to the key specified in the certificate. Thus, it
does not need to be treated as secret and to be
strictly controlled.

Format. A SPKI certificate consists of several
fields, the five most important being: issuer, sub-
ject, delegation, authorization and validity. They
are often described as five-tuples <I, S, D, A, V>,
where:
• I is the public key or a hash of the public key

of the certificate’s Issuer.
• S is the Subject of the certificate, typically a

public key, a secure hash of a public key, or a
secure hash of some other object. It may also
be a name denoting a public key or a group of
them.

• D is the delegation bit, indicating whether th
subject has the right to further delegate th
rights granted in this certificate.

• A is the authorization field (also called tag
that denotes the actual rights granted by the
suer to the Subject. This field may also cons
of other information.

• V is the validity field of the certificate. Typi-
cally, it is a time range, but it may also indicat
"one-time" validity.

Let us consider an example. Alice has an a
count X in the bank B. The bank wants to gra
Alice the on-line access to her account. Cons
quently, the bank creates a SPKI certificate <KB ,
KA , Yes, access to account X, always>, and gives
it to Alice. Alice can now use the certificate to ac
cess her account, but to do so, she has to pr
that she holds the private key corresponding
the public key KA. Since the delegation bit of the
certificate is set, Alice can also give her broth
Carl the right to pay her bills while she is on va
cation. However, she does not want Carl to
able to delegate the right to anyone else. To
this, Alice produces Carl the following certifi-
cate: <KA , KC , No, access to account X for pay
ing bills, the time of the vacation>. These two
certificates form a chain that delegate the acc
right to Carl. Carl, too, has to show that he hol
the private key corresponding to KC before the
bank will accept the certificate chain and let hi
pay the bills.

Certificate reduction. Two SPKI certificates,
<I1 , S1 , D1 , A1 , V1 > and <I2 , S2 , D2 , A2 ,
V2>, form a valid chain that can be reduced iff:
• S1 = I2
• D1 = true

The certificate resulting from the reduction i
<I, S, D, A, V>, where I is I1, S is S2, D is D2, A
is the intersection of A1 and A2, and V is the in-
tersection of V1 and V2.

The forming of delegation chains and chain r
duction of the corresponding certificates are k
properties of SPKI. Reduction certificates can
used to improve chain reduction performance
shortening the chains to be verified. [4] [5]

Name certificates. In addition to the normal
SPKI certificates that define authorization, th
SPKI definition includes a form of identity certif-
icates called name certificates. They bind nam
to keys, allowing late binding of symbols into

p-
e
t
e
ed

ity
up-
s,
et-
h-

g
re

r-
-

er-
in-

ed
 of
at
ed

t
ne
se
ss
 to
he

or-
fi-

at
 be-
s

keys [5] and easier management by humans. That
is, the administrator can create a certificate by
specifying the subject as a name instead of a key,
and an other certificate binds the name to a key.
The latter certificate does not have to exist at the
time the first certificate is created, but can be cre-
ated later on, if needed. If a certificate uses a
name that has not yet been bound to a key, or the
name certificate specifying the binding is not
found, the certificate is considered invalid.

3 JDK 1.2 Cryptography Architecture

The Java Cryptography Architecture (JCA) has
been built around the design principles of imple-
mentation independence and interoperability, and
algorithm independence and extensibility. The
aim is to let users of the API to use cryptographic
concepts, such as digital signatures and message
digests, without having to think about the imple-
mentations or even the algorithms being used to
implement these concepts. [13]

The Java documentation explains that algo-
rithm independence is achieved by defining types
of cryptographic services called "engines", and
defining classes that provide the functionality of
these cryptographic engines. The Signature
and MessageDigest classes are supposed to
be examples of such an engine, but they both re-
quire that the algorithm is specified when the
class is instantiated. Apparently the design prin-
ciple of algorithm independence was too hard to
follow in practise.

Implementation independence is achieved us-
ing a "provider"-based architecture. The term
"provider" refers to a package or set of packages
that implement one or more cryptographic serv-
ices. The user may have several providers in-
stalled, and new providers can be installed
dynamically. When the user needs a particular
cryptographic service, she can request it without
specifying the implementation and get the default
provider, or she can request the service from a
specific provider’s implementation.

In practise, this means that the architecture has
several levels. The upmost level consists of gen-
eral interfaces and abstract classes:
Certificate , Key, PublicKey , Pri-
vateKey , Signature , MessageDigest
and so on. The second level consists of interfaces
and abstract classes for different subtypes of the
general concepts, specifying different algo-
rithms. For example, the Certificate class is

extended by X509Certificate class and the
PublicKey interface is extended by
RSAPublicKey and DSAPublicKey inter-
faces. Finally, the actual implementation is su
plied by one or more providers that include th
actual functionality. The default provider tha
comes with JDK and implements most of th
concepts included in the architecture is nam
"SUN".

3.1 Certificates in JDK 1.2

The java.security.cert.Certifi-
cate class is an abstract superclass for ident
certificates. It has several methods that are s
posed to be common to all identity certificate
namely: equals, getEncoded, getPublicKey, g
Type, hashCode, toString, and two verify met
ods.

Many uses for certificates require maintainin
a list of certificates that have been revoked befo
their validity period is over. They are called Ce
tificate Revocation Lists (CRL). JDK also in
cludes an abstract class for this purpose.

The Certificate ’s only subclass in JDK
1.2 is the X509Certificate class. It is also
abstract and serves as the API for all X.509 c
tificate implementations. The related classes
clude the X509CRL class for certificate
revocation lists and the X509Extension inter-
face for the X.509v3 extensions.

Whereas all certificates have the getEncod
method that returns the transfer representation
the certificate, they do not include a method th
would create a new certificate from this encod
format. This is the job of a Certificate-
Factory .

In JDK 1.2 the certificates play an importan
role in access control. Each class may have o
or several certificates attached to it, and the
certificates are used in defining what acce
rights the classes get. The certificates are given
the class in the class loading phase by t
JarVerifier . The JarVerifier parses the
jar file, verifies the signatures, and places the c
responding certificates to the class’ set of certi
cates.

3.2 Certificate Storage

Certificates are generally long lived objects th
are stored in files or databases and transfered
tween different computer systems. JDK provide

e
e
te

in

-
-
ld

y
od
e

r-

r-
-
to
a-
e

ifi-
 is
a-
at
l-

in
lled

er-

re

n
ed

e
o

a certificate storage functionality as a part of key
management. In JDK, the KeyStore class rep-
resents a storage facility that can contain keys
and certificates. The actual implementation can
be chosen from some of the providers available,
just as one would choose an implementation of a
signature algorithm, for example. JDK includes
one implementation of the KeyStore: the Java-
KeyStore class that stores the objects in an en-
crypted file using a proprietary file format.

The KeyStore is also somewhat oriented to-
wards identity certificates and specially X.509,
but can fairly easily be used to store other types
of certificates as well. Although the default im-
plementation uses files, providing an implemen-
tation that uses a distributed database is equally
possible.

4 Extending the Certificate Class

Identity certificates and authorization certificates
have several common features. They are both
signed records, so they have a signature. They
also have a transfer representation, an encoded
form common to all implementations. In addi-
tion, they have an issuer, and the issuer has a key
pair to be able to sign the certificate. Further-
more, the certificates have a subject, i.e., some
entity that the certificate was issued to. However,
the type and properties of this subject may vary.
Finally, they have validity information, usually in
the form of "not before" and "not after" dates.

The java.security.cert.Certifi-
cate class has, as mentioned before, several
methods. Like all objects, it has the methods
equals, hashCode and toString. These methods
are obviously common to identity and authoriza-
tion certificates. The getEncoded method returns
the encoded transfer representation of the certifi-
cate, and is also common to all certificate types.
Likewise, the getType and verify methods have
the same intuitive meaning and serve an impor-
tant purpose in both identity and authorization
certificates. The last method, getPublicKey, is
more problematic. In identity certificates it is
used to get the subject’s public key from the cer-
tificate. In authorization certificates the subject
may not even have a public key. However, in all
certificates the issuer has to have a public and
private key to be able to sign the certificate. Thus,
the most logical key to be returned by the get-
PublicKey method in authorization certificates
would be the issuer’s key that can be used to ver-

ify the signature. Nevertheless, having the sam
method to return completely different parts of th
certificate, depending on which type of certifica
is in question, is obviously not a good idea.

We propose that the getPublicKey method
the Certificate class is changed to getSub
jectKey. Furthermore, since all certificates’ sub
jects do not have a public key, the method shou
throw a NoSuchFieldException if the public ke
does not exist. We also suggest that a meth
called getIssuerKey would be added to th
Certificate class. This method would return
the public key that can be used to verify the ce
tificate’s signature.

We also propose that, since most if not all ce
tificate types have some kind of validity informa
tion, a validity check method should be added
the Certificate class. It could be named checkV
lidity according to the example set by th
X509Certificate class, or its name could be
simply isValid. The method would return a
boolean value depending on whether the cert
cate is valid at the moment when the checking
done. If some certificate type, that we are un
ware of, does not have any validity information
all, its implementation of this method should a
ways return "true".

4.1 The Superclass for SPKI Certificates

Just as all X.509 certificate implementations
Java have a common, abstract superclass ca
X509Certificate , all the SPKI certificate
implementations should have an abstract sup
class that extends the Certificate class. We
have called this class SPKICertificate . The
superclasses for certificate implementations a
shown in Figure 1.

The SPKICertificate specifies the meth-
ods that any SPKI certificate implementatio
must have (in addition to the methods specifi
by the Certificate class). These methods ar
derived from the SPKI specification according t

SPKICertificate
{abstract}

Certificate

{abstract}

X509Certificate
{abstract}

Figure 1: The certificate superclass hierarchy

y,
 a
ote
-
e-
n
i-

e
ut

e

is

ass

-
n-
 a

n-
e

s,
-

-

the principle that there must be at least one ac-
cess method for each field of the certificate: the
method for viewing the field contents. We have
named these methods getVersion, getIssuer, get-
Subject, getDelegation, getTag, getValidity,
getComment, getIssuerInfo and getSubjectInfo.

5 Implementing SPKI Certificates

The core of our implementation are the classes
SPKICertificate and SPKICert . The
SPKICertificate is the abstract superclass
for all SPKI certificates. The SPKICert class is
our actual implementation. It is a subclass of the
SPKICertificate class.

The simplified UML diagram of the SPKI cer-
tificate class hierarchy is shown in Figure 2.
Three components of the Cert class have been
left out of the diagram for clarity: these are the
Version, the IssuerInfo and the SubjectInfo. They
are optional, but recommended fields of the SPKI
certificates.

The components of the Cert class are them-
selves complex hierarchies of relatively simple
components. For example, according to the SPKI

definition, the Tag object consists of a TagBod
which in turn can be either a TagStar-object or
TagExpression. The TagStar is used to den
any authorization, or "everything". The TagEx
pression is a recursive definition of a more r
stricted authorization, allowing the specificatio
of capability groups, capability ranges and ind
vidual capabilities. An UML diagram of the Tag
object hierarchy is shown in Figure 3. Again, th
lowest levels of the hierarchy have been left o
from the diagram.

Other classes in our prototype include th
SPKIProvider and SPKICertificate-
Factory . They are described in the rest of th
chapter.

5.1 Creating a Provider for SPKI

As we explained in Section 3, Java uses a cl
called Provider to find the classes implement
ing particular services. To register our impleme
tation of the SPKI functionality, we must create
provider of our own. Our provider is called SP-
KIProvider . It extends the java.secu-
rity.Provider class, and specifies the
names of the classes implementing the functio
ality for handling SPKI certificates, namely, th
SPKICertificateFactory class.

The SPKICertificateFactory is an en-
gine class that is used to create SPKICertifi-
cate objects from the canonical s-expression
the encoding format for SPKI certificates. It ex
tends the CertificateFactorySpi class.
A utility class, SPKIParserVisitor is used in pars

Cert

Issuer

Subject

Deleg Tag

Comment

Valid

 SPKICert

SPKICertificate

{abstract}

Signature

11

1

1

0..1

0..1

1

0..1

Figure 2: SPKI certificate object structure

Certificate

{abstract}

Figure 3: The Tag object structure

Tag

TagBody

TagStar

ByteString

TagExpression

1

{interface}

TagString TagSetSimpleTag

TagPrefix TagRange

*

0..1

*

0..1 0..1

1 0..1 0..1 0..1

a
u-
x-

r
ori-
as
s,
 in
is
a
t

f-
e a
d-

e

is
e
n-
m-
.
a-
-

rol

-

y,

ty
ri-

,

h

,

ing the canonical format into the SPKI object
structure.

Because we are going to use the SPKI certifi-
cates to do fully distributed Java policy manage-
ment, our provider should also include a
distributed KeyStore implementation. At the time
of this writing, this functionality is still under
construction.

5.2 JarVerifier

As mentioned in Section 3, the classes in a jar-
file may be signed. When such classes are loaded
into the JVM, the JarVerifier verifies the
signatures and if the check reveals no problems,
decorates the loaded classes with corresponding
X.509 certificates. These certificates in turn are
used to determine what permissions the class
should get.

This approach is suitable for the traditional ac-
cess control that is based on identity certificates
and ACLs. However, if we want to use authoriza-
tion certificates for determining what access
rights the classes have, the regular signatures
could and should be replaced with authorization
certificates to avoid unnecessary steps in class
loading and access control.

Unfortunately, the JarVerifier has not
been designed to be extendable. It seems to exist
solely for the X.509 architecture, and even the
signature algorithms that can be verified have
been hard coded in the implementation. Thus we
cannot even replace the standard signature algo-
rithms of the Java library with some other algo-
rithm, let alone replace them with a SPKI
certificate, unless we replace the whole class.
This is a major weakness in the otherwise rela-
tively well designed and easily extendable archi-
tecture.

6 Conclusions

The basic JDK 1.2 cryptographic architecture is a
fairly good starting point for adding new types of
certificates. We see the goals of extendibility and
implementation independence as worth pursuing,
and have tried to further advance them in our de-
sign.

However, not all parts of the JDK are well
thought and easily extendible. The
JarVerifier that reads and interprets jar files
and their signatures is inflexible. It is impossible
to extend its functionality without replacing the

class in the JDK library. This, obviously, is not
desirable feature if we want to distribute our a
thorization certificate packages as a regular e
tension to JDK.

The Certificate class needs some mino
changes to be suitable as a superclass for auth
zation certificates. The getPublicKey method h
no intuitive meaning in authorization certificate
or at least the interpretation is not the same as
identity certificates. We propose renaming th
method to getSubjectKey and letting it throw
NoSuchFieldException if the certificate’s subjec
is not a public key. In addition, since every certi
icate has an issuer, and every issuer must hav
public key to sign the certificate, we suggest ad
ing a getIssuerKey method to th
Certificate class.

The class hierarchy of the SPKI package
fairly complex, due to the number of fields in th
certificate and the great variety of possible co
tents to the fields. However, the classes the
selves are relatively simple and straight forward

In the future we are going to use the authoriz
tion certificate infrastructure created in this re
search to implement distributed access cont
management in JDK 1.2. [9]

References

[1] E. Amoroso, Fundamentals of Computer Se
curity Technology, Prentice Hall, Englewood
Cliffs, New Jersey, 1994.

[2] K. Arnold and J. Gosling, The Java Pro-
gramming Language, Addison-Wesley,
1996.

[3] M. Blaze, J. Feigmenbaum, and J. Lac
“Decentralized trust management”, Pro-
ceedings of the 1996 IEEE Computer Socie
Symposium on Research in Security and P
vacy, Oakland, CA, May 1996.

[4] C. M. Ellison, B. Frantz, B. Lampson,
R. Rivest, B. M. Thomas and T. Ylönen
Simple Public Key Certificate, Internet-
Draft draft-ietf-spki-cert-
structure-05.txt , work in progress,
Internet Engineering Task Force, Marc
1998.

[5] C. M. Ellison, B. Frantz, B. Lampson,
R. Rivest, B. M. Thomas and T. Ylönen
SPKI Certificate Theory, Internet-Draft
draft-ietf-spki-cert-theory-
02.txt , work in progress, Internet Engi-
neering Task Force, March 1998.

,
m-

):
s

[6] Li Gong, Java™ Security Architecture
(JDK 1.2), DRAFT DOCUMENT (Revi-
sion 0.9), http://java.sun.com
/products/jdk/1.2/docs/guide
/security/spec/security-
spec.doc.html , Sun Microsystems,
March 1998.

[7] I. Lehti, SPKI-based Access Control
Server, Master’s Thesis, Helsinki Univer-
sity of Technology, January 1998.

[8] I. Lehti and P. Nikander, “Certifying
trust”, Proceedings of the Practice and Theory
in Public Key Cryptography (PKC) ’98, Yoko-
hama, Japan, Springer-Verlag, February
1998.

[9] P. Nikander and J. Partanen, "Distributed
Policy Management for JDK 1.2", Pro-
ceedings of the 1999 Network and Distrib-
uted System Security Symposium, San
Diego, CA, Internet Society, Reston, VA,
February 1999.

[10] J. Partanen, Using SPKI certificates for
Access Control in Java 1.2, Master’s The-
sis, Helsinki University of Technology,
August 1998.

[11] R. L. Rivest and B. Lampson, “SDSI -- a
simple distributed security infrastructure”
Proceedings of the 1996 Usenix Security Sy
posium, 1996.

[12] ITU-T Recommendation X.509 (1997 E
Information Technology - Open System
Interconnection - The Directory: Authenti-
cation Framework, ITU-T, June 1997.

[13] Java™ Cryptography Architecture API
Specification & Reference, [on-line, refer-
enced 28 July 1998],
http://java.sun.com/products
/jdk/1.2/docs/guide
/security/CryptoSpec.html , Sun
Microsystems, June 1998.

