
An Architecture for
Authorization and Delegation in

Distributed
Object-Oriented
Agent Systems

Pekka Nikander

DOCTORAL DISSERTATION

An Architecture for Authorization and Delegation in
Distributed Object-Oriented Agent Systems

Pekka Nikander

Helsinki University of Technology
Department of Computer Science
Telecommunications Software and Multimedia Laboratory
FI-02015 TKK, Espoo, Finland

Author’s address:

Pekka Nikander
Ericsson Research
FI-02420 JORVAS
Finland
pekka.nikander@ericsson.com

Copyright © 1999 Pekka Nikander
All rights reserved.

ISBN 952-91-0786-2

Dissertation for the degree of Doctor in Technology to be presented with due permis-
sion for public examination and debate in Auditorium T2 at Department of Computer
Science, Helsinki University of Technology (Espoo, Finland) on Friday, 19th of
March, 1999, at 12 o’clock noon.

To my newborn daughter

Abstract

Public key infrastructures and authentication protocols, in the sense they are currently
known, have been publicly studied since 1978 [23]. In this work I demonstrate how I,
together with the research group I have had the privilege to direct, have further devel-
oped these concepts in the Object-Oriented field. In our research, we have imple-
mented a public key based system that allows distributed agents to securely co-operate
in an insecure network.

In this thesis, I focus on the following four interrelated aspects. First, I define a
concrete secure software architecture for distributed software agents. Second, I de-
scribe our implementation of an Object-Oriented protocol framework for crypto-
graphic protocols. Third, I show how an authorization based Public Key Infrastructure
can be used to manage the security of Java based, Object-Oriented software Agents.
And finally, I describe how this infrastructure can be extended to support distributed,
secure agent execution and permission delegation. In the work as a whole, my goal has
been an open, extensible security architecture that allows distributed software agents
to co-operate securely. In this context, security1 mainly means two things. First, the
agents must be able to trust in the underlying computing machinery, and also trust in
each other. Second, the agents must be able to delegate rights among themselves, and
to create secure connections between any two communicating agents.

The distributed secure software architecture can be considered a high level frame-
work where the protocol framework and the Public Key Infrastructure (PKI) plug in. It
defines the security related subsystems for typical Object-Oriented execution environ-
ments, focusing on distribution and thereby cryptographic means of implementing
security. The Object-Oriented protocol framework provides a supportive base, on top
of which various cryptographic protocols can be built. In this sense, cryptographic pro-
tocols include both session encryption protocols used to protect actual data traffic be-
tween communicating parties and key management and authentication protocols, used
to create secure channels used for the actual data transfer.

The Public Key Infrastructure (PKI) is needed to provide sufficient trust relation-
ships and an initial security context to the communicating parties so that the authenti-
cation and key management protocols can be operated. In this work, my sole focus has
been on an authorization based (as opposed to identity based) PKI. In practical terms,
this means that the secure channels created within such an authorization framework
automatically get strong relationship semantics, providing the communicating parties
explicit information about the level and form of trust mediated.

Finally, the architecture with its protocol and PKI components makes it possible to
create Object-Oriented software agents, distribute them into the network, and let them
collaborate in a secure way. In our system, agents are represented as collections (JAR
packages) of Java classes. The agent code may be loaded into a trusted Java Virtual
Machine, where it is run. The running agents are able to create and evaluate trust rela-
tionships between each other, allowing dynamic delegation and creation of secure
communication channels.
1 Security per se is, naturally, a much larger concept. However, for the purposes of this study, I have

concentrated on these two aspects of security in defining the presented security architecture.

ii Nikander

Acknowledgements

This dissertation is a result of a few years of development in the Telecommunications
Software and Multimedia laboratory at Helsinki University of Technology. During this
time, I have had a privilege of supervising the M.Sc. work of several bright students, as
well as working with a number of other undergraduate and graduate students. There-
fore, I want to thank Timo P. Aalto, Tero Hasu, Esko Heimonen, Ursula Holmström,
Kaj Höglund, Yki Kortesniemi, Ilari Lehti, Jonna Partanen, Juha Pärssinen, Bengt Sah-
lin, Mikael Suokas, and Sanna Suoranta for indirectly contributing to my thinking and
thereby this thesis. I am especially grateful to Ilari, Jonna, Juha, and Yki for their con-
tributions to the publications that form a part of this thesis, and for taking care of most
of the practicalities involved with submitting the papers for publication.

Until May 1998, while conducting research towards this thesis, I also acted as the
Chairman of the Board at Nixu, a small consultancy company I had founded in 1988. I
want to thank all of my colleagues at Nixu for their patience and understanding — si-
multaneously conducting academic research and acting in a managerial position in a
consultancy company was not always easy. In Nixu, my special thanks go to Lea Vil-
janen, with whom I had a privilege to write one of the included publications, and Jukka
Kotkanen and Oiva Karppinen, who made my work easier by taking care of a number
of issues at Nixu. From August 1998, I have acted as a Research Manager at Ericsson
research. I thank Ericsson for the financial support for publishing and defending this
thesis, my managers Kristian Toivo and Rolf Svanbäck for their support and encour-
agement, and my colleagues at Ericsson Telecom Research & Development for their
understanding and support.

For initial inspiration, I am grateful to Major Risto Silvasti and senior systems spe-
cialist Erkki Suominen, who during my military service at Defence Forces Computing
Centre suggested that I would pursue further academic studies in the area of computer
security. This resulted in my Licentiate’s thesis, and thereby contributed to the birth of
this dissertation. My special thanks go to my friends and colleagues Tuomas Aura, Pet-
teri Koponen, Juhana Räsänen, and Jorma Wall for reading through the manuscript of
this thesis, and for pointing out a number of mistakes.

I thank my preliminary examiners Dr. Arjen Lenstra and Professor Erland Johnson
for their effort and for their invaluable suggestions for enhancements, and my oppo-
nent Dr. Thomas Berson for travelling to Finland to examine and debate my views.

To my supervisor and personal friend, Professor Arto Karila, I am especially in
dept. He taught me patience, had time for me at inconvenient moments, taught how to
write good papers by co-authoring the first publication included in this thesis, and es-
pecially acted as a source of hope and belief at hard times. Without his encouragement
and support this thesis would be of much lesser quality.

Last, I thank with all my heart my wife Kirsi Nikander for all her understanding,
support and love, and our newborn daughter for being such a lovely and easy baby
both before and after her birth.

Helsinki, February 1999

Table of Contents iii

Table of Contents

Abstract. i

Acknowledgements .ii

Table of Contents . iii

Original Papers . xiii

1 Introduction .1

1.1 Background .1
1.1.1 Organization of this Thesis .2
1.1.2 Original papers .2
1.2 Distributed agent systems. .3
1.2.1 Principals .3
1.3 Authentication, Access Control, Authorization, and Trust . . .4
1.3.1 Authentication .5
1.3.2 Authentication protocols .6
1.3.3 Access Control. .7
1.3.4 Object-level Access Control .8
1.3.5 Authorization and Delegation .10
1.3.6 Trust and Security Policy .11
1.4 Protocol frameworks .12
1.4.1 Conduits and Conduits+ Frameworks13
1.4.2 Conduit Types and Protocol Graphs14
1.5 Communicating Distributed Object Environments15
1.5.1 Conceptual Model .16
1.5.2 Distributed Java Environments .16
1.5.3 Jini .17
1.6 Summary .17

iv Nikander

2 An Architecture for Secure Distributed Computing.19

2.1 Overview and Basic Concepts .19
2.1.1 Conceptual overview. .20
2.1.2 Definition of architectural concepts 21
2.1.3 Functional concepts. .22
2.1.4 Implementation .25
2.2 Securing connections with IPSEC .25
2.2.1 Basic structure .26
2.2.2 Policy and Semantics. .27
2.2.3 Implementation status .28
2.3 Managing Security Contexts .28
2.3.1 Implementation status .29
2.4 Policy and Certificates .29
2.4.1 Principals redefined. .29
2.4.2 SPKI Certificate Theory .30
2.4.3 Certificate Chains and Loops .31
2.4.4 Applying certificates to JDK 1.2 access control34
2.4.5 Implementation status .36
2.5 Storing and Retrieving Certificates .36
2.5.1 Implementation status .37
2.6 Summary of the Architecture .37

3 An Object-Oriented Framework for Security Protocols.39

3.1 Background .39
3.2 Basic Elements .39
3.2.1 Five types of Conduits. .40
3.2.2 Messages and Messengers. .41
3.3 Secure Execution Environment .42
3.3.1 Language Level Security Features 43
3.3.2 Usage of JDK 1.2 Security Domains to Protect

Protocol Fragments .43
3.3.3 Controlling the Flow of Messages.44
3.4 Construction of Cryptographic Protocols.44
3.4.1 Java Cryptography Architecture and Extension45
3.4.2 Protocol Patterns .46
3.4.3 ISAKMP based Higher Level Framework 46
3.5 Implementation history and status .47
3.6 Contributions .48

Table of Contents v

4 Distributed Trust and Policy Management.49

4.1 Introduction .49
4.1.1 Distribution with Agents .49
4.1.2 Forms of Trust .50
4.1.3 Security Policy Defined. .51
4.2 Trust in Distributed Agent Systems .52
4.2.1 Trust Relationships .52
4.2.2 Expressing Trust .53
4.2.3 Trusted Third Parties .55
4.3 Components of Security Policy .56
4.3.1 Policy for Trusting in Third Parties.56
4.3.2 Policy for Believing in Recommendations58
4.3.3 Policy for Access Control .58
4.3.4 Enforcing Policy .58
4.4 Distributed Management .59
4.4.1 Installation of Nodes .59
4.4.2 Definition of Initial Policies .60
4.4.3 Introducing new Trusted Parties .60
4.4.4 Revoking Trust .61
4.5 Summary .61

5 Conclusions .63

Bibliography. .65

vi Nikander

Publication I

A Java Beans Component Architecture for Cryptographic Protocols .71

1 Introduction .71
2 The architecture .72
2.1 The essential components .73
2.2 The optional components. .73
2.3 Implementational requirements. .74
2.4 Related work .75
3 The implementation framework .75
3.1 Component based software engineering76
3.2 Basic Conduits architecture. .77
3.3 Using Java to build protocol components79
3.4 Usage of language level security features80
3.5 Object level design patterns used in the

resulting architecture .81
3.6 Protocol design patterns. .83
4 Implementation experiences. .84
4.1 The framework .84
4.2 IPSEC .86
4.3 ISAKMP .88
4.4 Non-cryptographic protocols. .88
4.5 Availability .88
5 Summary .88
6 Future work .89
7 UML class diagram .93

Table of Contents vii

Publication II

A Java Beans Framework for Cryptographic Protocols.95

1 Introduction .95
1.1 Underlying Assumptions. .97
1.2 Component Based Software Engineering97
1.3 Related Work. .99
2 The Implementation Framework .99
2.1 Basic Conduits Architecture .100
2.2 Using Java to build protocol components106
2.3 Protocol Messages. .107
2.4 Running Protocols .108
2.5 Protocol design patterns. .113
3 Building Protocols with Java Conduits 113
3.1 Lower layer protocols vs. upper layer protocols114
3.2 Building Lower Layer Protocols .114
3.3 Building Upper Layer Protocols .116
4 Integrating Cryptography into Java Conduits.117
4.1 Implementing Cryptographic Protocols.117
4.2 Representing Cryptographic Transformations

as Conduits .118
4.3 Using Java’s Language Level Security Features.119
4.4 IPSEC — An Example .119
5 Summary .123
5.1 Design Patterns in the Framework.124
5.2 Availability .124
6 Future Work .124

viii Nikander

Publication III

Certifying Trust .129

1 Introduction .129
1.1 Trust Models .130
1.2 Security Policies .131
1.3 Digital Certificates. .131
1.4 Certificate Loops .132
1.5 Outline of This Paper. .132
2 Expressing Trust With Certificates 132
2.1 Certifying Identity .132
2.2 Certifying Authorization .135
3 Simple Public Key Certificate .137
3.1 Principals and Naming. .137
3.2 Certificate Format .137
3.3 5-tuple Reduction .138
4 Implementation. .139
4.1 Typical Transaction. .139
4.2 Design Patterns .140
4.3 Policy Manager Implementation .141
4.4 SPKI Implementation .142
5 Future Directions .142
6 Conclusions .143

Table of Contents ix

Publication IV

Storing and Retrieving Internet Certificates.147

1 Introduction .147
2 SPKI .148
2.1 Certificate Format and Semantics148
2.2 Certificate Types .150
2.3 Certificate Loops .151
3 The Domain Name System. .153
3.1 Overview .153
3.2 Naming Non-Host Entities .153
3.3 The Certificate Resource Record Type154
4 DNS as the SPKI Certificate Storage.155
4.1 Storing SPKI Certificates into the DNS Nodes.155
4.2 Search algorithm .157
4.3 Administering certificates .159
5 Example .160
5.1 Granting Access. .161
5.2 Accessing the Service .161
6 Conclusions .162

x Nikander

Publication V

Distributed Policy Management for JDK 1.2.165

1 Introduction .166
1.1 Authorization certificates .167
2 Basic security architecture in JDK 1.2168
2.1 Permissions .168
2.2 ProtectionDomains .169
2.3 AccessController .169
2.4 Policy. .170
2.5 Keys, certificates and certificate management 171
3 Shortcomings and remedies .171
3.1 Alternatives to local configuration 172
3.2 Protection domains .173
3.3 Scalability .174
3.4 Pseudostatic vs. dynamic permissions.174
4 Assigning Java permissions with SPKI certificates174
4.1 Policy manager .175
4.2 Dynamic policy .176
5 Implementation. .177
5.1 Performance measurements. .178
6 Creating distributed protection domains 179
7 Conclusions .181

Table of Contents xi

Publication VI

Preserving Privacy in Distributed Delegation with Fast Certificates.185

1 Introduction .186
2 Authorisation and Delegation. .187
2.1 Trust and Security Policy .187
2.2 Certificates, Certificate Chains, and Certificate Loops. . .188
2.3 Authorisation and Anonymity .188
2.4 SPKI Certificates. .189
2.5 Access control revisited. .190
3 An SPKI based Dynamic Security Architecture

for JDK 1.2. .190
3.1 Access Control in JDK 1.2 .191
3.2 Policy Management. .191
4 Adding Elliptic Curve based Certificates to Java.192
4.1 The Java Cryptography Architecture.193
4.2 Implementing an Elliptic Curve Cryptography

Provider in Java 1.2 .193
5 Extending Java Protection Domains into

Distributed Agents .194
5.1 Trust requirements. .195
5.2 Expressing the Trust Requirements with

SPKI Certificates. .196
5.3 Runtime Behaviour .197
5.4 Preserving privacy. .199
6 Implementing the architecture .199
7 Conclusions .200
7 References .200

xii Nikander

Publication VII

Authorization in Agent Systems: Theory and Practice 203

1 Introduction .203
2 Entities .205
2.1 Principals .205
2.2 Names and Thresholds. .206
2.3 Objects and Actions. .206
3 Forms of Trust .206
3.1 Direct and Delegated Trust .207
4 Theory .208
4.1 Basics. .208
4.2 Statements and expressions .208
4.3 Axioms. .209
4.4 Distributed modalities .211
4.5 Direct delegation .212
4.6 Indirect Delegation of Access Rights214
4.7 Executing via a Proxy Agent. .215
5 Practice. .218
5.1 Generalized delegation .219
5.2 Looping Trust .219
5.3 Exemplifying Policy .222
6 Access Control Models .222
6.1 Discretionary Access Control .222
6.2 Mandatory Access Control .223
6.3 Role Based Access Control .223
7 Implementation status. .224
8 Summary and Conclusions. .224

Original Papers

This thesis describes the development of a new security architecture for distributed
computing and especially for distributed agent based computing. The results have been
or are to be published in the following seven publications. The roman numerals are
used when the publications are referred to in the text.

I Pekka Nikander and Arto Karila, “A Java Beans Component Architecture for
Cryptographic Protocols,” in Proceedings of the 7th USENIX Security Sympo-
sium, San Antonio, Texas, Usenix Association, 26-29 January 1998.

II Pekka Nikander and Juha Pärssinen, “A Java Beans Framework for Crypto-
graphic Protocols,” to appear as Chapter 24 in Mohammed Fayad, Douglas
Schmidt and Ralph Johnson (Editors), Object Oriented Application Frameworks,
Volume II, Wiley, 1999.

III Ilari Lehti and Pekka Nikander, “Certifying Trust,” in Imai and Zheng (Editors),
Public Key Cryptography — First International Workshop on the Practice and
Theory in Public Key Cryptography PKC’98, Pasifico Yokohama, Japan, Febru-
ary 1998, LNCS 1431, pp. 83–98, Springer-Verlag, March 1998.

IV Pekka Nikander and Lea Viljanen, “Storing and Retrieving Internet Certificates,”
in Knapskog, Brekne (Editors), in Proceedings of NordSec -98 — The Third Nor-
dic Workshop on Secure IT Systems, Trondheim, Norway, 5–6 November, 1998.

V Pekka Nikander and Jonna Partanen, “Distributed Policy management for JDK
1.2,” in Proceedings of the1999 Network and Distributed Systems Security Sym-
posium, San Diego, CA, 4–6 February 1999, pp. 91–102, Internet Society, Febru-
ary 1999.

VI Pekka Nikander, Yki Kortesniemi and Jonna Partanen, “Preserving Privacy in
Distributed Delegation with Fast Certificates,” in Imai, Zheng (Editors), Public
Key Cryptography — Second International Workshop on Practice and Theory in
Public Key Cryptography, PKC’99, Kamakura, Kanagawa, Japan, 1–3 March
1999, LNCS, Springer-Verlag, March 1999.

VII Pekka Nikander, Authorization in Agent Systems: Theory and Practice, Technical
Report, 1/99 in Series A, Telecommunications Software and Multimedia Labora-
tory, Helsinki University of Technology, ISBN 951-22-4464-0, ISSN 1455-9722,
February 1999. A revised version of this paper has been submitted to Computer
Security Foundations Workshop 1999.

The theme of the study was suggested by Pekka Nikander. The resulting architecture
was designed by Pekka Nikander, and most of the research was conducted by Pekka
Nikander, together with a group of master’s students and other undegraduates. At vari-
ous times, the following students worked in the group: Timo P. Aalto, Tero Hasu, Esko
Heimonen, Ursula Holmström, Kaj Höglund, Yki Kortesniemi, Ilari Lehti, Jonna Par-
tanen, Juha Pärssinen, Bengt Sahlin, Mikael Suokas, and Sanna Suoranta.

xiv Nikander

Chapter 1

Introduction

1.1 Background

In this thesis, I present a concrete distributed software architecture whose origin can be
traced back to 1993, when I for the first time realized the problems involved in delegat-
ing access permissions and modelling trust in a distributed system. Since then, a lot has
happened in the international research community. The proliferation of the Internet has
raised security awareness in most organizations. Firewalls are commonplace, and a
still small but rapidly growing fraction of the Internet traffic is cryptographically pro-
tected. On the other hand, the wide acceptance of the Java computing platform and the
Java Beans component architecture is finally making it feasible to build large scale
agent systems.

Thus, to a large extent the architecture presented builds onto this international de-
velopment, combining existing bits and pieces in a novel way, and creating something
new in the process. Major parts of the system consist of adaptations of standard Inter-
net protocols and services. My main contributions are visible in the following three ar-
eas where the pieces are combined in a new way, or totally new solutions are proposed.

• First, I have defined a security architecture for distributed agent systems, which it-
self represents new insights not yet widely understood.

• Second, we have built a concrete Object-Oriented protocol framework — used to
implement parts of the architecture — that includes a number of improvements not
available in protocol frameworks before.

• Third, and finally, I have defined an infrastructure for distributed trust and policy
management, which comprises the top layer of the architecture. Especially, its ad-
aptation to agent computing is a piece of new development.

In practice, my PhD related work has to a large extent been an architect’s work. From
the very beginning, I have had the privilege (or a pledge, depending on the point of
view) of guiding a number of people working on their Master’s theses. I have chan-
nelled my architectural vision and key ideas into the problems of these Master’s theses,
and worked together with each Master’s candidate in solving the finer level problems.
My primary contribution is visible in the architectural level view, continuing from the-
sis to thesis and paper to paper. In the published papers included in this thesis, the pri-
mary ideas and solutions as well as the realization of the importance of the problem
domains are solely mine. My co-authors have helped me in hammering the ideas into
concrete solutions, and solving some of the finer points.

2 Nikander

1.1.1 Organization of this Thesis

This Thesis consists of five Chapters and seven Publications, each publication embod-
ying a published paper. The Publications are included separately, following the Bibli-
ography. The Publications are numbered with roman numerals I–VII.

The Chapters are organized as follows. In the rest of this Chapter, Chapter 1, I give
a brief introduction to the research topic. In Chapter 2, I describe the TeSSA Telecom-
munications Software Security Architecture, which forms the overall software archi-
tecture for the rest of this thesis. An early version of this architecture is described in
Publication I, while some finer points are described in Publications IV and V. In Chap-
ter 3, I describe an Object-Oriented protocol development framework, named Jacob,
implemented as a part of this architecture. The point of view in the chapter is an exter-
nal one, focusing on how the framework functions as a tool to build other protocols.
The details of the framework are described in Publication II. In Chapter 4, I illustrate
how the overall architecture can be used to support distributed trust and policy man-
agement and execution in distributed agent systems. Again, focus is on the overall
structure, details being explained in Publications III, VI and VII. Each chapter also de-
scribes the implementation status of our prototype, if applicable. Finally, Chapter 5 in-
cludes a summary and concluding remarks.

1.1.2 Original papers

The Publications section includes reprints of selected papers that our research group
has produced during the course of its research. In each paper, my personal contribution
and ideas have been the driving force, creating continuity over the individual research
topics. The publications are organized in rough order of detail, starting from the more
general publications and working towards the more specific details.

Publication I, “A Java Beans Component Architecture for Cryptographic Proto-
cols” on page 71, draws the background. It outlines the architectural structure into
which the rest of the work is based on. Next, in Publication II, “A Java Beans Frame-
work for Cryptographic Protocols” on page 95, we describe the basement of our archi-
tecture, so to say, in detail. In Publication III, “Certifying Trust” on page 129, the focus
is shifted towards the higher levels of the architecture (the “attic” vs. the basement),
describing the necessary trust management elements that are needed to cover the archi-
tectural structure.

Finally, the remaining publications give the missing details needed to complete the
structure. Publication IV, “Storing and Retrieving Internet Certificates” on page 147,
outlines an architecture for practical distributed management of trust relationships.
Publication V, “Distributed Policy Management for JDK 1.2” on page 165, describes
how authorization certificates can be extended to remotely manage the internal access
control of Java Virtual Machines. The last two publications, Publication VI, “Preserv-
ing Privacy in Distributed Delegation with Fast Certificates” on page 185, and
Publication VII, “Authorization in Agent Systems: Theory and Practice” on page 203,
show how this system can be extended to cover distributed, interoperating software
agents.

Chapter 1. Introduction 3

The rest of this Chapter briefly describes the necessary background, including a
number of definitions. First, in Sect. 1.2, the basics of distributed systems are dis-
cussed, including definitions for the terms node, agent and principal. Then, in
Sect. 1.3, the concepts of authentication, access control, authorization, and trust are
defined. Sect. 1.4 gives an introduction to protocol frameworks, and, finally, Sect. 1.5,
introduces communicating distributed object environments.

1.2 Distributed agent systems

For the purposes of this study, a distributed system is a computer system that consists
of several nodes that are connected via an insecure network. Each node executes an op-
erating system that is capable of running software agents and that is trusted at least to a
degree. One of the features of our system is that the level of trust in the operating sys-
tem is explicitly modelled in our architecture. For the purposes of the theory presented
in this study, the actual nature of the nodes, links or agents is of no interest. However,
the actual prototype our research group has built is based on nodes running the Java
Virtual Machine (JVM) [9], networks based on standard Internet protocols, and soft-
ware agents represented as packages of Java classes.

Thus, in this study, the following definitions are used for nodes and agents1.

Definition. A node is a computer system that runs an operating system capable
of running software agents and that is connected to a network and therefore ca-
pable of communicating with other nodes through that network.

Definition. A software agent is a piece of program code and data, organized as
a unit, that may be loaded to a node and run. While running, it is able to per-
form actions in the node under the privileges that the security system has as-
signed to it.

In purpose, these definitions are quite general and allow nodes and agents to be quite
different from our prototype system. For example, nodes could well be computers run-
ning a modern operating system such as Mach or even UNIX, and the agents could be
tasks under Mach or processes under UNIX.

1.2.1 Principals

The users whom an information system has been created for are the natural principals
in the system. They are the people that have authority, in the first place, over the data
stored in the system and handled by the system. However, since people are blood and
flesh rather than electrons and silicon, it is impossible for the users to be directly repre-

1 In the literature, software agents are often assumed to have more properties, e.g., an agent is always
assumed to function as an intelligent independent unit. However, from the security point of view used
in this thesis, these additional properties are irrelevant, and the simple definition is adopted. See also
Sect. 4.1.1 on page 49.

4 Nikander

sented within the system. Thus, for the purpose of this thesis, we consider software
programs, or agents, which execute actions on the behalf of the users, to be principals.

As modern computer systems more and more perform actions initiated by them-
selves (according to preprogrammed schedules), it is also natural to consider the nodes
and their operating systems as principals. In fact, one of the purposes an operating sys-
tem exists for is to protect the underlying hardware from malicious acts. Thus, the op-
erating system can be considered to be a principal who has the primary authority over
the actual hardware and its usage. Hence, the term principal can be defined as follows.

Definition. A principal is a computer node or a software agent that is (poten-
tially) active in the system under discussion. A principal typically has authority
over a number of resources.

When discussion protocols, or emphasising the distinctness and remoteness of princi-
pals, the terms party and peer are often used as (rough) synonyms for principal. The
term party, typically used as “protocol party”, highlights the communicative nature of a
principal. The term peer, on the other hand, asserts that the principal under discussion
is considered to be another similar party than the one previously discussed.

1.3 Authentication, Access Control, Authorization, and Trust

While confidentiality, integrity and availability are usually defined as the primary goals
of any security system, authentication, access control and authorization are the usual
means used to achieve those goals [6]. When describing security subsystems that con-
trol users’ ability to perform their activities in a computer system, these latter three
terms are usually used in some combination. In this section, I describe the traditional
view to authentication and access control, and start my argument why the underlying
implicit assumptions behind these terms may not be the right ones for distributed sys-
tems. In Chapter 4 I return to this issue, having first gained some other background.

The term authentication is usually used to denote identity authentication, as de-
scribed in Sect. 1.3.1. However, the meaning of the term can be enlarged to designate
any action that creates information whose origin and integrity can be verified. On the
other hand, the whole applicability of the term is arguable in many occasions, as I will
show.

Access control, in its turn, is defined as a mechanism internal to a computer system
that monitors and controls the users’, or subjects’, access to the system’s resources, or
objects. The purpose of an access control system is to ensure the confidentiality, integ-
rity, and availability of the system resources and information stored in the system. Tra-
ditional access control concepts are described in Sect. 1.3.3, while its application in
Object-Oriented systems is considered in Sect. 1.3.4.

Finally, authorization is usually considered to be the act of enabling a user’s access
to protected data or resources. However, more often than not authorization is somehow
considered to be an infrequent action that is performed by a system administrator. Fur-
thermore, authorization is often implicitly considered to be performed by editing a lo-

Chapter 1. Introduction 5

cal security configuration database, located at or close to the protected resources. One
of my major goals is to render this view old fashioned, and to replace it with a model
better suited for distributed contexts. Thus, authorization, delegation, and any trust re-
lationships involved are discussed in Sect. 1.3.5 and 1.3.6.

1.3.1 Authentication

As already mentioned, in most literature the term authentication is used as a synonym
for identity authentication. That it, it is used to denote that a communicating party is
able to convince itself that the identity of a communication peer or the originator of a
message really is the claimed one. Thus, in a “usual” authentication situation, the first
party, let us call her Alice, decides to believe that she really got a message from a sec-
ond party, i.e., Bob. In the case of peer authentication, she also believes that she is able
to securely send messages to Bob and to securely receive more messages from Bob.

However, a more thorough analysis reveals that there is a number of fundamental
difficulties in this definition. First, the concept of identity is very problematic when
considering a large distributed system. Second, limiting authentication to be used in
connection with identity reveals to be too restricting. Third, the noun “authentication”,
denoting a presumably well defined operation, appears to be ill-defined. In fact, it
would be better to speak about the authenticity of some information instead of some
“magic” operation that comprises the act of “authentication”1.

Let us consider the problem with identity first. The term identity, stemming from
Latin identidem, originally means sameness or oneness. For example, “identity” in
“identity equation” denotes that both sides of an equation can be considered to indicate
the same (object). Similarly, when we meet a previously unknown person for the first
time, we cannot really identify that person with anything, since there is nothing that
would be of the same (stuff) as that person is and that was simultaneously known to us.

Thus, the usual way the term is used in the computer security literature, namely to
suggest that an active communicating party carries a certain name (or identity, if you
will), does not actually adhere to the original meaning of the word. In fact, it would
probably be more correct to speak about re-cognition (literally, re-knowing) or even in-
dication (of name), since the aim is to recreate an indicative relationship between the
message or communication channel and an already known name or account. This is
quite a different concept when compared to the literal meaning of user identification,
which suggest that the computer system identifies, i.e., conceives as united, the user
outside the computer and the user account inside the computer system.

Taking a slightly different point of view, it has been argued that in a distributed dig-
ital system the only real “identity”, with which anything can be later related to, is a pri-
vate cryptographic key [28]. That is, when we for the first time meet someone in the
digital world, we may be able to learn a public cryptographic key that corresponds to
the private key possessed by our new acquaintance. Later on, we can really identify a
future communicating peer with a known one by being able to convince us that the new
1 As I have argued in [60], acquiring the belief that a piece of information is true, e.g., to “authenticate”

a cryptographic key as belonging to a protocol party, does not necessarily require any explicit protocol
act or operation, but may be a “side effect” of some other operation. See also the longer explanation
on the next page.

6 Nikander

peer possesses the same private key as the old one. Thus, we may say that only crypto-
graphic keys should be considered suitable items to function as indications of identity.

Now, given these preliminaries, it becomes evident that the concept of identity au-
thentication, as usually understood, is at least obscure if not outright wrong. Therefore,
as I have already suggested in [60], it is better to enlarge the term authentication to de-
note the act of proving the authenticity of any object or piece of information1 instead
of restricting it to denote the act of proving the authenticity of, e.g., the identity of a
communicating peer or message originator, as it has been traditionally understood in
the literature. Thus, we may speak about authentication of authorization, or authentica-
tion of the possession of a cryptographic key. This is the essence of point two above
that suggested that limiting authentication to refer to identity is too restricting.

Coming to the third point, I now show that even the concept of “authentication” it-
self is slightly problematic. The biggest problem is that the term, as a proper noun,
suggests that there is a separate, perhaps even atomic, operation or act that is the au-
thentication. In some sense this is true; in many occasions, we can easily point a mo-
ment of time when a specific act of authentication has not happened, and another point
of time when it has been accomplished. But, this leaves the real meaning of the opera-
tion obscure, since it is usually not at all clear what happens between these two points
of time, nor what is the actual result achieved. A more precise a definition is needed.

Thus, to gather the essence of authentication, I first want to express its relationship
to the party performing the act of authentication. Second, I want to denote that the re-
sult of authentication is a belief, possessed by the authenticating party. Third, any piece
of information may be chosen by a protocol party to be considered authentic, inde-
pendent on whether there has been an explicit act that has caused its authenticity to be
established or not. Thus, in the scope of this work, the following definition is used.

Definition. In a (distributed) computer system, by saying that a piece of infor-
mation is authentic or has been authenticated, we denote that the party consid-
ering the authenticity or performing the authentication has gained enough of
evidence that it is itself able to believe that the given piece of information was
(once) uttered by the claimed originator, or, to be more precise, by the claimed
originating principal.

This definition includes the usual concept of identity authentication, when needed.
However, I tend to avoid that concept due to the difficulties in defining the precise
meaning of identity. Furthermore, I want to note, without pursuing more, that (in the
sense given in the definition) non-repudiation may be considered to be just a stronger
form of authentication instead of being a separate concept. (For more information, see
[60].)

1.3.2 Authentication protocols

The wide definition of the term cryptographic protocol is usually defined to denote the
class of communication protocols in which cryptography is used. This large class of

1 This actually corresponds with the dictionary meaning.

Chapter 1. Introduction 7

protocols is sometimes further divided into three subclasses, which are session proto-
cols, authentication protocols and proper cryptographic protocols. The central idea in
this definition is that session protocols and authentication protocols are compositions
of non-cryptographic communication protocols and “standalone” cryptography, while
proper cryptographic protocols are cryptosystems where the communications is an in-
herent aspect of the cryptosystem itself. Examples of the latter include the Diffie-
Hellman public key cryptosystem [23] and zero-knowledge protocols [31].

As the example of including Diffie-Hellman into the class of proper cryptographic
protocols shows (as opposed to classifying it as an authentication protocol), the divi-
sion is a mere convenient one rather than a fundamental one. The same aspect can be
seen when considering some concrete protocols such as SSH [90] or SSL/TLS [22],
which both include an authentication protocol and a session protocol combined. For
this thesis, however, the distinction between session protocols and authentication pro-
tocols is an important one. On the other hand, for our purposes, making a difference
between “proper” cryptographic protocols and mere composite ones is not important.

Now, given these preliminaries and the definition of authentication from
Sect. 1.3.1, the meaning of the term authentication protocol can now be defined.

Definition. An authentication protocol is a communication protocol whose pur-
pose is to enhance the collection of evidence available to the communicating
parties so that one or more of them can believe that a given piece of information
is authentic.

It is a common practice to use cryptographic means in establishing new evi-
dence. Typical belief goals include the belief that a (symmetric) cryptographic
key is held by a communication peer, the belief that a cryptographic key or
other random number has been generated during the protocol run, and the belief
that the communication peer holds either of the former beliefs.

This definition clearly includes the usual authentication protocols, including theoreti-
cal developments such as Dolev-Yao [24] and Otway-Rees [69], practical protocols
like Kerberos [48] and ISAKMP [55], as well as authorization certificate systems such
as PolicyMaker [18] and SDSI/SPKI [76][28][29][30]. On the other hand, the defini-
tion does not include typical session protocols, such as IPSEC [10], where the commu-
nication per se does not enhance the beliefs of the parties.1

1.3.3 Access Control

Access control includes the means and methods with which the users and other active
entities, such as processes and threads, are limited in their ability to manipulate objects
within a computer system. The purpose of an access control system is to maintain con-

1 A session protocol may indirectly help the parties to believe in new information due to the fact that
the information transferred is usually authenticated. However, this is not due to the protocol itself but
due to the secure information transfer, and the (external) semantic meaning given to that information.

8 Nikander

fidentiality, integrity and availability by making it impossible (or impractically hard)
for unauthorized parties to read, modify or consume information or resources.

A formal definition of access control usually includes the concept of an access con-
trol matrix, which is a matrix where columns are named after subjects (active entities),
rows after objects, and each cell includes the actions that the subject (given by the col-
umn) is allowed to perform to the object (identified by the row). In practice, the access
control matrix is an abstract item. The information included in it is usually represented
separately row-by-row, in the form of access control lists (ACL), or column-by-col-
umn, in the form of capabilities. [6]

An access control list (ACL) is a security token associated with a specific object (or
group of objects) that lists those subjects that may act on the object(s), and the specific
actions each subject may perform on the object(s). In practice, many ACL based sys-
tems allow groups of subjects to be specified, as well as negative (denying) access con-
trol lists.

A capability, on the other hand, is a security token associated with a subject that
lists a number of permissions. Each permission defines one or more objects, and an ac-
tion or a set of actions that the subject may perform on the object(s). [50]

It is clear, from the definitions, that both ACLs and capabilities must be protected
from unauthorized modification. In a way, thus, they are both themselves objects in the
access control system, and the subjects’ power to modify them must be limited. This
creates a chicken-and-egg problem, which is usually resolved by including a number
of implicit immutable ACLs or capability modification rights in the system.

For the purposes of this study, we are only interested in capabilities. Furthermore,
our main interest is in explicitly signed capabilities, sometimes also called credentials,
which are capabilities that are cryptographically bound to a specific subject. In the sys-
tem to be presented, these signed capabilities are represented as authorization certifi-
cates [27][28].

Definition. A signed capability, or authorization certificate, is a digitally signed
piece of information that assigns a subject, usually represented in the form of a
cryptographic public key, one or more permissions, which allow the subject to
perform specified actions on one or more specified objects in a target system.

What is probably interesting in this definition is the inclusion of a target system. By in-
cluding this, I want to emphasize the local nature of capabilities in a distributed sys-
tem. That is, a single capability should be valid only at a specific single system, the
target system, or possibly at a (small) number of interrelated systems, e.g. a clustered
server, which as a group can be considered to form a single target system. As we shall
see, this locality, combined with the intrinsic source of trust used in delegation, trivi-
ally solves most problems associated with the semantic meaning of permissions.

1.3.4 Object-level Access Control

Let us now focus our attention on access control within an Object-Oriented system.
The model we describe here is closely based on the access control system of Java De-

Chapter 1. Introduction 9

velopment Kit 1.2 [35], but the same principles could be applied to other (typesafe)
Object-Oriented systems as well. However, to maintain understandability, the presen-
tation refers to the concrete Java solutions on many occasions. In the system under dis-
cussion, one major focus here is to facilitate the co-operation of objects, possibly
created and operated by several interest parties, both within a single object address
space and, eventually, between distinct object address spaces.

Now, before dwelling upon the actual definition and implementation of O-O access
control, we must define the meaning of an (access control) subject in an O-O system.
That is, there usually are no explicit processes or other active entities that can be ex-
plicitly associated with a specific subject. Rather than that, the object system includes a
number of threads, each of which may execute operations on the behalf of different in-
terest parties at a time. For example, when a thread of execution moves (during a
method call) from a downloaded applet into a piece of code provided by the local run-
time environment, the set of interest parties involved changes accordingly. Thus, we
cannot identify the active entities, or threads, with access control subjects in the usual
sense. Something else is needed.

In JDK 1.2, it is the security domain concept that most closely matches with the
subject of the traditional access control model. Basically, a JDK 1.2 security domain is
a collection of classes (and instances of those classes) that are clumped together. For
example, an Applet may consist of one or more security domains. In JDK 1.2, each se-
curity domain has a number of permissions associated with it. Thus, the JDK 1.2 secu-
rity model can be seen to be a kind of a capability based model.

There are a number of differences, however. First, a security domain itself is not an
active entity. It is only activated when some thread of control enters some method that
belongs to (a class that belongs to) that domain. Second, the active permissions that
such a thread receives are usually not the full set of permissions that the particular do-
main has, but an intersection of permissions held by the domains that are active in the
thread’s call stack. To illustrate this, let’s consider a thread that has first activated a
method in class A, which has then called a method in class B, and so on up to class M.
Now the method in class M attempts to access a protected resource R. In order the ac-
cess to be allowed, all the security domains to which classes A, B, etc. up to M belong
to, must have a permission to access the resources R.

Now, when a new thread is created, the default case is to assign it those permissions
that are available at the creating context. For example, if class M of our previous exam-
ple were to create a new thread, the new thread would inherit, as its base permissions,
the intersection of the permissions in classes A … M, i.e., the permissions available to
the creating thread at the time of creation.

In JDK 1.2, there is one exception to the generic rule. A security domain may have
a permission to execute privileged sections. Within such a privileged session, the do-
main of the executing class is considered to form a virtual bottom of the execution
stack. Thus, the thread of execution has those permissions that the upmost security do-
main has, not restricted by the permissions possessed by the other domains present in
the class stack. (This functionality may be compared with the Unix set-user-id (suid)
facility, which is pretty similar in spirit.)

10 Nikander

In summary, one could say that the Object-Oriented access control present in JDK
1.2 is a kind of peculiar hybrid system based on roles and capabilities. The security do-
mains represent subjects or roles, and define permissions available through capabili-
ties. However, the active set of permissions is not a combination of roles available at a
particular moment, but an intersection of the permissions possessed by the interest par-
ties.

A more complete description of the JDK 1.2 access control system is given in
Sect. 2 of Publication V. More authoritative are the paper by Gong & Schemers [35],
the actual specification [36] and JDK 1.2 source code [84].

1.3.5 Authorization and Delegation

Authorization, in general, denotes sanctioning or empowering someone, i.e., to make it
valid, legal, binding, or official for a person to perform certain actions in the future.
Delegation, on the other hand, denotes appointing someone to act as a representative,
e.g., by means of a legal proxy. This definition includes, naturally, the assumption that
the delegating party actually does have the authority delegated.

In the context of a (distributed) computer system, both authorization and delegation
can be basically defined as acts that change the (conceptual) access control matrix.
That is, when a principal is originally authorized to have access to some object, an en-
try is created to the access control matrix. Similarly, when a principal delegates access
to some other principal, some of the first principal’s access entries are copied to the
second one.

In most current systems, the original authorization is usually performed by the lo-
cal operating system (the node) when a process (an agent) creates a new object. How-
ever, this concept can be easily generalized so that the original authority can be
considered to be assigned to the creating principal (the operating system), which im-
mediately delegates this access to the agent (the process) that requested the creation.
Seen this way, any principal, i.e. both nodes and agents, can create objects on the be-
half of other objects. Among other things, this also means that the creating principal is
and will be responsible for controlling the access.

Definition. When a principal is created, it is implicitly authorized access to all
the objects that comprise the principal. When an object (other than a principal)
is created, the principal whose address space contains the object is implicitly
authorized access to the object.

Thus, by definition, when a computer node is installed, the principal representing the
node (the operating system) is given implicit access permissions to all the physical and
logical objects that comprise the node. When an agent is created, on the other hand, it
is only given access to the classes and objects that are parts of that agent. In fact, these
are the only implicit access rights; all other rights are delegated.

Definition. A principal having a permission to control another principal or ac-
cess an object may delegate, on its will, this permission to a third principal, un-

Chapter 1. Introduction 11

less explicitly prohibited. When delegating, some permissions assigned to the
delegating principal are copied to the delegate.

Examples of existing distributed authorization and delegation systems include the Dig-
ital Systems Security Architecture (DSSA) [34] and the Kerberos [48][59]. They are
pretty similar to the system presented in this thesis in many respects. However, there
are a number of differences as well. The most important differences can be summa-
rized as follows.
• First, our system explicitly models more types of trust than either DSSA or Ker-

beros; especially, we model types that are not related to access control but to ge-
neric security conditions that must be met.

• The DSSA architecture is based on names and local access control lists, while our
architecture uses signed credentials and thereby allows anonymous operation.

• The Kerberos architecture is based on symmetric cryptography and centralized key
distribution centres. Our architecture is based on public key cryptography and fully
decentralized.

Other existing prototype authorization systems that have had influence on our system
include the PolicyMaker [18] and the SDSI/SPKI proposal [76][28][29][30]. Our sys-
tem is based on the same (but independently developed) ideas, but goes beyond both of
the proposals.

1.3.6 Trust and Security Policy

All human operation involves trust. Most of this trust is so inherent to the social nature
of us human beings that we seldom think about it; consequently, inability to trust is
considered to be abnormal (consider, e.g., paranoia). However, most of us have explic-
itly decided to trust our bank to take care of our money, and have selected our physi-
cian and dentist based on the feeling that we can trust them to take care of our health
problems, etc. Examples of implicit trust include the trust in that our peers, colleagues
and beloved ones do not harm us and act in bona fide with respect to our aims, and that
other people in our society do not put us into jail otherwise harm us without a reason.

All of these examples of trust involve social or legal control to some degree. If the
social control fails, or the legal system collapses, our basic security is fractured. If I
had to expect someone to hit me in the street without getting caught, I could not trust
the society to take care of my physical security any more. If my mother had deliber-
ately and continuously hurt me during my infancy, I would probably have severe prob-
lems in trusting in other people at all.

One of the problematic issues in wide scale distributed digital systems, such as the
Internet, is the relative lack of social and legal control. For example, if I, being a Finn-
ish citizen living in Finland, bought a computer device from an, lets say, Indonesian
vendor, and the device turns out to be unreliable or faulty only after having been paid,
my chances in getting retaliation are slim in the case the vendor refuses to believe me.
In the same way, if some digital vendor I have never heard about stores my credit card
information in their system and uses it months after the initial transaction, my chances
to react (other than deny the credit statements) are relatively poor. All this implies that

12 Nikander

in a computerized system, as opposed to a physical blood, flesh, wood and iron system,
trust relationships should be represented explicitly, and preferably in a way that their
legal binding can be later non-repudiably proven in a court, if needed.

Thus, for the purpose of this study, I want to emphasize that trust is always relative,
trust is intransitive, and that trust should be made explicit. Therefore, I stick with the
following definition.

Definition. In the architecture under discussion, trust in a principal is a belief
that the principal, when asked to perform an action, will act according to a pre-
defined description. In particular, this belief implies the belief that the principal
will not attempt to harm the requestor independently of the way it fulfils the re-
quest. Thus, trust is always expressed in relation to a principal and to an action.
Furthermore, trust is not necessarily transitive [89]. Trusting someone for rec-
ommendation is different from trusting someone for direct action.

This definition limits the concept of (formal) trust within the distributed system itself.
It does not, however, limit us from discussing other aspects of trust when needed.
Someone might even want to argue that the concept I have defined to be trust is not
trust at all, since, according to them, trust is inherently human behaviour, and therefore
I could not say that the computer nodes or software agents were to trust each other in
any way. However, as we shall see, it is quite natural to speak about trust relationships
between principals, independently on whether they are genuine presentations of trust
or just dim shadows of real trust assumptions held by users and administrators.

Earlier theoretical studies of trust in a distributed setting have been conducted by
Raphael Yahalom and Thomas Beth [16] [89], and later, independently, by Audun
Jøsang [43]. In these studies, the goal has been to develop a calculus for trust. That is,
the aim has been to create a generic calculus that shows how new trust relationships
may be based on existing trust relationships and recommendations.

My approach is different. In the architecture described, I have made a distinction
between genuine trust, trust expressions, and local security policy rules. The local se-
curity policy rules define how new (genuine or expressed) trust may be inferred based
on trust expression received from other principals. This aspect is discussed in more de-
tail in Chapter 4.

1.4 Protocol frameworks

In a distributed system, communication over the network is implemented with proto-
cols. In the security area, as we already discussed in Sect. 1.3.2, there are various kinds
of cryptographic protocols. In addition to the cryptographic protocols, also standard
non-cryptographic protocols are needed in order to create fully functional secure com-
munication systems.

Usually, the protocols are stacked in a more or less layer like architecture, accord-
ing to the ISO OSI or the Internet TCP/IP models. In such an architecture, a higher
layer protocol uses the services provided by a lower layer protocol as primitives. Using

Chapter 1. Introduction 13

these primitives, the higher layer protocol creates new services by utilizing, for exam-
ple, multiplexing, forward error correction, message reordering, message copying, se-
curity, multicasting, or other structures and functions.

Experience has shown that building communication protocols, and especially cryp-
tographic protocols, is very error-prone both in the design and implementation phases.
Formal methods have been more or less successfully applied in studying protocol de-
signs. In the implementation level, on the other hand, one of the more promising ap-
proaches seems to be the use of software frameworks.

Definition. A protocol framework is a covering piece of software that facilitates
implementation of communication protocols. It provides basic services needed
by all communication protocols, such as multiplexing and demultiplexing, mes-
sage scheduling, state machines, memory management, and encoding/decod-
ing. Being a framework, the control of execution is managed by the scheduling
service of the framework, not directly by the protocol themselves. Within such a
framework, protocols are usually built in a piecewise manner.

The history of protocol frameworks is relatively long. The earliest attempts include, for
example, the VOPS and CVOPS protocol frameworks developed already in the begin-
ning of 1980’s [44] [53]. More recent and popular protocol frameworks include x-
Kernel [41], Horus/Ensemble [74][75], and Bast [33]. Of these, Horus/Ensemble is
most closely related to our work, as it attempts to address security problems in addition
to generic protocol development issues. However, the Horus/Ensemble security archi-
tecture is based on Kerberos and Fortezza, while our security architecture is based on
the IPSEC standards and the SPKI public key infrastructure. This difference results in
quite large differences in the actual architecture.

Considering our work, other relations to and differences from the related work are
outlined in Sect. 2.4 of Publication I on page 75.

1.4.1 Conduits and Conduits+ Frameworks

The Conduits+ protocol framework, developed by Hüni, Johnson and Engel [40], has
been the main source of inspiration in our frameworks related work. The relation be-
tween the Conduits+ and the Jacob frameworks is explained in Chapter 3.

The Conduits framework [93] was a predecessor of the Conduits+ framework. It
was built by Jonathan M. Zweig, under the direction of Ralph E. Johnson, at the Uni-
versity of Illinois at Urbana-Champaign around 1990/91. Between 1993 and 1995, the
Conduits+ framework was developed in C++ by Hermann Hüni together with Toni
Bieri and Robert Engel in Switzerland [40].

The Conduits+ framework is a fine grained framework, heavily utilizing design
patterns. The design patterns, on their behalf, are proven architectural, object level, or
language specific designs that have explicitly been noticed to reappear in various soft-
ware projects and that propose solutions to particular sets of design problems [19]. In
the Conduits+ framework, focus has largely been on object level patterns, or proper de-
sign patterns as some call them. These patterns include, for example, the Singleton,

14 Nikander

State, and Visitor patterns [32]. As we have suggested, the use of object level design
patterns in protocol development results in protocol level patterns. (For an example,
see Sect. 2.5 in Publication II.)

1.4.2 Conduit Types and Protocol Graphs

In the Conduits+ framework, protocols are represented as protocol graphs. The graphs
are built of conduits. There are the following four distinct types of conduits (Fig. 1).

• The protocol conduit type is probably the most fundamental of the conduit types.
Instances of specific protocol subclasses represent run time protocols and protocol
sessions. For example, a TCP state machine may be represented as a protocol.

• A factory is a conduit that is able to dynamically create new conduits. For example,
when a new TCP connection is created, a factory is used to create the new TCP pro-
tocol instance.

• A mux multiplexes and demultiplexes messages. On multiplexing, a mux may in-
clude demultiplexing information, such as a TCP or UDP port number, to the mes-
sage handled. On demultiplexing, this information is utilized in deciding where to
send the message for further processing.

• Finally, adaptors are used to connect the conduit graph to the outside environment.
For example, there could be an Ethernet adaptor that connects a TCP/IP conduit
graph to the underlying media, and a socket adaptor that provides services to tradi-
tional socket based TCP/IP applications.

To create graphs, conduits are connected together through their sides. Each conduit has
an A side and zero, one, or many B sides. An adaptor has zero B sides, the protocol and
factory have exactly one B side, and a mux may contain many B sides. In the Con-
duits+ framework, the side is an abstract concept represented by distinct methods.

When the connections between a number of conduits are established, the result is a
protocol graph. An example of a simple protocol graph is depicted in Fig. 2, on
page 15. In that example, the Factory may create new Protocols that connect to the up-
per side of the Mux.

Protocol

Mux Factory

Adaptor

...

Fig. 1. The four types of conduits in the Conduits+ framework.

Chapter 1. Introduction 15

1.5 Communicating Distributed Object Environments

Traditionally, distributed systems have typically been built of general purpose servers
and workstations running conventional operating systems such as Unix or Windows
NT. These operating systems run programs as processes or tasks. Usually, the proc-
esses are smallest functional units, being isolated from each other by means of mem-
ory protection and some kind of system call abstraction. Furthermore, the operating
system provides the processes various means for inter-process communication, such as
signals, semaphores, message queues, shared memory, or pipes. Some of these abstrac-
tions are also supported over the network; for example, the TCP/IP socket abstraction
is one form of such a distributed inter-process communication mechanism.

For a few years, there has been a number of attempts to create distributed systems
that are based on smaller than process-level granularity. The remote procedure call
(RPC) concept, made popular, for example, by the Sun Microsystems RPC implemen-
tation, is one established approach. Examples of early, more Object-Oriented research
projects include the ACTORS [4], Linda [20] and Chorus Object Oriented Layer
(COOL) [37] systems. However, only the wide acceptance of the CORBA architecture
[66] and the Java runtime environment, along with the Java Remote Method Invocation
(RMI) mechanism [83], are making it more common to use object-oriented concepts
and object-level granularity in real world distributed systems.

Protocol

Mux

Factory

Adaptor

Protocol Protocol

Fig. 2. An example of a simple Conduits+ protocol graph.

16 Nikander

However, many of the research and production systems differ considerably in sev-
eral respects. For example, the size of objects in a CORBA based system are typically
much larger than in a pure Java system. Similarly, some systems allow object migra-
tion and location transparency while others do not.

In the work presented, my focus has been on (more or less) uniform distributed ob-
ject-oriented environments where the objects are, at minimum, able to request services
from other objects across networks (i.e., to perform remote method calls). In an imple-
mentation of the architecture, such a distributed service request may well imply initia-
tion of a new service component at the target system. Furthermore, if the request (or a
subsequent one) transfers state from the initiating object to the responding one, migra-
tion like functionality may also be achieved.

1.5.1 Conceptual Model

Since the focus of this work is on security rather than on the implementation of the ob-
ject or distribution concepts, it is desirable to keep the conceptual definitions as ab-
stract as possible. This allows one to create a security system that is applicable to a
wide range of distributed systems.

Definition. A Distributed Object Environment is a distributed system that sup-
ports objects and distributed inter-object communication. Since it is a distrib-
uted system, it consists of nodes by definition. The objects may have one-to-one
correspondence with agents, or a single agent may be constructed from several
objects. The environment must support communication between objects (and
agents) both within nodes and between nodes.

Thus, on the conceptual level, I have deliberately left the actual implementation of ob-
jects, agents and communication open. The object and agent concepts of the model
may well be implemented as traditional Unix processes, and the remote requests may
be implemented by the means of traditional TCP/IP based communication protocols.
On the other hand, our prototype system has been implemented in Java, allowing ob-
jects to be fine grained Java objects, JDK 1.2 Security Domains [35] to act as agents,
and requests to be implemented with RMI or with the Java IIOP implementation [82].
The prototype supports hand crafted migration with the aid of dynamic class loading
and serialization.

1.5.2 Distributed Java Environments

The Java Virtual Machine (JVM) itself, along with its capabilities to perform dynamic
class loading, serialization, and the inclusion of the Java RMI facility, provides a rela-
tively good base for object-oriented distributed processing. In JDK 1.2, the inclusion
of the fine grained access control and security domains even strengthens the situation.
The 1.2 security models allows the integrity and authenticity of dynamically loaded
code to be checked, and, based on a local configuration file, the source of the code may
be used to determine the access permissions the code should have.

Chapter 1. Introduction 17

Now, as we have pointed out in Sect. 3 of Publication V, the default JDK 1.2 au-
thorization and access control architecture contains a number of problems. Most of
these problems are associated with the formation of security domains (agents) and the
(relative lack of) possibilities for remote management. Thus, JDK 1.2, in its default im-
plementation as provided by Sun, supports most facilities needed to support distributed
computing. However, the security facilities contain a number of problems, to which so-
lutions are proposed in this thesis.

1.5.3 Jini

Sun Microsystems is currently introducing Jini, which is a new technology allowing
various kinds of Java empowered devices to easily co-operate. According to Sun, the
central idea in Jini is to create a “federation” of Java Virtual Machines on a network;
the members of the federation are dynamically connected to share information and per-
form tasks. The basic components of Jini include facilities for environment discovery
and joining, service lookup, lease handling, distributed transactions, and distributed
events. Discovery and join, together with service lookup, allows devices to create an
image of their surroundings, register to the environment any services provided by
them, and use services provided by other devices. Leases, transactions and events are
needed for advanced distributed computing. [85]

From the security point of view, leases are especially interesting. Basically, a lease
is a remote object reference that has a limited lifetime. For continuous usage, the lease
must be renegotiated before it expires. In Jini, all remote references are based on
leases. From the security point of view, leases may be seen as time limited capabilities.
Therefore, they should be bound to their holder, have a limited lifetime, and be quickly
verifiable. These properties may be easily achieved with suitable use of cryptography.

On the other hand, the initial Jini release does not seem to provide any new security
mechanisms in addition to those provided by JDK 1.2. Therefore, most of the sugges-
tions given in this thesis are probably directly applicable to Jini as well.

1.6 Summary

In this Chapter, the relevant background was introduced. First, the basic elements of
distributed systems were described. Then, the basic security terms, including authenti-
cation, access control, authorization, security policy, and trust were discussed. As pro-
tocol frameworks constitute a part of the actual implementation of the architecture
presented in this thesis, the basic ideas and trends of protocol frameworks were also
described. Finally, the idea of distributed object environments were discussed both
from a conceptual and from a practical, Java oriented point of view.

18 Nikander

Chapter 2

An Architecture for
Secure Distributed Computing

2.1 Overview and Basic Concepts

In this Chapter, I describe the Telecommunication Software Security Architecture
(TeSSA) that we have developed in our research group. Later, in Chapters 3 and 4, de-
tails of the protocol framework and distributed policy management, both parts of the
architecture, are given. An early version of the architecture, as well as some back-
ground assumptions, has been presented in Publication I.

 First, in the rest of this Sect. 2.1, I present an overview of the architecture, briefly
describing the components of the architecture and their connections. Both a conceptual
or theoretic overview and an overview of the actual implementation are given. Next, in
Sect. 2.2, the role of the IPSEC protocols in providing actual connection level security
is discussed. Sect. 2.3 concentrates on how the secure sessions, or connections, are cre-
ated, modified and deleted using an online authentication protocol. In order to be se-
cure, the usage of this authentication protocol must be based on pre-established trust
relationships and security contexts. How to establish these, and how to manage the un-
derlying security policy in concrete terms, is briefly explained in Sect. 2.4. This expla-
nation is further deepened and extended in Chapter 4. Finally, in Sect. 2.5 I present an
architecture for storing and retrieving certificates in the Internet Domain Name System
(DNS). The last Section, Sect. 2.6, includes a summary of the architecture.

In a large software architecture, it is often hard to distinguish whose inventions and
ideas various parts represent. However, in the case of the TeSSA architecture, it is easy
to note that I have been the major contributor in general. On the other hand, the usage
of IPSEC to secure connections, ISAKMP to negotiate security associations, and SPKI
to manage policy in general terms, are representations of generic Internet security de-
velopment, where my personal contribution has been relatively minor. Nevertheless, in
the publications and in this work I have extended the IPSEC policy concept to an Ob-
ject-Oriented setting, defined together with master’s student Sanna Suoranta an Ob-
ject-Oriented implementation framework for ISAKMP, and together with then master’s
student Jonna Partanen extended the SPKI infrastructure to apply to the internal access
control of JDK 1.2. In the two latter pieces of work, my role has been that of the idea
generator, and I have been the supervisor of the master’s work. The two brilliant young
ladies have solved the implementation level problems, and accomplished most of the
actual implementation.

Finally, the idea of storing and retrieving SPKI certificates in the DNS is originally
mine. But still, all of the details, presented in Publication IV, have been hammered

20 Nikander

down in a number of brain storming sessions where both Lea Viljanen and I have par-
ticipated.

2.1.1 Conceptual overview

On the conceptual level, the TeSSA architecture can be described from several per-
spectives. First, it can be viewed as a layer like structure where lower layers support
the upper ones, and the upper layers take care of the management and control of the
lower layers. This is a traditional protocol-oriented view. Second, the components of
the architecture plug in into various parts of the base system, i.e., modify the opera-
tions of a system without the TeSSA components. Third, full adaption of the architec-
ture fundamentally changes the security management concepts and methods. This
latter perspective is discussed later in Chapter 4, the two other perspectives are de-
scribed next.

The basic layered structure of the TeSSA architecture, on the conceptual level, is
shown in Fig. 1. The top component is the trust and policy management infrastructure,
sometimes also called the public key infrastructure (PKI). It allows the users and ad-
ministrators to explicitly define, for example, which network nodes are trusted for
which operations, how users are allowed to access resources, and what kind of protec-
tion is required from the connections between different agents. In practice, the data
present in the management infrastructure is represented in the form of certificates. The
certificates are stored in a certificate repository, which allows convenient storage and
easy access to the certificates.

The certificates are used, among other things, to control and facilitate the operation
of the authentication protocols. That is, the authentication protocols need the public
keys of nodes and agents, along with semantic information about what the keys are
good for. This information is available from the trust and policy management infra-
structure.

An authentication protocol is used to create, modify and delete dynamic security
associations and contexts between any two principals. The PKI layer above provides
the initial security contexts on the base of which new contexts may be created. In prac-
tice, the protocol allows creation of session level keying material combined with au-

Communication infrastructure

Host
OS

Host
OS

Session / connection level security

Application
protocols

Authentication
protocol(s)

Certificate
repository

Trust and policy management

Fig. 1. The conceptual building blocks of the TeSSA security architecture

Chapter 2. An Architecture for Secure Distributed Computing 21

thentication of the public key of the peer, the negotiation parameters, and the keying
material itself.

Finally, the session or connection level security components take care of protecting
the user data in transit. They allow user data to be protected from eavesdropping, mod-
ification, replay, and other active and passive attacks. Moreover, it is important to no-
tice that each secure connection has a set of operating system level security semantics,
or policy, associated with it. That is, each secure connection is annotated with knowl-
edge about the permissions of the peer object. This allows the local access control sys-
tem to determine when a remotely initiated operation is authorized and when not.

2.1.2 Definition of architectural concepts

To give a more precise meaning to the various components of the conceptual architec-
ture, the following definitions are given. First, it is necessary to define security context,
which is an abstract concept linking the various protocol components together.

Definition. A security context is a collection of security related variables, such
as asymmetric or symmetric keys, policy rules and credentials, shared by two or
more parties. When creating a new security context, authenticity and integrity
of the information must be ensured. Typically, also some or all of the informa-
tion is confidential as well.

Technically, new security contexts may only be created on existing trusted security
contexts. In the architecture, the trust and policy management infrastructure provides
the initial security contexts, using which new contexts may be created. The initial secu-
rity contexts are represented in the form of certificates. Creation of such contexts is
based on management decisions external to the presented architecture.

Definition. The session / connection level security components take care of the
actual (cryptographic) protection of user data in transit. Typically, the layer con-
sists of a number of cryptographic protocols and associated policy management
functionality. The keying material and policy rules pertaining to a particular se-
cure session are defined in a corresponding security context.

This definition implies, among other things, that the actual protection of connections
may also be achieved by some other means than cryptography. For example, on occa-
sions it may be possible to use physical protection on some connections.

Definition. The authentication protocol component of the architecture denotes
that or those implementation level protocols that are capable of creating, modi-
fying and deleting new security contexts, based on existing security contexts.

Thus, the main function of the authentication protocol is the establishment and man-
agement of security contexts. (It might even be more appropriate to call this compo-
nent security context management instead of authentication protocol. However, the

22 Nikander

functions of the component are so near to what has been traditionally called authenti-
cation protocols, i.e., establishing authenticity of negotiated information, that the tradi-
tional name is used.) A notable issue here is that in addition to the key authentication
and negotiation, the protocol takes care of managing the associated policy information
as well.

Definition. The certificate repository is a distributed database that facilitates
online storing and retrieving of certificates.

Ideally, the repository should be efficient, fault tolerant and transparent to applications.
The actual implementation is not important. From the management point of view, it is
highly desirable that the certificate repository can be managed in a distributed manner,
and that the certificates are retrievable in an efficient and natural way.

2.1.3 Functional concepts

Changing the point of view from the layered one to a more functional one, the archi-
tecture can be depicted as in Fig. 2. First, there is a reference monitor, which is a func-
tional concept within the local operating system that takes care of protecting local
resources. Whenever an agent attempts to access a protected resource, including serv-
ices provided by other agents, the request is routed through the reference monitor1.
The reference monitor decides, using the local policy rules and the permissions the
agent has, whether the request is authorized or not. An unauthorized request is aborted.

The protected resources include, among other things, security contexts (or security
associations) and communication ports or connections. In order to have secure connec-
tions, and to enforce local security policy with respect to opening of connections and
to having quality of protection on connections, both of these resources must be locally
protected. When an agent wants to have a secure connection with a remote agent, a se-
curity association and a connection (or a number of connections) that use the associa-
tion must be established.

When a new security association is needed, thereby creating a new local security
context between two principals, an authentication protocol is used to negotiate one.
The authentication protocols gets any needed public keys, local policy rules and agent
credentials from the trust and policy management infrastructure. These allow it to per-
form the negotiation towards its peer, and to establish the local policy conditions that
apply to the newly created association (e.g. which agent (or agents) are allows to use
it).

Pretty similarly, when a new agent is created, the trust and policy management in-
frastructure is consulted to determine whether the agent can be created in the first place
(if the party requesting the creation has a permission), and to determine what initial
permissions the agent shall have. These are both derived from the key bound creden-
tials available from the PKI.

1 The architectural design of the local operating system or run time environment must enforce this.
Most modern operating systems, including the JDK 1.2 runtime environment, are designed to func-
tion in that way. It is another question, however, how good the implementation is in practice.

Chapter 2. An Architecture for Secure Distributed Computing 23

Finally, the trust and policy management infrastructure, or PKI, can be seen to pro-
vide control and management information to the various functions, including creation
of security associations and agents, access control decisions made by the reference
monitor, and control of quality of protection on connections.

To form a more accurate basis for the rest of this thesis, the following definitions are
given.

Definition. A protected resource is an abstraction of a logical or physical de-
vice, connection, piece of data (e.g. a private key) or other item that is protected
by the local operating system or other piece of software. In this sense, agents
and services protected by other agents are also protected resources.

It is notable that also services provided by agents are considered protected resources.
The agents may delegate the protection of these services to the operating system, or
take care of that themselves1.

Definition. A reference monitor is a logical part of the local operating system
(or execution environment) or another part of software that enforces access con-
trol between agents and against agents accessing protected resources.

1 In practice, it is impossible to force an agent to use the local operating system to protect resources
provided by it. That is, if the agent has any service interfaces, such an interface may always be “mis-
used” to provide more services. In such a case the local operating system is not even aware of the new
services created through the “misusage”.

Host OS

Reference Monitor

Security
Contexts

Agent

Agent

Agent

Other
protected
resources

Authentication
protocol

Communication
ports / connections

Per-
mis-
sions

Trust and
policy
management

Authorized /
delegated
credentials

Local policy
rules

Public keys

Fig. 2. A functional view to the TeSSA architecture

Certificate
repository Private keys

24 Nikander

In our architecture, the reference monitor is typically implemented in a decentralized
manner. A part of it is implemented as the operating system’s access control facility.
However, there are other components of the operating system that control networked
access, and also enforce that packets coming in through protected connections apply to
the local security policy. As hinted above, our architecture even allows the reference
monitor to be extended during runtime; for example, when an agent provides a new
service to other agents, and takes care of the protection of the service itself, the agent
actively participates in implementing the reference monitor. However, such extensions
are always conservative in the sense that they cannot weaken the access control rules
enforced before their establishment. The extensions only take care of the protection of
the newly introduced services.

Definition. A permission is a locally represented and trusted piece of data (i.e.,
an object) that connects an agent, an operation and a protected resource. The
existence of a permission denotes that the agent is allowed to perform the de-
noted operation on the resource. If such a permission does not exist, however,
the agent is not authorized to perform the requested operation.

In traditional architectures, permissions are usually stored with the protected resources
(such as files) and explicitly or implicitly enumerate the accounts that may access the
resources. All agents (processes) are then assigned to accounts.

In our architecture, permissions are dynamically created based on information
available in the agent’s credentials (defined next) and the local policy configuration.

Definition. A credential is a signed statement of authority, claiming that a prin-
cipal has been authorized (possibly via delegation) to access a protected re-
source. When a credential is accepted by a local execution environment, it is
usually transformed into a permission.

In our architecture, credentials are almost always acquired through delegation. This
means that a final credential, possessed by the agent, does not alone qualify for creat-
ing permissions (or directly authorizing operations). Instead, a chain of authorization
certificates is typically needed. Acceptance of certificate chains is controlled by the lo-
cal policy rules.

Definition. A local policy rule is a locally understood instruction to the refer-
ence monitor that allows it to make decisions. Specifically, local policy rules
may exclude credentials created by certain principals, limit the lengths of certif-
icate chains, specify that stronger than default credentials are needed for certain
operations, etc.

The local policy rules, similarly to the credentials, are represented as certificates in our
architecture. This has a number of benefits. First, since they are signed, their manage-
ment can be distributed. Only rules having a locally meaningful structure and a trusted

Chapter 2. An Architecture for Secure Distributed Computing 25

issuer will be adhered to. Second, they need not necessarily be stored locally, but can
be retrieved from the certificate repository only when needed.

2.1.4 Implementation

In addition to the conceptual model, we have also built a partial prototype of the archi-
tecture in our project. Taking the actual implementation components, the layered struc-
ture of the architecture is shown in Fig. 3. As one can see, the trust and policy
management infrastructure is implemented using the IETF Simple Public Key Infra-
structure (SPKI). Furthermore, the authentication protocol(s) are based on the Internet
Security Association and Key Management Protocol (ISAKMP) infrastructure [55],
the certificate repository is implemented within the Domain Name System (DNS) [57]
[25], and connection security is taken care of with the IPSEC protocols [10].

All of the implementation is based on the TCP/IP protocol suite and the Java Vir-
tual Machine. The TCP/IP infrastructure provides ubiquitous communications and a
multitude of application protocols. The JVM provides an Object-Oriented operating
environment with fine grained access control.

Now, having specified the overall architecture and its implementation components,
the details of the implementation components are presented. The reader is assumed to
be familiar with the actual protocols used; thus, only their relevance to the architecture
is explained, not their internal structure or operations.

2.2 Securing connections with IPSEC

The Internet Protocol Security (IPSEC) is an IETF standard for securing IP packets
[42]. The standard consists of an architectural overview [10] and two specific proto-
cols, the Authentication Header (AH) [46] and the Encapsulated Security Payload
(ESP) [47] protocols. Both of these protocols are designed to function between the In-
ternet Protocol (IP) and any of the next upper layer protocols, including TCP, UDP and
ICMP. IPSEC is an optional part in current IPv4 implementations, but a mandatory
feature for IPv6 implementations. The details of both the AH and ESP protocols are
beyond the scope of this work.

TCP/IP infrastructure

JVM JVM

IPSEC

Application
protocols ISAKMP DNS

SPKI

Fig. 3. Implementation architecture

26 Nikander

2.2.1 Basic structure

From the protocol stack point of view, the basic structure of an IPSEC enhanced TCP/
IP protocol stack is shown in Fig. 4. In the figure, some IPSEC protocol (AH or ESP)
is used between one host and a security gateway. The upper layer protocol (TCP or
UDP) and the application protocol are unaware of the usage of IPSEC. The router and
the right-hand host are also unaware of IPSEC. Between the left-hand host and the se-
curity gateway, however, traffic is protected with cryptographic means. The actual
method of protection depends on whether AH or ESP is used, and on what algorithms
and other parameters where created when the corresponding IPSEC Security Associa-
tion (SA) was created.

Now, when we add the access control and policy management concepts of the
TeSSA architecture to the structure, it becomes slightly more complicated. This struc-
ture, focusing on the IPSEC and its connections to the other functional parts in the pro-
tocol stack, is depicted in Fig. 5 on page 27. When creating the structure depicted,
including the TCP and UDP connections (sockets) shown, the reference monitor has
checked that the agents really have had the permission to open connections with the re-
quested peers. Additionally, the connections are routed via specific IPSEC Security
Associations (SAs) according to the local policy. Furthermore, in one case where the
peer is another agent, having privileges and being access controlled, a proxy agent has
been attached between the actual communicating agent and the communication port.

The proxy agent works as a local representative for the remote agent. Locally, it
possesses those permissions of the remote agent that are locally approved. Thus, when-
ever a request is received through the communication port, the authority of the request
is limited by both the permissions the proxy agent has and by the permissions the com-
municating agent has. Alternatively, an agent may be directly connected to a communi-
cation port. In this case, it must take care of determining the authority of any received
requests itself.

Media

IP

IPSEC

TCP / UDP

Application

IP

Media

IP

IPSEC

Media

IP

TCP / UDP

Application

M1 M2 Media

Host Host

Router

Security gateway

Fig. 4. Basic IPSEC Protocol Structure

Chapter 2. An Architecture for Secure Distributed Computing 27

2.2.2 Policy and Semantics

In the standard IPSEC architecture, there is a de-
fined policy concept. However, compared to the
policy concept in the TeSSA architecture, the
standard IPSEC policy definition is relatively
weak. Specifically, it defines only the following
two issues.
• First, an IPSEC policy determines how an in-

dividual IP packet is to be protected. That is,
the standard IPSEC policy engine examines
the IP addresses and the TCP or UDP ports to
determine which SA to use to protect it. Al-
ternatively, if the packet is originated in the
same host, information about the application
may be present as out-of-band information
attached to the packet. This information may
be used, in addition to the address and port
information, to determined the right SA.

• Second, the IPSEC policy makes sure that
decrypted received packets are destined to the right address and port, or applica-
tion. Thus, when a protected packet is received, it is decrypted, its integrity is
checked, and finally, the IP and TCP/UDP headers of the packet are compared with
the policy definition to ensure that the packet applies to the policy.

In the TeSSA architecture, the concept of policy is stronger, and intrinsically con-
nected to the local access control semantics. As we have seen, in the TeSSA architec-
ture access control decisions are based on capabilities (or permissions derived from
them). The rights that an agent has are determined by the capabilities that belong to it.
The purpose of the access control system, including the reference monitor, is to pre-
vent an agent from performing unauthorized actions.

In the case of IPSEC, TeSSA access control and security policy can be seen to
function in the following three different roles.
• First, the access control system restricts how an agent can create new connections

with remote agents.
• Second, the local policy determines what are allowed levels of protection for the

connection to be created.
• Third, the access control policy determines what kind of requests are allowed to be

transferred over a connection.
Of these, the first two aspects are implemented by the ISAKMP protocol, and dis-
cussed in Sect. 2.3, below. The last aspect may be considered to be a stronger form of
basic IPSEC filtering policy. There is no fundamental difference, but the TeSSA archi-
tecture does not only restrict whom agents (processes) may communicate with, but
also how. This is a natural extension, and easy to implement in an object oriented sys-
tem (as opposed to a traditional process oriented system), where the type of each re-
quest can be easily determined and controlled.

Agent

Agent

TCP
socket

UDP
socket

TCP
socket

IPSEC
SA

IPSEC
SA

IP

Fig. 5. Internal connections in a host

Proxy
Agent

28 Nikander

To emphasize these aspects of the IPSEC connections, when used in the TeSSA ar-
chitecture, we say that a security association has semantics. This means, in practice,
that the basic security association information, as defined by the IPSEC standard, is an-
notated with additional information. This information connects the security association
to the operating system (or execution environment) level access control system, creat-
ing a strong binding between the association and a corresponding agent.

2.2.3 Implementation status

In our research project, we have created both kernel level and user level prototypes of
the IPSEC protocol stack [1][78]. These prototypes were created as master’s thesis
projects. I was the supervisor in both cases. However, currently both of these imple-
mentations are out of date. Due to structural difficulties, and the availability of more
complete IPSEC implementations elsewhere, it is probable that neither of the imple-
mentations will be updated.

Currently, there are no concrete plans to include the above described functionality
in the research prototype. In the project, work is more focused on bringing the delega-
tion infrastructure, described in Chapter 4 in detail, to a usable position. On the other
hand, it is probable that some other, more implementation oriented project may explore
the difficulties involved in the practical filling of the gap in the actual implementation.

2.3 Managing Security Contexts

In the TeSSA architecture, there are two types of security contexts. First, a security
context may be based on certificates and certificate reduction. These types of security
contexts are discussed in Sect. 2.4. The other type of security contexts are closer to the
actual communication connections, and are created using an authentication protocol.

In the prototype implementation of the TeSSA architecture, the authentication pro-
tocol is based on the Internet Security Association and Key Management Protocol
(ISAKMP) framework, and actual management protocols built on the top of that [55].
In the basic IPSEC architecture, the management protocol used is the Internet Key Ex-
change (IKE) protocol, which is based on the Oakley protocol suggestion [38][68].
However, currently the IKE protocol is limited for negotiating IPSEC Security Associ-
ations (SAs) for VPN oriented use. This limits, among other things, the possibilities of
semantic attributes that may be attached to the associations created. Thus, for the pur-
poses of the TeSSA architecture, IKE as such is not strong enough.

On possibility, to be investigated, is a straightforward combination of the IKE with
SPKI based certificates. In such an approach, the certificates contain semantic access
control oriented information that needs to be interpreted in addition to the attributes
exchanged in the course of performing the actual IKE negotiation. Another possibility
is to create a completely new authentication protocol, but still use the ISAKMP frame-
work and ideas available at the IKE specification.

Chapter 2. An Architecture for Secure Distributed Computing 29

2.3.1 Implementation status

Currently, there does not exist any concrete implementations of protocols that would
fulfil the requirements for the TeSSA authentication protocol. A master’s student is
building, under my supervision, an Object-Oriented, framework like version of the
ISAKMP protocol framework. Once completed, it allows rapid prototyping of both the
approaches outlined above.

However, even in the current prototype new security contexts may be locally cre-
ated. That is, certificates may be reduced, and using channels secured by the local op-
erating system, it is possible to experiment with agents running on distinct Java Virtual
Machines within a single machine.

2.4 Policy and Certificates

The trust and policy management infrastructure of the TeSSA architecture is imple-
mented with Simple Public Key Infrastructure (SPKI) certificates and the associated
certificate handling functionality. The functionality includes, among other things, the
actual enforcement of security policy rules.

The purpose of this section is to explain the overall architecture of the implementa-
tion of the prototype’s trust and policy management infrastructure. The details of the
infrastructure, including both the dynamic functional view and the management view,
are deferred to Chapter 4. Thus, the focus here is on outlining the underlying certificate
theory, and on the static structural aspects of the infrastructure.

In Sect. 2.4.1, next, the concept of principal is extended to consider cryptographic
keys. After that, in Sect. 2.4.2, basic SPKI certificate theory is briefly presented.
Sect. 2.4.3 shows how SPKI certificates can be considered to form semantic chains that
are closed into loops when used. Finally, in Sect. 2.4.4, it is shown how the certificates
may be applied to JDK 1.2 access control.

2.4.1 Principals redefined

In Chapter 1, a principal was defined to be a node or an agent, typically having direct
authority over some resources (e.g., at least over itself). Now it is time to extend the
definition so that principals can be directly bound to credentials and policy expres-
sions.

To give each principal a strong and unique identity, it is assumed that each principal
has at least one private cryptographic key in its sole possession. The corresponding
public key acts as an unforgeable identity of the principal1. Indeed, many principals do
not have any other name at all. For example, a temporary agent created to act as a del-
egate for a few moments does not necessarily need any human understandable name at
all, but the key will do.
1 If the principal has several private keys, it may be considered to have several identies. Alternatively,

for the purposes of this study, the separate keys and associated identities may be considered separate
principals, thereby allowing an active entity to simultaneously act as several principals, or in several
roles.

30 Nikander

To ease human actions, including management, more permanent principals are usu-
ally given names that are easier for humans to remember. However, even these names
are given relative to some public key; according to the SDSI/SPKI naming ideas; relia-
ble global names do not even exist, but each name must be considered relative to some
party. [76]

2.4.2 SPKI Certificate Theory

An SPKI certificate has five security related fields. When discussing SPKI from a theo-
retic point of view, these five fields are usually represented as a 5-tuple (I, S, D, A, V).
The contents of the fields are defined as follows.
• I denotes the issuer of the certificate, i.e., the principal that has created and signed

the certificate. The issuer is represented as a public key, or a hash of a public key
that is supposed to be known or indexable by the hash.

• S defines the subject of the certificate. The subject may be a principal or some other
object. The subject is the party or thing to whom the certificate has been issued for,
or to whom the certificate refers to.

• D specifies whether the authority specified in the certificate may be further dele-
gated. It is meaningful only if the subject is a principal.

• A is the authority or tag field. It defines the semantic content of the certificate. The
SPKI standard only defines a generic format for the contents of this field; the actual
representation of authorities depends on the application.

• V, for validity, defines when the certificate is valid. The definition may include a
certain period of time, or contain an URL denoting an online verification service.

The intuitive meaning of a certificate can be defined as follows: Assuming that the is-
suer I has (primary or delegated) authority over the right or information defined by the
tag A, the issuer delegates the right A to the subject S, or attests the correctness of other
information A with respect to the subject S. Furthermore, if the subject S denotes a
public key, and if the delegation bit D is true, the subject may further delegate the right.
The validity of the delegation or the attestation is limited by the validity statement V.

Certificate reduction. Given two certificates (I1, S1, D1, A1, V1) and (I2, S2, D2, A2,
V2), it is often possible to create a (virtual) reduction certificate that alone defines the
same delegation or attestation than the two certificates together. Namely, if the subject
S1 of the first certificate and the issuer I2 of the second certificate unambiguously des-
ignate the same public key and if the delegation bit D1 of the first certificate is true,
then the certificate (I1, S2, D2, AR, VR) where AR = intersection(A1, A2) and VR =
intersection(V1, V2) is such a reduction certificate.

In other words, if a principal, let say Alice, delegates a set of rights to another prin-
cipal, Bob, and allows him to further delegate the rights, and Bob delegates an (par-
tially) overlapping set of rights to Carol, this is equivalent to the situation where Alice
had delegated those rights appearing in both certificates directly to Carol.

According to the SPKI Theory specification [29], this is a reasonable assumption.
This conjecture is based on the reasoning that the fact that Alice has delegated Bob a
right, including the ability to further delegate, implicitly presupposes her decision to
allow Bob to delegate the right to anybody. On the other hand, the decision to handle

Chapter 2. An Architecture for Secure Distributed Computing 31

the delegation field as a simple boolean value is based on the observation that a dele-
gate often has the physical ability to create a new key pair, perform a delegation to it,
and give it away1. Thus, any other restrictions but simple on/off delegation restriction
would not work.

However, as is described in more detail in Sect. 4.3.2, in the TeSSA architecture the
reduction rule is considered to be only a convenient default rule, which may be over-
ridden by local policy rules. The local policy rules may pose additional restrictions
(e.g. limit the length of a delegation chain) or even loosen the rule if feasible.

2.4.3 Certificate Chains and Loops

In an SPKI based infrastructure, certificates form semantically bound chains. Such
chains are closed into certificate loops, either as such or by an execution of an authen-
tication protocol.

Even so, before going to the details of chains and loops, it is important to precisely
consider where the source of authority and trust can be found. According to the defini-
tion given in Sect. 1.3.5, only the creator or possessor of an object has natural authority
over the object. The same principle can be applied to the computer nodes and their op-
erating systems; the hardware comprising to the node is “activated” by the operating
system, i.e., only the operating system allows the hardware to function and be accessi-
ble. Therefore it is natural to consider the operating system to be the natural authority
over the software abstractions created from the hardware, including files, logical de-
vices, network connections, processes or threads, and other abstractions.

Since, in the end, we only consider software abstractions created by various operat-
ing systems, we can say that the nodes, i.e., the operating systems of the nodes, are the
only primary source of authority in the system. The person (or other system) installing
the operating system for the first time, however, has the ability to create initial delega-
tions of this authority. In a traditional system, such as Windows NT or Unix, this is ac-
complished by establishing an administrative user account, and assigning a secret
password to that account. In such a system, then the administrative account has su-
preme power over the system, even though this power is actually restricted by the OS.

Now, returning to the TeSSA architecture, it is possible to define how these princi-
ples can be applied there. First, it is important to remember that the nodes (the operat-
ing system) and agents are considered to be the only active entities. Furthermore, it is
natural to assume that some of the agents are controlled by humans through a user in-
terface. Based on this, when an administrator installs a new node for the first time, it is
natural for her to create an initial delegation from the new node to some agent that she
has direct control over. For example, when Alice takes her personal computer into use
for the first time, she would register her smart card with the computer, creating a dele-
gation that tells the computer operating system to believe in all further delegations cre-
ated by her private key on the smart card. This is illustrated in Fig. 6.

1 All public key systems are based on the often implicit assumption that the principals cannot or will
not give away copies of their private keys. Therefore the case where a delegate gives away a copy of
its own private key, i.e., the key to which the delegate is make to, is not considered.

32 Nikander

Consequently, since the source of authority is always the operating system or other
principal that has direct control over the protected resource, all chains of delegation
certificates must start at that particular principal. Now, since this very principal is the
same software component that is responsible for protecting the resource, it becomes
clear that the source of a certificate chain and the final verifier of a certificate chain are
always the same principal. Therefore, the fact that the exact definition of the contents
of the SPKI authority field is left application specific is not a problem at all.

The same principle applies to other certificates but delegation certificates, too. If
we consider traditional name certificates, used by humans, the user verifying a certifi-
cate chain must be able to accept every link in the chain in order to consider the nam-
ing valid. This means, among other things, that the user must trust in the first naming
authority in the chain. But, if this naming authority is someone else but the user, this
trust may be represented as a certificate, delegating naming from the user to the author-
ity. Thus, even in the case of naming certificates, it is actually the verifier who is the
source of the first delegation in the chain, independent whether this delegation is actu-
ally represented in the form of a certificate or not. It is important to note that this is not
the case in many uses of certificates today; e.g., Web browsers supporting X.509 based
PKIs are configured to trust in dozens of CAs, and most users are not aware of that.

Let us now consider certificate chains in a situation where a new agent is created on
a node. This creation is initiated by another agent, running on another node. In order to
be secure, the following conditions must be met.

1. Alice creates a key pair
to the new computer as a
part of the installation
process

2. Using the new private key,
she creates a delegation
certificate to her own public
key

3. Using the certificate and
the private key on her
smart card, she can
manage the computer

Fig. 6. Creating personality and administrator to a new computer

Chapter 2. An Architecture for Secure Distributed Computing 33

• First, the node requesting creation must determined that the target node is trusted to
provide agent services. That is, the creating node must consider the target node
trustworthy enough to run the agent for the purposes of the agent. This definition
includes, among other things, the idea that some nodes may be considered trust-
worthy enough for some agents but not for others.

• Second, the target node must be able to determine that the requesting agent (or
node) is indeed allowed to start such an agent. This includes, among other things,
the permission that the new agent may consume memory, CPU and possibly other
resources such as network connections.

Both of these security requirements may be represented with certificates. In the first
case, when the requesting agent has been started, it has been configured to trust a
number of authoritative agents for determining trustworthy nodes. One or more of
these authoritative agents, on their behalf, have then certified the trustworthiness of the
target node. This is illustrated in Fig. 7.

Similarly, there must exists a chain of certificates from the target node, through the
security administrator of the node, to the agent. This chain must prove that the agent is
authorized to start a new agent, and thereby use the resource of the target node. This
chain is illustrated in Fig. 8.

When the requesting agent contacts the target node, an authentication protocol is
run. During the course of the protocol, the target node proves that it has its own private
key in its possession. Similarly, the requesting agent proves the possession of its key.
These authenticating demonstrations may be considered to function as virtual certifi-

Requesting
agent

Authoritative
agent

Authoritative
agent

Target
node

Fig. 7. Chain of certificates from the requesting agent to the target node

Requesting
agent

Delegated
agent

Node admin
agent

Target
node

Fig. 8. Chain of certificates from the target node to the requesting agent

34 Nikander

cates between the requesting agent and the target node. In a way, these virtual certifi-
cates delegate back to the verifier the authority that the authenticating party was
received through the chain of actual certificates. Using the default reduction rule, pos-
sibly with local policy rules, the verifier can now determine if the peer actually does
have the claimed authority. This closes the certificate chain into a loop, as illustrated in
Fig. 9. The concept of certificate loops and the reasons for using them are discussed in
more detail in Publication III and in Sect. 5.2 of Publication VII.

2.4.4 Applying certificates to JDK 1.2 access control

In the portion of our prototype that has already been implemented, we have augmented
the basic JDK 1.2 access control with SPKI certificates. In this section, an overview of
this work is given. Details are available in Publication V.

As it was mentioned in
Sect. 1.3.4, the JDK 1.2 access con-
trol is based on security domains
and access permissions. Each class
belongs to one and only one secu-
rity domain, and each security do-
main has a number of permissions,
collected into a Permissions object.
The set of available permissions is
determined by the intersection of the permissions of the domains present in the current
execution stack, up to and including the security context of the thread or the topmost
privileged class. The relationship between classes, domains and permissions is illus-
trated in Fig. 10.

In the default JDK 1.2 implementation, the inclusion of classes into domains is
based on the code source of the classes, i.e., where the classes where loaded from. The
code source, on the other hand, is defined by an URL and a signature. The set of per-

Requesting
agent

Delegated
agent

Node admin
agent

Target
node

Authoritative
agent

Authoritative
agent

Target
node

Fig. 9. Certificate chains are closed into loops by an authentication protocol

Class 1

Class 2

Class 3

Class 4

Class 5

Domain A

Domain B

Permissions

Permissions

Fig. 10. Classes, domains and permissions

Chapter 2. An Architecture for Secure Distributed Computing 35

missions assigned to each domain, then, is determined by local configuration files. As
we have discussed in Sect. 3 of Publication V (starting on page 171), the default imple-
mentation includes a number of problems, especially with respect to management and
scalability.

In our implementation, the formation of domains and their annotation with permis-
sions is realized differently. First, we consider each separate collection of Java classes,
i.e., each JAR-file, a separate domain. Thus, the classes present in a single JAR-file are
included in the same domain. Second, the JAR file itself, in the form of SPKI certifi-
cates, contains information about the desired permissions for the domain. This does
not mean, however, that the domain would actually get all the permissions defined in
the JAR-file, but it gets only those permissions that are authorized by a valid certificate
loop.

Fig. 11 illustrates the usage of SPKI certificates for JDK 1.2 access control. The
classes read from a JAR are placed in a single security domain. The permissions as-
signed to the domain are specified by the Policy Manager by taking a union of the per-
missions that are present in such valid certificate chains that lead from the Policy
Manager to the JAR archive. If there are several parallel certificate chains, the domain
gets permissions from each chain independently. In each chain, only those permissions
that are present in all certificates in the chain, i.e. and intersection of the permissions,
are authorized.

Our system is both easier to manage and more scalable than the default JDK 1.2
implementation. First, once the JVM is installed, its local security configuration does
not need to be changed since the policy management can be delegated (on installation)
to another key along the procedure outlined in Fig. 6 (page 32). Second, the manage-
ment of concrete applet level security policies may be distributed between a local ad-
ministrator, trusted third parties, and applet manufactures. Third, the system allows a
single Java Virtual Machine to be extended to support agent computing. The last aspect
is described in more detail in Chapter 4.

JVM
JAR

Perm-
issions

Class

Class

Class

Security
Domain

Class

Class

Class

Policy Manager
Intersection

Perm-
issions

Fig. 11. Using SPKI certificates for JDK 1.2 access control

36 Nikander

2.4.5 Implementation status

We have implemented and tested a simple prototype of the concept outlined in
Sect. 2.4.4 above. The results are reported in Publication V. The prototype is being im-
proved, and a more polished version is planned to be completed sometime in 1999.

2.5 Storing and Retrieving Certificates

In the basic SPKI architecture, it is assumed that a client accessing a server would col-
lect and present a valid certificate chain to the server for verification. However, when
the client is an inactive object, such as a Java class being loaded, it cannot perform
such a task. In the particular case of a Java applet, the active entity loading the applet is
a thread in the same virtual machine where the Policy Manager, or the verifier, is lo-
cated. Furthermore, the loading thread probably does not initially have any idea what
permissions and via which path the applet should receive. Therefore, it is unfeasible to
assume that the verifying party would always receive complete ready certificate chains
for checking. And even when the situation is so, the claiming party must somehow be
able to retrieve the needed certificates from somewhere.

In Publication IV we have described a generic architecture for SPKI certificate
storage and retrieval. The basic idea is to store certificates at “natural locations” within
the global Internet Domain Name System (DNS) tree, i.e., at DNS nodes correspond-
ing to the issuer and/or subject of each certificate. All certificates may contain in the
optional issuer-location and subject-location fields the DNS names for their issuers and
the subjects. This allows easy retrieval of other certificates that are related to the ones
being handled.

The decision whether a certificate should be stored at the DNS node corresponding
to the issuer, to the subject, or both depends on the position of the certificate in a chain
and the needs of the used chain retrieval algorithm. A simple two-way search algo-
rithm with termination heuristics is presented in Sect. 4.2 of Publication IV. According
to the needs of this algorithm, if a certificate is the first certificate in a chain, it needs to
be stored only at the issuer node. On the other hand, if a certificate is last in a chain, it
needs to be stored only at the subject location. For best performance, any certificates
that are in the middle of chains, i.e., certificates that delegate authority from one
trusted third party to another, are best stored in two nodes, or nodes corresponding to
both the issuer and subject of the certificate.

When the certificates are stored as outlined above (or in more detail in Sect. 4.1 of
Publication IV), the retrieval for a certificate chain can be initiated from both ends. The
set of certificates the verifier has created can be easily retrieved from the DNS node
corresponding to the verifier. Similarly, the set of certificates issued to the final subject
can be retrieved from the DNS node corresponding to the final subject. After that, the
chains can be extended step by step from both ends, until a complete valid chain is
formed, or the search is terminated by heuristics.

It is instructive to note that the case of JAR files is slightly different. A JAR file
does not probably need any nodes at the DNS tree as it, itself, carries the final certifi-

Chapter 2. An Architecture for Secure Distributed Computing 37

cates issued to it. Actually, it may even include longer fragments of chains, thereby
providing more basic footing for the search algorithm.

2.5.1 Implementation status

The implementation of a DNS based SPKI certificate chain resolver is under way as a
master’s project at Helsinki University of Technology. The first version is planned to
be completed in the first quarter of 1999.

2.6 Summary of the Architecture

In this Chapter, I have outlined the TeSSA security architecture both from a conceptual
and from an implementation point of view. As we have seen, the basic architecture
consists of four parts, which are the session security protocol (IPSEC), the authentica-
tion protocol (ISAKMP), the certificate storage (DNS) and the trust and policy man-
agement infrastructure (SPKI). The role of all of these parts, as well as the
implementation status of the corresponding prototypes, were described in detail. Fur-
thermore, the connections of the various parts to the host operating system and other,
non security-related parts of the architecture, were discussed.

More information about the various aspects of the architecture is available in Publi-
cations as follows. Publication I, starting on page 71, gives background and an over-
view of the architecture. Publication III, starting on page 129, explains the basic SPKI
theory and the formation of certificate loops. Publication IV (page 147) explains the
usage of DNS for storing and retrieving certificates, and finally, in Publication V
(page 165) the details of integrating JDK 1.2 access control to SPKI infrastructure are
given.

The contributions of in this chapter and the related publications include the following.
• The TeSSA architecture is a new, comprehensive security architecture for distrib-

uted systems and agent systems. An early version of it was published in
Publication I.

• The idea of semantically binding IPSEC security associations to operating system
level access control is a new one. Similar ideas, however, are present in, e.g., the
CORBA security architecture.

• The idea of certificate loops, in the form presented here, is a new one. The SPKI lit-
erature speaks about certificate loops, but the idea there is slightly different. The
idea in the current form was first published in Publication III.

• The idea of using SPKI certificates for managing JDK 1.2 object level access con-
trol, or more generally, the idea of using authorization certificates for any object
level access control is a new one. It was first published in Publication V.

• The structure and algorithms used to store certificates in the DNS tree are new sug-
gestions. They were first published in Publication IV.

38 Nikander

Chapter 3

An Object-Oriented Framework for
Security Protocols

3.1 Background

The Java Conduits Beans (JaCoB) is a protocol development environment used to im-
plement parts of the TeSSA architecture. It is based on the Conduits+ framework,
which was already described in Sect. 1.4.1. In our research project, we have reimple-
mented the Conduits+ framework in Java and at the same time modified and extended
the framework. In addition to aiming for making the framework more generic, easier to
use, and more oriented in the “Java way”, we have concentrated on security issues. The
security related modifications can be roughly classified in two sets. The first set of
modifications are related to the secure operation environment provided by Java. These
issues are described in Sect. 3.3. The other set of modifications and extensions aims for
supporting implementation of cryptographic protocols. These are discussed in
Sect. 3.4.

However, before dwelling upon the security issues, the basic elements and their re-
lations to each other needs to be discussed. Like the Conduits+ framework, the Jacob
framework is based on two kinds of elements, conduits and messages. However, there
are differences both in the number and purpose of the conduits, and in the implementa-
tion of the structure of the messages.

My role in the development of the Jacob framework has been mainly to function as
the driving force. The basic structural and functional enhancements, present in the
Jacob framework and not in the Conduits+ framework, are to a large extent results of
long experimentation and consideration performed by several members of our project.
On the other hand, I am responsible for most of the security related considerations and
design choices (see Sections 3.3 and 3.4).

3.2 Basic Elements

The basic elements of the Jacob framework include the five types of conduits, namely
Adaptors, Factories, Muxes, Protocols and Sessions, and the messages, which are con-
structed from the actual message contents, some out-of-band data, and an interpreter,
called Messenger. When building protocol stacks, the conduits are connected together
to create protocol graphs. Messages, on their behalf, traverse the graph when being
sent or received.

Compared to the Conduits+ framework, there are a number of structural differ-
ences. First, while the Conduits+ framework has four types of conduits, we have five.

40 Nikander

Second, the Conduits+ framework description [40] does not specify in detail the repre-
sentation of information chunks, or messages. In our framework, however, we have
created a structure for presenting messages. This structure also supports the Java event
delivery mechanism, thereby allowing easier integration to other Java programs.

3.2.1 Five types of Conduits

As it was already mentioned, there are five types of conduits available in the Jacob
framework (see Fig. 1). Of these, the Adaptor, Factory and Mux conduits closely corre-
spond to their counterparts in the Conduits+ framework. However, we have more or
less renamed the Conduits+ Protocol to Session, and added a new type of Protocol
conduits. The Jacob Session conduit is used to implement protocol state machines, like
the Conduits+ Protocol. The Jacob Protocol, on the other hand, is a kind of container
that contains other conduits, and creates internal structure to the protocol graphs.

An example of a simple protocol graph that contains samples of all the conduit
types is given in Fig. 2. In the figure, messages may arrive from a physical network
though the Adapter at the bottom. Thus, the Adapter connects the conduit graph to the
outside world. Similarly to the bottom Adapter, there would probably be other adapters
at the top that connect the graph to the rest of the application.

Any messages arriving from below are conducted to the Mux in the middle. The
Mux attempts to demultiplex the messages, directing them to the either of the two ses-
sions above it. However, if such a message arrives that does not belong to either of the
two sessions, it is conducted to the factory on the left. The factory determines, maybe
by communicating with a protocol layer or application connected to its upper side,
whether a new session should be created to handle this message and any other similar
messages that may arrive in the future. If a new session is decided to be created, the
factory creates such an conduit by cloning a prototype, and attaching the clone to the
Mux.

Protocol

Session

Mux

Factory

Adaptor ...

Fig. 1. The five types of Conduits in the Jacob Framework

Chapter 3. An Object-Oriented Framework for Security Protocols 41

The Sessions, on their behalf, contain finite state machines (FSM) that implement
the stateful properties of the corresponding protocol sessions. In addition to that, they
may perform various kinds of conversions of data representation. For example, the sin-
gle session on the data path between the Adaptor and the Mux may convert incoming
messages, represented as bytes, into objects, and vice versa for outgoing messages.

The details of the various conduits and their implementation do not belong to the
core of this thesis. However, for the interested reader the details can be found in Sec-
tions 3.2 and 2.1 of Publications I and II, respectively. Another source of details is the
actual source code, available through the Internet [62].

3.2.2 Messages and Messengers

In the Jacob framework, a message consists of three distinct parts, which are the mes-
sage content itself, an out-of-band data chunk, and a message interpreter, or a Messen-
ger. This structure is illustrated in Fig. 3. The framework does not limit the structure or
presentation of the content; the content may be represented as objects or as a byte

Protocol

Session

Mux

Factory

Adaptor

Session Session

Fig. 2. A simple protocol structure

42 Nikander

string, depending, e.g., on the location of the message in a graph. Whenever conver-
sions are needed, a session taking care of the conversion has to be used.

The out-of-band data chunk is meant to be used for inter-protocol or inter-conduit
control information, which typically is not a part of the message itself, but which is
needed, e.g., for routing or policy management purposes. A typical example of usage is
the case of peer IP addresses and ports of received UDP datagrams. These are not parts
of the actual data carried by UDP, but they are needed by the recipient in order to know
whom to reply to.

One of the fundamental original ideas in the Conduits+ framework was the support
for intelligent messages. In the Jacob framework, all messages are made intelligent by
attaching an interpreter, or Messenger, to them. The Messenger is an instance of a pro-
tocol specific (singleton) class that understands the structure and purpose of the mes-
sage. For example, in the TCP protocol, there could be a generic TcpMessenger that is
able to interpret the control bits in the TCP header, and call the appropriate input func-
tion depending on these bits. That is, when the TCP header contains, e.g., a FIN bit, the
TcpMessanger determines that the peer has started connection closing procedure, and
acts accordingly.

Again, the detail functionality of the Messengers or the structure of the messages is
beyond the scope of this thesis. More details are available in Sect. 2.3 of Publication II.

3.3 Secure Execution Environment

The Java runtime environment, which basically consists of the Java Virtual Machine
and the associated standard library, contains a number of security related features.
First, the Java language itself is designed to be secure. Second, the JDK 1.2 runtime
environment supports Security Domains and Permissions, as already described. These
together, along with other security related features, allow protocol fragments built with
the Jacob framework to be made secure, and the message flow to be controlled.

Message

Messenger

*

1interpreter

OutOfBand

0..1

EventObject

Object

*

0..1contents

Fig. 3. The message structure in the Jacob framework

Chapter 3. An Object-Oriented Framework for Security Protocols 43

In the next subsections, the details of these Java features and their relation to the se-
curity of the Jacob environment are discussed.

3.3.1 Language Level Security Features

Java, as a language, was designed with security in mind from the very beginning. Thus,
the language itself contains several features that make it easier to build secure soft-
ware. These include the following.
• First, the language is strictly typed and type safe. This makes it possible to build se-

cure classes, i.e. secure pieces of software, in the first place. Type safety makes it
impossible to access instances of classes in any inappropriate way disallowed by
the class.

• Second, the language includes strict visibility rules, supporting information hiding.
That is, a class may have private variables accessible only from the code of the
class itself. This allows, for example, cryptographic keys to be stored (relatively)
securely in such a way that unauthorized parties do not have access to them.

• Java also supports packages, including package associated visibility rules, which
allows one to create services that treat several classes as a secure whole.

• Type safeness of Java also implies type safe implementation of arrays. This means,
among other things, that all array indices are checked when accessing arrays. This
makes it impossible to have buffer overflow errors typical to, for example, C.

• The standard Java library is designed to be secure. This means, for example, that
the Strings are immutable, making it impossible to change the contents of Strings
after they have been examined for security purposes. The class library has security
checks everywhere. For example, when a thread attempts to open a file, the name of
the file (a String) is examined and compared with any permissions available.

• Finally, all Java versions, but especially the newest 1.2 version, include a built in
security system that restricts the actions available to various classes. (The JDK 1.2
access control system was already briefly described in Sect. 1.3.4.)

Together, these features make it possible to support interoperation of objects having
different security credentials within a single address and name space. On the other
hand, the security of such an system intrinsically depends on the Java Virtual Machine
and the associated byte code verifier to be implemented correctly. Unfortunately, this
has not always been the case. Happily, the situation is getting better all the time.

3.3.2 Usage of JDK 1.2 Security Domains to Protect Protocol Fragments

The internal access control of JDK 1.2 runtime environments is based on dynamically
created security domains and associated permissions, as we have seen. Using the lan-
guage level security features, possibly combined with distinct name spaces created by
using class loaders [15], it is possible to create collections of Java classes that simulta-
neously are security domains and internally protected services.

When using the Jacob framework, the framework itself is presented as one pack-
age. Typically, this package would be loaded as an trusted extension to the standard li-
brary, and therefore not restricted by the access control architecture itself. Additionally,
usually each protocol, along with the associated session, messenger etc. classes, are

44 Nikander

placed into a package of their own. It is natural to store such a package in a separate
JAR container. In the future, that may allow basic security management features, as de-
scribed in Chapter 4, to be applied to individual protocols.

Now, since it would be easy to create restricted execution environments for the in-
dividual protocols, it would be possible to securely allow protocol modules to be
downloaded. The integrity and authority of these protocol modules are easy to check.
The downloader protocols might be even allowed to have access to specific crypto-
graphic keys thereby allowing one, for example, to create application specific crypto-
graphic protocols that are embeddable deep into a protocol stack instead of always
running on the top.

3.3.3 Controlling the Flow of Messages

In the Jacob framework, great care is taken to architecturally control the flow of mes-
sages between conduits. That is, a conduit may send a message only to conduits that
are attached to it. Of course, it is impossible to prevent an individual programmer from
creating additional message paths within an individual protocol. However, protocol
implementations that conform to the architecture only allow messages to enter from
through the published side objects.

In Jacob, the sides are represented as distinct objects. In fact, each side belongs to a
class that is internal to its conduit, making the sides composite parts of the conduits.
That is, usage of the Java internal classes feature makes it impossible to have side ob-
jects independent of any conduit objects. When a conduit is connected to another, it ac-
tually gives a reference to the internal side object to where it assumes to receive
messages from the other conduit. Furthermore, conduits are always attached symmetri-
cally, making it sure that there is a bidirectional flow of messages between them. Hav-
ing a reference only to the side of the conduit, the other conduit, possibly belonging to
another protocol, cannot actually access the conduit itself or its other sides.

The Java typing system takes care of checking the structure and semantics of mes-
sages. Each protocol includes a number of public singleton Messengers. The semantics
of accepted internal messages is defined by the means of Messengers, i.e., by requiring
that the attached protocols only send messages that have one of the specified Messen-
gers. If some other message type is sent, a typing exception will be raised.

If more control is needed, e.g., if a protocol needs to check that the actual contents
of messages apply to certain conditions, additional functionality needs to be imple-
mented by the protocol itself. For example, as was described when discussing the over-
all architecture, the IPSEC protocol layer needs to make policy decisions based on the
content of incoming packets. In Jacob, such functionality needs to be implemented
separately; there is no direct infrastructure support for that kind of functionality.

3.4 Construction of Cryptographic Protocols

Having a secure protocol runtime environment is one thing, and implementation of
cryptographic protocols is another distinct issue. When building cryptographic proto-
cols, two distinct problems can be identified. First, it would be desirable to have a de-

Chapter 3. An Object-Oriented Framework for Security Protocols 45

velopment and execution environment that makes application of cryptography easy.
Second, the environment should make it hard to fabricate implementation level bugs.
That is, experience has shown that even when the design of a cryptographic protocol is
flawless, it is very easy to introduce problems in the implementation phase. Thus, an
ample environment encourages good and accepted implementation practices. The aim
is to minimize the number of bugs introduced by the implementor.

In the following, the Java Cryptography Architecture is considered first, and its re-
lationship to the actual Jacob framework is shown. Second, I describe the concept of
protocol patterns, which elicits good implementation practices.

3.4.1 Java Cryptography Architecture and Extension

Since JDK 1.1, Java has included standard library level support for cryptography. In
JDK 1.2, the Java Cryptography Architecture (JCA) includes support for key manage-
ment, one way hashes and public key based signatures. Basic support for X.509 certif-
icates and CRLs is also included. Public or symmetric key encryption is not supported
due to U.S. export restrictions. In the standard distribution, encryption is only available
in the Java Cryptographic Extension (JCE), which is not exportable from the U.S.

Both the JCA and the JCE are based on the so called provider model. In this model,
the actual cryptographic functions are provided by an external packet. The Sun manu-
factured default provider is just one possibility. This feature has allowed our research
group, among other things, to add Elliptic Curve support to Java [49]. On the other
hand, the standard way of adding actual ciphers, symmetric or asymmetric, would re-
quire reimplementation of the JCE.

When the current Jacob framework was designed and built, information about the
then forthcoming JDK 1.2 security model was not available yet. Similarly, at least in
the JDK 1.2 beta 4 version, the JDK 1.2 JCA did not take advantage of the new access
control architecture. This means, in practice, that the cryptographic keys are not con-
sidered to be protected resources, and access to them is not limited by the access con-
trol architecture. On the other hand, basic object reference integrity allows a form of
limited access control to be applied. Only those objects that have a reference to a key
may use it.

Thus, at least in theory, the JCA and JCE offer us standard APIs for accessing cryp-
tographic functions. These APIs may be readily used in implementing cryptographic
protocols. When new types of algorithms, e.g., for zero-knowledge protocols, are
needed, the JCA and JCE offer a model for creating new provider and engine classes.

On the other hand, the current default JDK cryptoarchitecture should be extended
by integrating it with the JDK 1.2 access control architecture. This would allow one to
better assure that only authorized parties have access to the keys. For example, since
agents are represented as security domains in the TeSSA architecture, a single crypto-
graphic protocol could serve several agents without a fear that agents could use the
keys of other agents.1

1 Actually, since the conduits are run in a separate thread in the current implementation, the situation is
not quite that simple. Instead, the scheduler that runs the conduit transport thread would need to make
sure that an appropriate security context is always associated with the thread. Such functionality is not
currently implemented in the Jacob framework, but it would not be too hard to add it.

46 Nikander

3.4.2 Protocol Patterns

Even though we have only limited experi-
ence on using the Jacob framework, it has
become apparent that using such a highly
structural patterned framework yields pat-
terns on higher levels as well. That is, there
seems to be recurrent problems in protocol
design. Respectively, there appears to be
certain conduit patterns that better suit for
solving those problems than others.

So far, we have been able to clearly
identify only one such a pattern. This pat-
tern is apparent in the implementation of
both the IPSEC ESP protocol [47] and in
the implementation of the ISAKMP frame-
work [55]. The pattern is illustrated in
Fig. 4, and in more detail in Sect. 2.5 of
Publication II. In the pattern, there are Ses-
sion conduits that take care of encryption/decryption, encoding/decoding and the ac-
tual protocol state machine. These sessions are stacked in a certain way. Typical to
many design patterns, once the pattern is presented it appears to be straightforward.

As we get more experience on building various kinds of protocols, we expect to
recognize more patterns.

3.4.3 ISAKMP based Higher Level Framework

The basic Jacob framework is a fairly generic framework, suitable for implementing
both “normal” communication protocols and cryptographic protocols. Its security sup-
port is more oriented towards making it possible to securely run application specific
protocol fragments, and to provide standard means for applying cryptography on mes-
sages. The latter is based, as was described, on the use of the JCA and JCE APIs, and
our suggestions on how to extend and strengthen them. The next step, which we are
currently pursuing, is to build a higher level framework that provides more services for
cryptographic protocols.

On the conceptual level, the ISAKMP protocol is designed to provide such a frame-
work. Currently, however, most of the actual ISAKMP implementation effort is solely
aimed for providing minimal support for the IPSEC protocol suite, and, furthermore,
usually only for IPSEC VPN usage. Typically, these implementations are based on C,
they are built from scratch or at least not using any “open” protocol framework, and
not designed to be easily extensible.

Our aim is different. We are currently building an open, framework like ISAKMP
implementation on the top of the Jacob framework. This implementation, once com-
pleted, will allow easy prototyping and experimentation with various kinds of crypto-
graphic protocols in real life environment. Furthermore, we hope that the usage of a

Cipher

Crypto
Protocol

Coder

FSM

Fig. 4. A cryptographic protocol pattern.

Chapter 3. An Object-Oriented Framework for Security Protocols 47

carefully designed and tested framework built with a relatively secure language (Java)
would diminish the number of implementation dependent bugs.

For protocol designers and implementations, the Jacob based ISAKMP framework
provides a number of services. These include the following.
• The ISAKMP specification defines standard presentation formats for data items

used in typical authentication protocols. Our framework includes classes corre-
sponding to these presentation formats. Whenever the JDK standard library in-
cludes relevant classes, we have either directly used them, or extended where
necessary.

• The ISAKMP specification uses cookies for basic denial-of-service attack preven-
tion. Our framework includes a generic, protocol independent implementation of
cookies and cookie exchanges. This implementation allows stateless reply to the
first message, thereby preventing state space exhausting DoS attacks [13].

• All (or at least almost all) cryptographic protocols include some kind of state. The
basic exchanges described in the ISAKMP specification certainly do. The Jacob
framework provides a simple to apply presentation for states, where the session
specific state variables and the protocol specific state behaviour have been made
distinct. This leads to a very natural presentation of ISAKMP security associations.

• Finally, as was already mentioned, we expect conduit patterns to emerge. Once es-
tablished, the ISAKMP framework may be extended to support easy deployment of
the patterns.

Thus, my vision, as accepted by the research group, is to utilize the ISAKMP frame-
work for experimenting with both new kinds of authentication protocols and with ex-
tensions to the proposed Internet Key Exchange (IKE) standard.

3.5 Implementation history and status

The current implementation of the Jacob framework is the third incarnation of a Java
based Conduits+ like protocol framework. The first version was implemented in 1996
by the master’s students Bengt Sahlin and Kaj Höglund under my supervision. Unfor-
tunately, the result was not too reusable. A second version was implemented by a pro-
gramming assignment group of five students, led by Juha Pärssinen and supervised by
me, partially in parallel with the work of the above mentioned master’s students during
the academic year 1996–1997.

The third and current version was initially implemented from the scratch by Juha
Pärssinen and me in a few hot weeks in summer 1997. The results of this work are de-
scribed in detail in Publication II. This prototype was completed into a really usable
framework by Mikael Suokas, Esko Heimonen and Tero Hasu in a slow progress in
parallel with a Jacob based UDP/IP implementation. A beta2 version of the framework
is currently available in the Internet [62].

48 Nikander

3.6 Contributions

The contributions of this Chapter and the associated Publications include the follow-
ing.
• The hierarchical Protocol conduits were not present in the Conduits+ framework.

They were first introduced in the Jacob framework. However, similar approaches
have been available and are available in other protocol frameworks.

• The idea of using Java’s language level and runtime security features for providing
a “protocol sandbox” is a new one. The idea was introduced in Publication I. How-
ever, only the usage of JDK 1.2 fine grained access control features, or ClassLoader
based name spaces as suggested by Aura, Koponen and Räsänen [15] makes it re-
ally feasible. Some of the issues involved were discussed in Sect. 3.3.2.

• The idea of treating protocol components as Java Beans was originally mentioned
in Publication I. However, it was never pursued further by us.

• The notion of protocol design patterns was introduced in Publication I. I am still
convinced so that such patterns will eventually emerge as Jacob like frameworks
are used more. However, other examples in addition to the one described in
Sect. 3.4.2 are not available yet.

Chapter 4

Distributed
Trust and Policy Management

4.1 Introduction

In this Chapter, I present a model for distributed trust and security policy management.
This model is based on the distributed security architecture described in Chapter 2. All
of the conceptual work described in this chapter is on my sole responsibility, and may
be considered central to this thesis. The actual implementation of the features de-
scribed in this Chapter are beyond the scope of this thesis.

The rest of this Chapter is organized as follows. In the rest of this initial section, the
agent based view to distribution is rehearsed (Sect. 4.1.1), the forms of trust present in
such a setting are discussed (Sect. 4.1.2), and finally, based on this, the concept of se-
curity policy is initially defined (Sect. 4.1.3). Next, in Sect. 4.2, trust relationships,
their expression, and the role of trusted third parties in distributed agent based systems
are discussed. Based on this, Sect. 4.3 deepens the definition of security policy by di-
viding it into subcomponents that together cover most security policy aspects of dis-
tributed systems security. Finally, in Sect. 4.4 I describe how a system based on the
ideas present in this Chapter can be managed in a fully decentralized way. Sect. 4.5
summarises the ideas presented.

4.1.1 Distribution with Agents

As already suggested in Chapter 1, (almost) all distributed systems may be perceived
to be agent systems. That is, in any digital system there are typically many distinct
pieces of software that may be considered to be agents, i.e., to act on the behalf of us-
ers or other agents. This is especially true in a distributed system, where computation
may be migrated or delegated from node to node possibly involving a large number of
nodes. For example, in a typical client server system a server process or thread may be
considered to act in a role of an agent while serving a corresponding client. If the same
thread or process is used to consequently serve another client, it assumes another
agent’s role. In this sense, even the simple programs in an embedded system, such as
an elevator, may be considered to function as agents and to perform tasks on the behalf
of the users.

Thus, for the purpose of the security considerations to be presented, a distributed
system is defined to contain nodes and agents, which are both principals as defined in
Sect. 1.2.1. Furthermore, it is assumed that some of the agents do have a user interface,
through which the user is able to give instructions to them. The agent’s access to the
user interface, though, is controlled by the local node; the node also takes the responsi-

50 Nikander

bility of authenticating the user’s right to start such an agent. Furthermore, the node as-
signs the needed initial rights to the agent so that it is able to communicate with the
user and request further credentials from certificate repositories.

There may also exist service agents, started by a node when the node was booted or
otherwise administratively initiated. For example, UNIX background daemons may be
considered to be such service agents.

All the rest of the agents are or have once been started by another agent, have re-
ceived their security credentials from the starting (or some other) agent, and have run
their program in order to fulfil the requests received from the starting agent or some-
times from some other co-operating agent. Thus, all the agents have some purpose for
their existence, they co-operate with other agents receiving requests from them and
sending results to them, and possibly also communicate with the users or otherwise
with the outside world. All of the communication as well as other resource access is
controlled by the local node. The local node, as it was defined, is primarily responsible
for the hardware, and therefore it has primary authority over the hardware devices and
any abstractions created on the top of them.

4.1.2 Forms of Trust

Secure use of any system involves several types of trust. Usually, trust must be mutual,
i.e., the user must trust the system, and the system must trust the user. However, the
trust the user places in the system is quite different in nature from the trust the system
must have towards the user. Basically, the user must trust that the system faithfully ex-
ecutes the instructions give to it, without crashing, malfunctioning, or otherwise de-
stroying data. The system, on the other hand, must somehow know what the user is
authorized to do and thereby whether the instructions given by the user may be exe-
cuted or not.

When considering a situation where an agent (running on the behalf of a user) cre-
ates another agent on a remote node the agent must actually know (or believe) quite a
lot about the remote node. That is, the old agent must be sure that creating the new
agent does not endanger the security of the user’s data. For this purpose, it must be able
to deduce that the user does consider the remote node trustworthy enough for running
the new agent and that the program code the new agent will be created from is also
trustworthy. Moreover, to be able to deduce so the agent must have an expression of
the user’s security policy along with expressions of trust, which in turn are typically is-
sued both by the user and a number of trusted parties. Using the user’s expressed pol-
icy and the trust expressions, the agent may deduce whether the user would trust the
node or not.

The remote node, on the other hand, must also be know, or at least be able to be-
lieve, quite a lot about the agent attempting the creation of the new agent, and about the
program code that the new agent will start to execute. Basically, the node must be able
to deduce that the old agent is authorized to create the new agent in the first place, to
deduce how much CPU, memory and other resources the new agent should initially re-
ceive, to deduce in whom the new agent should initially be configured to trust, and that
the program code offered for the agent adheres to local limitations and does not at-

Chapter 4. Distributed Trust and Policy Management 51

tempt to exhaust local resources. Thus, generally, it must have trust in the initiating
agent and in the program code.

For the discussion below, trust has been divided into four distinct forms. These
forms are the following.
• The first form is the trust in the ability to faithfully execute program code. In most

current systems, this form of trust is only implicitly present. However, trust in the
ability to faithfully execute program code includes quite a lot. Among other things,
it may be considered to imply functional integrity, confidentiality and availability
of user data, including cryptographic keys.

• The second form of trust is the trust in the ability to faithfully bind cryptographic
keys to local names. Basically, this is the form of trust usually expected from certi-
fication authorities in X.509 based systems. On the other hand, the implications of
trusting someone in this naming sense are not so broad than in most X.509 systems.

• The third form handles access control, or permissions. This form of trust possibly
does not display trust in a traditional sense. However, from the operating system
(owner’s) point of view, the fact that a user has access to an object implies that the
user is believed, or trusted, not to misuse his or her access rights. Similarly, when a
user delegates an access right to an agent, this act must be based on the belief that
the agent will not misuse the right. Therefore, I think, it is well grounded to call au-
thorization or access control expressions as one type of trust, as well.

• Finally, the fourth type of trust considered is delegation or recommendation. A
principal may be trusted to further delegate permissions given to it. Similarly,
trusted third parties may be trusted in their recommending other principals for exe-
cution or naming. In addition, if something is trusted for delegation or recommen-
dation, it must be trusted for performing the actual action itself, since it is always
possible to delegate a right to oneself or recommend oneself.

Thus, the four types of trust considered to be relevant for distributed agent based com-
puting are execution, naming, authorization and delegation. All of the forms should be
understood under the definition given in Sect. 1.3.6. A slightly more formal treatment
is available in Sect. 3 of Publication VII.

4.1.3 Security Policy Defined

Usually, security policy is defined to be the set of more or less informal rules that spec-
ify how the integrity, confidentiality and availability of the stored information and
available resources are to be protected within an information processing system. The
rules often involve manual operations and management conventions that are expected
to be followed by humans.

My point of view in this work, however, is somewhat different. As the focus is on
how to make an agent system secure, my interest lies solely on how to express a secu-
rity policy in a form that allows nodes and agents enforce it. Thus, my interest is basi-
cally the same as in the PolicyMaker approach by Matt Blaze and others [18].
Furthermore, I want to apply security policies to all forms of trust involved in a distrib-
uted system, not just the access control type of type of trust usually considered. Thus,

52 Nikander

among other things, a security policy should define how a party is expected to believe
in recommendations given by others.

Based on this, I now attempt to define security policy, trying to collect the most im-
portant aspects together.

Definition. A (formal) security policy is a collection of rules that define how an
agent shall behave with respect to believing in trusted third parties (TTPs), with
respect to recommendations given by the TTPs and other agents, and with re-
spect to claimed authority. If a security policy is published, the published policy
allows other agents to deduce what kind of decision an agent would do in a
given situation. The purpose of the policy is to minimize the risk of losing the
integrity, confidentiality or availability of the protected information and re-
sources.

In an agent system, the ability to publish a policy, and to base actions on the published
policy of other principals, is a very important feature. For example, it allows the agents
that work for a user to make policy decisions even when the user is off-line.

After these preliminaries, we are now ready to address trust, policy, and their manage-
ment in detail. These are the topics of the next three sections.

4.2 Trust in Distributed Agent Systems

In Sect. 1.3.6 on page 11, trust
was defined to be a belief held
by a principal. In Sect. 4.1.2
above, trust was divided into
four distinct types, namely ex-
ecution, naming, authorization
and delegation. In this sec-
tion, the various trust relation-
ships present in a distributed
system, expressions of trust,
and trusted third parties are
considered.

4.2.1 Trust
Relationships

In Fig. 1, the basic trust rela-
tionships of a basic agent set-
ting are shown (without any
trusted third parties). In the sit-
uation depicted, the user wants to use a resource located at a server and protected by
that server. In order to do so, the user invokes agents, first on a number of intermediate

User Server

Node1 Noden

Agentn+1

Agent1 Agentn

Flow of access rights & right to delegate access

Agents implicitly trust the primary principal

An agent host must trust the previous host
for allowing it to initiate agents

The user must trust all hosts for executing
and naming agents.

Fig. 1. Trust relationships in a generic delegated setting

and intermediate agents, if any.

Chapter 4. Distributed Trust and Policy Management 53

nodes, and then finally on the server node. Each of these agents may be considered to
act on the behalf of the user as indicated by any previous agent. Thus, any agent im-
plicitly trusts in the invoking agent (because it does not know of any better), and if the
invoking agent tells it to fully trust in a user, it does so. These trust relationships are
shown as the thick arrows. The dashing between Agentn and Agent1 signifies that there
may be any number of agents in between1.

In order to allow the agents to be created, the nodes, including the server node,
must trust in the invoking agents (or nodes) so that they are allowed to initiate agents.
That is, nodek+1 must believe that nodek (or agentk) is authorized to consume basic re-
sources of it (CPU, memory, communication) so that a new agent may be allowed to
run. Basically, this is a form of authorization trust, denoting that the previous nodes in
an execution chain are authorized to consume resources in the following nodes in the
execution chain. This is depicted as the light gray (cyan) arrows leading from the
Server through the nodes to the User. (How this kind of authorization trust is formed is
considered later in Sect. 4.2.3.)

On the other hand, the user must be able to control where the agents may be created
at. That is, the user must trust in all the execution nodes involved, including the server,
to faithfully execute the agents’ code. Additionally, since the agents must be named so
that authorization rights may be delegated to them, the user must trust in the nodes in
the naming sense, too. The execution and naming trust is shown as dark gray (purple)
arrows starting from the user and ending at the nodes (including the Server).

Finally, in order to be able to access the resource located at the server, the user must
be authorized to do so. This authorization is shown as the medium gray (green) arrow
leading from the server to the user. When invoking agents, the user then further dele-
gates this right from agent to agent, indicated at the bottom as the medium gray (green)
arrows, passing from the user through the agents to the last agent, Agentn+1.

4.2.2 Expressing Trust

In order to be useful for the agents, the trust relationships must be made explicit. In the
TeSSA architecture, all trust relationships are representable in the form of SPKI certif-
icates. That is, all trust relationships that are needed to assure that the system functions
securely can be represented as SPKI certificates. This is possibly one of the more fun-
damental conjectures in this thesis.

The basic SPKI features for local naming, authorization, and limitation of delega-
tion provide the foundation for representing the naming, authorization and delegation
forms of trust. Execution trust requires little more. Basically, it is enough to define a
new SPKI authorization type for execution. This allows all agents to make decisions on
the node’s trustworthiness in this sense.

Next, the SPKI representation of these various forms of trust are considered one-
by-one. In the representation, the 5-tuple format (I, S, D, A, V), the 4-tuple format

1 Actually, even the case that a newly created agent is configured to believe in the creating agent is a se-
curity policy decision. In that case, it is an implication of a policy rule held by the hosting node. There
are cases when such a rule does not hold. However, such systems are beyond the scope of this thesis.

54 Nikander

(I, N, S, V), and the fully qualified name format (name K string ...), all defined in the
SPKI Theory [29], are used.

Authorization. An authorization, where a principal PI authorizes another principal PS
to have a permission pA without redelegation right is represented as and SPKI 5-tuple
certificate (P I, PS, false, pA, V), where V is the validity conditions of the certificate.
This fully applies to the SPKI usage; there is nothing unusual. Additionally, a prede-
fined form of authorization is needed to specify that a principal may start new agents.
For simplicity, this form of authorization is simply denoted as (start object), where ob-
ject is a name (e.g. a hash) for the code of the agent.

Naming. A naming situation, where a principal PI assigns a local name “a” to a newly
created agent that has been given the key PA is represented as a 4-tuple certificate (PI,
“a”, PA, V). Again this conforms to the SPKI proposal.

Execution. For expressing execution trust, a tag of the format (exec object) is used.
Here the object is a name of some executable object, e.g., a hash of a Java JAR file. It is
also possible to denote that the execution trust applies all programs by using the format
(exec *). Thus, if Alice wants to express that she believes that a node that has a key
KBob is trusted by her to execute all kinds of agents on her behalf, she may create a
certificate (KAlice, KBob, false, (exec *), V), where V defines the validity restrictions
of this certificate.

Delegation. Basic delegation is represented using the SPKI delegation bit, as usual.
This applies both to authorization and to execution.

Using these certificate formats, the trust relationships depicted in Fig. 1 may be ex-
pressed as indicated in Table 1. For clarity, names of the parties are used instead of

Certificate Explanation

(Server, User, T, pA, V) User has access to the protected resource

(User, (name Node1 hash(code)), T, pA, V) User delegates the right to the first agent

(Agentk, (name Nodek+1 hash(code)), T, pA, V) Agent delegates the right to the next one

(Agentn, (name Server hash(code)), F, pA, V) Final delegation to the agent at the Server

(Agent1, User, T, (*), V) The first agent fully trusts the User

(Agentk, Agentk-1, T, (*), V) All agents fully trust the invoking agent

(Agentk, User, T, (*), V) All agents fully trust the User

(Node1, User, F, (start hash(code)), V) User may start the agent at the first node

(Nodek, Nodek-1, F, (start hash(code)), V) Previous node may start agents

(Server, Noden, F, (start hash(code)), V) The last node may start agent on Server

(User, Node1, F, (exec hash(code)), V) User trusts the first node for execution

(User, Nodek, F, (exec hash(code)), V) User trusts all nodes for execution

(User, Server, F, (exec hash(code)), V) User trusts Server for execution
Table 1: SPKI expressions of the trust relationships depicted in Fig. 1.

Chapter 4. Distributed Trust and Policy Management 55

their keys. In the table, it is important to note one issue: the naming trust is not explic-
itly presented. Instead, it is implicitly present in the delegation certificates where the
user delegates the permission pA to the first agent, and at all times thereafter. It would
be possible, however, define an additional authority format such as (name object) to
denote trust in the naming ability. However, in the present setting, execution trust im-
plies naming trust, and thereby leaves out the need to explicitly represent naming trust.

4.2.3 Trusted Third Parties

In Fig. 1, all trust relationships were represented as direct relationships between the
trusting party and the trusted party. However, in practice, it would be infeasible to di-
rectly enumerate all trust relationships involved. In fact, in most cases, there are trust
relationships between parties that have never been in contact, and possibly even never
will be in contact with each other. Such trust relationships are based on delegation and
recommendations.

When (indirect) delegation and recommendation enters, there comes also the
trusted third parties (TTPs). To emphasize the growing complexity, a situation corre-
sponding to Fig. 1 is shown in Fig. 2. In Fig. 2, the pre-established trust relationships
between the parties involved TTPs. Only the direct, dynamic relationships between the
user, the intermediate agents and the serving agent are direct.

In a typical setting, many of the TTPs shown separately in Fig. 2 would be the
same. For example, the set of TTPs involved in determining which nodes the user con-
siders trustworthy for executing agents would probably include only a small number of
TTPs, the lasts of which would probably certify a large number of nodes. Similarly, the
TTPs involved in certifying which nodes may start agents in other nodes would proba-

User Server

TTPTTP

Node1 Noden

Agentn+1

Agent1 Agentn

Flow of access rights & right to delegate access

An agent host must trust the previous host
for allowing it to initiate agents

The user must trust all hosts for executing
and naming agents.

Fig. 2. Trust requirements in a fully delegated setting (implicit trust not shown)

Node2

Agent2

TTP(s)

TTP(s)

TTP(s)

TTP(s) TTP(s)

TTP(s)

TTP(s)

56 Nikander

bly be largely the same, so that, for example, just one TTPs serves on this purpose for
most of the nodes.

Introduction of the TTPs also raises the importance of the security policy. For each
principal, its security policy defines how to trust recommendations.

4.3 Components of Security Policy

As noted above, the purpose of an organization level (informal) security policy is to as-
sure that the individuals within the organization work towards keeping the information
and resources integral, confidential, and available. In fact, one of the purposes of such
a security policy is to define what, precisely, integrity, confidentiality, and availability
mean within that organization.

For the case of our automated security policy study, security policy was defined to
denote a set of formal rules, adhered to by the trustworthy nodes and agents. Conse-
quently, the purpose of those rules is to ensure that the integrity, confidentiality, and
availability remain intact under any normal and most abnormal conditions. This im-
plies, among other things, that the rules should be fail safe so that security is preserved
also when something exceptional happens.

To make a distinction between the security goals and the enforcing rules used to
implement those goals, the terms security policy, security policy implementation and
security policy rules are used to denote the set of the enforcing rules, while the terms
security policy and security goal(s) are used to denote the human understandable,
higher level goals. Whenever confusion may appear, the term security policy is
avoided. On the other hand, there should be a one-to-one correspondence between
goals and their implementation.

Thus, basically, the purpose of the security policy rules is to make sure only correct
access control decisions are made, so that only legitimate parties get read, modifica-
tion, or consumption access to information and resources. In a distributed system, var-
ious kinds of information is needed to perform such decisions. The traditional view has
been based on user accounts, access control lists, and authentication of the user identi-
ties. As already briefly discussed before, our approach is different.

In the architecture defined, access control decisions are based on certificates that
represent direct delegation, primary trust, and trust recommendation. Thus, the authen-
tication question posed is not “who is she”, but “can she be trusted”, independent on
identity or (human understandable) names. To answer such a question, the security
policy must define how TTPs are trusted, how their recommendations are to be trusted,
and how to perform the actual access control decisions.

4.3.1 Policy for Trusting in Third Parties

The policy defining which trusted third parties are trusted is basically pretty simple.
That is, some TTPs are trusted for some purposes while others are not. Noteworthy is,
however, that the policy makes explicit which purposes a TTP is trusted for. This is a
clear difference from X.509, where the purpose for which to trust a TTP for is only im-

Chapter 4. Distributed Trust and Policy Management 57

plicitly understood, and there is no standard way of representing this information in
applications.

As we have seen, TTPs may be trusted for at least the following purposes. (There is
no established terminology for this kind of TTP allotment, and the terms given are just
one possibility.)
• An Authorization Authority (AA) is a TTP that delegates access permissions. Typi-

cally, a node delegates authority over all access control decisions to a close author-
ization authority, which is typically operated by the local security officer. This AA
may then delegate the right to make some decisions to another AA. Whether the au-
thorizations made by the second AA are accepted by the node depends on another
aspect of the security policy of the node, i.e., the rules that define how to handle
recommendations. Usually there are several application specific AAs, each control-
ling access to the application objects according to application specific require-
ments.

• An Agent Authorization Authority (AAA) is a special case of a generic Authoriza-
tion Authority. An Agent Authorization Authority controls how agents may be cre-
ated, thereby consuming CPU, memory and communication resources, while a
generic AA manages access to all kinds of resources. Typically the role of an AAA
and the application specific AAs are separated.

• An Execution Environment Authority (EEA) is used to determine what nodes are
considered trustworthy to run agents. In a typical policy, the set of agents would
probably be divided into subsets, some of which include more security critical
agents than others. In such a setting, there could be different EEAs with different
security levels.

• Another type of a TTP is a Naming Authority (NA). The purpose of a Naming Au-
thority is to provide secure, application specific namings. In the discussion above,
naming authorities were not mentioned. However, it is probable that one would
have been used to determine the server key (and network address) of the server by
the client application. The client application may have supplied an application spe-
cific name to a preconfigured application specific naming authority, which would
have returned relevant information how to contact and authenticate a server that
provides the desired protected resource.

The Authorization Authority, Agent Authorization Authority, Execution Environment
Authority and Naming Authority are just examples of kinds of TTPs that there proba-
bly would be in a fully developed agent based distributed system. What is notable,
however, is that all of the types have well defined semantics, and the certificates made
by each of the authorities are only honoured when pertaining to the area of the respec-
tive authority.

In SPKI terms, assigning of authorities is relatively easy. All that needs to be done
is to issue certificates with a relevant tag and the delegation bit set true. However, such
a delegable certificate must also be applicable to a recommendation reduction, consid-
ered next.

58 Nikander

4.3.2 Policy for Believing in Recommendations

In the SPKI theory proposal [29], certification reduction is specified as follows. Given
two certificates (I1, S1, D1, A1, V1) and (I2, S2, D2, A2, V2), it is possible to reduce
these two certificates into one semantically equivalent certificate, iff S1 is equal to I2
and D1 is true. In that case, the reduced certificate is (I1, S2, D2, A, V) where A is the
intersection of A1 and A2, and V is the intersection of V1 and V2. The SPKI theory pro-
poses that such an reduction is always possible. Indeed, it certainly serves as a very
convenient default rule. However, allowing such a reduction to be performed always is
a policy decision.

More generally, all decisions on how to handle chains of certificates are policy de-
cisions. These policy decisions define how recommendations are trusted. In the SPKI
default rule, the delegation bit implies the decision that any recommendations, inde-
pendent on the length of the eventual chain, are always adhered to. But, even though
this might be a good default case, it probably should not be blindly believed under all
possible conditions. Trust is, in any case, inherently intransitive. Therefore we can eas-
ily suggest situations where some recommendations should not be believed while oth-
ers could be.

The current SPKI proposal does not define any standard format for defining rules
for handling recommendation chains. This is left to the local policy; one possible way
of implementing this would be a kind of local policy rule database according to the ex-
ample of the PolicyMaker prototype. Unfortunately, this would not be quite sufficient
in an agent system. In an agent system, an agent should be able to base its policy deci-
sions on the rules that the principal the agent is representing. Otherwise it would be
forced to ask for help from the initial principal in the case of policy decision; however,
this might be impossible since the initial principal is not necessarily always online.

Thus, there is clearly a need to define a language for recommendation policies.
Such a language could be presented in the form of SPKI-tag-like s-expressions,
thereby making it easy to represent the recommendation policy as certificates.

4.3.3 Policy for Access Control

Access Control policy is the only form of security policy for which the SPKI proposal
gives adequate strength. However, the lack of a representation for recommendation
rules makes it harder to handle longer delegation chains.

The SPKI tag field, along with the defined tag algebra, is well suited for the presen-
tation of all kinds of access permissions. One example of such an application is the
management of Java Development Kit 1.2 internal access control, as described in
Publication V. Another example, probably defined in the near future, is the use of
SPKI certificates for controlling the security association related access control policy
decisions in the IPSEC / ISAKMP framework.

4.3.4 Enforcing Policy

Once the formats for TTP, recommendation and access control policies has been de-
fined, a corresponding enforcement facility must be built. As we have shown in the

Chapter 4. Distributed Trust and Policy Management 59

case of JDK 1.2 (Publication V), implementing the access control policy is fairly easy.
Similarly, if there is no need to support explicit recommendation policies, i.e., if the
SPKI default policy is considered good enough for recommendation purposes, adding
support for TTPs is also relatively simple. On the other hand, if we want to make the
recommendation handling rules explicit, a more formal approach is probably needed.

A beginning for a formal approach of handling trust and authorization policies is
defined in Publication VII. In the presented approach, trust, trust expression, and pol-
icy rules are formalized as statements in a modal logic. The paper presents one such
logic as an axiom system. Giving formal semantics to the logic is beyond the scope of
this thesis. I want to note, however, that a possible worlds based semantic approach
would probably be most appropriate.

Once a suitable formal language has been defined, it should not be too hard to im-
plement it. However, being based on a formal system increases assurance on the sys-
tem, i.e., diminishes the probability that the system would contain inherent security
faults. Building such a system, however, is beyond the scope of this thesis.

4.4 Distributed Management

In the Sections 4.2 and 4.3 above, the forms of trust and security policy have been dis-
cussed. The remaining task to show their utility in practical systems is to indicate how
administrative tasks may be conducted within the defined architecture. Full definition
of such an administrative framework is beyond the scope of this thesis. However, in the
following a number of examples will be presented. First, the tasks associated with in-
stalling a new node are discussed. Next, in Sect. 4.4.2, initial security policies are cov-
ered. After that, in Sect. 4.4.3, it is discussed how new trusted parties should be taken
into use, and in Sect. 4.4.4 how certificates are revoked when needed. The view of the
whole section is administrative, and fairly superficial.

4.4.1 Installation of Nodes

Installation of new nodes was already briefly covered in Sect. 2.4.3 on page 31. When
installing a node, the node is given a network personality by generating a key pair to it,
and given initial trust relationships by creating a number of certificates with its private
key. Thus, the node’s public key is used as the issuer of these certificates. After that, the
private key may be destroyed. The corresponding public key is stored in stable, pro-
tected storage at the node. Furthermore, the node is given “identity” by creating one or
more certificates with the public key as the subject.

The new certificates, where the node is the issuer, define the directly trusted TTPs
and the recommendation and basic access control policies for the node. Basically, the
node itself needs only be aware of access control issues. That is, it does not need to
identify other nodes or agents, nor does it need to trust anyone else for naming or exe-
cution. This reflects the view that, in security terms, the purpose of the node is to pro-
tect the local resources. If there is anything else that needs to be autonomically
performed by the computer constituting the node, explicit agents must be created for

60 Nikander

such tasks. The trust and policy requirements of these agents, then, may be completely
different from those of the node.

Thus, in the simplest case, there might be only two certificates. One defines who is
the administrator of the node, and the second one is a self-certificate1 specifying the
recommendation policy for the node. The administrator certificate delegates the au-
thorization of all access rights to the administrator. The policy certificate might, in a
very simple case, just indicate that the default SPKI reduction rules are adhered to.

4.4.2 Definition of Initial Policies

In a system, there are security policies at several levels. Typically, each host has its
own security policy, and each organization unit has its own one. Furthermore, it looks
like these policies would form a hierarchical structure, where policies at the lower lev-
els refer to ones at upper levels in the hierarchy. In such an approach, it is essential to
very carefully design the initial, upward referring security policies for the lowest levels
of the hierarchy.

The node policies are at the bottom of the policy hierarchy. In a large system, there
is a large number of these policies. On the other hand, there typically are only a few
types of node level policies. Now, if one of the node policy types must be changed, the
administrative effort to make the new policy effective in all nodes might be prohibitive.
Still, if there is a security problem in a node level policy, or in a lower organization
level policy applicable to several organization units, the security consequences may be
devastating. Therefore, from the practical point of view, the definition of the initial pol-
icies seems to pose a bigger problem than the upper policies.

One possibility to circumvent this problem is to configure all nodes to trust a third
party for the initial policy configuration. The security of such an approach may be
strengthened by using tight threshold certificates. However, the security implications
of such an approach should be carefully evaluated.

4.4.3 Introducing new Trusted Parties

Introducing new trusted third parties within the architecture is straightforward. Since
the nodes are typically configured to almost blindly trust their administrators, the ad-
ministrators may, on their sole decision, decide to trust new third parties. The policy
rules, on the other hand, may be user to limit some administrator’s ability to do so.

The administrative procedures and authorities for TTP introduction must be care-
fully considered. A suitable separation-of-duties approach, with a well designed use of
threshold certificates, would probably work. In such a setting, no single person can in-
troduce trust on system wide new TTPs, but co-operation of several keyholders is
needed. Separating revocation from introduction may function as a third line of de-
fence.

1 A self-certificate is a certificate where both the issuer and the subject denote the same key.

Chapter 4. Distributed Trust and Policy Management 61

4.4.4 Revoking Trust

Within the architecture, trust and certificate revocation is thought to be performed ac-
cording to the SPKI specifications. Important long living certificates may have embed-
ded online verification instructions. In practice, revocation is possible both by revoking
certain certificates, or by redefining recommendation policy rules. As mentioned, revo-
cation may also be separated into a distinct task.

4.5 Summary

In this Chapter, I have outlined the forms of trust and policy needed to secure distrib-
uted agent systems. Possibly the most important distinction is the separation trust, pol-
icy and authorization. All of them are needed, and all of them can be expressed as
certificates, but their semantics are different. In a way, one could say that trust expres-
sions and delegations are the basic material with which the policy rules operate.

The contributions in this chapter include the following.
• The usage of the four forms of trust for representing and arguing about the security

of agent systems, or other systems supporting dynamically loadable code, is a new
one. On the other hand, there are even more fine grained trust typologies available
in the literature. Sect. 3 of Publication VII explains the reasons for having just
these four types and not more.

• The notion of the various (circular) trust relationships present in a agent system is a
new one. Sect. 5.2 of Publication VII gives a number of detailed examples of these
relationships.

• Expressing the trust relationships with SPKI certificates, as detailed in Table 1 on
page 54, has not been presented before. The idea, however, is discussed in various
forms in Publications V, VI, and VII.

• The division of security policy into trust, recommendation and authorization policy
is first presented in this thesis. The initial idea behind this is implicitly included in
Publication VII.

• The issues pertaining to the management of an SPKI based authorization and trust
management system are first introduced in this thesis.

62 Nikander

Chapter 5

Conclusions

Managing security in a large, multi-organizational network is a non-trivial problem. In
such a setting, the organizations and individuals have different relationships between
each other. These relationships are reflected to the relationships the computers and
other communications equipment have between each other and towards the users. If
the access enforcement functionality of the components within a global network is
considered as one access control system, the relationships define the configuration of
this system. Since the relationships are dynamic in nature, changing all the time, the
access permissions are also changing continuously. Due to these reasons, currently
commercially available solutions usually lead to heavy administrative burden or weak
security.

In this thesis, a new architecture for representing and managing authorization and del-
egation was described. The architecture is especially suitable for object-oriented agent
systems, but it can be equally well applied to any access capability supporting system.
Compared to other proposals available in the literature, the following features of the
architecture are especially noteworthy.

1. The usage of authorization certificates (SPKI certificates) is further developed,
and the certificates are applied to the management of JDK 1.2 object level access
control, and to the management of execution nodes for agent computing, among
other things.

2. The architecture includes an idea of a “protocol sandbox”, which allows applica-
tions to securely use application specific communication protocols at various
levels of the protocol stack. This allows, for example, an application to supply its
own version of session layer security or key negotiation protocol.

3. The overall architecture provides a more specific security architecture for agent
computing. This architecture allows the administrators to control where agents
are allowed to be run and what the agents are allowed to do, and the agents to
delegate rights from one agent to another. Within the specific architecture, a
clear distinction between various forms of trust and policy are made.

64 Nikander

Bibliography

1. Timo P. Aalto and Pekka Nikander, “A Modular, STREAMS Based IPSEC for So-
laris 2.x Systems”, In Proceedings of Nordic Workshop on Secure Computer Sys-
tems, Goethenburg, Sweden, November 1996.

2. Martín Abadi, Michael Burrows and Butler Lampson, “A Calculus for Access
Control in Distributed Systems,” ACM Transactions on Programming Languages
and Systems, Vol. 15, September 1993.

3. Martín Abadi and Roger Needham, Prudent engineering practice for crypto-
graphic protocols, Research report 125, Digital Equipment Corporation, Systems
Research Center, Jun. 1994.

4. Gul A. Agha, ACTORS: A Model of Concurrent Computation in Distributed Sys-
tems, MIT Press, Cambridge, MA, 1986.

5. Robert Allen and David Garlan, “A Formal Basis for Architectural Connection”,
ACM Transactions on Software Engineering and Methodology, 6(3), July 1997.

6. E. Amoroso, Fundamentals of Computer Security Technology, Prentice Hall, Eng-
lewood Cliffs, New Jersey, 1994.

7. Ross J. Anderson, “Programming Satan's Computer”, In Computer Science Today
— Recent Trends and Developments, LNCS 1000, pp. 426–440, Springer-Verlag,
1995.

8. Ross J. Andersson, "Why cryptosystems fail", Communications of the ACM,
37(11):32–40, November 1994.

9. Ken Arnold and James Gosling, The Java Programming Language, Addison-Wes-
ley, 1996.

10. Randal Atkinson, Security Architecture for the Internet Protocol, RFC1825, Inter-
net Engineering Task Force, August 1995.

11. Tuomas Aura, “Fast access control decisions from delegation certificate data-
bases”, In Proceedings of 3rd Australasian Conference on Information Security
and Privacy ACISP '98, Brisbane, Australia, July 1998, pp. 284-295, Lecture Notes
in Computer Science 1438, Springer Verlag 1998.

12. Tuomas Aura,“Comparison of Graph-Search Algorithms for Authorization Verifi-
cation in Delegation Networks”, In Proceedings of 2nd Nordic Workshop on Secure
Computer Systems, 1997.

13. Tuomas Aura, Pekka Nikander, Stateless connections, In Proceedings of Interna-
tional Conference on Information and Communications Security ICICS'97, Bei-
jing, November 1997, pp. 87-97, Lecture Notes in Computer Science 1334,
Springer Verlag 1997.

14. Tuomas Aura, On the Structure of Delegation Networks, Licenciate’s thesis, Hel-
sinki University of Technology, 1997.

15. Tuomas Aura, Petteri Koponen, and Juhana Räsänen, “Delegation-based access
control for intelligent network services”, In Proceedings of the ECOOP Workshop
on Distributed Object Security, pp. 51-56, July 1998, Brussels, Belgium

16. Thomas Beth, Martin Borcherding, Birgit Klein, Valuation of Trust in Open Net-
works, University of Karlsruhe, 1994.

66 Nikander

17. Kenneth Birman and Robert Cooper, “The ISIS Project: Real Experience with a
Fault Tolerant Programming System”, Operating Systems Review, pp. 103–107,
April 1991.

18. Matt Blaze, J. Feigenbaum, and J. Lacy, Decentralized Trust Management, In Pro-
ceedings of the I1996 EEE Computer Society Symposium on Research in Security
and Privacy, Oakland, CA, May 1996.

19. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal, Pattern-Oriented Software Architecture — A System of Patterns, Wiley, 1996.

20. Nicholas Carriero and David Gelernter, “Linda in context,” Communications of the
ACM, 32(4):444–458, April 1989.

21. David Chadwick and A. Young, “Merging and Extending the PGP and PEM Trust
Models - The ICE-TEL Trust Model”, IEEE Network Magazine, May/June, 1997.

22. Tom Dierks and Christopher Allen, The TLS Protocol, Internet Draft draft-
ietf-tls-protocol-06.txt, work in progress, Internet Engineering Task
Force, November 1998.

23. Whitfield Diffie, Martin E. Hellman, “Privacy and authentication: an introduction
to cryptography”, Proceedings of the IEEE, 67(3), 1979.

24. D. Dolev and A. Yao, “On the Security of Public-key Protocols”, IEEE transac-
tions on Information Theory, IT29(2):198–208, March 1983.

25. D. Eastlake 3rd and Olaf Gudmundsson, “Storing Certificates in the Domain Name
System”, Internet Draft, draft-ietf-dnssec-certs-01.txt, 1997.

26. D. Eastlake 3rd and C. Kaufman, “Domain Name System Security Extensions”,
Request For Comments 2065, 1997.

27. Carl Ellison, Establishing Identity Without Certification Authorities, In Proceed-
ings of the USENIX Security Symposium, 1996.

28. C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas and T. Ylönen,
Simple Public Key Certificate, Internet-Draft draft-ietf-spki-cert-
structure-05.txt, work in progress, Internet Engineering Task Force, March
1998.

29. C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas and T. Ylönen,
SPKI Certificate Theory, Internet-Draft draft-ietf-spki-cert-theory-
02.txt, work in progress, Internet Engineering Task Force, March 1998.

30. C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas and T. Ylönen,
SPKI Examples, Internet-Draft draft-ietf-spki-cert-examples-
01.txt, work in progress, Internet Engineering Task Force, March 1998.

31. A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification
and signature problems;” In Advances in Cryptology - Crypto '86, pages 186-194,
Springer-Verlag, 1987.

32. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns —
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

33. Benoit Garbinato and Rachid Guerraoui, “Using the Strategy Design Pattern to
Compose Reliable Distributed Protocols”, The Third Conference on Object-Ori-
ented Technologies and Systems (COOTS) Proceedings, Portland, Oregon, June
16-20, 1997, pp. 221–232.

Bibliography 67

34. M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson, “The Digital Distributed
System Security Architecture,” In Proceedings of 1989 National Computer Secu-
rity Conference.

35. Li Gong and R. Schemers, "Implementing Protection Domains in the Java™ De-
velopment Kit 1.2", In the Proceedings of the Network and Distributed System Se-
curity Symposium, Catamaran Resort Hotel San Diego, California, March 11-
13,Internet Society, Reston, VA, 1998.

36. Li Gong, Java™ Security Architecture (JDK 1.2), DRAFT DOCUMENT (Revi-
sion 0.8), http://java.sun.com/products/jdk/1.2/docs/guide/
security/spec/security-spec.doc.html, Sun Microsystems, March
1998.

37. Sabine Habert, Laurence Mosseri and Vadim Abrossimov, COOL: Kernel Support
for Object-Oriented Environments, Chorus systèmes Technical Report CS/TR-90-
50, March 1990.

38. D. Harkins and D. Carrel, The Internet Key Exchange (IKE), Internet Draft draft-
ietf-ipsec-isakmp-oakley-08.txt, work in progress, June 1998.

39. Nevin Heintze and J. D. Tygar, “A model for secure protocols and their composi-
tions”, In Proceedings of the 1994 IEEE Computer Society Symposium on Re-
search in Security and Privacy, pp. 2–13, IEEE Computer Society Press, May
1994.

40. Herman Hueni, Ralph Johnson, R. Angel, “A framework for network protocol soft-
ware”, Object Oriented Programming Systems, Languages and Applications Con-
ference Proceedings (OOPSLA’95), ACM Press 1995.

41. N. C. Hutchinson and L. L. Peterson, “The x–Kernel: An architecture for imple-
menting network protocols.” IEEE Transactions on Software Engineering,
17(1):64–76, January 1991.

42. Internet Engineering Task Force, IP Security Protocol (IPSEC), http://
www.ietf.org/html.charters/ipsec-charter.html, November
1998.

43. Audun Jøsang, A Model for Trust in Security Systems, in Proceedings of the Sec-
ond Nordic Workshop on Secure Computer Systems, 1997.

44. Arto Karila, Portable Protocol Development and Run-Time Environment, Licenti-
ate’s Thesis, Helsinki University of Technology, 1986.

45. Arto Karila, Open Systems Security - an Architectural Framework, PhD Disserta-
tion, Helsinki University of Technology, 1991.

46. Stephen Kent and Randall Atkinson, IP Authentication Header, Internet Draft
draft-ietf-ipsec-auth-header-07.txt, work in progress, Internet Engineering Task
Force, July 1998.

47. Stephen Kent and Randall Atkinson, IP Encapsulating Security Payload (ESP), In-
ternet Draft draft-ietf-ipsec-esp-v2-06.txt, work in progress, Internet Engineering
Task Force, July 1998.

48. J. Kohl and C. Neuman, The Kerberos Network Authentication Service (V5),
RFC1510, Internet Engineering Task Force, 1993.

68 Nikander

49. Yki Kortesniemi, “Implementing Elliptic Curve Cryptosystem in Java 1.2”, In Pro-
ceedings of the 3rd Nordic Workshop on Secure Computer Systems, Trondheim,
Norway, November 1998.

50. C. Landau, Security in a Secure Capability-Based System, Operating Systems Re-
view, pp. 2-4, October 1989.

51. Butler Lampson, Martín Abadi, Michael Burrows, and E. Wobber, “Authentication
in Distributed Systems: Theory and Practice,” ACM Transactions of Computer Sys-
tems, pp. 265–310, 10(4), November 1992.

52. Ilari Lehti, and Pekka Nikander, “Certifying trust,” in Proceedings of the Practice
and Theory in Public Key Cryptography (PKC) ’98, Yokohama, Japan, Springer-
Verlag, February 1998.

53. J. Malka, E. Ojanperä, CVOPS User´s Guide, http://www.vtt.fi/tte/tte22/cvops/,
Technical Research Center of Finland, 1998.

54. S. W. O’Malley, L. L. Peterson, “A Dynamic Network Architecture”, ACM Trans-
actions on Computer Systems 10(2):110–143, May 1992.

55. Douglas Maughan, Mark Schertler, Mark Schneider and Jeff Turner, Internet Secu-
rity Association and Key Management Protocol (ISAKMP), Internet-Draft
draft-ietf-ipsec-isakmp-10.txt, work in progress, Internet Engineer-
ing Task Force, July 1998.

56. P. V. McMahon, “SESAME V2 Public Key and Authorisation Extensions to Ker-
beros”, in Proceedings of 1995 Network and Distributed Systems Security, Febru-
ary 16-17, 1995, San Diego, California, Internet Society 1995.

57. P. V. Mockapetris, “Domain names -- concepts and facilities”, Request For Com-
ments 1034, 1987.

58. N. Nagaratnam, Practical Delegation for Secure Distributed Object Environments,
PhD Dissertation, Computer Engineering, Syracuse University, April 1998.

59. B. C. Neumann, “Proxy-Based Authorization and Accounting for Distributed Sys-
tems,” in Proceedings of the 13th International Conference on Distributed Com-
puting Systems, Pittsburgh, PA, May 1993.

60. Pekka Nikander, Modelling of Cryptographic Protocols, Licenciate’s Thesis, Hel-
sinki University of Technology, December 1997.

61. Pekka Nikander and Arto Karila, “A Java Beans Component Architecture for Cryp-
tographic Protocols”, Proceedings of the 7th USENIX Security Symposium, San
Antonio, Texas, Usenix Association, 26-29 January 1998.

62. Pekka Nikander, Juha Pärssinen, Mikael Suokas, Esko Heimonen and Tero Hasu,
Jacob 3 source code (beta 2), http://www.tcm.hut.fi/Research/
TeSSA/Jacob/jacob3-beta2.tar.gz, Helsinki University of Technology,
September 1998.

63. Pekka Nikander and Lea Viljanen, “Storing and Retrieving Internet Certificates”,
Proceedings of the 3rd Nordic Workshop on Secure Computer Systems, Trondheim,
Norway, November 1998.

64. Pekka Nikander and Jonna Partanen, “Distributed Policy Management for JDK
1.2,” in Proceedings of the 1999 Network and Distributed Systems Security Sympo-
sium, 3-5 February 1999, San Diego, California, Internet Society, February 1999.

Bibliography 69

65. S. W. O’Malley, L. L. Peterson, “A Dynamic Network Architecture”, ACM Trans-
actions on Computer Systems 10(2):110–143, May 1992.

66. OMG, CORBAservices: Common Object Services Specification, Revised Edition,
Object Management Group, Farmingham, MA, March 1997.

67. H. Orman, S. O'Malley, R. Schroeppel, and D. Schwartz. “Paving the road to net-
work security, or the value of small cobblestones”. In Proceedings of the 1994 In-
ternet Society Symposium on Network and Distributed System Security, February
1994.

68. H. K. Orman, The OAKLEY Key Determination Protocol, Internet Draft draft-ietf-
ipsec-oakley-02.txt, work in progress, Internet Engineering Task Force, 1997.

69. Dave Otway and Owen Rees, “Efficient and timely mutual authentication”, Operat-
ing Systems Review, 21:1, pp. 8–10, 1987.

70. Jonna Partanen and Pekka Nikander, “Adding SPKI certificates to JDK 1.2", In
Proceedings of the 3rd Nordic Workshop on Secure Computer Systems, Trondheim,
Norway, November 1998.

71. Jonna Partanen, Using SPKI certificates for Access Control in Java 1.2, Master’s
Thesis, Helsinki University of Technology, August 1998.

72. Juha Pärssinen, Java Protocol Framework, Master’s Thesis, Helsinki University of
Technology, 1998.

73. Michael K. Reiter, Kenneth P. Birman and Robbert Van Renesse, A Security Archi-
tecture for Fault-Tolerant Systems, Cornell University Technical Report, TR93-
1354, June, 1993.

74. Robbert van Renesse, Kenneth P. Birman and Silvano Maffeis, “Horus, a flexible
Group Communication System,” Communications of the ACM, April 1996.

75. Robbert van Renesse, Kenneth P. Birman, Roy Friedman, Mark Hayden, and David
A. Karr, “A Framework for Protocol Composition in Horus”, In Proceedings of
Principles of Distributed Computing, August, 1995.

76. Ronald Rivest and Butler Lampson, “SDSI - A Simple Distributed Security Infra-
structure”, Proceedings of the 1996 Usenix Security Symposium, 1996.

77. Aviel D. Rubin and Peter Honeyman, Formal methods for the analysis of authenti-
cation protocols, Technical Report 93–7, Center for Information Technology Inte-
gration, Department of Electrical Engineering and Computer Science, University
of Michigan, 8. November 1993.

78. Bengt Sahlin, A Conduits+ and Java Implementation of Internet Protocol Security
and Internet Protocol, version 6, Master’s Thesis, Helsinki University of Technol-
ogy, 1997.

79. Bruce Schneir, Applied cryptography — protocols, algorithms and source code in
C, 2nd ed., 758 pages, Wiley, 1996.

80. Douglas C. Schmidt, “Using Design Patterns to Develop Reusable Object-Oriented
Communication Software”, Communications of the ACM, 38(10):65–74, October
1995.

81. Gustavus J. Simmons, “Cryptanalysis and protocol failures”, Communications of
the ACM, 37(11):56–65, November 1994.

70 Nikander

82. Sun Microsystems, Java-based Distributed Computing — RMI and IIOP in Java,
http://java.sun.com/pr/1997/june/statement970626-
01.html, June 1997.

83. Sun Microsystems, Java Remote Method Invocation Specification, http://
java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmi-
TOC.doc.html, Revision 1.50, JDK 1.2, October 1998.

84. Sun Microsystems, Java Development Kit 1.2 Release Candidate 2, http://
developer.java.sun.com/developer/earlyAccess/jdk12/in-
dex.html, Sun Microsystems, November 1998.

85. Sun Microsystems, Jini, http://java.sun.com/products/jini/, No-
vember 1998.

86. R. Thayer, N. Doraswamy and R. Glenn, IP Security Document Roadmap, Inter-
net-Draft draft-ietf-ipsec-doc-roadmap-01.txt, work in progress,
Internet Engineering Task Force, July 1997.

87. G. U. Wilhelm, S. Staamann, L. Buttyán, “On the Problem of Trust in Mobile
Agent Systems”, In Proceedings of the 1998 Network And Distributed System Se-
curity Symposium, March 11-13, 1998, San Diego, California, Internet Society,
1998.

88. Joanne Wu (Editor), Component-Based Software with Java Beans and ActiveX,
White paper, Sun Microsystems, http://www.sun.com/javastation/
whitepapers/javabeans/javabean_ch1.html, August 1997.

89. Raphael Yahalom, Birgit Klein, and Thomas Beth, “Trust Relationships in Secure
Systems - A Distributed Authentication Perspective”, In Proceedings of the IEEE
Conference on Research in Security and Privacy, 1993.

90. T. Ylönen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen, SSH Protocol Archi-
tecture, Internet-Draft draft-ietf-secsh-architecture-02.txt, work
in progress, Internet Engineering Task Force, August 1998.

91.Phil Zimmermann, The Official PGP Users Guide, MIT Press, 1995.
92. Amy Moormann Zremski and Jeannette M. Wing, “Specification Matching of Soft-

ware Components”, ACM Transactions on Software Engineering and Methodol-
ogy, 6(4), October 1997.

93. Jonathan M. Zweig and Ralph E. Johnson, “The Conduit: A Communication Ab-
straction in C++”, In Usenix C++ Conference Proceedings, San Francisco, CA,
April 9–11, 1990, pp. 191–204. The Usenix Association 1990.

94. ITU-T Recommendation X.509 (1997 E): Information Technology - Open Systems
Interconnection - The Directory: Authentication Framework, ITU-T, June 1997.

Publication I

This paper was originally published as Nikander and Karila, “A Java Beans Compo-
nent Architecture for Cryptographic Protocols,” in Proceedings of the 7th USENIX Se-
curity Symposium, San Antonio, Texas, Usenix Association, 26-29 January 1998.

A Java Beans Component Architecture
for Cryptographic Protocols

Pekka Nikander, Arto Karila

{pekka.nikander,arto.karila}@hut.fi
Helsinki University of Technology

Abstract

Abstract. Global networking has brought with it both new opportunities and
new security threats on a worldwide scale. Since the Internet is inherently inse-
cure, secure cryptographic protocols and a public key infrastructure are needed.
In this paper we introduce a protocol component architecture that is well suited
for the implementation of telecommunications protocols in general and crypto-
graphic protocols in particular. Our implementation framework is based on the
Java programming language and the Conduits+ protocol framework. It complies
with the Beans architecture and security API of JDK 1.1, allowing its users to
implement application specific secure protocols with relative ease. Furthermore,
these protocols can be safely downloaded through the Internet and run on virtu-
ally any workstation equipped with a Java capable browser1. The framework has
been implemented and tested in practice with a variety of cryptographic proto-
cols. The framework is relatively independent of the actual cryptosystems used
and relies on the Java 1.1 public key security API. Future work will include Java
1.2 support, and utilization of a graphical Beans editor to further ease the work
of the protocol composer.

1 Introduction

Designing and implementing telecommunications protocols has proven to be a very
demanding task. Building secure cryptographic protocols is even harder, because in
this case we have to be prepared for not just random errors in the network and end-sys-
tems but also premeditated attackers trying to take advantage of any weaknesses in the
design or implementation [3] [29]. During the last ten years or so, much attention has
been focused on the formal modelling and verification of cryptographic protocols [21]
1 In order to achieve real sandbox security, either JDK 1.2 or a specially tailored SecurityManager is

needed [12].

72 Nikander, Karila

[27]. However, the question how to apply these results to real design and implementa-
tion has received considerably less attention [17]. Recent results in the area of formal-
izing architecture level software composition and integrating it with object oriented
modelling and design seem to bridge one section of the gap between the formal theory
and everyday practice [2] [16] [31].

In this paper we present a practical architecture and an implementation framework
for building secure communications protocols that have the following properties:
• The architecture is made to the needs of today’s applications based on the global

infrastructure that is already forming (Internet, WWW, Java).
• The implementation framework allows us to construct systems out of our own

trusted protocol components and others taken from the network. These systems can
be securely executed in a “protocol sand box”, where they, for example, cannot
leak encryption keys or other secret information.

• Together they allow us to relatively easily implement application specific secure
protocols, securely download the protocol software over the Internet and use it
without any prior arrangements or software installation.
We have implemented the main parts of the architecture as an object oriented pro-

tocol component framework called Java Conduits. It was built using JDK 1.1 and is
currently being tested on the Solaris operating system. The framework itself is pure
Java and runs on any Java 1.1 compatible virtual machine.

Our goal is to provide a sound practical basis for protocol development, with the
desire to create higher level design patterns and architectural styles that could be for-
mally combined with protocol modelling and analysis. The current focus lies in utiliz-
ing the “gang of four” object level design patterns [10] to create a highly stylistic way
of building both cryptographic and non-cryptographic communications protocols. Our
implementation experience has shown that this approach leads to a number of higher
level design patterns, i.e., protocol patterns, that describe how protocols should be
composed from lower level components in general.

The rest of this paper is organized as follows. In section 2 we introduce our archi-
tecture and its relationship to existing work. In section 3 we present the component
framework developed. Sect. 4 dwells into implementational details and experience
gained while building prototypes of real protocols. At the end we present a summary
(section 5) and outline some future work (section 6).

2 The architecture

In our view, the world to which we are building applications consists of the following
main components: the Internet, the World Wide Web (WWW), the Java programming
language and execution environment and an initial security context (based on prede-
fined trusted keys). Our architecture is based on these four corner stones. In addition,
there are three more components that are not indispensable but “nice-to-have”: a Pub-
lic Key Infrastructure (PKI), the Internet Security Association and Key Management
Protocol (ISAKMP) and the Internet Protocol Security Architecture (IPSEC).

A Java Beans Component Architecture for Cryptographic Protocols 73

2.1 The essential components

The world-wide Internet has established itself as the dominating network architecture
that even the public switched telephone network has to adapt to. The new Internet Pro-
tocol IPv6 will solve the main problem of address space, and together with new tech-
niques, such as resource reservation and IP switching, provide support for new types of
applications, such as multimedia on a global scale. As we see it, the only significant
threats to the Internet are political, not technical or economic. We regard the Internet,
as well as the less open extranet and intranet, as an inherently untrusted network.

The World Wide Web (WWW) has been the fastest growing and most widely used
application of the Internet. In fact, the WWW is an application platform which is in-
creasingly being used as an user interface to a multitude of applications. Hyper Text
Markup Language (HTML) forms and the Common Gateway Interface (CGI) make it
possible to create simple applications with the WWW as the user interface. More re-
cently, we have seen the proliferation of executable content.

The Java programming language extends the capabilities of the WWW by allowing
us to download executable programs, Java applets, with WWW pages. A Java virtual
machine has already become an essential part of a modern web browser and we see the
proliferation of Java as being inevitable. We are basing our work on Java and the
signed applets security feature of Java 1.1.

In order to communicate securely, we always need to start with an initial security
context. In our architecture, the minimal initial security context contains the trusted
keys of our web browser, which we can use to check the signatures of the downloaded
applets and other Java Beans.

2.2 The optional components

While our architecture does not depend on the existence of the following three compo-
nents, they are “nice to have”, as they will make the architecture more efficient and
scalable.

A public key infrastructure (PKI) allows us to associate a public key with a person,
company, service, authorization, or such with a reasonable assurance level. It also al-
lows us to prove the authenticity of a digital signature in a court of law. A global PKI is
a prerequisite for many new application areas for the Internet. Until recently, most of
the work in this area has focused on X.509 type certificates and a hierarchical tree of
certification authorities (CAs). While this approach works for some application areas,
e.g., in relations between governments, it is not suitable for others, since trust is inher-
ently intransitive. The Simple Public Key Infrastructure (SPKI) [9] appears to us as a
more widely applicable PKI.

The Internet Security Association and Key Management Protocol (ISAKMP) [19]
provides us with a standard way of securely generating keys and setting up security
contexts. We expect a number of application-specific security protocols to be built on
top of ISAKMP. The authentication information needed for securing a connection can
easily be augmented with capabilities such as authorization information. This allows

74 Nikander, Karila

future access control policies to be based on signed authority in addition to explicit
identity.

The Internet Protocol Security Architecture (IPSEC) [6] [30] is an extension to
IPv4 and an essential part of IPv6. It provides us with authenticated, integral and confi-
dential channels for transparent exchange of information between any two hosts, users
or programs on the Internet. Designed to be used everywhere, it will be implemented
on most host and workstation operating systems in the near future. The flexible authen-
tication schemes provided by ISAKMP make it possible to individually secure single
TCP connections and UDP packet streams.

IPSEC is not yet ubiquitously available, so, for now, its functionality can be substi-
tuted with an transport layer protocol such as SSL. The current JDK architecture does
not allow IPSEC to be implemented in Java without resorting to native interfaces that
allow access to the underlying protocol stack or media.

2.3 Implementational requirements

Future protocols will be drastically different from what most of us believed only a few
years ago. The role of security cannot be over-emphasized. Unfortunately, most of the
tools and frameworks developed so far either tend to ignore security or do not facilitate
integrating protocol security with that of the underlying operating system or the sup-
ported applications. This is unacceptable, since security should be designed and built
in to the protocols and the system as a whole from the very beginning.

The earlier protocol frameworks were typically based on a virtual operating envi-
ronment that was clearly separated from the underlying operating system. From the
modularization point of view this was good. However, this made it hard to build appli-
cation level programs that were able to use the protocols running within the frame-
work. Java Conduits is clearly different in this respect. For example, under the JavaOS,
the protocols and the applications all run within a single virtual environment, making
seamless integration straightforward.

The use of an object oriented implementation language allows us to extensively use
object-level design patterns. This makes the framework itself more generic and exten-
sible, and creates a highly stylistic way for writing actual protocol implementations.
With a suitable object oriented design tool, the outline for the classes needed to imple-
ment a new protocol can be created in minutes. The actual implementation code for the
protocol actions typically takes a little longer, depending on the complexity of the pro-
tocol.

Performance will always be an issue with communications protocols. Even though
processing power is constantly increasing, the new applications need ever-increasing
bandwidth and reasonable transfer delay. The new protocols require large transfer ca-
pacity, short and fixed delay, and lots of cryptography, among other things.

There are two facets to performance. First, the processing power available should
be used as efficiently as possible. The importance of this will gradually decrease as
processing power increases. Second, and more important, there should not be any de-
sign limitations which set a theoretical limit to the performance of the protocols, no
matter how much processing power we have. We want to allow as much parallelism as

A Java Beans Component Architecture for Cryptographic Protocols 75

possible and build the protocol implementations such that they can be efficiently di-
vided between a number of processors. Java, with its built-in threads and synchroniza-
tion, allows parallelism to be utilized with relative ease.

2.4 Related work

Our implementation framework is heavily based on the ideas first presented with the
x–Kernel [15] [18] [22] and the Conduits [32] and Conduits+ [14] frameworks. Some
of the ideas, especially the microprotocol approach, have also been used in other
frameworks, including Isis [8], Horus/Ensemble [24], and Bast [11]. However, Isis and
Horus concentrate more on building efficient and reliable multiparty protocols, while
Bast objects are larger than ours, yielding a white box oriented framework instead of a
black box one.

Compared to x–Kernel, Isis and Horus, our main novelty is in the use and recogni-
tion of design patterns at various levels. Furthermore, our object model is more fine-
grained. These properties come hand-in-hand — using design patterns tends to lead to
collections of smaller, highly regular objects.

The Horus/Ensemble security architecture is based on Kerberos and Fortezza. In-
stead, we base our architecture on the Internet IPSEC architecture. Kerberos does not
scale well and requires a lot of trusted functionality. Fortezza is developed mainly for
U.S. Government use, and not expected to be generally available. On the other hand,
we expect the IPSEC architecture to be ubiquitously available in the same way as the
Domain Name System (DNS) is today.

Most important, our framework is seamlessly integrated into the Java security
model. It utilizes both the language level security features (packages, visibility) and
the new Java 1.1 security functionality. A further difference is facilitated by the Java
run time model. Java supports code and object mobility. This allows application spe-
cific protocols to be loaded or used on demand.

Another novelty lies in the way we use the Java Beans architecture. This allows
modern component based software tools to be used to compose protocols. The intro-
duction of the Protocol class, or the metaconduit (see section 3.2), which allows com-
posed subgraphs to be used as components within larger protocols, is especially
important. The approach also allows the resulting protocol stacks to be combined with
applications.

3 The implementation framework

Java Conduits provides a fine grained object oriented protocol component framework.
The supported way of building protocols is very patterned, on several levels. The
framework itself utilizes heavily the “gang of four” object design patterns [10]. A
number of higher level patterns for constructing individual protocols are emerging. At
the highest level, we envision a number of architectural patterns to surface as users will
be able to construct protocol stacks that are matched to application needs.

Our goal is to allow application-specific secure protocols to be built from compo-
nents. The protocols themselves can be constructed from lower level components,

76 Nikander, Karila

called conduits. The protocol components, in turn, can be combined into complete pro-
tocol stacks. To achieve this, we have to solve a number of generic problems faced by
component based software.

3.1 Component based software engineering

Recently, attention has shifted from basic object oriented (OO) paradigms and object
oriented frameworks towards combining the benefits of OO design and programming
with the broad scale architectural viewpoints [2] [20]. Component based software ar-
chitectures and programming environments play a crucial role in this trend.

For a long time, it was assumed that object oriented programming alone would lead
to software reusability. However, experience has shown this assumption false [20]. On
the other hand, non object oriented software architectures, such as Microsoft OLE/
COM and IBM/Apple OpenDoc, have shown modest success in creating real markets
for reusable software components. Early industry response seems to indicate that the
Java Beans architecture may prove more successful.

The Java Beans component model we are using defines the basic facets of compo-
nent based software to be components, containers and scripting. That is, component
based software consists of component objects that can be combined into larger compo-
nents using containers. The interaction between the components can be controlled by
scripts that should be easy to produce, allowing less sophisticated programmers and
users to create them. This is achieved through runtime interface discovery, event han-
dling, object persistence, and application builder support. [33]

Java as a language provides natural support for run–time interface discovery. A bi-
nary Java class file contains explicit information about the names, visibility and signa-
tures of the class and its fields and methods. Originally provided to enable late loading
and to ease the fragile superclass problem, the runtime environment also offers this in-
formation for other purposes, e.g., to application builders. Java 1.1 provides a reflec-
tion API as a standard facility, allowing any authorized class to dynamically find out
and access the class information.

The Java Beans architecture introduced a new event model for Java 1.1. The model
consists of event listeners, event objects and event sources . The mechanism is very
lean, allowing basically any object to act as a event source, event listener, or even the
event itself. Most of this is achieved through class and method naming conventions,
with some extra support through manifestational interfaces.

Compared to other established component software architectures, i.e., OLE/COM,
CORBA and OpenDoc, the Java Beans architecture is relatively light-weight. Under
Java 1.1, nearly any object can be turned into a Java Bean. If an object’s class supports
serialization1 and the object does not contain any references to its environment, the ob-
ject can be considered to be a Bean without any changes at all. When Bean properties
are provided by naming access functions appropriately, event support added with a few

1 A Java class supports serialization by manifesting implementation of the java.lang.Serializ-
able interface. Most Java classes can do this. However, there are classes that are inherently impos-
sible to be serialized as such, e.g., java.lang.Thread.

A Java Beans Component Architecture for Cryptographic Protocols 77

lines of code, and any references to the enclosing environment marked transient, al-
most any class can be easily turned into a Bean.

On the other hand, the Java Beans architecture, as it is currently defined, does not
address some of the biggest problems of component based software architectures any
better than its competitors. These include the mixing and matching problem that faces
anyone trying to build larger units from the components. Basically, each component
supports a number of interfaces. However, the semantics of these interfaces are often
not immediately apparent, nor can they be formally specified within the component
framework. When the components are specifically designed to co-operate, this is not a
problem. However, if the user tries to combine components from different sources, the
interfaces must be adapted. This may, in turn, yield constructs that cannot stand but
collapse due to semantic mismatches.

In the protocol world, the mixing and matching problem is reflected in two distinct
ways. First, the data transfer semantics differ. Second, and more importantly, the infor-
mation content needed to address the intended recipient(s) of a message greatly differ.
In our framework, the recipient information is always implicitly available in the topol-
ogy of the conduit graph. Thus, the protocols have no need to explicitly address peers
once an appropriate conduit stream has been created.

It has been shown that secure cryptographic protocols, when combined, may result
in insecure protocols [13]. This problem cannot be easily addressed within the current
Java Beans architecture. We hope that future research, paying more attention to the for-
mal semantics, will alleviate this problem.

3.2 Basic Conduits architecture

The basic architecture of Java Conduits is based on
that of Conduits+ by Hueni, Johnson and Engel
[14]. The basic kinds of objects used are conduits
and messages. Messages represent information that
flows through a protocol stack. A conduit, on the
other hand, is a software component representing
some aspect of protocol functionality. To build an
actual protocol, a number of conduits are con-
nected into a graph. Protocols, moreover, are con-
duits themselves, and may be combined with other
protocols and basic conduits into larger protocol
graphs, representing protocol stacks.

There are five kinds of conduits: Session, Mux,
ConduitFactory, Adaptor and Protocol. Each con-
duit has two sides: side A and side B. A given con-
duit can connect to either side A or side B of
another conduit.

Sessions are the basic functional units of the
framework. A session implements the finite state
machine of a protocol, or some aspects of it. The session remembers the state of the

Protocol

Session

Mux

Factory

Adaptor

Fig. 1. The five types of conduits

78 Nikander, Karila

communication and obtains timers and storage for partial messages from the frame-
work. The session itself does not implement the behaviour of the protocol but delegates
this to a number of State objects, using the State design pattern.

The Mux conduits are used to multiplex and demultiplex protocol messages. In
practical terms, a Mux conduit has one side A that may be connected to any other con-
duit. The side B[0] of the Mux is typically connected to a ConduitFactory. In addition,
the Mux has a number of additional side B[i] conduits. Protocol messages arriving
from these conduits are multiplexed to the side A conduit, and vice versa.

If the Mux determines, during demultiplexing, that there is no suitable side B[i]
conduit to which a message may be routed, the Mux routes the message to the Con-
duitFactory attached to side B[0]. The ConduitFactory creates a new Session (or Proto-
col) that will be able to handle the message, installs the newly created Session to the
graph, and routes the message back to the Mux.

Adaptors are used to connect the conduit graph to the outside world. In conduit
terms, adapters have only side A. The other side, side B, or the communication with
the outside world, is beyond the scope of the framework, and can be implemented in
whatever means feasible. For example, a conduit providing the TCP service may im-
plement the Java socket abstraction.

A protocol is a kind of
metaconduit that encap-
sulates several other con-
duits. A protocol has
sides A and B. However,
typically these are con-
duit connections that are
mainly used for the deliv-
ery of various kinds of in-
terprotocol control
messages. Typically the
actual data connections
directly stretch between
the conduits that are lo-
cated inside some proto-
cols. In practice, a
protocol is little more
than a conduit that hap-
pens to delegate its sides,
i.e., side A and side B in-
dependently, to other con-
duits. The only complexity lies in the building of the initial conduit graph for the
protocol. Once the graph is built, it is easy to frame it within a protocol object. The
protocol object can then be used as a component in building other, more complex pro-
tocols or protocol stacks.

Fig. 2. Aa example of a simple partial protocol graph

Session

Mux

Factory

Adaptor

Session Session

Protocol

A Java Beans Component Architecture for Cryptographic Protocols 79

3.3 Using Java to build protocol components

Java 1.1 provides a number of features that facilitate component based software devel-
opment. These include inner classes, Bean properties, serialization and Bean events.
These all play an important role in making development of protocols easier.

A basic protocol component, i.e., a conduit, has (at least) two sides. Whenever a
message arrives at the protocol component, it is important to know where the message
came from, in order to be able to act on the message. On the other hand, it is desirable
to view each conduit as a separate unit, having its own identity. Java inner classes and
the way the Java Beans architecture uses them, provides a neat solution for this prob-
lem.

Each conduit is consid-
ered a single Java Bean. In-
ternally the component is
constructed from a number
of objects: the conduit itself,
sides A and B, and typically
also some other objects de-
pending on the exact sort of
the conduit. The Conduit
class itself is a normal Java
class, specialized as a Ses-
sion, Mux, ConduitFactory
or such. On the other hand,
the side objects, A and B,
are implemented as inner
classes of the Conduit class.
In most respects, these ob-
jects are invisible to the rest
of the object world. They
implement the Conduit in-
terface, delegating most of
the methods back to the con-
duit itself. However, their
being separate objects
makes the source of a message arriving at a conduit immediately apparent.

Since the conduits are attached to each other, when constructing the conduit graph,
the internal side objects are actually passed to the neighbour conduits. Now, when the
neighbouring conduit passes a message, it will arrive at the receiving conduit through
some side object. This side object uniquely identifies the source of the message,
thereby allowing the receiving conduit to act appropriately.

The Java Bean properties play a different role. Using the properties, the individual
conduits may publish run time attributes that a protocol designer may use through a
visual design tool. For example, the Session conduits allow the designer to set the ini-

Fig. 3. Structure of conduits messages

Class

Legend:

extends
refers to

java.util.EventObject

Message
message
carrier

Messenger message
interpreterBuffer

message
data

80 Nikander, Karila

tial state as well as the set of allowed states using the properties. Similarly, the Acces-
sor object connected to a Mux may be set up using the Beans property mechanism.

Java 1.1 provides a generic event facility that allows Beans and other objects to
broadcast and receive event notifications. In addition to the few predefined notification
types, the Beans are assumed to define new ones. Given this, it is natural to map con-
duit messages onto Java events.

In Java Conduits, a protocol message is composed of three objects: a message car-
rier, a message body and a message interpreter. The message carrier extends the
java.util.EventObject class, thereby declaring itself as a Bean event. The car-
rier includes references to the message body that holds the actual message data, and a
message interpreter that provides protocol specific interpretation of the message data.
The message interpreters are called Messengers, and they act in the role of a command
according to the Command pattern [10].

Messages are passed from one conduit to the next one using the Java event delivery
mechanism. The next conduit registers its internal side object as an event listener that
will receive events generated by the previous conduit.

The actual message delivery is synchronous. In practice, the sending conduit indi-
rectly invokes the receiving conduit’s accept method, passing the message carrier as a
parameter. The receiving conduit, depending on its type and purpose, may apply the
Messenger to the current protocol state, yielding an action in the protocol state ma-
chine, replace the Messenger with another one, giving new interpretation to the mes-
sage, or act on the message independent on the Messenger. Typically, the same event
object is used to pass the message from conduit to conduit until the message is delayed
or consumed.

Java Conduits use the provider / engine mechanism offered by the JDK 1.1 security
API. Since neither the encryption / decryption functionality nor its interface specifica-
tion was not available outside the United States, we created a new engine class
java.security.Cipher along the model of java.security.Signature
and java.security.MessageDigest classes.

The protocols use the cryptographic algorithms directly through the security API.
The data carried in the message body is typically encrypted or decrypted in situ. When
the data is encrypted or decrypted, the associated Messenger is typically replaced to
yield new interpretation for the data.

3.4 Usage of language level security features

Java offers a number of language level security features that allow a class library or a
framework to be secure and open at the same time. The basic facility behind these fea-
tures is the ability to control access to fields and methods. In Java, classes are organ-
ized in packages. A well designed package has a carefully crafted external interface
that controls access to both black box and white box classes. Certain behaviour may be
enforced by making classes or methods final and by restricting access to the internal
features used to implement the behaviour. Furthermore, modern virtual machines di-
vide classes into security domains based on their classloader. There are numerous ex-
amples of these approaches in the JDK itself. For example, the java.net.Socket

A Java Beans Component Architecture for Cryptographic Protocols 81

class uses a separate implementation object, belonging to a subclass of the
java.net.SocketImpl class, to provide network services. The internal Sock-
etImpl object is not available to the users or subclasses1 of the socket class. The
java.net.SocketImpl class, on the other hand, implements all functionality as
protected methods, thereby allowing it to be used as a white box.

The Java Conduits framework adheres to these conventions. The framework itself
is constructed as a single package. The classes that are meant to be used as black boxes
are made final. White box classes are usually abstract. Their behaviour is care-
fully divided into user extensible features and fixed functionality.

The combination of black box classes, fixed behaviour, and internal, invisible
classes allows us to give the protocol implementor just the right amount of freedom.
New protocols can be created, but the framework conventions cannot be broken. None-
theless, liberal usage of explicit interfaces makes it possible to extend the framework,
but again without the possibility of breaking the conventions used by the classes pro-
vided by the framework itself.

All this makes it possible to create trusted protocols, and to combine them with un-
trusted, application specific ones. This is especially important with cryptographic pro-
tocols. The cryptographic protocols need access to the user’s cryptographic keys. Even
though the actual encryption and other cryptographic functions are performed by a
separate cryptoengine, the current Java 1.1 security API does not enforce key privacy.
However, it is easy to create, e.g., an encryption / decryption microprotocol that en-
crypts or decrypts a buffer, but does not allow access to the keys themselves.

3.5 Object level design patterns used in the resulting architecture

The Conduits architecture is
centred around the idea of a
conduit graph that is tra-
versed by protocol mes-
sages. The graph is the local
representation of a protocol
stack. The messages repre-
sent the protocol messages
exchanged by the peer pro-
tocol implementations. This
aspect of a graph and graph
traversal is abstracted into a
Visitor pattern [10]. The pat-
tern is generalized in order
to allow also other kinds of
visitors to be introduced on demand. These may be needed, e.g., to pass interprotocol
control messages or to visualize protocol behaviour.

1 Actually, other classes within the same package can access the SocketImpl object. Classes outside the
package can’t.

Fig. 4. A visitor arrives at a Conduit

aConduitSide aConduit aVisitor

accept(aVisitor)

acceptFrom(
aVisitor,
aConduitSide)

at(aSpecificConduit)

82 Nikander, Karila

In this pattern, a protocol message or other visitor arrives as a Java event at an inter-
nal side object of a conduit. The side object passes the message to the conduit itself.
The conduit invokes the appropriate overloaded at(ConduitType) method of the mes-
sage carrier, allowing the message decide how to act, according to the Visitor pattern.

As a more complex example of the usage of the gang of four patterns, let us con-
sider the situation when a protocol message arrives at a Session that performs crypto-
graphic functions (see Figure 5). The execution proceeds in steps, utilizing a number
of design patterns.
1. The message arrives at the Session according to the Visitor pattern.

The message is passed to the Session’s internal side as a Java Beans visitor event.
The event is passed to the session, which invokes the message’s at(Session) method.
Since the visitor in hand is a message, it calls back the Session’s apply(Message)
method.

2. The Session gets the message, and applies it according to the command pattern.
The Session uses the Messenger command object, and asks it to be applied on itself,
using the current state and message.

3. The Messenger command object acts on the session, state and message (second half
of the Command pattern).
This behaviour is internal to the protocol. Typically all states of the protocol imple-
ment an interface that contains a number of command methods. The Messenger calls
one of these, depending on the message’s type. In the example situation where a
message arrives and should be sent encrypted, the Messenger invokes the protocol
state’s encrypt(Session, Message) method.

4. The current State object acts on the Session and Message.

Fig. 5. A Message arrives at a cryptographic Session

aSessionSide aSession aMessage

accept(aVisitor)

acceptFrom(
aVisitor,
aConduitSide)

at(aSession)

apply(aMessage, aMessenger)

aMessenger

apply(aState, aSession, aMessage)

aState

encrypt(aSession, aMessage)

getByteArrayReference()

aCipher

getKeyReference()

encrypt(...)

Step 1.

Step 2.

Step 3.

Step 4.

A Java Beans Component Architecture for Cryptographic Protocols 83

This, again, depends on the protocol. The State may replace the current state at the
Session with another State (according to the State pattern), modify the actual data
carried by the message, or replace its interpretation by changing the Messenger as-
sociated with the Message. In our example, the State encrypts the message data. A
reference to a Cipher has been obtained during the State initialization through the
Java 1.1 security API. The key objects are stored at the Session conduit.

As examples of other kinds of usage of patterns, the following are worth mentioning:
• The actual encoding/decoding aspect of the Muxes is delegated to separate Acces-

sor objects using the Strategy pattern.
• The State objects are designed to be shared between the Sessions of the same pro-

tocol. In order to encourage this behaviour, the base State class implements the ba-
sic details needed for the Singleton pattern.

• The ConduitFactories are used as black boxes in the framework. Each ConduitFac-
tory has a reference to a Conduit that acts as its prototype, following the Prototype
pattern.

• Obviously, the Adaptor conduits act according to the Adapter pattern with respect
to the world outside the conduits framework.

• With respect to the Visitor pattern, the Protocol conduits act according to the Proxy
pattern, delegating actual processing to the conduits encapsulated into the protocol.

3.6 Protocol design patterns

Our experience with the framework has shown that protocol independent implementa-
tion patterns do arise. That is, there seems to be certain common ways how the differ-
ent conduits are connected to each other when building protocols. Here we show how
the use of encryption tends to be reflected as a conduit topology pattern.

A cryptographic protocol handles pieces
of information that are binary encoded and
cryptographically protected. Usually the
whole message is signed1, encrypted, or
both. This yields a highly regular conduits
structure where three sessions are stacked on
top of each other (see Figure 6). The upper-
most session (FSM) receives messages from
upper protocols or applications, and main-
tains the protocol state machine, if any. Di-
rectly below lies a session that takes care of
the binary encoding and decoding of the
message data (Coder). The lowermost ses-
sion within the protocol takes care of the ac-
tual cryptographic functions (Cipher).

According to the conduits architecture,
the actual cryptographic keys are stored into the cryptosession. Thus, the information

1 Signed or otherwise integrity protected

Fig. 6. Cryptographic protocol pattern

Cipher

Crypto
Protocol

Coder

FSM

84 Nikander, Karila

about what key to use is implicitly available from the conduit graph topology. How-
ever, this is not always feasible.

In the case of IPSEC AH protocol we resorted to storing the keying information as
additional, out of band information within the outgoing protocol message. Similarly,
the incoming messages are decorated with information about the security associations
that actually were used to decrypt or the check the message integrity. These are then
checked further up in the protocol stack to ensure security policy.

4 Implementation experiences

Our current prototype is the third one in a series. The first working prototype was suc-
cessfully implemented in December 1996. The second one was a complete rewrite,
based on the experiences with the first one. The main difference between the second
and third prototypes is Java Beans support. The only major change needed was to the
message delivery mechanism, due to the added Java event support. Other than that,
compliance with the Beans architecture required method naming changes and other
minor changes needed to properly support serialization. The protocols themselves
were transferred from the second framework prototype to the third with almost no
changes. Our next step is to further enhance Java Beans support to facilitate visual pro-
tocol composition.

4.1 The framework

The elements used to build protocols are relatively small. This leads to a very piece-
meal protocol development. According to our experience, once one is familiar with the
model, the actual implementation of protocols is usually very straightforward and fast.

The small component approach seems to be very well suited for building micropro-
tocols. For example, it is easy to represent the individual IPv6 header handlers as sepa-
rate protocols, and create runtime structures to mix and match them appropriately.

Event delivery and scheduling. The basic Java event delivery mechanism is synchro-
nous. The event source invokes, directly or indirectly, an appropriate method at every
registered listener. However, nothing in the architecture mandates this approach. Since
events are represented as objects, their delivery may well be queued and delayed. In
fact, the listeners themselves may easily create an event queue if desired.

Our current goal is to achieve better performance on a uniprocessor implementa-
tion. Earlier experience with a UNIX STREAMS based IPSEC prototype [1] has shown
that scheduling should be avoided on a uniprocessor environment. Therefore we have
tried to minimize the number of threads and synchronized methods in the current pro-
totype. This may change later when multiprocessing is taken care of.

A Java Beans Component Architecture for Cryptographic Protocols 85

The framework has one
main thread that takes care of
carrying a message through the
conduit graph. It handles one
message a time, passing it from
conduit to conduit. If a conduit
cannot pass the message, e.g.,
because it is a partial message
and the other fragments are
needed, the message stops at
the conduit. The carrier thread
then handles the next message
in queue, or waits if there are
no messages currently waiting
in a message/event queue.

A separate thread takes care
of timers. Timer events are de-
livered to the conduits by the
same thread as the message and
other visitor events. A conduit
may register a timer event to be
scheduled at a particular time,
after some delay, or periodi-
cally. Whenever the timer ex-
pires, a timer event is added to
the message/event queue. Af-
ter the carrier thread has han-
dled a message, it takes the
next message or timer event
from the queue, and delivers it.

The adapters protect the
conduits framework from other
threads. The adapter methods
are fully synchronized, and
may be called by whatever
threads. When a message ar-
rives at an adapter from out-
side, the adapter wraps the
message data into a conduit
message carrier, attaches some
interpretation to it, and places
the message into the message/
event queue. The carrier thread
will select it at first appropriate
opportunity. Fig. 7. Host IPSEC conduit graph (simplified)

IP

Chksum

Fragment

MediaMux

Ethernet

Options

Forward

PPP

Chksum

PolicyMux

ProtoMux

AH

ESP

IPSEC

ProtoMux

Policy

86 Nikander, Karila

Since Java I/O is inherently synchronous, the adapters communicating with the
world external to the virtual machine typically contain their own internal threads. This
allows the conduit processing to continue independent on delays on external I/O.

Memory management. The framework discourages explicit object creation and gar-
bage collection. Typically, the constructors are either private (for black box classes) or
protected (for white box classes). Most classes provide a public static instantiation
method. This allows objects to be recycled by the class rather than being created and
garbage collected for every occasion.

Footprint. The current frame-
work prototype consists of 43
public classes, or about 3800
lines of Java source code (in-
cluding comments). Only about
760 lines were written by hand;
the rest were generated using an
UML based case tool.

Of the 43 public classes, 23
are actual user visible classes.
The rest are various exceptions
(5), housekeeping classes (10) or
other classes (5). The relation-
ships of the user visible classes
are displayed as an UML class
diagram in Appendix A.

4.2 IPSEC

Our IPSEC prototype is de-
signed to work with both IPv4
and IPv6. So far, it has been
tested only with IPv6. It is de-
signed to be policy neutral, al-
lowing different kinds of
security policies to be enforced.

A basic IP protocol stack, in-
cluding IPSEC, is shown in
Figure 7. In this configuration,
the IPSEC is located as a sepa-
rate protocol above IP. IP func-
tions as usual, forwarding
packets and fragments and passing upwards only the packets that are addressed to the
current host. IPSEC receives complete packets from IP. The example configuration ini-
tially accepts packets that have either no protection, or are protected with AH, or with
AH and ESP. It does not accept packets that are protected with ESP only or with e.g.

Fig. 8. Security GW IPSEC conduit graph (simplified)

Chksum

MediaMux

Ethernet

Options

Forward

PPP

Chksum

IPSEC

Fragment

Options

Fragment

Options

IPSEC

IP

A Java Beans Component Architecture for Cryptographic Protocols 87

double AH. This is one expression of policy. Furthermore, the conduit graph effec-
tively prevents denial of service attacks with multiply encrypted packets.

During input processing, the AH and ESP protocols decorate the packet with infor-
mation about performed decryptions and checks. Later, at the policy session, this infor-
mation is checked to ensure that the packet was protected according to the desired
policy. We have also experimented with an alternative configuration, where the policy
is checked immediately after every successful decryption or AH check. This seems to
be more efficient, since faulty packets are typically dropped earlier. However, the re-
sulting conduits graph is considerably more complex.

During output processing, the policy session and the policy mux together select the
right level of protection for the outgoing packet. This information may be derived from
the TCP/UDP port information or from tags attached to the message earlier in the pro-
tocol stack.

A different IPSEC configuration, suitable for a security gateway, is shown in
Figure 8. In this case, instead of being on top of IP, IPSEC is integrated as a module
within the IP protocol. Since the desired functionality is that of a security gateway, we
want to run all packets through IPSEC and filter them appropriately. Since IPSEC is al-
ways applied to complete packets, all incoming packets must be reassembled. This is
performed by the Fragment session, which takes care of fragmentation and reassembly.

Once a packet has trav-
elled through IPSEC, pass-
ing the policy decisions is
applies, it is routed nor-
mally. Packets destined to
the local host are passed to
the upper layers. Forwarded
packets are run again
through IPSEC, and a sepa-
rate outgoing policy is ap-
plied to them. In this case, it
is easier to base the outgoing
policy on packet inspection
rather than on separate tag-
ging.

Our current IPSEC pro-
totype runs on top of our
IPv6 implementation, also
built with Java Conduits, on
Solaris. We use a separate
Ethernet adapter, which is
implemented as a native
class on top of the Solaris
DLPI interface. We have not
yet applied JIT compiler
technology, and therefore the current performance results are modest.

Fig. 9. ISAKMP conduit graph (simplified)

ISAKMP

UDP

CookieMux

ISAKMP ƒ

SpiMux

AH/ESP ƒ

PolicyMux

AH ESP

88 Nikander, Karila

4.3 ISAKMP

The structure of our ISAKMP implementation is shown in Figure 9. The implementa-
tion is attached to the Java UDP implementation through a UDP adapter. Alternatively,
it could be attached directly on top of our own UDP implementation. On top of the
ISAKMP implementation lies a security policy manager, which forms the “political
layer” of our protocol stack.

ISAKMP packets received through the UDP adaptor are directed either to an
ISAKMP factory or to some established ISAKMP session, depending on the ISAKMP
cookies. If the packet initiates a new ISAKMP association (i.e., is the first main mode
packet), the ISAKMP factory consults the upper layer to determine whether the associ-
ation should be established. The same applies for proposals for new AH or ESP associ-
ations. If a new AH or ESP association is accepted by the policy, the AH/ESP factory
creates a new AH or ESP protocol instance. The protocol instance takes care of run-
ning the ISAKMP quick mode to create the new association.

When a new AH or ESP association has been established, the negotiated parame-
ters are passed to the policy layer. The policy manager takes care of creating the new
association to the IP stack, either through PF_KEY interface (if a non-conduits IPSEC
is used), or by modifying the IP/IPSEC conduit graph appropriately.

The main novelty in our approach is the separation of the ISAKMP daemon and the
policy manager. Currently the policy manager is implemented as a separate conduits
protocol. However, it would be possible to implement the policy manager outside the
conduits framework as well, and use Java events to communicate between the conduit
world and the policy manager.

The current implementation is slightly out of date, due to changes recently made to
the ISAKMP and Oakley Internet drafts [19].

4.4 Non-cryptographic protocols

In addition to the cryptographic protocols, we have implemented partial but functional
prototypes of the IPv4, IPv6, ARP, ICMP (IPv4 version only), UDP and TCP proto-
cols. Integration of these, along with the IPSEC implementation, into a complete TCP/
IP protocol stack is under way.

4.5 Availability

The current framework prototype is available at http://www.tcm.hut.fi/
~pnr/jacob/. The actual protocol prototypes and the protocol sandbox prototype
are available directly from the authors. An integrated, JDK 1.2 based release is ex-
pected to be published in late May or early June.

5 Summary

We define an architecture and an object oriented implementation framework for cryp-
tographic protocols. The architecture is based on the Internet, WWW, Java and an ini-

A Java Beans Component Architecture for Cryptographic Protocols 89

tial security context, and optionally augmented with a PKI and the ISAKMP and
IPSEC protocols. The implementation framework is based on a fully object oriented
language, so it benefits greatly from design patterns, making it easy to use and extensi-
ble at the same time. Furthermore, the use of object level design patterns leads to a
highly stylistic way of implementing protocols, thereby allowing creation of new,
higher level protocol patterns.

The implementation framework was developed with JDK 1.1 using the Java Beans
and the security API of Java 1.1. In the framework, protocols are built from lower level
component called conduits. The protocols are conduits themselves, allowing incremen-
tal building of higher level protocols from lower level ones.

The Java execution environment allows the resulting protocols to be seamlessly in-
tegrated into the operating system and applications alike. This is especially important
for security protocols, since this allows the security systems at various levels to be inte-
grated. We have taken advantage of the Java language level security features (pack-
ages, visibility, classloaders). The framework is implemented as a single Java package.
Special attention has been paid to dividing the functionality into fixed and user cus-
tomizable feature sets.

So far we have implemented functional prototypes of IPv4, IPv6, ARP, ICMP,
UDP, TCP, IPSEC and ISAKMP protocols. We expect to implement prototypes of fur-
ther protocols in the near future.

6 Future work

There are a number of future projects that we are planning to start. Due to our limited
resources we have not been able to work on all the fronts simultaneously.

Even though a PKI is not an absolute prerequisite for using our architecture, it is in
practice essential for most wide-spread real-life applications. We are currently imple-
menting SPKI type certificates that will be integrated into our framework.

The use of security services and features is usually mandated by security policies.
The management of security policies in global networks has become a major chal-
lenge. We have recently started a project to design and implement an Internet Security
Policy Management Architecture (ISPMA) based on trusted Security Policy Managers
(SPM). When a user contacts a service, they need to be authorized. Authorization may
be based on the identity or credentials of the user. Having obtained the necessary infor-
mation from the user, the server asks the SPM if the user can be granted the kind of ac-
cess that they have requested. Naturally all communications between the parties need
to be secured.

A graphical Java Beans editor could make the work of the implementor much more
efficient than it currently is. This would also make it easier to train new, on the average
only average, programmers to develop secure applications. In a graphical editor, the
building blocks of our architecture would show as graphical objects that can be freely
combined into a multitude of applications. The amount of programming work in devel-
oping such an editor is quite large and there certainly are lots of ongoing projects in the

90 Nikander, Karila

area of graphical Java Beans editors. Our plan is to take an existing editor and integrate
it into our environment.

So far our work has been focused on the design and implementation of secure ap-
plication specific protocols. Our long term goal is to create an integrated development
environment for entire secure applications. This environment would also include tools
for creating the user interface and database parts of the applications.

References

1. Timo P. Aalto and Pekka Nikander, “A Modular, STREAMS Based IPSEC for So-
laris 2.x Systems”, In Proceedings of Nordic Workshop on Secure Computer Sys-
tems, Goethenburg, Sweden, November 1996.

2. Robert Allen and David Garlan, “A Formal Basis for Architectural Connection”,
ACM Transactions on Software Engineering and Methodology, 6(3), July 1997.

3. Ross J. Anderson, “Programming Satan's Computer”, In Computer Science Today
— Recent Trends and Developments, LNCS 1000, pp. 426–440, Springer-Verlag,
1995.

4. Ross J. Anderson and Roger Needham, “Robustness principles for public key pro-
tocols”, Advances in Cryptology—CRYPTO’95 Proceedings, Springer-Verlag,
1995.

5. Ken Arnold and James Gosling, The Java Programming Language, Addison-Wes-
ley, 1996.

6. Randal Atkinson, Security Architecture for the Internet Protocol, RFC1825, Inter-
net Engineering Task Force, August 1995.

7. Kent Beck and Ralph Johnson, “Patterns Generate Architectures”, In Proceedings
of European Conference on Object-Oriented Programming (ECOOP'94), Bologna,
Italy, pp. 139–149, Springer-Verlag, 1994.

8. Kenneth Birman and Robert Cooper, “The ISIS Project: Real Experience with a
Fault Tolerant Programming System”, Operating Systems Review, pp. 103–107,
April 1991.

9. Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas and
Tatu Ylönen, Simple Public Key Certificate, Internet-Draft draft-ietf-spki-
cert-structure-02.txt, work in progress, Internet Engineering Task
Force, July 1997.

10. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns —
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

11. Benoit Garbinato, Rachid Guerraoui, “Using the Strategy Design Pattern to Com-
pose Reliable Distributed Protocols”, The Third Conference on Object-Oriented
Technologies and Systems (COOTS) Proceedings, Portland, Oregon, June 16-20,
1997, pp. 221–232.

12. Li Gong, Java Security Architecture (JDK1.2) DRAFT DOCUMENT (Version 0.7),
Sun Microsystems, October 1, 1997,
http://java.sun.com/products/jdk/1.2/docs/guide/secu-
rity/spec/security-spec.doc.htm

A Java Beans Component Architecture for Cryptographic Protocols 91

13. Nevin Heintze and J. D. Tygar, “A model for secure protocols and their composi-
tions”, In Proceedings of the 1994 IEEE Computer Society Symposium on Re-
search in Security and Privacy, pp. 2–13, IEEE Computer Society Press, May
1994.

14. Herman Hueni, Ralph Johnson, R. Angel, “A framework for network protocol soft-
ware”, Object Oriented Programming Systems, Languages and Applications Con-
ference Proceedings (OOPSLA’95), ACM Press 1995.

15. N. C. Hutchinson and L. L. Peterson, “The x–Kernel: An architecture for imple-
menting network protocols.” IEEE Transactions on Software Engineering,
17(1):64–76, January 1991.

16. Darrell Kindred, Jaennette M. Wing, “Fast, Automatic Checking of Cryptographic
Protocols”, In Proceedings of the Second USENIX Workshop on Electronic Com-
merce, November 18-21, 1996, Oakland, California.

17. Wenbo Mao and Colin A. Boyd, “Development of authentication protocols: some
misconceptions and a new approach”, Proceedings of IEEE Computer Security
Foundations Workshop VII, IEEE Computer Society Press, 1994, pp. 178-186.

18. S. W. O’Malley, L. L. Peterson, “A Dynamic Network Architecture”, ACM Trans-
actions on Computer Systems 10(2):110–143, May 1992.

19. Douglas Maughan, Mark Schertler, Mark Schneider and Jeff Turner, Internet Secu-
rity Association and Key Management Protocol (ISAKMP), Internet-Draft draft-
ietf-ipsec-isakmp-08.txt, work in progress, Internet Engineering Task
Force, July 1997.

20. Bertrand Meyer, “The Next Software Breakthrough”, Computer, 30(7): 113–114,
IEEE Computer Society, July 1997.

21. Pekka Nikander, Modelling of Cryptographic Protocols, Licenciate’s Thesis, Hel-
sinki University of Technology, December 1997.

22. H. Orman, S. O'Malley, R. Schroeppel, and D. Schwartz. “Paving the road to net-
work security, or the value of small cobblestones”. In Proceedings of the 1994 In-
ternet Society Symposium on Network and Distributed System Security, February
1994.

23. Michael K. Reiter, Kenneth P. Birman and Robbert Van Renesse, A Security Archi-
tecture for Fault-Tolerant Systems, Cornell University Technical Report, TR93-
1354, June, 1993.

24. Robbert van Renesse, Kenneth P. Birman and Silvano Maffeis, “Horus, a flexible
Group Communication System,” Communications of the ACM, April 1996.

25. Robbert van Renesse, Kenneth P. Birman, Roy Friedman, Mark Hayden, and David
A. Karr, “A Framework for Protocol Composition in Horus”, In Proceedings of
Principles of Distributed Computing, August, 1995.

26.Jorma Rinkinen, Java DES Speed Test,
http://www.tcm.hut.fi/~jrin/des/July 1997.

27. Aviel D. Rubin and Peter Honeyman, Formal methods for the analysis of authenti-
cation protocols, Technical Report 93–7, Center for Information Technology Inte-
gration, Department of Electrical Engineering and Computer Science, University
of Michigan, 8. November 1993.

92 Nikander, Karila

28. Douglas C. Schmidt, “Using Design Patterns to Develop Reusable Object-Oriented
Communication Software”, Communications of the ACM, 38(10):65–74, October
1995.

29. Gustavus J. Simmons, “Cryptanalysis and protocol failures”, Communications of
the ACM, 37(11):56–65, November 1994.

30. R. Thayer, N. Doraswamy and R. Glenn, IP Security Document Roadmap, Inter-
net-Draft draft-ietf-ipsec-doc-roadmap-01.txt, work in progress,
Internet Engineering Task Force, July 1997.

31. Amy Moormann Zremski and Jeannette M. Wing, “Specification Matching of Soft-
ware Components”, ACM Transactions on Software Engineering and Methodology,
6(4), October 1997.

32. Jonathan M. Zweig and Ralph E. Johnson, “The Conduit: A Communication Ab-
straction in C++”, In Usenix C++ Conference Proceedings, San Francisco, CA,
April 9–11, 1990, pp. 191–204. The Usenix Association 1990.

33. Joanne Wu (Editor), Component-Based Software with Java Beans and ActiveX,
White paper, Sun Microsystems, http://www.sun.com/javastation/
whitepapers/javabeans/javabean_ch1.html, August 1997.

A Java Beans Component Architecture for Cryptographic Protocols 93

7 UML class diagram

Accessor

Adaptor

BaseConduitConduit

ConduitFactory

Message

MessageBuffer

MessageTransporter

Messenger

Mux

OutOfBand

Protocol

Session

State

Transporter

Visitor

1..*

1

strategy

0..1

0..1
Sides

0..1

1 Inside A

0..1

1 Inside B

*

1prototype

Attachment

0..1

1
Transports

*

1

Interprets
1..*

1

Contains

1

Oob

*

1

interprets
«friend»

visits

applies

94 Nikander, Karila

Publication II

This paper is to appear as a Chapter in Mohammed Fayad, Douglas Schmidt and Ralph
Johnson (editors), Object Oriented Frameworks, Volume II, Wiley, 1999.

A Java Beans Framework for
Cryptographic Protocols

Pekka Nikander, Juha Pärssinen

pekka.nikander@hut.fi, juha.parssinen@vtt.fi
Helsinki University of Technology, Technical Research Centre of Finland

Abstract. In this chapter, we present a Java Beans compatible framework well
suited for the implementation of telecommunications protocols in general and
cryptographic protocols in particular. Our framework is based on experience
gained in building several earlier frameworks, including CVOPS, OVOPS, and
Conduits+. We have enhanced the structure of the framework, creating a more
patterned way of building protocols. In particular, we have added new structural
components and features that allow protocols to be built piece-wise, combining
smaller protocol blocks into larger ones. Furthermore, these resulting protocols
can be safely downloaded through the Internet and run on virtually any worksta-
tion equipped with a Java capable browser.

The framework has been implemented and tested in practice with a variety
of cryptographic protocols. The framework is relatively independent of the ac-
tual cryptosystems used and relies on the Java 1.1 public key security API. Fu-
ture work will include Java 1.2 support, and utilization of a graphical Beans
editor to further ease the work of the protocol composer.

1 Introduction

Designing and implementing telecommunications protocols has proven to be a very
demanding task. Building secure cryptographic protocols is even harder, because in
this case we have to be prepared for not just random errors in the network and end-sys-
tems but also premeditated attackers trying to take advantage of any weaknesses in the
design or implementation [5] [33]. During the last ten years or so, much attention has
been focused on the formal modeling and verification of cryptographic protocols (e.g.
[26]). However, the question how to apply these results to real design and implementa-
tion has received considerably less attention [2] [6] [22]. Recent results in the area of
formalizing architecture level software composition and integrating it with object ori-
ented modeling and design seem to bridge one section of the gap between the formal
theory and everyday practice [3] [36].

In our work, we are focusing on a framework for secure communications protocols
that have the following properties:

96 Nikander, Pärssinen

• The framework is made to the needs of today’s applications based on the global in-
frastructure that is already forming (Internet, WWW, Java).

• The framework allows us to construct systems out of our own trusted protocol com-
ponents and others taken from the network. These systems can be securely exe-
cuted in a “protocol sand box”, where they, for example, cannot leak encryption
keys or other secret information.

• Together they allow us to relatively easily implement application specific secure
protocols, securely download the protocol software over the Internet and use it
without any prior arrangements or software installation.

We have implemented the main parts of our vision as an object oriented protocol com-
ponent framework called Java Conduits. It was built using JDK 1.1 and is currently be-
ing tested on the Sun Solaris operating system. The framework itself is pure Java and
runs on any Java 1.1 compatible virtual machine.

Our goal is to provide a sound practical basis for protocol development, with the
desire to create higher level design patterns and architectural styles that could be for-
mally combined with protocol modeling and analysis. The current focus lies in utiliz-
ing the “gang of four” object level design patterns [12] to create a highly stylistic way
of building both cryptographic and non-cryptographic communications protocols. Our
implementation experience has shown that this approach leads to a number of higher
level design patterns, i.e., protocol patterns, that describe how protocols should be
composed from lower level components in general.

As a detail, we would like to allow application-specific secure protocols to be built
from components. The protocols themselves can be constructed from lower level com-
ponents, called conduits. The protocol components, in turn, can be combined into com-
plete protocol stacks.

Our framework encourages to build protocols from simple standard components.
Most of the components can be used as black boxes. On several occasions, the actual
protocol specific behavior is supplemented as separate strategy objects. Typically,
there is only one instance of each strategy object (according to the Singleton pattern).
In addition to other benefits, this allows the framework to strictly control object crea-
tion, making it possible to port the framework into environments where dynamic ob-
ject management and garbage collection are not possible due to performance or other
reasons.

The rest of this chapter is organized as follows. In Sections 1.1–1.3 we introduce
our assumptions behind our framework and its relationship to existing work. In Sect. 2
we describe the architecture and components of developed framework. Sect. 3 dwells
into implementation details and experience gained while building prototypes of real
protocols. In Sect. 4 we describe in detail the implementation of our Internet Security
(IPSEC) protocol prototype. At the end we present a summary (Sect. 5) and outline
some future work (Sect. 6).

A Java Beans Framework for Cryptographic Protocols 97

1.1 Underlying Assumptions

In our view, the world to which we are building applications consists of the following
main components: the Internet, the World Wide Web (WWW), the Java programming
language and execution environment and an initial security context (based on prede-
fined trusted keys). Our vision is based on these four corner stones.

The world-wide Internet has established itself as the dominating network architec-
ture that even the public switched telephone network has to adapt to. The new Internet
Protocol IPv6 will solve the main problem of address space, and together with new
techniques, such as resource reservation and IP switching, provide support for new
types of applications, such as multimedia on a global scale. As we see it, the only sig-
nificant threats to the Internet are political, not technical or economic. We regard the
Internet, as well as less open extranets and intranets, as an inherently untrustworthy
network.

The World Wide Web (WWW) has been the fastest growing and most widely used
application of the Internet. In fact, the WWW is an application platform which is in-
creasingly being used as an user interface to a multitude of applications. Hyper Text
Markup Language (HTML) forms and the Common Gateway Interface (CGI) make it
possible to create simple applications with the WWW as the user interface. More re-
cently, we have seen the proliferation of executable content.

The Java programming language extends the capabilities of the WWW by allowing
us to download executable programs, Java applets, with WWW pages. A Java virtual
machine has already become an essential part of a modern web browser and we see the
proliferation of Java as being inevitable. We are basing our work on Java and the
signed applets security feature of Java 1.1.

In order to communicate securely, we always need to start with an initial security
context. In our architecture, the minimal initial security context contains the trusted
keys of our web browser, which we can use to check the signatures of the downloaded
applets and other Java Beans.

1.2 Component Based Software Engineering

Attention has shifted from basic object oriented (OO) paradigms and object oriented
frameworks towards combining the benefits of OO design and programming with the
broad scale architectural viewpoints [3] [23]. Component based software architectures
and programming environments play a crucial role in this trend.

For a long time, it was assumed that object oriented programming alone would lead
to software reusability. However, experience has shown this assumption false [23]. On
the other hand, non object oriented software architectures, such as Microsoft OLE/
COM and IBM/Apple OpenDoc, have shown modest success in creating real markets
for reusable software components. Early industry response seems to indicate that the
Java Beans architecture may prove more successful.

There are a number of basic viewpoints to component based software. However,
common to all these is the desire to promote software reuse. Other desires include em-
powering end users, creating a global market for software components, and allowing

98 Nikander, Pärssinen

software testing, distribution and maintenance to be performed piecemeal, i.e. one
component at time. [35]

The Java Beans component model [15] we are using defines the basic facets of
component based software to be components, containers and scripting. That is, compo-
nent based software consists of component objects that can be combined into larger
components using containers. The interaction between the components can be control-
led by scripts that should be easy to produce, allowing less sophisticated programmers
and users to create them. This is achieved through runtime interface discovery, event
handling, object persistence, and application builder support. [35]

Java as a language provides natural support for run–time interface discovery. A bi-
nary Java class file contains explicit information about the names, visibility and signa-
tures of the class and its fields and methods. Originally provided to enable late loading
and to ease the fragile superclass problem, the runtime environment also offers this in-
formation for other purposes, e.g., to application builders. Java 1.1 provides a reflec-
tion API as a standard facility, allowing any authorized class to dynamically find out
and access the class information.

The Java Beans architecture introduced a new event model for Java 1.1. The model
consists of event listeners, event objects and event sources. The mechanism is very
lean, allowing basically any object to act as a event source, event listener, or even the
event itself. Most of this is achieved through class and method naming conventions,
with some extra support through manifestational interfaces.

Compared to other established component software architectures, i.e., OLE/COM,
CORBA and OpenDoc, the Java Beans architecture is relatively light-weight. Under
Java 1.1, nearly any object can be turned into a Java Bean. If a Java class supports Bean
properties by naming access functions appropriately, if the class has event support
added (with a few lines of code), and if all references to the enclosing environment are
marked transient, the instances of the class can be considered Beans.

On the other hand, the Java Beans architecture, as it is currently defined, does not
address some of the biggest problems of component based software architectures any
better than its competitors. These include the mixing and matching problem that faces
anyone trying to build larger units from the components. Basically, each component
supports a number of interfaces. However, the semantics of these interfaces are often
not immediately apparent, nor can they be formally specified within the component
framework. When the components are specifically designed to co-operate, this is not a
problem. However, if the user tries to combine components from different sources, the
interfaces must be adapted. This may, in turn, yield constructs that cannot stand but
collapse due to semantic mismatches.

In the protocol world, the mixing and matching problem is reflected in two distinct
ways. First, the data transfer semantics differ. Second, and more importantly, the infor-
mation content needed to address the intended recipient(s) of a message greatly differ.
In our framework, the recipient information is always implicitly available in the topol-
ogy of the conduit graph. Thus, the protocols have no need to explicitly address peers
once an appropriate conduit stream has been created.

It has been shown that secure cryptographic protocols, when combined, may result
in insecure protocols [17]. This problem cannot be easily addressed within the current

A Java Beans Framework for Cryptographic Protocols 99

Java Beans architecture. We hope that future research, paying more attention to the for-
mal semantics, will alleviate this problem.

1.3 Related Work

The study and application of communication protocol frameworks has started well be-
fore the design patterns emerged into the general knowledge. The early frameworks
were based on procedural languages such as Pascal or C [20] [21]. Unfortunately, the
majority of newer frameworks, even though based on object oriented concepts and lan-
guages (typically C++) seem to lack patterned solutions or explanations [10][16][30].

Our framework is heavily based on the ideas first presented with the x–Kernel [19]
[28] [27] and the Conduits [37] and Conduits+ [18] frameworks. Some of the ideas, es-
pecially the microprotocol approach, have also been used in other frameworks, includ-
ing Isis [10], Horus/Ensemble [30], and Bast [13]. However, Isis and Horus
concentrate more on building efficient and reliable multiparty protocols, while Bast
objects are larger than ours, yielding a white box oriented framework instead of a black
box one.

Compared to x–Kernel, Isis and Horus, our main novelty is in the use and recogni-
tion of design patterns at various levels. Furthermore, our object model is more fine-
grained. These properties come hand-in-hand — using design patterns tends to lead to
collections of smaller, highly regular objects.

The Horus/Ensemble security architecture is based on Kerberos and Fortezza. In-
stead, we base our architecture on the Internet IPSEC architecture [8]. Kerberos does
not scale well and requires a lot of trusted functionality. Fortezza is developed mainly
for U.S. Government use, and not expected to be generally available. On the other
hand, we expect the IPSEC architecture to be ubiquitously available in the same way
as the Domain Name System (DNS) is today.

Most important, our framework is seamlessly integrated into the Java security
model. It utilizes both the language level security features (packages, visibility) and
the new Java 1.1 security functionality. A further difference is facilitated by the Java
run time model. Java supports code and object mobility. This allows application spe-
cific protocols to be loaded or used on demand.

Another novelty lies in the way we use the Java Beans architecture. This allows
modern component based software tools to be used to compose protocols. The intro-
duction of the Protocol class, or the metaconduit, which allows composed subgraphs to
be used as components within larger protocols, is especially important. The approach
also allows the resulting protocol stacks to be combined with applications.

2 The Implementation Framework

Java Conduits provides a fine grained object oriented protocol component framework.
The supported way of building protocols is very patterned, on several levels. The
framework itself utilizes heavily the “gang of four” object design patterns [12]. A
number of higher level patterns for constructing individual protocols are emerging. At

100 Nikander, Pärssinen

the highest level, we envision a number of architectural patterns to surface as users will
be able to construct protocol stacks that are matched to application needs.

2.1 Basic Conduits Architecture

The basic architecture of Java Conduits is based on that of Conduits+ by Hueni, John-
son and Engel [18]. The basic kinds of objects used are conduits and messages. Mes-
sages represent information that flows through a protocol stack. A conduit, on the other
hand, is a software component representing some aspect of protocol functionality. To
build an actual protocol, a number of conduits are connected into a graph. Protocols,
moreover, are conduits themselves, and may be combined with other protocols and ba-
sic conduits into larger protocol graphs, representing protocol stacks.

A conduit has two distinct sides: side A and side B. Each of its sides may be con-
nected to other conduits, which are its neighbor conduits. Basically, a conduit accepts
messages from a neighbor conduit on one side and delivers them to the conduit on the
opposite side. Conduits are bidirectional, so both of its neighbors can send information
to it.

All conduits have two basic interfaces:
1. Connect the conduit to neighbors and access those neighbors.
2. Handle incoming messages.

There are five kinds of conduits: Session, Mux, ConduitFactory, Adaptor and Protocol.
All Conduits have one neighbor on their A side. A Mux can have many neighbors on
its B side, an Adaptor does not have any side B, and a Session and a ConduitFactory
have exactly one neighbor on their B side.

Sessions are the basic functional units of the framework. A session implements the
finite state machine of a protocol, or some aspects of it. The session remembers the
state of the communication and obtains timers and storage for partial messages from

Protocol

Session

Mux

Factory

Adaptor ...

Fig. 1. The five types of conduits.

A Java Beans Framework for Cryptographic Protocols 101

the framework. The session itself does not implement the behavior of the protocol but
delegates this to a number of State objects, using the State design pattern.

The Mux conduits are used to multiplex and demultiplex protocol messages. In
practical terms, a Mux conduit has one side A that may be connected to any other con-
duit. The side B[0] of the Mux is typically connected to a ConduitFactory. In addition,
the Mux has a number of additional side B[i] conduits. Protocol messages arriving
from these conduits are multiplexed to the side A conduit, and vice versa.

If the Mux determines, during demultiplexing, that there is no suitable side B[i]
conduit to which a message may be routed, the Mux routes the message to the side
B[0], where a ConduitFactory is typically attached to. The ConduitFactory creates a
new Session (or Protocol) that will be able to handle the message, installs the newly
created Session to the graph, and routes the message back to the Mux.

Adaptors are used to connect the conduit graph to the outside world. In conduit
terms, adaptors have only side A. The other side, side B, or the communication with
the outside world, is beyond the scope of the framework, and can be implemented in

Protocol

Session

Mux

Factory

Adaptor

Session Session

Fig. 2. An example of a simple partial protocol graph.

102 Nikander, Pärssinen

whatever means feasible. For example, a conduit providing the TCP service may im-
plement the Java socket abstraction.

A protocol is a kind of metaconduit that encapsulates several other conduits. A pro-
tocol has sides A and B. However, typically the explicit end points, i.e. sides A and B,
are only used for delivering interprotocol control messages. That is, usually the actual
data connections stretch directly from and to the conduits that are located inside the
protocol.

In practice, a protocol is little more than a conduit that happens to delegate its
sides, i.e., side A and side B independently, to other conduits. The only complexity lies
in the building of the initial conduit graph for the protocol. Once the graph is built, it is
easy to frame it within a protocol object. The protocol object can then be used as a
component in building other, more complex protocols or protocol stacks.

The Session. Sessions are the basic functional units of the framework. They are used
for both connection oriented protocols, in which case there typically is one or more
sessions for each connection, and connectionless protocols, in which case there may be
just one session handling all the protocol communication.

Most communication protocols are defined as or can be represented as finite state
machines. A typical session implements the finite state machine of a protocol. In the
Session conduit protocol messages are produced, and consumed. The session remem-
bers the state of the communication, and obtains counters, timers and storage for par-
tial protocol messages from the framework. A Session has exactly one neighbor
conduit on both of its sides.

Sessions are implemented using the State pattern [12], which means that each state
of the Session is represented by a separate object. Sessions delegate their behavior to
their state objects, thus letting the session change its behavior when its state changes
(Fig. 3). A session changes its state by replacing its old state object with a new one.

The Java Conduits framework uses one version of the State pattern [18]. This
makes the session conduit more reusable than the State pattern in [12]. The session of-
fers just one method, a method to accept messages. The message interacts with the
state object, usually invoking session–specific operations on it. Thus, State offers a rel-
atively broad interface to the messages, but the Session has a narrow interface.

Each Session requires a new State class hierarchy with a new derived class for each
state in the finite state machine. Since there will always be at most one instance of such
a State class, it makes sense to use the Singleton pattern [12] for all State classes. Thus,
there will be exactly one instance of each State class, and they will not have to be dy-
namically created or destroyed.

The Mux and the ConduitFactory. The Mux conduits multiplex and demultiplex
messages. In practical terms, a Mux conduit has one A side, which may be connected
to any other conduit. The default B side of the Mux, or side B[0], is typically con-
nected to a ConduitFactory. In addition to these, the Mux has a number of additional B
side conduits. Messages arriving from these conduits are multiplexed to the A side
conduit, and vice versa.

In the Java Conduits framework, Muxen are used as black boxes. The Mux itself
does not know how to encode information about where the message arrived from, nor

A Java Beans Framework for Cryptographic Protocols 103

Session

«State.Context»

+accept()

State

«State.State»

{ interface }

ProtocolSpecificState

«State.ConcreteState»

+protocolSpecific1()

1*

+protocolSpecific2()

«Singleton»

state

new State() { final }

+$instance: State =

new ProtocolSpecificState() { final }

+$instance: State =

Fig. 3. The State and Singleton patterns in the Session Conduit.

Mux

Factory

... Accessor

1.

2.

Session

3.

4.

6.

7.

1. A Message arrives at the side A of a Mux.
2. The Mux asks the Accessor to look up proper routing for the Message.
3. No route is found; the message is delivered to the Factory.
4. The Factory creates a new Session, and attaches it to the Mux.
5. The Message is returned to the Mux.
6. The Mux asks the Accessor, again, to route the Message.
7. This time a route is found, and the Message is passed to the newly created Session.

5.

Fig. 4. The Mux, the ConduitFactory and the Accessor in concert.

104 Nikander, Pärssinen

how to decode which side B conduit a message (which arrived from side A) should be
demultiplexed to. A separate Accessor class is used to perform the encoding and de-
coding functionality, Fig. 4.

The Accessor. The Accessor is used as a white box. It is assumed that the protocol im-
plementor will create an accessor class that knows the structure of the messages flow-
ing through the mux. By interacting with the message, the Accessor can determine
where to route the message, or encode the source of the message.

Separating an algorithm from the object that uses the algorithm is implemented ac-
cording to the Strategy pattern [12]. The intent of the Strategy pattern is to let the algo-
rithm, or strategy, vary independently of clients that use it. The Mux is the context of
the strategy, and the Accessor plays the role of the strategy (Fig. 5). Accessors abstract
out the difference between different Mux objects on different layers in a protocol stack,
so that the relatively complex Mux class needs not to be subclassed. Instead, a Mux is
given a reference to its Accessor when it is created.

The Conduit Factory. If the Mux finds out that there is no suitable side B[i] conduit a
message may be routed to, the Mux routes the message to the ConduitFactory attached
to its side B[0]. The ConduitFactory creates a new Session (or Protocol) that will be
able to handle the message, installs the newly created Session to the Mux, and routes
the message back to the Mux.

The Adaptor. An Adaptor is a conduit that has no neighbor conduit on its side B.
Thus, only its A side is connected to another conduit. The Adaptor conduit is used to
interface the framework to some other software or hardware. Its B side implementation
is usually specific to a particular software or hardware environment. The Adaptor con-
verts messages to and from an external format. The Adaptor Conduit is an implementa-
tion of the Adapter pattern [12].

The Protocol. A Protocol, in the Java Conduits framework, is a MetaConduit that en-
capsulates several other conduits. A Protocol has sides A and B. However, typically

Mux

«Strategy.Context»
Accessor

«Strategy.Strategy»

{ interface }

+getKey() { abstract }

strategy

1

ConcreteAccessor

«Strategy.ConcreteStrategy»

+setKey() { abstract }

+getKey()
+setKey()

Fig. 5. The Strategy Pattern in Accessor, as used by the Mux.

A Java Beans Framework for Cryptographic Protocols 105

these are conduit connections that are mainly used for the delivery of various kinds of
interprotocol control messages. The actual data connections typically stretch directly
between the conduits that are located inside some protocols.

Fig. 6 illustrates a simple protocol in two different states. Initially, the protocol is
connected to a low level Adaptor, e.g. a hardware plug&play controller, and to some
upper level conduit (not shown). Later, when a couple of plug&play adaptors are acti-
vated, and when connections are build to the upper layer protocols, we can see how the
additional connections cross the protocol boundaries without touching them.

A number of alternative designs were also considered. Most of them circulated
around the idea of making a Protocol like a double Mux, i.e. a conduit having several
distinct side A and side B connections. However, it appears that most communication
protocols initially provide and require just a single service access point, or they can
easily be modeled in such a way. That is, a protocol initially wants generic services
from the lower layer, or a lower layer controller. Similarly, it initially offers just a sin-
gle control connection to the upper layer protocols. Using this control connection the
upper layer protocols can request for a separate, identified connection. Similarly, in the
case of routing or other downward demultiplexing, the control connection can be used
to request connections to the available lower layer protocols.

The main benefit of the design of the Protocol class is simplicity. A Protocol is little
more than a Conduit that happens to delegate its sides, i.e. side A and side B, independ-
ently to other conduits. The complexity of building the initial conduit graph for the

factory factory

Newly created sessions

Newly attached adapters

Fig. 6. A protocol in its initial state, and later on with a number of other conduits connected.

106 Nikander, Pärssinen

protocol lies beyond the scope of the actual class. Once the graph is built, it is easy to
frame it within an Protocol object. The Protocol object can then be used as a compo-
nent in building other, more complex graphs. The Protocol Conduit can be considered
to be a manifestation of the Proxy pattern [12].

2.2 Using Java to build protocol components

Java 1.1 provides a number of features that facilitate component based software devel-
opment. These include inner classes, Bean properties, serialization and Bean events.
These all play an important role in making development of protocols easier.

A basic protocol component, i.e., a conduit, has usually two sides. Whenever a
message arrives at the protocol component, it is important to know where the message
came from, in order to be able to act on the message. On the other hand, it is desirable
to view each conduit as a separate unit, having its own identity. Java inner classes and
the way the Java Beans architecture uses them, provides a neat solution for this prob-
lem.

Each conduit is considered a single Java Bean. Internally the component is con-
structed from a number of objects: the conduit itself, sides A and B, and typically also
some other objects depending on the exact sort of the conduit. The Conduit class itself
is a normal Java class, specialized as a Session, Mux, ConduitFactory or such. On the
other hand, the side objects, A and B, are implemented as inner classes of the Conduit
class. In most respects, these objects are invisible to the rest of the object world. They
implement the Conduit interface, delegating most of the methods back to the conduit
itself. However, their being separate objects makes the source of a message arriving at
a conduit immediately apparent.

Since the conduits are attached to each other, when constructing the conduit graph,
the internal side objects are actually passed to the neighbor conduits. Now, when the
neighboring conduit passes a message, it will arrive at the receiving conduit through
some side object. This side object uniquely identifies the source of the message,
thereby allowing the receiving conduit to act appropriately.

The Java Bean properties play a different role. Using the properties, the individual
conduits may publish run time attributes that a protocol designer may use through a
visual design tool. For example, the Session conduits allow the designer to set the ini-
tial state as well as the set of allowed states using the properties. Similarly, the Acces-
sor object connected to a Mux may be set up using the Beans property mechanism.

Java 1.1 provides a generic event facility that allows Beans and other objects to
broadcast and receive event notifications. In addition to the few predefined notification
types, the Beans are assumed to define new ones. Given this, it is natural to map con-
duit messages onto Java events.

Information Embedded Within the Graph Topology. One important lesson learned,
although possibly obvious once stated, is that there is important information embedded
in the topology of the protocol graph. For example, let’s consider TCP. The end point
of a TCP connection is represented as a socket to a typical application. In conduit
terms, a socket is an Adaptor that allows non-conduit applications to communicate
through the TCP implemented as conduits. Once created, the socket adaptor itself has

A Java Beans Framework for Cryptographic Protocols 107

no notion of the identity of the attached application, nor of the port numbers of IP ad-
dresses that identify the TCP connection. The information about the port numbers and
IP addresses are embedded into the two Muxen and their Accessors that are part of the
TCP implementation (see Fig. 7). That is, the information how a certain message can
reach the designated application is embedded into the Accessor of the conduit graph,
and to the fact that the application is connected to that particular socket adaptor. This
information is not available anywhere else.

In Sect. 4, we will consider cryptographic protocols. There we will notice that the
graph topology also represents security relevant information. For example, when a
message is flowing upward at a certain point of a graph, we may know that the mes-
sage has passed certain security checks. Since the only path for a message to arrive at
that point goes through some Session that makes security checks, the message must be
secure.

2.3 Protocol Messages

In Java Conduits, a protocol message is composed of three or four objects: a message
carrier, a message body, possibly some out-of-band data, and a message interpreter.
The message carrier extends the java.util.EventObject class, thereby declaring itself as
a Bean event. The carrier includes references to the message body that holds the actual
message data, a message interpreter that provides protocol specific interpretation of the

TCP

LocalPortMux

RemoteMux

to

ICMP

Factory

Factory

TcpSession

...

...

Fig. 7. The structure of the TCP prototype (simplified).

108 Nikander, Pärssinen

message data, and an optional out-of-band data object. The message interpreters are
called Messengers, and they act in the role of a command according to the Command
pattern [12].

Messages are passed from one conduit to the next one using the Java event delivery
mechanism. By attaching to a conduit, the next conduit registers its internal side object
as an event listener that will receive messages in the form of Java events.

The actual message delivery is synchronous. In practice, the sending conduit indi-
rectly invokes the receiving conduit’s accept method, passing the message carrier as a
parameter. The receiving conduit, depending on its type and purpose, may apply the
Messenger to the current protocol state, yielding an action in the protocol state ma-
chine, replace the Messenger with another one, giving new interpretation to the mes-
sage, or act on the message independent of the Messenger. Typically, the same event
object is used to pass the message from conduit to conduit until the message is delayed
or consumed.

Java Conduits use the provider / engine mechanism offered by the JDK 1.1 security
API. Since the encryption / decryption functionality and its interface specification
were not available outside the United States, we created a new engine class java.secu-
rity.Cipher along the model of java.security.Signature and java.security.MessageDigest
classes.

The protocols use the cryptographic algorithms directly through the security API.
The data carried in the message body is typically encrypted or decrypted in situ. When
the data is encrypted or decrypted, the associated Messenger is typically replaced to
yield new interpretation for the data.

2.4 Running Protocols

While Conduits represent the static (but changing) structure of a protocol stack, Mes-
sages represent the dynamic communication that happens between the protocol parties.
Following the model of Conduits+, each message is represented as an aggregation of

Message

Messenger

*

1interpreter

OutOfBand

0..1

EventObject

Object

*

0..1contents

Fig. 8. The structure of messages.

A Java Beans Framework for Cryptographic Protocols 109

two larger (aggregate) objects in runtime: a Visitor and a Message. The Message itself
contains subparts (the carrier, the body, etc.) as mentioned above. A Visitor (and its
subclass Transporter) is an object that is conscious about the existence of conduits and
that is able to navigate appropriately through the conduit graph. A Message (and its
parts), on the other hand, is an object that does not know anything about the conduit
graph, but carries the actual data and is able to communicate with the actual protocol
state machines.

In other words, Visitors and Conduits are deeply bound together, providing a means
to construct graphs and perform controlled graph traversal. Similarly, Messages, States
and Accessors are bound together, but in an application dependent way, and without
any consent or even need to be aware of the existence of the conduit graph.

The Visitor and the Transporter. Visitor is a Java interface that acts in concordance
to the Visitor pattern ([12] pp. 331–344) in respect to the conduit graph. The Visitor it-
self is the abstract «Visitor» of the pattern while Conduit acts as the abstract «Ele-
ment» of the pattern. The classes that implement the Visitor interface (Transporter and
its subclasses) act in the role of «ConcreteVisitor»s and the conduit types, Adaptor,
ConduitFactory, Mux, and Session1 are the «ConcreteElement»s of the pattern.

All Visitors traverse the conduit graph carrying something. The basic difference be-
tween various visitors are in the way, or algorithm, according to which they traverse.

A Transporter traverses the graph using a simple default algorithm. Every time it
arrives to a conduit, it continues at the other side of the conduit. In a Mux, it calls the
Mux’ muxing function, leaving the mux at an appropriate demultiplex or multiplexed
channel. In a way, the purpose of a transporter is to traverse from one side of a graph to
the other side. This direction may be redirected by Conduits; the Transporter just walks
"blindly".

1 The Protocol class does not take part in the Visitor pattern. It acts as a Proxy: whenever a Visitor en-
ters a Protocol, the Protocol immediately passes the Visitor to the conduit inside without the Visitors
involvement.

ASession
«Command.Client»

AnotherSession
«Command.Invoker» ProtocolGenericMessenger

«Command.Command»

{ interface }

+Execute() { abstract }

ProtocolSpecificMessenger
«Command.ConcreteCommand»

+Execute(Session, State)

ProtocolState
«Command.Receiver»

+Action()

Execute() {
 State.Action();
}

selects

Fig. 9. The Command Pattern as used in the Message.

110 Nikander, Pärssinen

MessageTransporter is a subclass of Transporter that carries Messages. There is
one slight difference between the traversal algorithms of a generic Transporter and a
MessageTransporter: the MessageTransporter activates a State to handle a Message
whenever it encounters a Session.

Sedaptor

Accessor

Adaptor

BaseConduitConduit

ConduitFactory

Message

MessageTransporter

Messenger

Mux

OutOfBand

Protocol

Session

State

Transporter

Visitor

1..*

1

strategy

*

1prototype

0..1

1

*

1

interpreter
*

0..1

*

1
visits

applies

Object

*

contents 0..1

Fig. 10. An overview of the classes in the framework.

A Java Beans Framework for Cryptographic Protocols 111

The Conduits architecture is centered around the idea of a conduit graph that is tra-
versed by protocol messages. The graph is the local representation of a protocol stack.
The messages represent the protocol messages exchanged by the peer protocol imple-
mentations. This aspect of a graph and graph traversal is abstracted into a Visitor pat-
tern [12]. The pattern is generalized in order to allow also other kinds of visitors to be
introduced on demand. These may be needed, e.g., to pass interprotocol control mes-
sages or to visualize protocol behavior.

A protocol message or other visitor arrives as a Java event at an internal side object
of a conduit. The side object passes the message to the conduit itself. The conduit in-
vokes the appropriate overloaded at(ConduitType) method of the message carrier, al-
lowing the message decide how to act, according to the Visitor pattern.

CryptoSession — An example. Let us consider the situation when a protocol mes-
sage arrives at a Session that performs cryptographic functions (see Fig. 12). The exe-
cution proceeds in steps, utilizing a number of design patterns.
1. The message arrives at the Session according to the Visitor pattern.

The message is passed to the Session’s internal side as a Java Beans visitor event.
The event is passed to the session, which invokes the message’s at(Session) method.
Since the visitor in hand is a message, it calls back the Session’s apply(Message)
method.

:MessageTransporter :Message

accept(:Visitor, :Conduit)

:Mux

return next to visit

:Accessor

at(:Mux)

getKey(:Message)

classSpecific()

mux(:Message)

return key

Fig. 11. A Message arrives at a Mux (simplified).

112 Nikander, Pärssinen

2. The Session gets the message, and applies it according to the command pattern.
The Session uses the Messenger command object, and asks it to be applied on it-

self, using the current state and message.
3. The Messenger command object acts on the session, state and message (second half

of the Command pattern).
This behavior is internal to the protocol. Typically all states of the protocol imple-

ment an interface that contains a number of command methods. The Messenger calls
one of these, depending on the message’s type. In the example situation where a mes-
sage arrives and should be sent encrypted, the Messenger invokes the protocol state’s
encrypt(Session, Message) method.
4. The current State object acts on the Session and Message.

This, again, depends on the protocol. The State may replace the current state at the
Session with another State (according to the State pattern), modify the actual data car-
ried by the message, or replace its interpretation by changing the Messenger associated
with the Message. In our example, the State encrypts the message data. A reference to
a Cipher has been obtained during the State initialization through the Java 1.1 security
API. The key objects are stored at the Session conduit.

aSide aSession
aMessageTransporter

accept(aVisitor)

accept(aVisitor, aSide)

at(aSession)

apply(aMessage)

aMessenger

apply(aMessage, aState, aSession)

aState

encrypt(aSession, aMessage)

accessAsByteArray()

aCipher

getKeyReference()

encrypt(...)

Step 1.

Step 2.

Step 3.

Step 4.

Fig. 12. A Message arrives at a cryptographic Session.

A Java Beans Framework for Cryptographic Protocols 113

2.5 Protocol design patterns

Our experience with the framework has shown that protocol independent implementa-
tion patterns do arise. That is, there seems to be certain common ways how the differ-
ent conduits are connected to each other when building protocols. Here we show how
the use of encryption tends to be reflected as a conduit topology pattern.

A cryptographic protocol handles
pieces of information that are binary
encoded and cryptographically pro-
tected. Usually the whole message is
signed1, encrypted, or both. This yields
a highly regular conduits structure
where three sessions are stacked on top
of each other (see Fig. 13). The upper-
most session (FSM) receives messages
from upper protocols or applications,
and maintains the protocol state ma-
chine, if any. Directly below lies a ses-
sion that takes care of the binary
encoding and decoding of the message
data (Coder). The lowermost session
within the protocol takes care of the ac-
tual cryptographic functions (Cipher).

According to the conduits architec-
ture, the actual cryptographic keys are stored into the cryptosession. Thus, the informa-
tion about what key to use is implicitly available from the conduit graph topology.
However, this is not always feasible.

In the case of IPSEC Authentication Header (AH) protocol we resorted to storing
the keying information as additional, out of band information within the outgoing pro-
tocol message. Similarly, the incoming messages are decorated with information about
the security associations that actually were used to decrypt or the check the message
integrity. These are then checked further up in the protocol stack to ensure security pol-
icy.

3 Building Protocols with Java Conduits

In this and the following section, section 4, we show how we have applied to frame-
work to real world protocols. The implementations we have are working but often par-
tial prototypes. Therefore it is probable that there will be slight changes in the
implementation strategies as more functionality is added. In particular, currently both
our IPv4 and IPv6 support only one physical network interface.

1 Signed or otherwise integrity protected

Cipher

Crypto
Protocol

Coder

FSM

Fig. 13. A cryptographic protocol pattern.

114 Nikander, Pärssinen

3.1 Lower layer protocols vs. upper layer protocols

According to our experience, there seems to be a clear distinction between the strate-
gies that are suitable when implementing lower layer protocol vs. implementing upper
layer protocols. Here, the term lower layer protocol applies most of OSI layers 2–5
while the term upper layer applies to application layer and control plane protocols.

A characteristic feature of what we call lower layer protocol is that they carry some
payload, received from some upper layer, which is considered opaque or binary for-
mat. Upper layer protocols, on the other hand, may or may not carry data that belongs
to some layer still upwards, but if so, the data is not considered binary encoded but has
some semantic structure. For example, in the case of protocol stacks that rely on
ASN.1, most layers below the ASN.1 representation layer can be considered lower lay-
ers while the ones above it are upper layer protocols.

When applied to the basic TCP/IP stack, all of IPv4, IPv6, ICMP, UDP and TCP
fall under the category of lower layer protocols. Some application layer protocols such
as SMTP and NFS are clearly upper layer protocols. Some, on the other hand, fall
somewhere between in implementation terms. Such hybrids might be e.g. FTP, where
the control connection would probably be best implemented according to the upper
layer strategies while the data connections can be considered a lower layer carried pro-
tocol, and HTTP, which is able to transfer binary blobs in addition to HTML and other
structured data.

3.2 Building Lower Layer Protocols

A characteristic feature of lower layer protocols is that they have a strict, build in bi-
nary representation of their messages. Usually any upper layer data carried is copied
verbatim into the lower layer message, prepending it with a binary header carrying the
data needed for the operation of the lower layer protocol.

Lower layer protocols are usually not specified in terms of distinct protocol primi-
tives. Instead, the protocol header typically carries various fields and flags that together
determine the intended behavior of the party on receipt. This makes the usage of Mes-
senger Command pattern hard or sometimes impossible.

Another aspect is performance. Object creation and destruction is not cheap. Thus,
if we can reserve a single data buffer along with the enclosing objects high on the pro-
tocol stack, and reuse them by prepending lower layer data, much unnecessary over-
head is avoided.

In our implementation work emerged an easy way to implement lower layer proto-
cols. This is perhaps not the most compact nor best performing way of implementing
low level protocols such as IP or TCP, but makes the implementation straightforward
to understand and easy to modify. The basic structure of this pattern is shown in
Fig. 15.

The actual protocol implementation is surrounded with simple, stateless Sessions.
A separate session object is placed on all links leading up or down from the protocol.
The sessions on the lower link convert the binary header representation of upcoming

A Java Beans Framework for Cryptographic Protocols 115

messages into a separate, protocol specific header message. Accordingly, they encode
the separate protocol header message into the binary message when a message
traverses downward. On the upper link, on the other hand, the sessions either add or
strip the separate header messages. The stripped header is usually simply discarded;
the upper layer protocol should not be interested in it1. Accordingly, the added header
message is usually empty, and filled by the protocol.

1 In the case of TCP/IP this is not altogether possible, since both TCP and UDP use information from
the IP message in computing and checking checksums.

CheckSumCheckSum

IP

FragmentationFragmentation

IfMux

ProtoMux

to

ICMP

Routing

Reassembly

to

ICMP

Header Header

Fig. 14. The structure of the current IP implementation.

116 Nikander, Pärssinen

3.3 Building Upper Layer Protocols

Typical upper layer protocols are quite different from lower layer protocol. Instead of
having a rigid, predefined binary message format, the messages are usually defined in
terms of some kind of abstract syntax. The CCITT and ISO protocols tend to use the
ASN.1 syntax; the situation is somewhat different in the case of Internet protocols.
Some TCP/IP based protocols do use some kind of abstract syntax. For example, NFS
and other SunRPC based protocols use the XDR to define the message formats. The
TCP/IP based CORBA protocol, IIOP, has its own abstract syntax defined. Actually,
the ASCII based control messages of most older TCP/IP application level protocols
such as SMTP, NNTP and FTP may be considered to have a kind of abstract represen-
tation layer as well.

Having an abstract syntax (of some sort) makes it natural to represent protocol
messages as objects. Each protocol message type may be represented as a separate
class. The Visitor and Builder patterns can be used to encode and decode messages at

The actual protocol
implementation containing
Muxes, Factories and Sessions

Encoder/
Decoder

Encoder/
Decoder

Adder/
Stripper

Adder/
Stripper

BinaryUpperLayerData

MessageContents (binary)

BinaryUpperLayerData

2nd part

BinaryUpperLayerData

2nd part

Header data as objects

MessageContents

Header data as objects

MessageContents

BinaryUpperLayerData

MessageContents (binary)

EncodedHeader

Part of header data

Oob

+

Fig. 15. The lower layer protocol metapattern along with message representations.

A Java Beans Framework for Cryptographic Protocols 117

the presentation layer. As an alternative, the messages and classes may know them-
selves how to encode and decode their contents (cf. to the Memento pattern).

Due to the representational difference, it is easy to apply another change. Instead of
viewing the messages as dump data blocks (DataMessages in our terminology), they
can be made intelligent, or Messengers instead of messages. This difference becomes
apparent when the messages arrive at Sessions. The Session has delegated the respon-
sibility of handling messages to states. Now, when an intelligent Messenger arrives to a
State, the State may allow the Messenger to "read the message", or to call an appropri-
ate method, instead of decoding the message itself.

4 Integrating Cryptography into Java Conduits

As we mentioned already in the introduction, one of the fundamental goals of our work
is to provide an environment, a framework, where the implementation of cryptographic
protocols is easier than it would otherwise be, and yields less implementation specific
security errors in the average. In the long turn, we also hope to be able to provide some
implementation means and design patterns that are suitable for large numbers of cryp-
tographic protocols.

4.1 Implementing Cryptographic Protocols

From an protocol implementation point of view, cryptographic protocols are communi-
cation protocols with a number of additional features. Like non-cryptographic proto-
cols, they are represented in means of protocol messages and protocol state machines.
They may contain multiplexing aspects, though often in a format somewhat different
from most protocols. And they certainly are embedded in a protocol framework that
does perform multiplexing, even though the cryptographic protocol itself might not.

There are a number of typical extra operations performed by a cryptographic proto-
col:
• A protocol message may contain a signature or a keyed secure hash over itself and

possibly some protocol state data. The protocol engine must be able to correctly
create this data, and to check its validity on receipt.

• A protocol message or parts of it may be encrypted. The protocol engine must be
able to encrypt and decrypt data as appropriate.

• A protocol message may include one or more digital certificates. The protocol en-
gine must have some means to interpret the meaning of these certificates, and to
check the validity of the signature of the certificate.

• To ensure freshness, or timeliness, some protocols require that a protocol party is
able to generate random numbers. The protocol engine must include a cryptograph-
ically strong random number generator.

• A protocol must be able to detect when it is offered a replay of an old message as a
new message. This property is tightly integrated into the concept of freshness. In
general, it is impossible to detect a single replay unless all previous messages are
stored and remembered. However, a good cryptographic protocol uses nonces (i.e.

118 Nikander, Pärssinen

random numbers) and the principles of message freshness to ensure liveness of
communication.

In addition to these extra operations there are also a couple of differences in the ge-
neric design guidelines. Specifically, the following principles are important:
• Malformed messages should be recognized as soon as possible. Failing to do this

does not only sacrifice performance, but may open new denial of service threats.
• The usual "be liberal in what you accept and strict in what you generate" does not

always apply to cryptographic protocols. Usually one has to be very strict in what
to accept, or unadverted vulnerabilities may be introduced.

• The role of redundancy at message level is different from other protocols. If the in-
tegrity of a message is important, the message must contain enough of redundancy,
or else it may be easy to forge its signature or message authentication code. On the
other hand, if the confidentiality of the message contents is important, the en-
crypted portion should contain as little as possible redundancy, in order to make
cryptanalysis harder.

4.2 Representing Cryptographic Transformations as Conduits

There are a number of fundamental properties of cryptography that make it somewhat
hard to embed cryptography into the conduits framework. First, cryptography is intrin-
sically bound to the binary representation of data. One cannot just encrypt or sign
some arbitrary objects. The objects must be first converted into some predefined binary
representation, and only that can be encrypted or signed. Second, since the purpose of
cryptography is to make the system secure, we must pay extra attention to the security
of the underlying framework.

The data representation requirements force us to sometimes explicitly encode some
aspects of a session state, or some contents of a forthcoming message, into a binary
representation. This is such an usual occasion that we have been trying to identify
some kind of design pattern for this; unfortunately one hasn’t emerged yet. At occa-
sions we have encoded both the state information and the message contents up in the
graph, generated a digital signature, and passed this as on object along with the mes-
sage to the lower layers. Typically, the message contents is encoded again at some
lower layer, yielding both performance problems and potential compatibility problems.
If the encoding differ, it is possible that the peer protocol entity will not accept the
message. As an alternative, elsewhere we have passed the relevant portions of the state
information downwards along with the message. This seems more promising, since the
encoding needs to be performed only once. However, it has its own drawbacks, too.
First, the messages are decorated with information that is otherwise not needed and
that semantically does not belong to the lower layer. Second, we cannot simply pass
references to the state data but must copy it, since sometimes the state may change be-
fore the encoding is performed.

A similar dilemma can be found on the handling of received messages. It would
seem to be useful to check signatures or other integrity data simultaneously with the
decoding of the message. Unfortunately this is not always possible, or would violate

A Java Beans Framework for Cryptographic Protocols 119

protocol layering, since all the information needed for the integrity check may not be
available before some of the decoded data is interpreted.

4.3 Using Java’s Language Level Security Features

Java offers a number of language level security features that allow a class library or a
framework to be secure and open at the same time. The basic facility behind these fea-
tures is the ability to control access to fields and methods. In Java, classes are organ-
ized in packages. A well designed package has a carefully crafted external interface
that controls access to both black box and white box classes. Certain behavior may be
enforced by making classes or methods final and by restricting access to the internal
features used to implement the behavior. Furthermore, modern virtual machines divide
classes into security domains based on their classloader. There are numerous examples
of these approaches in the JDK itself. For example, the java.net.Socket class uses a
separate implementation object, belonging to a subclass of the java.net.SocketImpl
class, to provide network services. The internal SocketImpl object is not available to
the users or subclasses1 of the socket class. The java.net.SocketImpl class, on the other
hand, implements all functionality as protected methods, thereby allowing it to be used
as a white box.

The Java Conduits framework adheres to these conventions. The framework itself
is constructed as a single package. The classes that are meant to be used as black boxes
are made final. White box classes are usually abstract. Their behavior is carefully di-
vided into user extensible features and fixed functionality.

The combination of black box classes, fixed behavior, and internal, invisible classes
allows us to give the protocol implementor just the right amount of freedom. New pro-
tocols can be created, but the framework conventions cannot be broken. Nonetheless,
liberal usage of explicit interfaces makes it possible to extend the framework, but again
without the possibility of breaking the conventions used by the classes provided by the
framework itself.

All this makes it possible to create trusted protocols, and to combine them with un-
trusted, application specific ones. This is especially important with cryptographic pro-
tocols. The cryptographic protocols need access to the user’s cryptographic keys. Even
though the actual encryption and other cryptographic functions are performed by a
separate cryptoengine, the current Java 1.1 security API does not enforce key privacy.
However, it is easy to create, e.g., an encryption / decryption microprotocol that en-
crypts or decrypts a buffer, but does not allow access to the keys themselves.

4.4 IPSEC — An Example

The Internet Protocol Security Architecture (IPSEC) [1] [8] [34] is an extension to
IPv4 and an essential part of IPv6. It provides us with authenticated, integral and confi-
dential channels for transparent exchange of information between any two hosts, users
or programs on the Internet. Designed to be used everywhere, it will be implemented

1 Actually, other classes within the same package can access the SocketImpl object. Classes outside the
package can’t.

120 Nikander, Pärssinen

on most host and workstation operating systems in the near future. The flexible authen-
tication schemes, provided by its key management layer, make it possible to individu-
ally secure single TCP connections and UDP packet streams.

In practical terms, IPSEC is implemented with two subprotocols, Authentication
Header (AH) and Encapsulated Security Payload (ESP). Their location in IP headers is
shown in Fig. 16.

Our IPSEC prototype is designed to work with both IPv4 and IPv6. So far, it has
been tested only with IPv6. It is designed to be policy neutral, allowing different kinds
of security policies to be enforced.

Conceptual model. Fig. 17 shows the conceptual security model of the IPv6-IPSEC.
The IPSEC itself can be thought as consisting of some kind of security control, a
number the security mechanisms, and a number of security variables. The security var-
iables acts as an interface to the Security Management. The Security Management up-
dates and maintains the variables [31].

An externally defined security policy defines the goals and bounds that are at-
tempted to establish with the IPSEC. The Security Management is responsible for con-
verting the policy into a concrete implementation, i.e. to set up and update the security
variables in an appropriate way. Currently the implementation does not directly sup-
port policy management; the security variables are simply read from a flat text file.

A basic IP protocol stack, including IPSEC, is shown in Fig. 18. In this configura-
tion, the IPSEC is located as a separate protocol above IP. IP functions as usual, for-

TCP/UDP header Upper layer payload

IP header TCP/UDP header Upper layer payloadAH header

IP header

TCP/UDP header Upper layer payload

IP header TCP/UDP header Upper layer payload

IP header

EncryptedPlaintext

Protecting a datagram with Authentication Header

Protecting a datagram with Encapsulated Security Payload

Fig. 16. The IPSEC headers (AH and ESP) and their location in datagrams.

A Java Beans Framework for Cryptographic Protocols 121

warding packets and fragments and passing upwards only the packets that are
addressed to the current host. IPSEC receives complete packets from IP. The example
configuration initially accepts packets that have either no protection, or are protected
with AH, or with AH and ESP. It does not accept packets that are protected with ESP
only or with e.g. double AH. This is one expression of policy. Furthermore, the conduit
graph effectively prevents denial of service attacks with multiply encrypted packets.

During input processing, the AH and ESP protocols decorate the packet with infor-
mation about performed decryptions and checks. Later, at the policy session, this infor-
mation is checked to ensure that the packet was protected according to the desired
policy. We have also experimented with an alternative configuration, where the policy
is checked immediately after every successful decryption or AH check. This seems to
be more efficient, since faulty packets are typically dropped earlier. However, the re-
sulting conduits graph is considerably more complex.

IPv6

IPSEC

Security
Mechanisms

Security
Control

Security
Variables

Security
Management

Management
Interface

Fig. 17. A conceptual model of the IPSEC implementation.

122 Nikander, Pärssinen

During output process-
ing, the policy session and
the policy mux together se-
lect the right level of protec-
tion for the outgoing packet.
This information may be de-
rived from the TCP/UDP
port information or from
tags attached to the message
earlier in the protocol stack.

A different IPSEC con-
figuration, suitable for a se-
curity gateway, is shown in
Fig. 19. In this case, instead
of being on top of IP, IPSEC
is integrated as a module
within the IP protocol. Since
the desired functionality is
that of a security gateway,
we want to run all packets
through IPSEC and filter
them appropriately. Since
IPSEC is always applied to
complete packets, all incom-
ing packets must be reas-
sembled. This is performed
by the Fragment session,
which takes care of frag-
mentation and reassembly.

Once a packet has trav-
elled through IPSEC, pass-
ing the policy decisions is
applies, it is routed nor-
mally. Packets destined to
the local host are passed to
the upper layers. Forwarded
packets are run again
through IPSEC, and a sepa-
rate outgoing policy is ap-
plied to them. In this case, it
is easier to base the outgoing
policy on packet inspection
rather than on separate tag-
ging.

IP

Chksum

Fragment

IfMux

Ethernet

Options

Forward

PPP

Chksum

PolicyMux

ProtoMux

AH

ESP

IPSEC

ProtoMux

Policy

Fig. 18. The host IPSEC conduit graph (simplified).

A Java Beans Framework for Cryptographic Protocols 123

Our current IPSEC prototype
runs on top of our IPv6 imple-
mentation, also built with Java
Conduits, on Solaris. We use a
separate Ethernet adaptor, which
is implemented as a native class
on top of the Solaris DLPI inter-
face. We have not yet applied JIT
compiler technology, and there-
fore the current performance re-
sults are modest.

5 Summary

In this chapter, we have pre-
sented a Java Beans compatible
framework for generic telecom-
munications protocols and for
cryptographic protocols in par-
ticular. The framework consists
of structural elements called con-
duits, and of dynamic elements
called visitors and messages.
There are five kinds of conduits:
Adaptors, ConduitFactories,
Muxen, Protocols and Sessions.
There are currently two different
Visitors, namely (generic) Trans-
porters and MessageTransport-
ers. However, the usage of the
Visitor pattern allows easy addi-
tion of new Visitor types. The Messages themselves do not know anything about the
static protocol structure; the Visitors insulate the Conduit graph and the Messages from
each other.

When a protocol programmer uses the framework to implement a protocol, there
are typically two major phases in the process. Initially, the protocol is divided into tiny
pieces that match to various kinds of conduits. There seems to emerge patterns for do-
ing this. Second, the pieces are implemented by subclassing specific conduit and other
classes. Typically, a small protocol will be implemented as one or more Session
classes, a number of State classes, a number of Messenger classes, and possibly some
Accessors as well. Finally, the Protocol class is subclassed to contain the resulting
structure.

Chksum

MediaMux

Ethernet

Options

Forward

PPP

Chksum

IPSEC

Fragment

Options

Fragment

Options

IPSEC

IP

Fig. 19. The security gateway IPSEC conduit graph
(simplified).

124 Nikander, Pärssinen

5.1 Design Patterns in the Framework

The framework itself has numerous examples of using GoF design patterns. The major
patterns include the following:
• The Visitor pattern insulates the Messages from the conduit graph, and allows other

kinds of graph operations to be performed on the graph.
• The State pattern applied in the Sessions in order to implement protocol state ma-

chines.

As examples of other kinds of usage of patterns, the following are worth mentioning:
• The actual encoding/decoding aspect of the Muxen is delegated to separate Acces-

sor objects using the Strategy pattern.
• The State objects are designed to be shared between the Sessions of the same pro-

tocol. In order to encourage this behavior, the base State class implements the basic
details needed for the Singleton pattern.

• The ConduitFactories are used as black boxes in the framework. Each ConduitFac-
tory has a reference to a Conduit that acts as its prototype, following the Prototype
pattern.

• Obviously, the Adaptor conduits act according to the Adapter pattern with respect
to the world outside the conduits framework.

• With respect to the Visitor pattern, the Protocol conduits act according to the Proxy
pattern, delegating actual processing to the conduits encapsulated into the protocol.

In addition to the use of the GoF patterns in the framework, the actual building of pro-
tocols is highly patterned, as already mentioned. Both of these shorten the time needed
to learn how to use the framework, and to understand how others have implemented
protocols when using the framework.

5.2 Availability

The current framework prototype is available at http://www.tcm.hut.fi/~pnr/jacob/. The
actual protocol prototypes and the protocol sandbox prototype are available directly
from the authors. An integrated, JDK 1.2 based release is expected to be published
some time in late 1998.

6 Future Work

There are a number of future projects that we are planning to start. Due to our limited
resources we have not been able to work on all the fronts simultaneously.

The use of security services and features is usually mandated by security policies.
The management of security policies in global networks has become a major chal-
lenge. We have recently started a project to design and implement an Internet Security
Policy Management Architecture (ISPMA) based on trusted Security Policy Managers
(SPM). When a user contacts a service, they need to be authorized. Authorization may
be based on the identity or credentials of the user. Having obtained the necessary infor-

A Java Beans Framework for Cryptographic Protocols 125

mation from the user, the server asks the SPM if the user can be granted the kind of ac-
cess that they have requested. Naturally all communications between the parties need
to be secured.

A graphical Java Beans editor could make the work of the implementor much more
efficient than it currently is. This would also make it easier to train new average pro-
grammers to develop secure applications. In a graphical editor, the building blocks of
our architecture would show as graphical objects that can be freely combined into a
multitude of applications. The amount of programming work in developing such an ed-
itor is quite large and there certainly are lots of ongoing projects in the area of graphi-
cal Java Beans editors. Our plan is to take an existing editor and integrate it into our
environment.

So far our work has been focused on the design and implementation of secure ap-
plication specific protocols. Our long term goal is to create an integrated development
environment for entire secure applications. This environment would also include tools
for creating the user interface and database parts of the applications.

References

1. Timo P. Aalto and Pekka Nikander, “A Modular, STREAMS Based IPSEC for So-
laris 2.x Systems”, In Proceedings of Nordic Workshop on Secure Computer Sys-
tems, Goethenburg, Sweden, November 1996.

2. M. Abadi, and R. Needham, Prudent engineering practice for cryptographic proto-
cols, Research report 125, Digital Equipment Corporation, Systems Research
Center, Jun. 1994

3. Robert Allen and David Garlan, “A Formal Basis for Architectural Connection”,
ACM Transactions on Software Engineering and Methodology, 6(3), July 1997.

4. Ross J. Anderson and Roger Needham, “Robustness principles for public key pro-
tocols”, Advances in Cryptology—CRYPTO’95 Proceedings, Springer-Verlag,
1995.

5. Ross J. Anderson, “Programming Satan's Computer”, In Computer Science Today
— Recent Trends and Developments, LNCS 1000, pp. 426–440, Springer-Verlag,
1995.

6. R. J. Andersson, "Why cryptosystems fail", Communications of the ACM, 37:11,
Nov. 1994, pp. 32–40

7. Ken Arnold and James Gosling, The Java Programming Language, Addison-Wes-
ley, 1996.

8. Randal Atkinson, Security Architecture for the Internet Protocol, RFC1825, Inter-
net Engineering Task Force, August 1995.

9. Kent Beck and Ralph Johnson, “Patterns Generate Architectures”, In Proceedings
of European Conference on Object-Oriented Programming (ECOOP'94), Bologna,
Italy, pp. 139–149, Springer-Verlag, 1994.

10. Kenneth Birman and Robert Cooper, “The ISIS Project: Real Experience with a
Fault Tolerant Programming System”, Operating Systems Review, pp. 103–107,
April 1991.

126 Nikander, Pärssinen

11. F. Bussman, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented
Software Architecture: A System of Patterns, Wiley, 1996.

12. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns —
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

13. Benoit Garbinato, Rachid Guerraoui, “Using the Strategy Design Pattern to Com-
pose Reliable Distributed Protocols”, The Third Conference on Object-Oriented
Technologies and Systems (COOTS) Proceedings, Portland, Oregon, June 16-20,
1997, pp. 221–232.

14. Li Gong, R. Schemers, "Implementing Protection Domains in the Java™ Develop-
ment Kit 1.2", In the Proceedings of the Network and Distributed System Security
Symposium, Catamaran Resort Hotel San Diego, California, March 11-13, 1998

15. G. Hamilton, Java Beans, http://java.sun.com:81/beans/docs/spec.html, Sun Micro-
systems, 1997.

16. P. Heinilä, OVOPS Home Page, http://www.lut.fi/dep/tite/labs/dc/ovops/in-
dex.html, Lappeenranta University of Technology, 1997.

17. Nevin Heintze and J. D. Tygar, “A model for secure protocols and their composi-
tions”, In Proceedings of the 1994 IEEE Computer Society Symposium on Re-
search in Security and Privacy, pp. 2–13, IEEE Computer Society Press, May
1994.

18. Herman Hueni, Ralph Johnson, R. Angel, “A framework for network protocol soft-
ware”, Object Oriented Programming Systems, Languages and Applications Con-
ference Proceedings (OOPSLA’95), ACM Press 1995.

19. N. C. Hutchinson and L. L. Peterson, “The x–Kernel: An architecture for imple-
menting network protocols.” IEEE Transactions on Software Engineering,
17(1):64–76, January 1991.

20. A. Karila, Portable Protocol Development and Run-Time Environment, Licentiate’s
Thesis, Helsinki University of Technology, 1986.

21. J. Malka, E. Ojanperä, CVOPS User´s Guide, http://www.vtt.fi/tte/tte22/cvops/,
Technical Research Center of Finland, 1998.

22. Wenbo Mao and Colin A. Boyd, “Development of authentication protocols: some
misconceptions and a new approach”, Proceedings of IEEE Computer Security
Foundations Workshop VII, IEEE Computer Society Press, 1994, pp. 178-186.

23. Bertrand Meyer, “The Next Software Breakthrough”, Computer, 30(7): 113–114,
IEEE Computer Society, July 1997.

24. P. Nikander, A. Karila, A Java Beans Component Architecture for Cryptographic
Protocols, In Proceedings of theUsenix Security Symposium ‘98, Helsinki Univer-
sity of Technology Laboratory of Telecommunications Software and Multime-
dia,1998.

25. P. Nikander, J. Pärssinen, Java Conduits Project Home Page, http://www.tcm.hut.fi/
~pnr/jacob/, Helsinki University of Technology Laboratory of Telecommunications
Software and Multimedia, 1997.

26. Pekka Nikander, Modelling of Cryptographic Protocols, Licenciate’s Thesis, Hel-
sinki University of Technology, December 1997.

27. H. Orman, S. O'Malley, R. Schroeppel, and D. Schwartz. “Paving the road to net-
work security, or the value of small cobblestones”. In Proceedings of the 1994 In-

A Java Beans Framework for Cryptographic Protocols 127

ternet Society Symposium on Network and Distributed System Security, February
1994.

28. S. W. O’Malley, L. L. Peterson, “A Dynamic Network Architecture”, ACM Trans-
actions on Computer Systems 10(2):110–143, May 1992.

29. Juha Pärssinen, Java Protocol Framework, Master’s Thesis, Helsinki University of
Technology, 1998.

30. Robbert van Renesse, Kenneth P. Birman and Silvano Maffeis, “Horus, a flexible
Group Communication System,” Communications of the ACM, April 1996.

31. B. Sahlin, A Conduits+ and Java Implementation of Internet Protocol Security and
Internet Protocol, version 6, Master’s Thesis, Helsinki University of Technology,
1997.

32. Douglas C. Schmidt, “Using Design Patterns to Develop Reusable Object-Oriented
Communication Software”, Communications of the ACM, 38(10):65–74, October
1995.

33. Gustavus J. Simmons, “Cryptanalysis and protocol failures”, Communications of
the ACM, 37(11):56–65, November 1994.

34. R. Thayer, N. Doraswamy and R. Glenn, IP Security Document Roadmap, Inter-
net-Draft draft-ietf-ipsec-doc-roadmap-01.txt, work in progress, Internet Engineer-
ing Task Force, July 1997.

35. Joanne Wu (Editor), Component-Based Software with Java Beans and ActiveX,
White paper, Sun Microsystems, http://www.sun.com/javastation/whitepapers/
javabeans/javabean_ch1.html, August 1997.

36. Amy Moormann Zremski and Jeannette M. Wing, “Specification Matching of Soft-
ware Components”, ACM Transactions on Software Engineering and Methodology,
6(4), October 1997.

37. Jonathan M. Zweig and Ralph E. Johnson, “The Conduit: A Communication Ab-
straction in C++”, In Usenix C++ Conference Proceedings, San Francisco, CA,
April 9–11, 1990, pp. 191–204. The Usenix Association 1990.

128 Nikander, Pärssinen

Publication III

This paper was originally published as Lehti, Nikander, “Certifying Trust,” In Imai,
Zheng (Eds.), Public Key Cryptography — First International Workshop on the Prac-
tice and Theory in Public Key Cryptography PKC’98, Pasifico Yokohama, Japan, Feb-
ruary 1998, LNCS 1431, pp. 83–98, Springer-Verlag, March 1998.

Certifying Trust

Ilari Lehti, Pekka Nikander

Helsinki University of Technology, Department of Computer Science,
FI-02015 TKK, Espoo, Finland

{ilari.lehti, pekka.nikander}@hut.fi

Abstract. A basic function of all signatures, digital or not, is to express trust and
authority, explicit or implied. This is especially the case with digital signatures
used in certificates. In this paper, we study the trust relationships expressed by
the certificates used in X.509, PGP and SPKI. Especially, we present and revise
the idea of a certificate loop, or a loop of certificates from the verifying party to
the communicating peer, requesting access or acceptance. We also show how
that kind of certificate loops can be used to explicitly express security policy de-
cisions. In the end of the paper, we briefly describe our own SPKI implementa-
tion that is specially tailored towards policy management. The implementation is
based on Java and build using Design Patterns. It functions as a separate process,
providing security services to the local kernel and applications.

1 Introduction

"Hallo!" said Pooh, in case there was anything outside.
"Hallo!" said Whatever-it-was.
"Oh!" said Pooh. "Hallo!"
"Hallo!"
"Oh, there you are!" said Pooh. "Hallo!"
"Hallo!" said the Strange Animal, wondering how long this was going on.
Pooh was just going to say "Hallo!" for the fourth time when he thought that he

wouldn't, so he said, "Who is it?" instead.
"Me," said a voice.
"Oh!" said Pooh.

In the above quote from [11], we have an access control situation. Pooh, who is in
control of the door, finds out that something wants to get in. An exchange of messages
follows. The participants seem to lack a proper communication protocol and the mes-
sages remain pretty meaningless. At the end, an attempt of identification is made, but

130 Lehti, Nikander

without proper credentials. Pooh, were he not a bear of no brain, should conclude that
the voice has no authority to enter.

We are going to illuminate the ideas of authority delegation and certificate loops.
We mainly focus on the IETF proposal called Simple Public Key Infrastructure (SPKI)
[15] and on our implementation of a Policy Manager based on that proposal. Our sys-
tem allows trust and authority to be explicitly represented in the form of certificates.

Suppose Pooh would use such a system. After deciding of a door-opening policy,
he could have issued credentials to trusted persons, perhaps even allowing them to fur-
ther delegate this authority. Then the Strange Animal could push a set of credentials
under the door and Pooh, after checking their authenticity, could have let the stranger
in. In the following subsections, we will explain these terms in the context of net-
worked entities.

1.1 Trust Models
Trust is a belief that an entity behaves in a certain way. Trust to a machinery is usu-

ally a belief that it works as specified. Trust to a person means that even if someone has
the possibility to harm us, we believe he/she chooses not to. The trust requirements of
a system form the system’s trust model. All computer systems, protocols and security
frameworks have trust requirements, i.e. they have trust relationships that the user
needs to share. We may need to have some kind of trust to the implementor of a soft-
ware which source code is not public, trust to the person with whom we communicate
on a network, trust to the computer hardware that it provides us with correct computa-
tion results, and so on. The trust relationships that we are interested in here are those
between us and some other networked entities. Those other entities may be fellow hu-
man beings or machines providing some service.

It is of equal importance to analyze the trust requirements of a protocol or a frame-
work as it is to analyze the soundness of the technical methods that it uses to achieve
security. Trust requirements may be analyzed in several ways. We may consider one
generic notion of trust and find the entities that we need to trust. The next alternative
would be to classify different types of trust and define the ways we need to trust each
entity [17]. Yet another refinement might be to define a degree of trust needed towards
the other entities [3]. The ways to categorize and analyze trust may be called trust
modeling, but with a trust model we mean the set of trust relationships of a system.

As an example for analyzing trust, a bank may tell me that the most appropriate
way to protect the data traffic between my workstation and their server is to use a cryp-
tosystem where they provide me a good-quality keypair. (This is among the most rea-
sonable security-related offers that banks seem to provide.) Not only need I trust this
bank’s capability to make good keys, I also need to trust the bank completely, because
they have the key that is supposed to be secret and identifies the service user as me.
Many people are willing to accept that, it is a bank after all. But the truth is that this
trust extends to every employee of the bank that has access to those keys. Why would I
want to take such a risk, if it is possible for me to create my own key, not known to an-
yone else? Of course, creating my own keys requires me to have enough trust in my
own key generation software and hardware.

Certifying Trust 131

1.2 Security Policies
Closely related to the concept of trust is the concept of policy. A security policy is a

manifestation of laws, rules and practices that regulate how sensitive information and
other resources are managed, protected and distributed. Every entity may be seen to
function under its own policy rules. In many cases today, these rules are very informal,
probably even unwritten. The policy of an entity or part of it is often derived according
to some hierarchy, e.g. next level in a corporate hierarchy.

Security policies can be meaningful not only as an internal code of function, but as
a published document which defines some security-related practices. This could be im-
portant information when some outsider is trying to decide whether an organization
can be trusted in some respect. This is one situation where it is of use to define the pol-
icy in a systematic manner, e.g. to have a formal policy model.

Another and a more important reason to have a formally specified policy is that a
lot of the policy information should be directly accessible by the workstations and their
software. Having a policy control enforced in software rather than relying on the users
to follow some memorized rules is essential if the policy is meant to be followed. A lot
of policy rules are already present in the operating systems, protocols, applications and
their configuration files. A central policy storage and a policy supervising software
would make these and other policy settings easier to maintain and analyze.

1.3 Digital Certificates
A certificate is a signed statement about the properties of some entity. In a digital

certificate the signature is a number computed from the certificate data and the key of
the issuer. If a certificate states something about the issuer, it is called a self-signed cer-
tificate or an auto-certificate.

Traditionally, the job of a certificate has been to bind a public key to the name of
the keyholder. This is called an identity certificate. It typically has at least the follow-
ing fields: the name of the issuer, the name of the subject, the associated key, the expi-
ration date, a serial number and a signature that authenticates the rest of the certificate.

Not all applications benefit much from a name binding. Therefore certificates can
also make a more specific statement, for example, that some entity is authorized to get
a certain service. This would be called an authorization certificate. In addition to the
fields in an identity certificate, more detailed validity fields are often needed. The "as-
sociated key" -field is replaced by the authorization definition field. The issuer and the
subject are typically not defined with names but with keys.

In all certificate systems, but especially in identity certificates, it is important to
choose a proper name space. The naming should be unique in the sense that no two
principals have the same name, though one principal may have several names. Names
should be permanent, if the principal so decides, so no enforced name changes should
occur. In the authorization certificate naming schemes, the name binding may be early
or late binding. Late means that when authority is bound to some name, the name need
not yet be bound to a key, but this can be done afterwards.

Certificates and trust relationships are very closely connected. The meaning of a
certificate is to make a reliable statement concerning some trust relationship. Certifi-
cates often form chains where the trust propagates transitively from an entity to an-

132 Lehti, Nikander

other. In the case of an identity certificate, this is trust to some name binding.
Authorization certificates often delegate some property or right of the issuer to the sub-
ject. It is also desirable that the system allows to limit the delegated authority in the
middle of a path.

1.4 Certificate Loops
The idea of certificate loops is a central one in analyzing trust. The source of trust is

almost always the checking party itself. For example, if a user wants to authenticate
that a networked server is, actually, providing the service the user wants to use, the cer-
tificates used for this check must be trusted by the user. Specifically, the first certificate
in a certificate chain must be trusted, implicitly or explicitly. Similarly, when the server
wants to check the user’s access rights, the certificates used to authenticate the user
must be trusted by the server. Again, the server must be configured to trust the certifi-
cates in the chain.

Thus, a chain of certificates, typically implicitly starting at the verifying party and
ending at the party claiming authority, forms an open arc. This arc is closed into loop
by the online authentication protocol where the claimant proves possession of its pri-
vate key to the verifying party. Such a loop is called a certificate loop. In Section 4.1,
we return to this issue in more detail.

1.5 Outline of This Paper
In the next section we will discuss the currently most popular certification systems

and compare the different certification approaches. In section 3 we are going to take a
closer look to the SPKI and some of the new ideas behind it. Section 4 shows our view
of certificate loops and presents parts of our implementation. In section 5, we will dis-
cuss the possible future directions of Internet security. The last section sums up our key
ideas.

2 Expressing Trust With Certificates

In this section we describe some concrete certificate infrastructure proposals and
compare them with respect to trust. These systems divide into two main categories:
those certifying identity and those certifying a specific authorization. In addition to
that, the systems have important distinctions in their initial trust requirements and trust
hierarchy.

2.1 Certifying Identity
We did briefly mention the name binding function of an identity certificate. More

generally, with a binding we mean some important relationship or connection between
two or more aspects of a system. In the case of certification, such aspects include the
person, the person’s name, the cryptographic key, or the remote operation about to be
performed. We would wish all the relevant connections to be strong bindings instead of
weak ones.

Fig. 1 shows the bindings of an identity certification system used for access con-
trol. The certificate chain does the binding of a key to a name. Name is authorized to

Certifying Trust 133

perform some operation according to an access control list (ACL), stored in the service
provider’s private storage. When the service is used, a key challenge between the par-
ticipants binds a key to the operation to be performed. These three bindings can be
made strong with appropriate cryptographic mechanisms.

The strength of a binding is here seen to come from the mathematics of cryptogra-
phy. In reality the strength depends on the trust relationships involved and is always
subjective. We could draw the private key and the public key separately. This would
bring one more step to the ’loop’. The binding between these two keys is the strongest
binding of all.

But, the person-name binding is subject to some vulnerability. It is rarely taken into
serious consideration at all, but usually assumed to be common knowledge. The larger
the name space, the less likely that anyone would know the name of a specific individ-
ual. Alice might suspect that her old friend Bob Smith has a name in the global direc-
tory service, but there are so many people named Bob Smith in the world that it is
unlikely Alice would know which of the thousands of Bob Smiths was in fact her old
friend [15]. In a few special cases where you know what to look for, this binding can
intuitively be considered strong, but it’s never strong in the sense of cryptographic
strength.

It can be argued that identity-based certificates create an artificial layer of indirec-
tion between the information that is certified (which answers the question "who is the
holder of this public key?") and the question that a secure application must answer
("can we trust this public key for this purpose?") [4]. Currently each application has to
re-implement the mapping of names to actions that they are trusted to perform.

Of the existing identity certifying systems around, two have been taken into quite a
common usage. PGP [12] has been a success since its introduction. X.509 [16], while
not taking an actual flying start, has lately gained some popularity despite the lack of
any working global scale X.500 directory service.

PGP. In the PGP system, a user generates a key pair that is associated with his or her
unique ID. Keys are stored in key records. A key record contains an ID, a public or a
private key, and a timestamp of when the key pair was created. Public keys are stored
on public key rings and private keys on secret key rings. Each user must store and man-
age a pair of key rings. [12]

Fig. 1. Identification certificate bindings

Person Name

Keys

Operation

certificates

ACL

challenge

134 Lehti, Nikander

If user A has a copy of user B’s public key record that she is confident of having not
been tampered with since B generated it, A can sign this copy and send it back to B,
who can give this ’certified’ key-record to other users, such as user C. A thus acts as an
introducer of B to C. Each user must tell the PGP system which individuals are trusted
as introducers. Moreover, a user may specify the degree of trust in each introducer. [5]

X.509. As in PGP, X.509 certificates are signed records that associate users’ IDs with
their cryptographic keys. Even if they also contain the names of the signature schemes
used to create them and the time interval in which they are valid, their basic purpose is
still the binding of users to keys.

However, X.509 differs sharply from PGP in its level of centralization of authority.
While anyone may sign public-key records and act as an introducer in PGP, the X.509
framework postulates that everyone will obtain certificates from an official CA. When
user A creates a key pair, she has it and the rest of the information certified by one of
more CAs and registers the resulting certificates with an official directory service.
When A later wants to communicate securely with B, the directory service must create
a certification path from A to B. The X.509 framework rests on the assumption that
CAs are organized into a global "certifying authority tree" and that all users within a
"community of interest" have keys that have been signed by CAs with a common an-
cestor in this global tree. [5]

The latest version, called X.509 v3, has a mechanism called certificate extensions.
Using these extensions it is technically possible, even if not convenient, to use X.509
certificates for authorization purposes. Neither the specifications [13] nor the current
usage of the system gives any support for such a practice, though.

Name spaces. As identity certification means binding a name to a key, the first con-
cern is the choice of a name space. PGP really has no name space, which means that
the name space is flat and any names can be used. It is common practice to use a name
of the form (Full Name, EmailAddress).

X.509 uses hierarchical naming based on the X.500 directory service, which is con-
sidered to be realized so that independent organizations and their subdepartments
would take care of naming their employees uniquely. X.500 has not come to pass and
given the speed with which the Internet adopts or rejects ideas, it is likely that X.500
will never be adopted [7]. Organization-based naming scheme also has the undesirable
property that if one changes a job, one’s name will change at the same occasion.

One of the main obstacles for a wide acceptance of a global distributed directory
service like X.509 is that most companies do not want to reveal the details of their in-
ternal organization, personnel etc. to their competitors. This would be the same as
making the company’s internal telephone directory public and, furthermore, distribut-
ing it in an electronic form ready for duplication and automatic processing [9]. A con-
trolled and secure directory service would be possible to create, but apparently there is
currently no large market demand for it.

Trust models. The PGP users can trust anyone they want; all users are equal. This
kind of freedom will cause a “web of trust” to be created between the users. In addition
to trusting a certain key as valid, it is possible to define the degree of trust to a person
as an introducer. Each individual creates, certifies and distributes their own keys. PGP

Certifying Trust 135

rejects the concept of official certifying authorities being more trustworthy than the
guy/girl next door.

One of the problems in the X.509 trust hierarchy is that it has a centralized trusted
entity as a root that everyone with their differing needs should be able to trust. The sys-
tem also implies everyone’s trust to all the nodes of the certifying tree. In X.509, the
authorization decisions are separate from the certification of identity even though all
CAs must be trusted with respect to all authorizations.

The strong part of X.509 is that the protocol for finding someone’s public key is
well defined, as long as the assumed hierarchy exists. The non-hierarchical approaches
leave something to be desired in this respect.

An interesting effort to combine the hierarchical trust model and the web of trust
was made in the ICE-TEL project [5]. The ICE-TEL calls its trust model as a web of
hierarchies -model. It is based on security domains, which can be as small as single-
user domains. A security domain encapsulates a collection of objects that all abide by
the rules defined in the domain’s security policy. Then each domain can freely choose
what other domains to trust. This has the advantage that there is no single trusted root
of the hierarchy. ICE-TEL claims to handle authorizations as well, but is essentially an
identity-based system that relies quite strongly on the use of Certification Authorities.

2.2 Certifying Authorization
The bindings of an authorization certificate system are shown in Fig. 2. The certifi-

cate chain binds a key to an operation. A key challenge also operates between an oper-
ation and a key, thus closing the certification loop. These two bindings are based on
cryptography and can be made strong. Again, we have chosen to draw the two keys to-
gether for clarity. Drawing them separately would just lengthen the certificate loop by
one step.

The person-key binding is different from the person-name binding in the case of
identity certification. By definition, the keyholder of a key has sole possession of the
private key. Therefore, either this private key or the corresponding public key can be
used as an identifier (a name) of the keyholder. For any public key cryptosystem to
work, it is essential that a principal will keep its private key to itself. If the principal
does not keep the private key protected (if the private key gets out to others to use) then
it is not possible to know what entity is using that key and no certificates will be able to
restore the resulting broken security.

So, the person is the only one having access to the private key and the key has
enough entropy so that nobody has the same key. Common names are not automati-
cally unique even if we add company information or other such constructs. So, the
identifying key is bound tightly to the person that controls it and all bindings are
strong.

The problem with the person-key binding is that from the service provider’s point
of view it looks like an undefined binding. The provider does not know who has con-
trol over the key. However, neither is this question essential in the most usual applica-
tions, nor can the traditional identity certification always answer this question. For the
cases where the real physical identity of a keyholder needs to be known, [6] discusses
different possibilities how to bind persons to keys without certification authorities. [14]

136 Lehti, Nikander

proposes so-called process server certificates, issued by commercial enterprises, to aid
in handling the extreme cases.

The feature of not having to bind keys to names is especially convenient in systems
that include anonymity as a security requirement [4], [6]. It is easy for a user to create
new keys for such applications, while creating an authorized false identity is (hope-
fully) not possible.

The most important authorization certification proposals are SDSI [14], SPKI and
PolicyMaker [4]. In section 3, we will have a more detailed discussion about SPKI.

Trust models. Authorization-based systems are very general and flexible. They have
no pre-defined trust hierarchy, but any user can define who to trust, which will lead to a
PGP-like web of trust. In authorization certificates, the type of trust is always defined
as well. The non-hierarchical approach contains fewer initial trust requirements to start
with. It allows for single organizations to build their own web of policies and certifi-
cate servers inside the organization. After this it is possible to extend the trust to related
organizations that you do your business with. It is immediately possible to start writing
certificates for others to have when using your resources or to request certificates
which allow the use of other services. Furthermore, you do not have to trust a particu-
lar CA if you do not want to, and you can choose to trust only some properties of a cer-
tain CA. Having the possibility to choose who to trust and in what respects allows for a
great flexibility. It is also important that delegated authority can be limited in the mid-
dle of an authorization path.

PolicyMaker is even more flexible than SPKI/SDSI. This can be seen either as a
positive or a negative thing. All the mechanisms and conventions that are present in an
SPKI-like system must be separately constructed in PolicyMaker filters every time
they are needed. Filter complexity may make the system vulnerable to denial of service
attacks.

A recommendation for certificates to bind keys to a certain task instead of certifi-
cates binding keys to a person can be seen in ’the explicitness principle’, stated in [1],
for example. It says that in order to make cryptography robust, everything (assump-
tions, goals, messages, etc.) should be stated as specifically as possible. It is more spe-
cific to define an operation for a key than to bind the key to a person.

Fig. 2. Authorization certificate bindings

Person Keys Operation
certificates

challenge

Certifying Trust 137

3 Simple Public Key Certificate

The SPKI is intended to provide mechanisms to support security in a wide range of
Internet applications, including Internet security protocols, encrypted electronic mail
and WWW documents, payment protocols, and any other application which will re-
quire the use of public key certificates and the ability to access them. It is intended that
the Simple Public Key Infrastructure will support a range of trust models. [15]

3.1 Principals and Naming
The SPKI principals are keys. Delegations are made to a key, not to the keyholder.

However, long keys are inconvenient for a mere human to handle. Using names instead
of keys is necessary at least in the user interfaces. Names in the certificates also allow
late binding, which means that one can attach some properties to a name and later de-
fine or change the name-key binding. Names can also serve the purpose of a certain
role. Therefore it is useful to also have other names than keys. SDSI abandoned the
idea of a global name space and introduced linked local name spaces. SPKI uses this
same naming scheme, where everyone can attach names to keys and every name is rel-
ative to some principal. The names can be chained so that speaking about Alice’s
Mother consists of a name Alice in my name space and a name Mother in Alice’s name
space.

Names need not always refer to single users, but they can refer to a set of users as
well. If an issuer makes a name-key binding while another similar binding to the same
name is still valid, these two certificates do not conflict but define a group with at least
two members. It is, of course, possible to revoke the earlier one, if the intention is to
change the binding to a new. In fact, because SPKI certificates always increase the sub-
ject’s properties, we will never have to deal with a situation where two certificates
would conflict.

An SPKI certificate is closer to a "capability" as defined by [10] than to an identity
certificate. There is the difference that in a traditional capability system the capability
itself is a secret ticket, the possession of which grants some authority. An SPKI certifi-
cate identifies the specific key to which it grants authority. Therefore the mere ability
to read (or copy) the certificate grants no authority. The certificate itself does not need
to be as tightly controlled. [15]

From the certificate usage point of view, the involved principals are called the
prover and the verifier. It is the responsibility of the prover to present the needed certif-
icates. Based on these, the verifier determines whether access is granted.

3.2 Certificate Format
The current SPKI proposal uses S-expressions, a recursive syntax for representing

octet-strings and lists. An S-expression can be either an octet-string or a parenthesized
list of zero or more simpler S-expressions.

The core of the syntax is called a sequence. It is an ordered collection of certifi-
cates, signatures, public keys and opcodes taken together by the prover. A signature re-
fers to the immediately preceding non-signature object. Opcodes are operating
instructions, or hints, to the sequence verifier. They may, for example, say that the pre-

138 Lehti, Nikander

vious item is to be hashed and saved because there is known to be a hash-reference to it
in some subsequent object.

The fields of an SPKI certificate are: version, cert-display, issuer, issuer location,
subject, subject location, delegation, tag, validity, and comment. All of these, except is-
suer, subject and tag, are optional fields.

Version is the version number of the format. Cert-display is a display hint for the
entire certificate. Issuer is a normal SPKI principal, i.e. a key or a hash of key. The lo-
cation-fields define a place where to find additional information about that principal.
For example, the issuer location may help the prover to track down previous certifi-
cates in the chain. Delegation is a true/false -type field defining whether the authority
can be delegated further. Comment-field allows the issuer to attach human readable
comments. Validity defines the conditions which must be fulfilled for the certificate to
be valid. It is possible to define a time range of the validity and a detailed description
of the chosen validation method.

The most complex fields are the subject and the tag. The subject can be either a key,
a hash of key, a keyholder, an SDSI name, an object or a threshold subject. A keyholder
subject refers to the flesh and blood (or iron and silicon) holder of the referenced key
instead of to the principal (the key). A threshold subject defines N subjects, K of which
are needed to get the authority. The tag contains the exact definition of the delegated
authority.

3.3 5-tuple Reduction
Five of the certificate fields have relevance for security enforcement purposes: is-

suer, subject, delegation, authority (tag) and validity. These security-relevant fields can
be represented by a "5-tuple":

(I,S,D,A,V)

In the basic case, a pair of 5-tuples can be reduced as follows [15]:

(I1,S1,D1,A1,V1) + (I2,S2,D2,A2,V2)

becoming

(I1,S2,D2,A,V)

if S1=I2 (meaning that they are the same public key)
and (D1 = TRUE)
and A = intersection(A1,A2)
and V = intersection(V1,V2)

The validity intersections are trivial. The authority intersections are defined by the
tag algebra. The user does not have to specify an intersection algorithm for his tags, but
one does have to write the used tags in such a way that the standard intersection algo-
rithm gives the desired behavior [15].

Certifying Trust 139

By reduction, some chains of authorization statements will be reduced to the form:

(Self, X, D, A, V)

where "Self" represents the entity doing the verification. Any authorization chain
not reducing to a 5-tuple with Self as an issuer is not relevant to decisions by Self.

4 Implementation

We have created a prototype of an SPKI based policy manager. The prototype is
written in Java, using the Design Pattern structures [8] in order to promote software re-
use and build on best known practices. The purpose of the implementation is to facili-
tate real life tests with policy based certificates and management.

Before going to the details, we take a look at a typical certificate usage and then in-
troduce some of the architectural elements involved.

4.1 Typical Transaction
So far we have talked about certificates and certificate chains. When a service is

used, it must be known that the contacting user really is the entity that is authorized by
the given chain. At this point, if not before, the user proves the possession of the iden-
tifying key to the verifier. This action closes the authorization chain so that every use-
ful chain can be seen as a loop.

Fig. 3 shows a basic authorization loop implemented with SPKI certificates. The
three certificates are possibly created long before they are used. The server has dele-
gated the permission to access the service to its policy administrator. In this certificate,
the delegate-property is set to true so that the policy admin may make further delega-

Fig. 3. Basic authorization certificate loop

issuer

subject

(Self, PAS, may delegate, access
to “Server”, time constraint)

Server’s

PAS key

policy admin
User’s

PAU key

policy admin

Self key

Server
User key

User

(PAS,PAU, may delegate, lim-
ited access to “Server”, forever)

(PAU, User, no delegation, access
to “Server”, time constraint)

Proves possession of User key

140 Lehti, Nikander

tions. The permission propagates through the policy administrators and their certifi-
cates to the service user.

To be complete, this example needs also another loop. Fig. 4 shows the correspond-
ing service identification loop. This is used by the user to authenticate the identity of
the service provider, and it may even be completed before the service is used for the
first time. This loop does not have to travel the same path as the authorization loop.
The middle nodes need necessarily not be official Certification Authorities (CAs) as
perhaps suggested by the graph, but the assurance of the server identity and services
may sometimes be gained via less official paths.

When the actual service usage takes place, the user provides the authorization cer-
tificates to the server. Some systems have proposed a central repository from where the
server makes a search. SPKI could use such a storage. However, in the case of authori-
zation certificates, the central repository can be seen as a privacy threat unless it is
somehow protected against general searches.

In addition to the server and the user, there may be other participants in the certifi-
cate usage process. Some other entity may reduce part of the chain and issue a Certifi-
cate Reduction Certificate (CRC), which the server may use as part of the final
reduction. One reason for using CRCs may be that the full chain contains certificate
formats which the server does not understand. The server may also make its own CRCs
for performance reasons, so that it need not make the same reduction several times.

4.2 Design Patterns
Design patterns are simple and elegant solutions to specific problems in object-ori-

ented software design. [8] describes a set of such patterns to start with. These pattern
descriptions can widen our design vocabulary in an important way. Instead of describ-
ing the designs on the level of algorithms, data structures and classes, we can catch dif-
ferent aspects of the larger behavior with a single word. The benefits of using a pattern

Fig. 4. Basic service identification loop

issuer

subject

(CAS, Server, no delegation,
identify "Server", forever)

CAS key CAU key

Server key
Server

Self key

User

(CAU, CAS, may delegate, iden-
tify Services, time constraint)

(Self, CAU, may delegate,
identify, time constraint)

Proves possession of Server key

CA trusted
by the user

Service
certifier

Certifying Trust 141

are greatly amplified at the stage of documentation or when discussing the design with
another person who is familiar with patterns. [8] classifies patterns for three different
purposes: creational, structural and behavioral patterns.

4.3 Policy Manager Implementation
Our prototype consists of a main module and a number of protocol adapters. The

latter ones interface the policy manager to various security protocols such as IPSEC
and ISAKMP. We plan to add support for additional security protocols later on.

The basic structure of the Policy Manager is shown in Fig. 5. It has a control part,
which is the main thread waiting for some tasks to appear to the task queue. The inter-
face mechanisms are called adapters and each of them is implemented as a separate
thread. The primary task queue is filled by the three different adapters: the applications
adapter, the ISAKMP-adapter and the IPSEC-adapter. The exact usage and output of
the Policy Manager depends on the interface created by the specific adapter.

The certificate handling subsection of the main module reads in chains of SPKI
certificates, reduces them on demand, and participates on ISAKMP based authentica-
tion protocols. The result is a highly configurable ISAKMP security association policy
that allows the properties of the created associations to be set up according to the re-
strictions and limitations expressed with the certificates.

In addition to handling certificate data, the system makes access control decisions,
maintains secure network connections and stores policy information. It may also help
other protocols and applications in their security-related tasks.

Fig. 5. The structure and connections of Policy Manager

Security

Interface Mechanisms

Interface Mechanisms

Protocol
Mechanisms

Control Part

MechanismsCertificate
Cache

UDP

Applications

System
Management Other

Entities
Variables

142 Lehti, Nikander

The function of maintaining network connections consists of establishing secure
connections to other workstations, accepting connection requests and storing connec-
tion information. This may have to be done for the purposes of several different proto-
cols. A secure connection between the parties is usually a prerequisite for any other
communication, e.g. requesting a service. The protocols can also have other questions
or mappings for the Policy Manager to resolve.

The service provider may use another trusted policy server, which may assist it in
access control decisions. There may, for example, be one such a trusted server in an or-
ganization. Even if the service provider has all the needed information concerning the
requested resource, it may have to ask for help in understanding all components of the
request. Besides answering access control requests, the Policy Manager may need to
create such requests or to parse and store other credential information. One of the re-
sources to control is the policy database that it maintains: who can read or change what
policies?

4.4 SPKI Implementation
We have designed an internal format for certificates. This format can hold the cer-

tificate information from several different transfer formats, for example PGP, X.509
and SPKI. This generic format is largely based on the SPKI structure and can therefore
also contain and reduce certificate sequences. Certificate data can be stored to a certifi-
cate cache, which is a part of the trusted security variables of the system.

The data of a single certificate is stored in a tree-like class structure, part of which
is shown in Fig. 6. The structure is implemented according to the Composite pattern,
which is a way to represent part-whole hierarchies in a tree structure. It enables clients
to treat all objects in the composite tree uniformly. All of the classes in the structure are
either composites or byte strings. Composites contain other composites and byte
strings.

Arriving certificate data is first stored in an instance of a class specific to that for-
mat. The conversions between specific formats and generic format are done using the
Visitor pattern. Visitor travels through an object structure performing some operation
to the components. The operation is defined in the particular visitor and not in the com-
ponent classes. This way we can define new operations by making a new visitor and
without touching the complex object structure.

5 Future Directions

"Ah!" said Eeyore. "Lost your way?"
"We just came to see you," said Piglet. "And to see how your house was. Look,

Pooh, it's still standing!"
"I know," said Eeyore. "Very odd. Somebody ought to have come down and pushed

it over."
"We wondered whether the wind would blow it down," said Pooh.
"Ah, that's why nobody's bothered, I suppose. I thought perhaps they'd forgotten."

Certifying Trust 143

We do not want the Internet to look like Eeyore’s house and rely to the hope that
nobody bothers to push it down. We have to find out the possible security threats and
use all the available means to strengthen the construct. IPSEC [2] and IPv6 are going
to incorporate security to the network layer of the protocol stack instead of leaving it
purely as an application layer problem. This is not just a philosophical question about
where the peer-to-peer security functions should be implemented. The routing and
other functions of the whole stack need to be protected also. Nowadays it is all too easy
to spoof the routing or the name system and the consequences of this may be cata-
strophic.

We are going to have a cryptographic key infrastructure of some kind. In addition
to this, we will need means by which entities are authorized to do something. Whether
this functionality will be combined with the key infrastructure, like in the case of
SPKI, or primarily be done with separate private Access Control List -like constructs,
is still an open question. It is practically impossible to predict what the Internet Secu-
rity Infrastructure will be like in ten years.

6 Conclusions

Digital certificates can be interpreted as expressions of trust. From this viewpoint,
certifying user identity is pretty meaningless. Winnie the Pooh doesn’t benefit much

Fig. 6. Fields of a certificate

144 Lehti, Nikander

from the information that his new friend’s name is Tiger according to Piglet, however
true and trusted this piece of information was. In addition to that, Piglet must tell him
how trustworthy Tiger is (or, alternatively, how trustworthy tigers are in general).

Thus, in order to successfully express trust — and thereby security policy con-
straints — we have to add semantic meaning to the certificates. SPKI, and its cousins
SDSI and PolicyMaker are initial steps on this path. The idea behind SPKI is still very
immature. Its possibilities and restrictions have not been explored in depth. The current
drafts are very much in the state of development. In spite of these facts, the concept
looks very promising. We hope that the results of the IETF working group will get
enough publicity so that the critical mass of knowledge on these intricate subjects will
be reached.

The name of the person is an essential fact in access control only if we happen to
use a mechanism that binds the access rights to this name. This is almost never neces-
sary. By binding the rights straight to the key, we get a simpler, more tailor-made sys-
tem that has additional benefits, such as anonymity. Unless we want to hurry our
journey towards the Orwellian society of no protection of intimacy, this is very impor-
tant.

References

1. Anderson, R., Needham, R.: Robustness principles for public key protocols, In Pro-
ceeings of Crypto’95, 1995.

2. Atkinson, R.: Security Architecture for Internet Protocol, RFC 1825, Naval Re-
search Laboratory, 1995.

3. Beth, T., Borcherding, M., Klein, B.: Valuation of Trust in Open Networks, Univer-
sity of Karlsruhe, 1994.

4. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management, In Proceed-
ings of the IEEE Conference on Security and Privacy, 1996.

5. Chadwick, D., Young, A.: Merging and Extending the PGP and PEM Trust Models
- The ICE-TEL Trust Model, IEEE Network Magazine, May/June, 1997.

6. Ellison, C.: Establishing Identity Without Certification Authorities, In Proceedings
of the USENIX Security Symposium, 1996.

7. Ellison, C.: Generalized Certificates, http://www.clark.net/pub/cme/html/cert.html.
8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of Re-

usable Object-Oriented Software, Addison-Wesley, 1995.
9. Karila, A.: Open Systems Security - an Architectural Framework, dissertation, Hel-

sinki University of Technology, 1991.
10. Landau, C.: Security in a Secure Capability-Based System, Operating Systems Re-

view, pp. 2-4, October 1989.
11. Milne, A. A.: Winnie-the-Pooh, The House at Pooh Corner, Methuen Children's

Books, 1928.
12.Zimmermann, P.: The Official PGP Users Guide, MIT Press, 1995.
13. Housley, R., Ford, W., Polk, W., Solo, D.: Internet Public Key Infrastructure, Part I:

X.509 Certificate and CRL Profile, draft-ietf-pkix-ipki-part1-05.txt, 1997.

Certifying Trust 145

14. Rivest, R., Lampson, B.: SDSI - A Simple Distributed Security Infrastructure,
1996.

15. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: Simple
Public Key Certificate, Internet Draft, draft-ietf-spki-cert-structure-02.txt, 1997.

16. International Telegraph and Telephone Consultative Committee (CCITT): Recom-
mendation X.509, The Directory - Authentication Framework, CCITT Blue Book,
Vol VIII.8, pp. 48-81, 1988.

17. Yahalom, R., Klein, B., Beth, T.: Trust Relationships in Secure Systems - A Dis-
tributed Authentication Perspective, In Proceedings of the IEEE Conference on Re-
search in Security and Privacy, 1993.

146 Lehti, Nikander

Publication IV

This paper was originally published as Nikander, Viljanen, “Storing and Retrieving In-
ternet Certificates,” in Knapskog, Brekne (Eds.), Proceedings of NordSec -98 — The
Third Nordic Workshop on Secure IT Systems, Trondheim, Norway, 5–6 November,
1998.

Storing and Retrieving
Internet Certificates

Pekka Nikander, Lea Viljanen

Helsinki University of Technology, University of Helsinki
pekka.nikander@hut.fi, lea.viljanen@cc.helsinki.fi

Abstract. Effective storing, retrieval and interpretation of certificate chains is
a difficult problem. The original X.500 and X.509 proposals, with their rigid glo-
bal naming scheme and complex access protocols have proved to be less than
optimal, leading to various short-cuts. For example, the de facto X.509 retrieval
protocol appears to be TCP/IP based LDAP instead of the original OSI based Di-
rectory Access Protocol, DAP.

In this paper we present a completely new architecture for administration,
storing and retrieval of digital certificates. Instead of X.509 certificates we base
our architecture on SPKI, a more flexible certificate format proposed by the
IETF. The new architecture allows complex certificate chains to be effectively
and easily administered, using the Internet Domain Name Service, or DNS, as
the certificate storage, replication and retrieval mechanism. The interpretation of
the certificates is based on our Internet Security Policy Daemon architecture.

1 Introduction

A digital certificate is a signed statement that represents knowledge or belief ex-
pressed by its issuer. Traditionally, certificates have been used to express the issuer’s
knowledge (or belief) that the holder of the certified key has a certain name, e.g., a Dis-
tinguished Name, in some predefined domain. This naming information may also, im-
plicitly, denote some kind of authorization or trust expressed by the issuer.

More recently, a number of independently developed alternatives to the identity
certificate schemes manifested in X.509 [10] and PGP [11] have been presented. The
PolicyMaker prototype [3] by Blaze, Feigenbaum and Lucy introduced the idea of cer-
tifying some kind of policy authority, or authorization, instead of a name. In a way, the
PolicyMaker certificates represent capabilities. Simultaneously, the SDSI proposal by
Rivest et al [9] brought forth the idea of linked, private namespaces instead of a single,
global namespace. Originally developed independently by Ellison and others, the
SPKI proposal [6] by an Internet Engineering Task Force (IETF) SPKI working group,

148 Nikander, Viljanen

took ideas from both of these developments, and along with some original ideas it is
being developed into a comprehensive, flexible certificate system.

The Internet Domain Name System (DNS) [8] is a distributed, fault tolerant direc-
tory system originally developed for storing and retrieving information about Internet
hosts. The main usage of the DNS was, and is, the conversion of Internet host names
into addresses, and vice versa. However, from its very beginning, it has been possible
to store all kinds of other information within the DNS infrastructure as well. Recently
there are proposals that allow digital signatures and certificates to be stored in the
DNS.

In this paper we show how the DNS certificate records [4] can be used to effec-
tively store and retrieve SPKI certificates. Furthermore, we show how the certificates
should be organized within the distributed DNS tree so that both their administration
(i.e. addition and removal) and retrieval is practical and effective. Extending ideas pre-
sented by Aura [1][2], we also describe a retrieval algorithm with a number of heuristi-
cal improvements.

The rest of this paper is organized as follows. In Sect. 2 we describe the SPKI pro-
posal in sufficient detail to base our future discussion on it. In Sect. 3 we describe the
Internet Domain Name System (DNS), the proposed certificate resource record format,
and a method to store information about individual users (instead of host computers)
within a DNS domain. Next, in Sect. 4, we show how the DNS may be used as a repos-
itory to effectively store and retrieve SPKI certificates. Sect. 5 outlines an example,
where SPKI certificates are used to control access to a company extranet. Finally, in
Sect. 6, we draw some conclusions.

2 SPKI

The Simple Public Key Format and Infrastructure (SPKI), is an Internet proposal (In-
ternet draft), work in progress produced by an IETF working group. The ideas behind
the SPKI proposal were partly originally developed by Carl Ellison, its primal pro-
moter, partly drawn influence from the SPKI and PolicyMaker papers [6][3], and
partly developed through the discussions and arguments by the working group.

So far, the SPKI has been developed into three separate draft documents, one de-
scribing the basic ideas behind the proposal, the second describing the certificate for-
mat and the third containing examples. In Sect. 2.1, we briefly describe the format. In
Sect. 2.2, we discuss four different types of certificates that are typically needed to re-
solve security policy decisions. These types are used to express identity, permissions,
delegation, and trust. In Sect. 2.3, we show how these four different types can be used
to create so called certificate loops that are needed in resolving trust problems.

2.1 Certificate Format and Semantics

Conceptually, a SPKI certificate consists of five fields that have security relevance, and
a signature. The five fields are used to denote the Issuer, the Subject, the Delegability,
the Authority, and the Validity of the certificate. The Issuer and Subject are usually ex-
pressed as public keys, not as names as in e.g. X.509. This allows the Issuer and Sub-

Storing and Retrieving Internet Certificates 149

ject to be relatively anonymous, if desired. The Delegability is a binary field that
denotes whether the Subject may further delegate the Authority or not. The Authority
field identifies some Authority granted by the Issuer to the Subject. The interpretation
of this field is solely defined by the Issuer; we return back to this point later. Finally,
the Validity field contains information about when the certificate is valid, how to re-
trieve a corresponding Certificate Revocation List (CRL), or how to otherwise check
the certificate’s validity on-line.

More formally, a SPKI certificate may be expressed as a five tuple (I,S,D,A,V),
where I is the public key of the Issuer, or an one way hash of the public key, and S is
the public key of the Subject, a hash of the public key, or a local name of the Subject in
the Issuer’s local name space. D is the Delegation bit, and either true, denoting that the
Authority may be further delegated, or false, effectively forbidding delegation. A is the
Authorization. V is the Validity; according to the SPKI proposal, it is an URI that pro-
vides information how to check the certificates validity. The on-line validation can be
performed using DNS queries, too.

From a semantic point of view, the Authority is the most important and most versa-
tile field in the certificate. Basically, the meaning of the Authority field is always pri-
marily defined by the Issuer, i.e., the signer, of the certificate. That is, since the Issuer
has signed the certificate, it must be assumed that it knows, exactly, what the certificate
is supposed to express. However, for all practical purposes, we must assume some kind
of standard format for the Authority so that delegated certificates may be effectively
handled and reduced. The current SPKI proposal has resolved this problem by defining
an abstract, solely syntactic tag algebra. This algebra, along with its so called star
forms allows sets of named authorities to formed. The algebra allows the sets to be ma-
nipulated by forming unions, intersections and ordered sets.

Given two SPKI certificates, (I1, S1, true, A1, V1) and (I2, S2, D, A2, V2), where
S1 = I2, i.e., where the subject of the first is the issuer of the second, one may create a
new SPKI certificate (I1, S2, D, A, V). This certificate is the result of the resolving of
the delegation present in the original certificate pair. In the resulting certificate, the is-
suer is that of the first certificate, the subject that of the second one. Delegation is di-
rectly inherited from the second certificate.

The authority and validation fields are more interesting. By definition, the result au-
thority is the intersection of the authorities, i.e., A = intersection(A1, A2). Similarly,
the validity is an intersection, V = intersection(V1, V2). In the original proposal, the
authority intersection is defined by the tag algebra.

Local names and the SPKI group concept. As mentioned earlier, the Sub-
ject of an SPKI certificate may be a local name instead of a public key or a key hash.
This feature allows late binding of keys by the certificate’s issuer. It also allows the for-
mation of SPKI groups.

Let us consider a simple example. Alice, the Issuer, wants to give Carol, a col-
league of hers introduced to her by her very trusted fried Bob, the Authority A. If she
knew Carols public key, KCarol, she could create a certificate (KAlice, KCarol, false, A,
some validity). However, if she only knew Carol through Bob, and doesn’t yet know
Carol’s public key, she can resort to trust Bob. A certificate (KAlice, KBob’s Carol, false,
A, some validity) effectively expresses the same authority by identifying Carol through

150 Nikander, Viljanen

a local name in Bob’s name space. That is, Alice refer’s to Carol by saying that Carol is
someone in the name space maintained by Bob, i.e., the entity that possesses the ability
to create certificates signed by KBob.

In the same way, Alice can create a group of people by creating a certificate of the
format (KAlice, KAlice’s Group, D, A, V), and a number of identity certificates of the
format (KAlice, KGroupMember, false, belongs_to_Group, V’).

As a further refinement, SPKI allows the subject to be a treshold. Instead of being a
key, a key hash, or a name, the Subject field may denote a group of N keys, K of which
are needed simultaneously in order to allow the authority of the certificate to be exe-
cuted. For example, if any two of the three top executives of a company are needed to
approve purchases exceeding $100,000, this may be expressed with an SPKI certificate
as (KCompany, 2-of-3 KManager1 KManager2 KManager3, D, may_approve_pur–
chase_exceeding_$100000, V).

2.2 Certificate Types

Based on our initial analysis, the practical usage of SPKI certificates in networked ac-
cess control decisions seems to require at least four different kinds of certificates.
These certificate functions express Identity, Permissions, Delegation, and Trust. The
differences between these categories are more semantical than formal. We describe
each of these categories in turn.

Identity. Basically, an Identity certificate denotes that the Subject has a certain name
in the Issuer’s name space. However, they can also be used to express more complex
identities. For example, the Issuer may express its belief that a certain service, identi-
fied by a name in some foreign name space, is provided by the Subject. Naturally, such
a certificate may not be blindly trusted, but its trustworthiness must first be resolved.

In this paper, we denote a simple identity certificate as (KIssuer, KSubject, false, KIs-

suer’s Name, V). Similarly, a name claim can be expressed as (KIssuer, KSubject, false,
Kother’s Name, V).

Permissions. A certificate may be used to express that the Subject has a certain
right. If we consider an access control function performed by a network entity, this
right may represent permission to access a facility. On the other hand, depending on
application, such a right may express almost anything, e.g., permission to drive a vehi-
cle1.

A statement, expressed by the Issuer, that the Subject has a certain access permis-
sion, may be expressed as (KIssuer, KSubject, false, Perm, V). Here, the Authority Perm
is understood by the eventual verifier to give permission to access the controlled facil-
ity.

Delegation. A delegation is a certificate that authorizes the Subject to issue certifi-
cates on the behalf of the Issuer. We distinguish it from the next type of certificates, or
trust certificates, since the authority to issue certificates is usually somehow restricted.
For example, the security administrator of a company A may issue a certificate that al-
lows the security administrator of another company, B, to issue certificates that author-

1 Such an certificate would be the digital counterpart of a physical driver’s license.

Storing and Retrieving Internet Certificates 151

izes access to one of the computers owned by A, but only to employees of the company
B, and only for a limited time.

Trust. The final form of certificates that we consider expresses trust. In this context
we want to denote full or absolute trust by the Issuer on the Subject. That is, the Issuer
trusts the Subject to be capable of creating any certificates on its behalf. Such a trust
certificate may be issued for a limited time only, however. In other words, the real dis-
tinction between a trust and a delegation certificate is in the authority field. While a
delegation certificate allows the Subject to issue certificates for a specific authority, a
trust certificate allows the Subject to issue certificates for any purpose.

2.3 Certificate Loops

According to the idea of the SPKI proposal, certificates are chained together into se-
quences. Typically, the last certificate within a sequence is an identity or permission
certificate, giving some identity or application specific authority to the final Subject.
The final certificate is preceded by zero or more delegation certificates, passing the
naming or permission authorization. The first certificate within the sequence must be
issued by the verifier of the sequence. It is typically a trust or a delegation certificate.

When a certificate sequence is used in order to prove identity or permission to ac-
cess, the final Subject of the sequence proves the possession of its private key using a
conventional public key authentication protocol. In a way, the execution of the authen-
tication protocol can be viewed as an on-line creation of a virtual certificate. The vir-
tual certificate states, in a way, that the final Subject wants to use the authorization
granted to it by the certificate sequence.

From a topological point of view, the execution of the authentication protocol
closes a certificate sequence into a loop. That is, the first certificate in the sequence is
issued by the verifier, who is also the subject of the virtual certificate created by the au-
thentication protocol.

A certificate loop to verify service identity. Let us first consider the use of
SPKI certificates for a more traditional certificate function, namely verifying the iden-
tity of a network service. This is a well known application domain, and even X.509
certificates have been successfully used to implement this function. The main benefit
of the SPKI system is to make all trust relationships explicit [7].

In this example, a user U wants to gain assurance that a networked server S indeed
provides the service that the user wants to access. Instead of a usual Certificate Author-
ity (CA) hierarchy, we envision a mesh, or loosely coupled network of trust or identity
authorities, or TAs. Basically, the user explicitly decides which of the TAs to trust, and
how much. For example, the user may trust one authority to identify banking services
and another authority to identify on-line stores that should be trusted to accept elec-
tronic money. The user may also control how much transitive trust to place on each of
the trusted TAs. On the other hand, the identity of the service must be certified by one
of the TAs that the user either directly or transitively trusts.

This situation is displayed in Figure 1. All of the parties, the user U, the Server S,
the trust authority TAU that the user directly trusts, and the trust authority TAS certify-

152 Nikander, Viljanen

ing the service’s identity, each have their corresponding key pair. The user has ex-
pressed its trust on TAU by creating an appropriate trust certificate. TAU has then
delegated some of the trusted identity authority to TAS, either directly or through some
path that is acceptable to the user. Finally, TAS certifies that the server S really pro-
vides the desired service.

A certificate loop to verify the user’s access rights. Now, let us consider
a slightly more complicated case. In this case the server S wants to verify that the user
U really has right to access the service. Traditionally this has been accomplished by us-

(TAU, TAS, may dele-
gate, identify Services,

Fig. 1. Basic service identification loop

issuer

subject

(TAS, S, no delega-
tion, identify "Server",
forever)

Key: TAS Key: TAU

Key: S
Server

Key: Self

User

(Self, TAU, may
delegate, identify, time
constraint)

Proves possession of the key S

TAU, trusted
by the user

TAS, service
certifier

Fig. 2. Basic authorization certificate loop

issuer

subject

(Self, PAS, may dele-
gate, access to “Server”,
time constraint)

Server’s

Key: PAS

policy admin
User’s

Key: PAU

policy admin

Key: Self

Server
Key: U

User U

(PAS,PAU, may dele-
gate, limited access to
“Server”, forever)

(PAU, U, no delega-
tion, access to “Server”,
time constraint)

Proves possession of the key U

Storing and Retrieving Internet Certificates 153

ing an identity scheme similar to the one above, and a separate access control list
(ACL) stored into the server. However, when using SPKI certificates the ACL is unnec-
essary. In fact, with SPKI certificates we can verify the client’s access rights even when
the client desires to stay anonymous.

In this example, the server S is administered by a policy administrator PAS. Typi-
cally, the PA may be the security officer of the organization owning the server S. This
relationship is represented digitally as a trust certificate signed with KS, denoting that
the server S (unconditionally) trusts on the policy administrator PAS. This policy ad-
ministrator, on its behalf, delegates a right to grant access to the server to the policy ad-
ministrator of the user’s organization, PAU. PAU in turn grants the user U a right to
access the server S. This situation is displayed in Figure 2.

3 The Domain Name System

The Domain Name System (DNS) [8] is a global distributed database. It was origi-
nally created to map Internet host names to IP addresses and vice versa, distributing
the namespace and control to individual organizations. It has proven to be very effi-
cient and versatile, and has become a critical part of the Internet infrastructure.

In Sect. 3.1 we have a brief look into the basic DNS naming structure, the follow-
ing section explores ways to name services and users. Sect. 3.3 introduces work in
progress to define a certificate resource record type.

3.1 Overview
The DNS naming space is a classical tree structure consisting of arcs and nodes.

Nodes have a label, which can be considered as a text string for our purposes. The null
label is reserved for the root node. Sibling nodes cannot have the same label. The do-
main name of a node is the list of the labels on the path from the node to the root of the
tree. In the textual notation a dot “.” is used as the separator between node labels (or
can be thought as an arc label).

Nodes contain data, which is arranged as typed resource records (RR). Resource
record types define what kind of data can be stored in the DNS, for example, IP-ad-
dresses, free text etc. Creating new resource record types requires IETF standardiza-
tion action.

By the realization of DNS being a critical component of the Internet and it lacking
any form of data origin authentication, DNS security extensions were created by the
IETF DNSSEC working group. The DNS security (DNSSEC) standard [5] specifies
three new security related resource record types, of which the public key (KEY) record
type is relevant to this paper.

The KEY is a general purpose public key resource record type. In our schema it is
used to attach public keys to keyholders, i.e entities who need keys in the Internet
(hosts, services and users).

3.2 Naming Non-Host Entities

Services. The DNS system is focused on naming physical hosts and storing their at-
tributes (IP-address, mail exchange information etc.). Hosts in turn implement serv-

154 Nikander, Viljanen

ices. To be able to store public key information for a service, we need to name it in the
DNS. Fortunately, this is standard practice today; most well managed domains use
service aliases like www.acme.com or mail.acme.com to point to the real host or
hosts implementing the service. This indirection enables managers to change the actual
host without reconfiguring a score of client programs.

Users. Representing users is a more difficult problem. There is no user naming per se
in the domain naming scheme. Users do not translate easily into hosts. However, there
is a way to specify a user by way of his or hers mailbox address by replacing the @-
separator with a dot, for example user@acme.org would be user.acme.com in
the DNS mailbox name syntax [8]. This type of user naming is used by the DNSSEC
standard if mapping users to DNS is needed.

However, a major consideration with users is the privacy issue. The storage system
should not reveal any more information on the user than is required by the authentica-
tion or authorization process. Since SPKI certificate based authorization does not need
to reveal the user name to the service, neither should the DNS. Thus the mailbox type
of naming is not a good solution for SPKI certificates. For X.509 certificates it may
suffice.

To store public keys and SPKI certificates we need the user to DNS name mapping
to be one way only. Therefore we could use an one way hash function (for example
MD5) to create a hash string from the user name and/or other account information to
be used as a DNS name component instead of the mailbox. For example the MD5
algorithm hashes “Some User” to “12e472e68a4169fb904d41ac30dbd1f4”. The corre-
sponding domain name would be 12e472e68a4169fb904d41ac30dbd1f4\
.acme.com.

The hash algorithm should be selected keeping in mind that the maximum length of
a single DNS label is 63 bytes, i.e 252 bits using hexadecimal encoding. If more bits
are needed, a more effective encoding can be chosen, e.g., BASE64. The DNS standard
itself allows almost all byte values to be used in the labels.

To prevent this technique being subject to input guessing attack, we can use keyed
hash. The probability of a duplicate hash is algorithm dependent but generally suffi-
ciently small.

3.3 The Certificate Resource Record Type

To store certificates in the DNS structure we need a new resource record type defined.
This work is currently in progress [4]. The aim is to create a single certificate record
type which is able to contain any kind of certificate (e.g X.509, SPKI, PGP or some
other yet undefined).

The CERT record format currently consists of four elements: type, key tag, algo-
rithm number and the certificate or certificate revocation list itself. The type element
specifies the certificate type. The key tag is a 16 bit hash of the subject’s key. The tag is
used to quickly determine which KEY and CERT records belong together. The algo-
rithm numbers are assigned by IANA, currently only one number (1 for MD5/RSA)
has been assigned. The certificate or CRL itself is stored in a BASE64 encoded string
or strings. Thus the internal structure of the certificate is not visible in the DNS.

Storing and Retrieving Internet Certificates 155

4 DNS as the SPKI Certificate Storage

Given the SPKI certificate semantics and the DNS certificate resource record, we now
propose an effective and simple way to store and retrieve SPKI certificates using the
DNS. Basically, we store copies of the relevant SPKI certificates at suitable locations
within the DNS hierarchy so that on-line creation and verification of SPKI certificate
sequences and loops becomes relatively straightforward. Currently we are implement-
ing a prototype of the certificate and trust management system based on this proposal.

In Sect. 4.1, we describe the general idea of storing SPKI certificates in DNS re-
source records. In addition to that, we show how to organize the certificates in a mean-
ingful way. In the next part, Sect. 4.2, we show how this organization can be used to
effectively build certificate sequences. The sequences, in turn, may be used to check
authorization as outlined in Sect. 2.3. Finally, we discuss the issues pertaining to add-
ing and removing certificate resource records.

4.1 Storing SPKI Certificates into the DNS Nodes

To simplify the representation we will consider an example of a partial DNS hierarchy
that consists of two organizations. One organization has a server to be accessed, and
the organization’s trust and policy administrators. The other organization has a user
that wishes to access the server, and corresponding trust and policy administrators.
This example is shown in Figure 3. The structure may be easily generalized into a
more complex situation involving several organizations and multiple delegations.

The basic idea of our schema is to have DNS nodes that carry resource records per-
taining to a specific SPKI principal, i.e. a SPKI key. The binding between a DNS do-
main node and a SPKI key need not be secure; DNS is just a convenient place to search

. (root)

com org

acme.org un.org

department.acme.org service.un.org

servicepa

security.un.org

tauser pa ta

Fig. 3. Example DNS tree

156 Nikander, Viljanen

for certificates that have that particular key as their issuer or subject. Technically, the
domain name of this node is given as the optional issuer-location and/or subject-loca-
tion fields of each certificate.

Where to store a given certificate, at its issuer DNS node, subject DNS node, or
both, depends on the certificate type. Trust certificates are stored only at the issuer
node. Delegation certificates are stored both at the issuer and at the subject. Permission
and identity certificates are stored only at the subject node.

Let us first consider the trust certificates (T). Trust certificates are basically only
needed by their issuer, when verifying the validity of a certificate sequence. Each veri-
fier naturally knows its own DNS name. Storing the trust certificates under this DNS
name allows the verifier to fetch trust certificates on demand, allowing them to be used
even in networked devices with very little memory. Furthermore, if the issuer of the
next certificate in the chain is known, it is easy to filter out the only trust certificate
needed for this particular verification1.

What comes to permission certificates (P), it is natural to associate them with their
subject. First, each active subject knows its domain name. This allows it to fetch all its
own permission certificates from the DNS. Second, the certificates can be considered
as properties of the subject; hence, it is natural to store them under the subject’s name.

With respect to storage location, identity certificates (I) are similar to permission
certificates. They should be stored in the DNS node corresponding to their subject. Be-
hind this is the assumption that the DNS name of a service is known beforehand, i.e.,
before any security checks are made. This allows the verifying party to fetch any iden-
tity certificates that apply to the target directly from the DNS directory.

Delegation certificates (D) seem to be most problematic. In one respect, delegation
expresses trust on the delegator’s behalf. Conversely, they can be considered as proper-
ties of the delegate, expressing trust placed on them. Furthermore, as we will shortly
show, the search algorithm sometimes needs to traverse delegation paths in either di-
rection. Therefore we propose that the delegation certificates are stored both on the
delegating party and at the delegate.

The proposed organization of various certificates and their storage points is de-
picted in Figure 4.
1 Due to the possibility of having Certificate Reduction Certificates (CRC certificates), this is quite an

important possibility from performance point of view.

department.acme.org service.un.org

servicepa

security.un.org

tauser pa ta

T
D D

I

T

DD
P

Fig. 4. Storage and location of certificates

Storing and Retrieving Internet Certificates 157

4.2 Search algorithm

Our search algorithm extends the one presented by Aura [1]. In his paper Aura de-
scribes and analyses three algorithms: forward search, backward search, and two-way
search. Our algorithm is based on the two-way search variant, adding a number of heu-
ristics to cut back average search cost.

Basically, all the certificates (stored in the DNS tree) form a directed delegation
network. The nodes of the network are the issuers and subjects of the certificates (i.e.,
the keys). The nodes are physically represented as DNS nodes. The arcs of the network
represented by the certificates themselves, each certificate representing an arc from the
issuer to the subject. The search problem to solve is to find a path from the verifier to
the final subject, thereby creating a certificate chain. Furthermore, the path must be
such that the permission or identity being checked is transferred on each arc belonging
to the path. If there are any delegation restrictions or other details breaking the transi-
tivity of the trust, they must be considered in the arc selection phase of the algorithm.

Definition of a delegation network. Formally, a delegation network
 is a set of keys , forming the nodes of the network, and a set of arcs

(certificates) , , where is the dele-
gation bit, is the set of authorizations, represented as sets of permissions

, and is the set of verifications (ignored), and is the set of DNS names, de-
noting the issuer and subject locations.

Search problem. Given the formal definition above, the search problem can be for-
mulated. Given a verifier with a corresponding DNS name , a final sub-
ject with a corresponding DNS name , and a permission , the
problem is to find a sequence of certificates such that the issuer of
is , the subject of is , ,

, and all the certificates are also otherwise rel-
evant.

Relevant certificates. Before describing the algorithm itself, we define the con-
cept of a relevant certificate. A certificate is relevant with respect to a search prob-
lem iff
1. The authorization field of the certificate denotes , i.e.,
2. Either the delegation bit of the certificate is true, or the certificate is the last one in

the chain, i.e.,
3. The certificate is not otherwise unsuitable to be included in the chain. For example,

some earlier certificate may have limited the maximum length of the chain, or there
may be restrictions expressed in the authorization field that mark the certificate bad
with respect to the chain being formed. In general, these and other such details are
beyond the scope of this paper, and assumed to be taken care of in the actual imple-
mentation.

Algorithm. Now we are ready to present the actual algorithm. The algorithm con-
sists of two main steps. First, a forward search is performed. The forward search is ter-
minated as soon as the forming search tree starts to branch. Second, a backward search

DN K C,()= K
C C K K D A V N N××××××⊆ D false true,{ }=

A 2P⊆
p P∈ V N

kv K∈ nv N∈
ks K∈ ns N∈ p P∈

CS c0 … cn, ,〈 〉= c0
kv cn ks c CS p authorization c()∈,∈∀

c c0 … cn 1–, ,{ } delegation c(),∈∀ true=

c
kv nv k,

s
ns p, , ,()

p p authorization c()∈

delegation c() true= subject c()∨ ks=

158 Nikander, Viljanen

is done. The algorithm is terminated when a satisfying certificate sequence is found, or
the search is deemed failed by the heuristics.

Forward search
1. Set the current DNS name ,the current key , and an empty chain.
2. Fetch all certificates using the current DNS name.
3. Filter out all certificates that are not issued by the current key.
4. Filter out all certificates that are not relevant to the current search problem.
5. Filter out all certificates whose subject is already present in the chain.
6. For all certificates whose subject is the final subject , check the signature. If the

check succeeds, add the certificate to the end of the chain, terminate,and indicate
success. Otherwise, filter out the certificate (and issue a warning).

7. If there are no more certificates left, terminate and indicate failure.
8. If there is only one certificate left, check that it is correctly signed by the issuer, add

it to the chain, set its subject location and subject as the current DNS name and key,
and continue from step 2.

9. The search tree branches. Set up backward search target as all the certificates in the
chain, and the remaining certificates in the current fetch set. Mark those taken from
the sequence as checked and rest as unchecked.

Backward search
1. Start with the target set formed by the forward search. Set the current DNS name as

 and the corresponding key as , and an empty backward tree.
2. Fetch all certificates using the current DNS name.
3. Filter out all certificates whose subject is not the current key.
4. Filter out all certificates that are not relevant to the current search problem.
5. Filter out all certificates whose issuer is already present in the backward tree.
6. For all certificates whose issuer is present in the backward search target, check the

signature. If the check succeeds, check the signature of the found target if marked
unchecked. If both checks succeed, terminate and indicate success. If either of the
checks fails, filter out the certificate (and issue a warning).

7. If there are no more certificates left, terminate and indicate failure.
8. Add the remaining certificates as leaves to the backward tree.
9. Using the heuristics (see below), either terminate indicating probable failure, or se-

lect one of the leaves of the backward tree, and continue from step 2.

Heuristics. Basically, we have added two different sets of heuristics: termination
heuristics and backward tree selection heuristics. However, these are somewhat mixed,
as we shall shortly see.

According to Aura’s analysis, a typical successful search terminates in relatively
few steps, while an unsuccessful search may require several magnitudes more steps.
Thus, from a practical point of view it is useful to terminate the search relatively fast in
the face of a probable unsuccessful termination instead of performing an exhaustive
search. Our heuristics fullfill this requirement.

The second background issue behind our new heuristics lies in the structure of the
DNS tree. In typical cases the certificate chains will flow either directly from the verifi-
ers DNS domain to the subjects DNS domain, or through at most one intermediate do-

nv kv

ks

ns ks

Storing and Retrieving Internet Certificates 159

main trusted by the verifier. Saying this, we consider the DNS domains to consists of
the actual subdomain plus any superdomains up to one or two levels below the top
level domain. That is, the domain of the node some.department.acme.
org is considered to cover the node itself, department.acme.org and
acme.org.

Given these preliminaries, we can now describe the heuristics.

Leaf selection and termination heuristics.
1. Consider the verifier’s domain (with its superdomains as discussed above), the sub-

ject’s domain (with superdomains) and any other domains present in the backward
target set as relevant domains.

2. When selecting a leaf certificate to follow, consider the certificate’s issuer location.
The close the issuer location is to the verifier’s domain, other relevant domain, or the
subject’s domain, the better the leaf is. For example, if the verifier’s domain is
service.un.org and leaf’s issuer location is pa.security.un.org, the
leaf is quite good because it belongs to an immediate subdomain of the verifier’s su-
perdomain un.org.

3. In addition to the leaf’s issuer location’s closeness to the relevant domains, the leaf’s
depth from the root of the backward tree (i.e. the final subject) is also important. We
believe that in most practical settings the certificate paths will be short, i.e. probably
3–6 certificates long, and certainly shorter than 10 certificates long. (If this is not the
case, the situation can be administratively fixed by creating suitable CRC certifi-
cates.) Therefore, we suggest that an upper limit is set to the check depth.

4. The termination can be based on both leaf relevance and depth. When all remaining
leaves exceed some combined irrelevance and depth level, the search should termi-
nate.

4.3 Administering certificates

From an administrative point of view, certificates are created, stored into DNS for re-
trieval, and removed from DNS once they have become obsolete (revocation is not
covered by this paper). Depending on the certificate, certificate creation can happen in
several possible ways, including both off-line and on-line creation. However, once they
have been created, they have to be stored in the DNS tree at appropriate locations.

Adding or removing certificates is not very different from other DNS administra-
tion. Adding and removing hosts and services is a routine operation. Thus, the only rel-
evant problem seems to be to make sure that any changes needed are appropriate from
the DNS administrator’s point of view.

Trust and identity on the server side. Servers tend to be relative stable.
Services are probably changed more often, but still not too frequently. Similarly, the
service identity and the administrative keys a server is programmed to trust are proba-
bly rather stable. The service identities and initial trust relations are typically adminis-
tered within an organization. Thus, the host and service administration patterns seem
to correspond well with the security administration requirements.

160 Nikander, Viljanen

Trust and permissions on the user side. Eventually, the users should be al-
lowed to decide by themselves whom to trust. Therefore, it would be beneficial if the
user’s could administer their own trust certificates. However, these certificates are only
needed when the verifier is the user itself. Therefore, in many cases these certificates
need not actually be stored in the DNS, but they can be permanently cached in the
user’s workstation or smart card. Thus, their final storage seems to depend heavily on
the actual application and terminal equipment used.

Permissions are clearly a different issue. Typically, a user is granted permissions by
a security administrator. This administrator may belong to the user’s organization or
not. In the case of an administrator within the same organization, he or she is probably
closely connected with the user’s DNS administrator (they may even be one and single
person), and there does not seem to be any conflicts of interest. However, if some secu-
rity administrator from some other organization wants to grant permissions just to a
certain person, these permissions are not necessarily relevant at all from the user’s
DNS organizations point of view. However, in such a case the permission certificates
can be permanently cached just like the trust certificates.

Thus, if the user, for a reason or another, does want to store the trust and cross-or-
ganizational permissions within the DNS database, the user probably should have his
or her own zone. In this case the user may have two DNS names, one within the organ-
izational domain, and one personal name. In this case, the personal name is the one
that belongs to the user specific zone. If, on the other hand, permanent certificate cach-
ing is enough, no such a zone is needed.

Delegations. Delegations seem to be the most problematic. The nature of the two-
way search algorithm requires that they are stored on both at the issuer and at the sub-
ject locations. Typically, these locations belong to different organizations. However,
the issuer of the certificate has usually a close connection with the issuer location’s
DNS domain; therefore, storing the delegation at the issuer end should pose no admin-
istrative problems. Luckily, the subject of the delegation typically really needs the del-
egation; at least when delegating further, if not earlier. Thus, it seems plausible to
assume that given good enough tools, the administrator in the subject end of a delega-
tion certificate is motivated enough to fetch and store the certificate also at the subject
location.

Removing expired certificates. Removal of expired certificates should proba-
bly be done by some automatic means. It is quite easy to write a program that traverses
the DNS tree, looks for expired certificates, and removes them. Removal is not relevant
from a security point of view, and need not be necessarily performed on the case of
revocation. However, integrating removal with revocation is probably a good idea
since it may improve overall performance.

5 Example

As an example, let’s consider the Acme Inc. extranet WWW pages, to which access is
granted to employees of “friendly” organizations according to the company security
policy. Now, in our first phase, Some User from the United Nations, being naturally a

Storing and Retrieving Internet Certificates 161

friendly party, wants to gain access to the extranet pages. At the latter stage in Sect. 5.2
we see the user accessing the pages.

5.1 Granting Access

The system or WWW administrator of the extranet service has two choices, either to
directly grant access to Some User, or move the decisions to a higher level in the or-
ganization, for example the security policy administrator.

If the extranet administrator grants certificates himself and the certificates are
stored with the service or server data, the situation is similar to the normal ACL usage,
only differing in the storage system (DNS) and the ACL entry format (certificate).
Therefore we do not peruse this direction further.

Delegating control. If the extranet service administrator has trusted the local pol-
icy authority for access permissions and created a trust certificate (Kextranet.acme.com,
Kpa.acme.com, true, everything, V), the Some User’s request for access may be handled
by the policy authority.

If the user access request is according to the company policy, the policy authority
either creates the access certificate directly to the user (Kpa.acme.com, Kuserhash.un.org,
false, read_http://extranet.acme.org/, V) , or creates a delegation certificate for the
user’s organization’s policy authority (Kpa.acme.com, Kpa.un.org, true, read_http://ex-
tranet.acme.org/, V). This policy authority in turn can create an access certificate for
the extranet (Kpa.un.org, Kuserhash.un.org, false, read_http://extranet.acme.org/, V) ,
which it is able to store in the DNS with the other Some User’s certificates.

5.2 Accessing the Service

Now, Some User wants to access the Acme Inc extranet for information on a thinga-
manjig they manufacture. When the User clicks the Acme Inc extranet link in the
WWW browser, he or she must prove the possession of the private key to the remote
service using a conventional public key authentication protocol.

When the service has been convinced that behind the HTTP connection is someone
knowing the private key for Kuserhash.un.org it can start executing the algorithm pre-
sented in Sect. 4.2. In the forward search phase the service searches all certificates cre-
ated by its access granting key Kextranet.acme.com. In our example, the service has
created a trust certificate for Kpa.acme.com with that key. The search jumps to the DNS
node pa.acme.com and continues. The forward phase usually terminates there,
since policy authorities generally have created several delegation certificates. Target
set contains the nodes extranet.acme.com, pa.acme.com and all nodes for
which Kpa.acme.com has created a delegation certificate for the current operation, in-
cluding in our example pa.un.org.

The backward search phase starts with the user DNS node. If the certificate records
for userhash.un.org include a certificate issued by any of the target set keys Kex-

tranet.acme.com, Kpa.acme.com or Kpa.un.org and the authority and signature matches, the
certificate loop is thus closed and WWW pages opened. This certificate loop can be re-

162 Nikander, Viljanen

solved by the client, too. In that case the client executes the algorithm and passes all
certificates in the chain for the service to verify.

6 Conclusions

The recent proliferation of non-hierarchical certificate systems such as PGP and SPKI
create new needs for certificate disrtibution and retrieval. The X.500 directory struc-
ture, on which the X.509 certificate storage and retrieval is based on, seems less than
ideal for other certificate formats and semantics. The Internet Domain Name System
(DNS) provides a hierarchical, distributed, fault-tolerant and flexible name space,
where certificates with differing semantics can be easily stored.

In this paper we have defined a way to store SPKI certificates within the DNS name
space. We have shown that using this organization the certificates can be effectively re-
trieved and managed.

We have also given an algorithm that allows certificate sequences and loops to be
looked up on demand. To reduce the average certificate sequence lookup time we have
added a number of improvement heuristics. Finally, we have analyzed the adminstra-
tive implications of our suggested scheme showing that it addresses the basic adminis-
trative requirements particularly well.

All in all, we have shown that it is feasible to create a technically sound infrastruc-
ture for policy based certificates in the Internet.

References

1. Aura, T. “Comparison of Graph-Search Algorithms for Authorization Verification
in Delegation Networks”, In Proceedings of 2nd Nordic Workshop on Secure Com-
puter Systems, 1997.

2. Aura, T. “On the Structure of Delegation Networks“, Licenciate’s thesis, Helsinki
University of Technology, 1997.

3. Blaze, M., Feigenbaum, J., Lacy, J., “Decentralized Trust Management”, In Pro-
ceedings of the IEEE Symposium on Security and Privacy, 1996

4. Eastlake 3rd, D., Gudmundsson, O. “Storing Certificates in the Domain Name Sys-
tem”, Internet Draft, draft-ietf-dnssec-certs-01.txt, 1997.

5. Eastlake 3rd, D., Kaufman, C., “Domain Name System Security Extensions”, Re-
quest For Comments 2065, 1997.

6. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T., “Simple
Public Key Certificate”, Internet Draft, draft-ietf-spki-cert-structure-04.txt, 1997.

7. Lehti, I., Nikander, P. , “Certifying Trust”, to appear in Proceedings of the Practice
and Theory in Public Key Cryptography, 1998.

8. Mockapetris, P. V., “Domain names -- concepts and facilities”, Request For Com-
ments 1034, 1987.

9. Rivest, R., Lampson, B., “SDSI - A Simple Distributed Security Infrastructure”,
Technical Report, 1996.

Storing and Retrieving Internet Certificates 163

10. International Telegraph and Telephone Consultative Committee (CCITT), “Recom-
mendation X.509, The Directory - Authentication Framework”, CCITT Blue Book,
Vol VIII.8, pp. 48-81, 1988.

11.Zimmermann, P., “The Official PGP Users Guide”, MIT Press, 1995.

164 Nikander, Viljanen

Publication V

This paper was originally published as Pekka Nikander and Jonna Partanen, “Distrib-
uted Policy management for JDK 1.2,” in Proceedings of the1999 Network and Dis-
tributed Systems Security Symposium, San Diego, CA, 4–6 February 1999, pp. 91–102,
Internet Society, February 1999.

Distributed Policy Management
for JDK 1.2

Pekka Nikander, Jonna Partanen

pekka.nikander@ericsson.com

Ericsson Research1

jonna.partanen@hut.fi
Helsinki University of Technology

Abstract. In JDK 1.2, the security architecture supports fine grained access
control. In the default implementation, Java runtime modules (classes) are
signed, and permissions are configured through a configuration file using the
signer’s identity and the loading location (URL) of the module. In a large net-
work, the number of applets and the frequency of changes to the security policy
will eventually grow very large. In a large organization, changing the configura-
tion file in all Java enabled workstations and devices every time a need arises
may be very hard.

In this paper, we describe a better scaling solution. We use authorization cer-
tificates to delegate permissions to Java modules. In JDK 1.2, the permissions
are attached to the runtime modules through protection domains. In our imple-
mentation, each protection domain may be decorated with one or more SPKI
certificates. These certificates directly describe the possible permissions of the
domain. The actual permissions depend on the currently valid certificate chains
leading to these certificates.

In addition to the certificates distributed with the modules, certificates for the
chains may be retrieved from a distributed directory service. This approach
makes it possible to fully distribute Java security policy management, allowing,
among other things, security policy to be changed and new permissions types to
be introduced without any modifications to the local configuration. Furthermore,
the permissions need not be statically assigned but can be dynamically derived
from the SPKI certificates as needed.

Our approach also enables further extensions. In particular, we propose how
permissions could be delegated from a domain in one JVM to a domain in an-
other JVM. This could eventually lead to a fully distributed secure Java execu-
tion environment.

1 Pekka Nikander was at Helsinki University of Technology when most of this work was accom-
plished.

166 Nikander, Partanen

1 Introduction

The Java runtime environment (JRE) seems to be the first widely accepted architecture
for mobile code. From the very beginning, Java has addressed the security concerns
arising from executing code loaded from the untrusted network on a local computer,
mainly assuring that malicious code cannot tamper with the local machine or network.

In the first two releases (1.0 and 1.1) the approach was simple: any untrusted code
was placed in a confined environment, the sandbox, where its attempts to communicate
with the external world were monitored and restricted. In JDK 1.0, all code loaded
from the network was regarded as untrusted, and prohibited from performing any oper-
ations considered dangerous. These included, for example, accessing the local file sys-
tem, opening network connections (to other machines but the one the code was loaded
from), and accessing environment variables or Java properties that might reveal infor-
mation about the local system or user. Java 1.1 enhanced this approach slightly by add-
ing the notion of signed applets. Basically, in the Java 1.1 environment the local user
could configure whether signed applets were considered trusted or untrusted. All un-
trusted code was still executed in the sandbox, equally restricted as before.

From an access control point of view, JDK 1.2 is a huge improvement. As we de-
scribe in more detail in Sect. 2, JDK 1.2 allows fine grained access control in the form
of permissions. Whenever a Java class is loaded, it is associated with a number of per-
missions that represent the access rights the class has. Whenever a controlled resource
is accessed, the runtime verifies that all classes in the method call stack have sufficient
permissions for accessing that resource.

Unfortunately, the JDK 1.2 default implementation does not address the adminis-
trative needs of distributed systems. A configuration file is used to describe how per-
missions are granted to each class, based on the signature(s) the class file has and the
location the class was loaded from. In practical terms, this means that the administrator
of a local, distributed Java environment has to anticipate beforehand all possibly
needed permission combinations, and to create corresponding signature keys and secu-
rity configurations for them. If need arises to change these, the configuration files must
be updated on all affected machines.

If we think about the suggested idea of using Java in various kinds of equipment,
including embedded devices such as cell phones, PDAs and network routers, the con-
cept of locally managing the Java security configuration in all devices will clearly cre-
ate an administrative nightmare. Of course, it is possible, at least in theory, to remotely
manage the security configurations in the same way as other configuration files are
managed. In JDK 1.2, there is the possibility of defining the location of the configura-
tion file as an URL, so the file could be fetched from a Web server. Remote manage-
ment, however, requires secure management connections, which in a pure Java
environment will probably be controlled by the local security configuration files, i.e.,
the very files the manager wants to modify.

The rest of this paper is organized as follows. In the remainder of this section, we
briefly introduce the concept of authorization certificates in general, and SPKI in par-
ticular. In the next section, we describe the relevant details of the basic JDK 1.2 secu-

Distributed Policy Management for JDK 1.2 167

rity architecture in order to be able to show where our modifications plug in. A more
complete description is available in [8]. In Sect. 3, we discuss some weaknesses of the
basic architecture and implementation, mainly from the management point of view,
and outline our modification and customizations in conceptual terms. Sect. 4 describes
our architecture in detail. Next, in Sect. 5, we describe the prototype implementation,
and give initial performance measurements. In Sect. 6, we suggest a way of extending
JDK 1.2 security domains across distributed Java Virtual Machine (JVM) environ-
ments with the help of SPKI certificates. Finally, in Sect. 7, we present our conclusions
from this research.

1.1 Authorization certificates

Authorization certificates, or signed credentials, are signed statements of authoriza-
tion, first independently described in the SDSI [16] and PolicyMaker [4] prototype sys-
tems and the SPKI initiative [5]. Some of the SDSI and PolicyMaker ideas are being
merged to SPKI, which in turn is being standardized by the IETF as an alternative to
the rigid X.509 based identity certificate hierarchy.

The basic idea of an authorization certificate is simple. In SPKI terms, a certificate
is basically a signed five tuple (I,S,D,A,V) where
• I is the Issuer’s (signers) public key, or a secure hash of the public key,
• S is the Subject of the certificate, typically a public key, a secure hash of a public

key, or a secure hash of some other object such as a Java class,
• D is a Delegation bit,
• A is the Authorization field, describing the permissions or other information that

the certificate’s Issuer grants to or attests of the Subject,
• V is a Validation field, describing the conditions (such as a time range) under

which the certificate can be considered valid.
The meaning of an SPKI certificate can be stated as follows:

Based on the assumption that I has the control over the rights or other information
described in A, I grants S the rights/property A whenever V is valid. Furthermore, if
D is true and S is a public key (or a hash of a public key), S may further delegate the
rights A or any subset of them. [6]

Example. Let us consider a simple situation, where Alice wants to allow all applets
signed by Bob to be able to access the local temporary directory, /tmp, on her local
machine. Conceptually, this allowance could be represented by an SPKI certificate
(KAlice, KBob, Yes, (Java-Permission (File-Access “/tmp/*”)), Always). Basically, this
certificate states that Alice delegates Bob the right to authorize applets to access files in
/tmp. To complete a certificate loop, two other certificates are needed. First, Bob must
create a certificate for the applet in question: (KBob, hash(applet), No, (Java-Permis-
sion (File-Access “/tmp/*”)), Always). Second, the local machine must have a local
certificate that delegates a right to administer local Java permissions to Alice: (Klocal-

machine, KAlice, Yes, (Java-Permission (All-Permission)), Always).

168 Nikander, Partanen

2 Basic security architecture in JDK 1.2

The JDK 1.2 security architecture contains two parts: an access control architecture
and a number of cryptography related classes. Their integration is relatively loose. The
components of the access control architecture are enumerated in Table 2 and discussed
in more detail in Sections 2.1–2.4. Sect. 2.5 describes the relevant cryptographic
classes.

2.1 Permissions

JDK 1.2 introduces a new type of classes, called Permissions, that are used inside the
Java runtime environment to represent access rights to protected resources. Each pro-
tected resource in the system has a corresponding Permission object. The Permission
object can be seen as a capability or a “ticket” that grants access to the resource. Typi-
cally, there are many instances of a given Permission, possessed by and thus granting
access to different classes.

Permissions are divided into several subtypes that extend the Permission class.
Each resource type or category, such as files or network connections, has its own Per-
mission subclass. Inside the category, different instances of the class correspond to dif-
ferent instances of the resource. In addition, the programmers may provide their own
Permission subclasses if they create protected resources of their own.

Some permissions are more generic than others. For example, a single permission
object may grant access to more than one instance of the controlled resource. Such a
more generic permission instance implies a number of more restricted permissions.
Thus, for example, the File–Permission(“/tmp/*”, “read,write”) object implies the
FilePermission(“/tmp/foo.txt”, “read”) permission. Instances of the class AllPermis-
sion imply all other permissions.

Table 2: The parts of the JDK 1.2 access control Architecture

Class or classes The role of the class or classes

Permission and its
subclasses

Represent different “tickets” or access rights, i.e.,
permissions.

ProtectionDomain Connects the Permission objects to executing
classes.

SecureClassLoader
and its subclasses

Load classes and create protection domains.

Policy and its sub-
classes

Decide what Permission objects each class gets.

AccessController The reference monitor.

Distributed Policy Management for JDK 1.2 169

2.2 ProtectionDomains

Just as in any capability-based access control system, the Java classes must be pre-
vented from creating permissions for themselves and thus gaining unauthorized access.
This is the task of ProtectionDomains.

Each class belongs to one and
only one ProtectionDomain. Each
ProtectionDomain has a Permis-
sionCollection object that holds the
permissions of that domain (see
Figure 1). Only these permissions
can be used to gain access to re-
sources. The classes cannot change
their ProtectionDomain nor the Per-
missionCollection of the domain.
Thus, the classes are free to create
any permission objects they like,
but they cannot affect the access control decisions and gain unauthorized access.

In the current JDK 1.2 implementation the protection domain of a class is uniquely
identified by the Code–Source of the class. A CodeSource consists of the codebase or
URL that the class was loaded from, and a set of cryptographic certificates that indi-
cate the signatures the class has. The classes are placed in the protection domains cor-
responding to their CodeSources. If a class is not signed, or if the signature cannot be
verified, the class is placed in a protection domain that has an empty set of certificates.

All classes in the same protection domain get the same permission objects. How-
ever, classes with identical permissions may belong to different protection domains,
because many protection domains may happen to have been granted a similar set of
permissions by the current security policy.

2.3 AccessController

The AccessController is the JDK 1.2 incarnation of the reference monitor concept [1].
That is, when a thread requests access to a protected resource such as a file, the Ac-
cessController object is asked whether the access is granted or not. To determine this,
the AccessController checks the execution context to see if the caller has the Permis-
sion object corresponding to the resource. For example, if a class tries to read the file /
home/jhp/myfile, its protection domain must have the FilePermission(“/home/jhp/my-
file”, “read”), or some other permission that implies this permission.

Asking for an access that requires a specific permission may be made by a method
that was called from another class. This class may belong to a different protection do-
main. Since it is important that a class does not bypass the access control simply by
calling another class with more permissions, the AccessController also checks all the
previous classes in the call chain. The general algorithm is that if class A calls class B,
which in turn calls class C and so on, and finally class M tries to read a file, then the
AccessController checks each class from M to A to see if they all have the required

Fig. 1. Classes, domains and permissions

Class 1

Class 2

Class 3

Class 4

Class 5

Domain A

Domain B

Permissions

Permissions

170 Nikander, Partanen

permission. If some class in the call chain does not have the permission, AccessCon-
troller throws an exception. Otherwise it returns quietly, implicating that the request
has been accepted.

There is one irregularity to the general access control algorithm. A class may ask
the AccessController to mark it as “privileged” while performing a task. This marking
creates an artificial bottom to the call stack. When the AccessController reaches a class
marked privileged, it checks whether this class has the permission in question and then
stops. The preceding callers are not checked.

To further ensure that the access control cannot be bypassed, any thread inherits its
parent’s access control context. The AccessControlContext object contains all informa-
tion relevant to making access control decisions.

2.4 Policy

A security policy defines the rules that mandate which actions the actors in the system
are allowed or disallowed to do [1]. Java security policy, implemented as a subclass of
the class Policy, defines what permissions each protection domain gets. There is a clear
separation of duties between the AccessController and a Policy object: the Policy de-
fines the rules and the AccessController enforces them. In other words, the Policy gives
you the tickets and AccessController checks them at the gate. This means that we can
change the policy according to which we distribute the permissions, without having to
touch the AccessController.

A security policy can be static or dynamic. A static security policy is fixed: the per-
missions of a class cannot change once it is loaded to the JRE. However, the permis-
sions can be different in the next time the class is loaded, during another run of the
JRE. Having a static security policy has some performance advantages. On the other
hand, if the runtime session is long, the circumstances may change so much that a
change in the security policy is needed. Further more, even if the sessions are short, a
change in the policy may be so important that it must take effect immediately. Thus,
dynamic security policy that can be changed “on the fly” is the preferred solution be-
cause it provides better security. However, a dynamic policy requires some means for
performing a set of actions in an atomic manner in order to prevent the system from
entering an inconsistent state in case the permissions of a class change in mid-action
and it is not able to complete the task it has begun.

 The security policy in the current JDK 1.2 implementation is semi-static. That is, it
does have a refresh() method, but it must be called explicitly and it only affects
the permissions granted after the method was called. The protection domains that have
been granted their permissions prior to the refresh still have the same permissions after
it.

The class Policy is an abstract class. The actual implementation, which can be
changed, defines how the security policy is managed. The default policy implementa-
tion of JDK 1.2 uses a set of configuration files to define the security policy.

There is one configuration file for defining a system-wide security policy. Each
user may additionally have their own policy file. All the definitions are additive, so per-

Distributed Policy Management for JDK 1.2 171

missions can only be granted, not taken away. If the policy files do not exist or their
format is incorrect, the classes end up in the sandbox.

The policy configuration file is clearly a kind of an access control list (ACL). As all
ACLs, it has the disadvantage that it must be maintained locally, i.e., the access right
management cannot be easily distributed while still preserving security. If we want to
make this management easier to distribute, changing the configuration files with a ca-
pability-based policy definition looks like a promising approach.

2.5 Keys, certificates and certificate management

As mentioned above, the classes are placed in the protection domains according to
where they have been loaded from, and what keys they have been signed with. To be
able to sign classes and verify the resulting signatures, Java includes a basic set of
cryptographic functionality. The concepts of cryptographic keys, digital signatures and
certificates are a central part of this functionality. The keys are used as input to the sig-
nature functions, and the certificates are used for telling the verifier the key that can be
used to verify the signature, and whom the key belongs to.

The Certificate interface, which is the Java representation of certificates, has
the following methods: equals, getEncoded, getPublicKey, getType, hashValue, to-
String and verify. Although the interface was designed to be a superclass for identity
certificates, with little imagination it is generalizable to authorization certificates as
well [14].

JDK 1.2 has general interfaces for public key cryptography, including Key, Pub-
licKey, PrivateKey, KeyPair and KeyPairGenerator. The KeyFactory takes care of con-
verting keys to raw key material, called KeySpec, and vice versa. There are also more
specific interfaces for RSA and DSA keys and their handling. The runtime can have
several providers of classes that implement the interfaces. Key and certificate manage-
ment in Java is handled by a KeyStore class that stores keys and the corresponding cer-
tificates.

3 Shortcomings and remedies

While the JDK 1.2 access control system provides fine granularity and flexible config-
uration facilities, its default implementation has a number of weaknesses that diminish
its power in practical deployment in a distributed system. First, the permissions associ-
ated with each domain must be defined through a (usually local) configuration file
prior to loading the classes to the runtime environment. Second, the way classes are di-
vided in security domains is somewhat rigid and arbitrary. The former property is more
significant, as it prohibits, among other things, dynamic creation of new permission
types. Furthermore, when the number of keys controlling domains grows large, the
complexity of the configuration file may become hard to manage. And finally, as men-
tioned in Sect. 2.4, the current default implementation is static in the sense that the per-
missions of a domain do not necessarily reflect changes in the policy file.

172 Nikander, Partanen

Fortunately, these problems are mainly due to the default, one-machine oriented
implementation, not the access control architecture itself. This has allowed us to make
our customizations with almost no changes to the JDK 1.2 source code.

We will next discuss the above mentioned shortcomings in detail, and show how
they can be solved by using authorization certificates.

3.1 Alternatives to local configuration

The basic idea behind JDK 1.2 access control can be summarized as follows:
1. All executable code, i.e., classes, is divided into security domains. Each class be-

longs to one, and only one domain.
2. Each security domain is assigned permissions.
3. The intersection of permissions present in the current method call stack (down to

and including the permissions of the current thread with its inherited access control
context, or the upmost privileged class) define the operations this method is allowed
to perform.

The problem of local configuration pertains mainly to step 2 (and to some extent also
to step 1; this issue is discussed in Sect. 3.2).

As already described in Sections 2.2 and 2.4, the default implementation of the Pol-
icy object in JDK 1.2 runtime environment reads the permissions from a (usually local)
security configuration file. This means, among other things, that whenever the user
wants to create a new permission, to create a new combination of existing permissions,
to assign permissions to a newly created domain, or to remove permissions from a do-
main over which the local organization has no direct control, the user has to edit the se-
curity configuration file.

If we think about large scale Java deployment, such as using large numbers of Java
terminals within a multinational enterprise, or using Java in embedded devices such as
cell phones or PDAs, changing the configuration separately in each device is either im-
practical or too expensive in practice. Clearly, alternative means are needed.

An obvious, but less-than-optimal solution is to place the configuration file in a di-
rectory that is shared, e.g., through NFS, or to use some kind of distributed database or
a remote configuration mechanism such as Sun Microsystems Network Information
Service (NIS). Optimally, such a mechanism provides adequate protection for the se-
curity configuration data through, e.g., preassigned shared keys and shared key cryp-
tography. In such a case it is enough to configure the administrative security keys to the
device when it is taken into use. Thereafter the security configuration files of the de-
vice can be remotely administered in a secure way, provided that the security of the ad-
ministration system persists.

The default implementation of JDK 1.2 proposes solving this problem by specify-
ing the file location as an URL, and thus fetching the file from a suitable Web server.
As HTTP and FTP protocols do not provide any security, TLS or some other method
for securing the connection between the host and the server would be necessary to en-
sure the integrity of the configuration information.

However, even this scheme has a number of problems:

Distributed Policy Management for JDK 1.2 173

• The security of the Java runtime inherently depends on the security of another, ex-
ternal mechanism. Thus, effectively, the correctness of access permissions assigned
to a class depend on two cryptosystems: the signature system used to sign the
classes, and the remote administration system used to manage the security files. If
either of these is broken, Java security breaks.

• Keeping the configuration files of all Java devices up to date would be hard or im-
possible. If any of the devices are off-line while a change is made, arrangements
would be needed to take care of the devices immediately when they come back on-
line. This would be difficult or impossible in Ad-Hoc networks.

In our system, each collection of executable classes (i.e. a jar file) is a self contained
domain that carries its own (potential) permissions. That is, each class is placed in a jar
file, and the jar file is decorated with one or more SPKI certificates1. Each SPKI certif-
icate denotes a number of permissions that the issuer of the certificate wants to assign
to the domain. The local security system checks the validity of these certificates, and
based on the certificate sequences leading to them, decides which of the permissions
are actually assigned to the domain (see Sect. 4 for details).

3.2 Protection domains

Currently, the main purpose of the protection domains is to divide the classes into
groups so that each group can be given distinct permissions. From the access control
point of view, this is fine. However, as we will show in Sect. 6, it would be nice if pro-
tection domains could be used for other purposes as well.

In the current JDK 1.2 implementation, classes are divided into protection domains
somewhat arbitrarily based on the URL they were loaded from and the X.509 certifi-
cates they carry. To us, using URLs seems like a bad choice from a security point of
view. An URL consists of a DNS name and an arbitrary string. Until secure DNS is de-
ployed (if ever), DNS names cannot be trusted for security purposes. Therefore, from a
security point of view, the URL must be regarded as an arbitrary string that has no se-
curity relevance. Nevertheless, from a practical point of view, the usage of URLs may
be a reasonable temporary solution until widely deployed PKIs exist.

Signing the code, and using signatures as basis of domain creation, is definitely a
better idea. However, the currently used X.509 certificates do not carry any explicit in-
formation about why the class was signed, or what kind of permissions the class would
indeed need in order to perform its function. The local configurator must get this infor-
mation through some external channel in order to be able to set up the local policy cor-
rectly. That is, the current system leaves two decisions to the local administrator:
• Guessing what permissions a class would need in order to function correctly, and
• Deciding whether the signer is trustworthy enough so that the class can indeed be

given the alluded permissions.
Again, as we shall see, using SPKI simplifies this situation. First, the certificate issued
by the class writer clearly denotes what permissions the class would desire. Second,

1 At least in theory, we could use X.509v3 certificates or some other form of authorization certificates
instead of SPKI certificates, but we have chosen to limit our research to the latter.

174 Nikander, Partanen

SPKI certificates can be used to represent trust and delegate trust decisions, lifting
most of the burden of making trust decisions from the local administrator.

3.3 Scalability

Recent history has shown on many occasions that local configuration scales badly to
the global Internet. Instead, a system that has been designed to be fully distributed, i.e.,
both deployed and managed in a distributed way, scales extremely well. A prime exam-
ple of this is the Domain Name System (DNS): it was taken into use when the static
hosts file grew too large to manage, and technically it has not needed any major modi-
fications ever since.

From this point of view, the JDK 1.2 local security configuration file resembles the
static hosts file. It will probably serve well in a small network where there are only rel-
atively few trusted applets. However, as the need and usage of somewhat trusted Java
code grows, a system that scales better is required.

According to our initial analysis, the suggested SPKI based system of signed capa-
bilities scales extremely well. SPKI allows rights to be delegated, allowing administra-
tion to be distributed within organizations and between organizations. [10]

3.4 Pseudostatic vs. dynamic permissions

In the current JDK 1.2 implementation, the permissions assigned to a class are not
amended unless the Policy.refresh() method is explicitly called. Furthermore, once as-
signed, permissions cannot be revoked from a domain in any practical way. When Java
is being used in servers, and especially if the architecture is extended so that Java serv-
lets can be delegated more permissions by clients (see Sect. 6), there arises a need to
be able to revise the permissions dynamically.

Independently of the other modifications, we have also made the permission evalu-
ation more dynamic. This is explained in Sect. 5. As mentioned in section 2.4, a dy-
namic policy may create problems if the permissions of a class change while it is
performing a set of actions that should be considered as a whole, i.e., that should be
performed completely or not at all. For the sake of this study we have assumed that a
mechanism for allowing atomic actions can be added to the AccessController in a rela-
tively straightforward manner, following the example set by the doPrivileged-method.
We have not, however, implemented this functionality in our prototype.

4 Assigning Java permissions with SPKI certificates

In JDK 1.2, the actual implementation of the access control mechanism is divided be-
tween the class loader, the policy manager, and the reference monitor. The purpose of
the class loader is to make sure the classes are integral, at least in some sense, and to
divide them into security domains. The policy manager, in turn, assigns permissions to
the domains, while the reference monitor checks that an attempt to access a resource is
indeed authorized.

Distributed Policy Management for JDK 1.2 175

In our model, the tasks of the class loader are simple. It loads classes from a jar file,
and creates a domain from it. If there are any SPKI certificates present in the jar file,
they are associated with the new domain. The policy manager and the dynamic permis-
sion evaluation are more complex.

4.1 Policy manager

The main task of the policy manager is to attempt to reduce a set of certificates to form
a valid chain from its own key, called the Self key, to the hash of the protection do-
main, and to interpret the authorization given by the chain into Java Permission ob-
jects. This chain reduction includes checking the validity of the certificates, checking
that all but the last certificate have the delegation bit set, and intersecting the authoriza-
tion fields to get the final authorization given by the chain. Furthermore, usually more
certificates must be fetched from a certificate store in order to get complete chains
[13]. If the certificates cannot be reduced or the authorizations reduce to null, no per-
missions are granted to the class. [10]

The authorization field, or the tag, of an SPKI certificate can be described as an s-
expression: [5]

auth:: (tag (*)) | (tag tag-expr)
tag-expr:: simple-tag | tag-set | tag-string
tag-set:: (* set tag-expr*)

The form (tag (*)) means unlimited authorization, i.e., all permissions. When
translated to Java permissions, it becomes java.security.AllPermission.

We have extended the SPKI tag definition to express Java permissions as follows:
[15]

simple-tag:: java-tag
java-tag::

(java-permission type target? action?)
type:: (type bytes)
target:: (target bytes)
action:: (action bytes)

That is, the tag specifies that it consists of a Java Permission. The type gives the full
class name of the permission class in question. This may be a permission type included
in JDK or any other class, as long as it is a subclass of the class java.security.Permis-
sion. If the constructor of the permission specified by the type takes a target as an argu-
ment, that string is given in the target field of the tag. Likewise, if the constructor of
the permission takes an action as an argument, it is given in the action field of the tag.
The target and action strings are passed to the constructor as-is, because we cannot ex-
pect the policy manager to be able to parse the arguments of all kinds of permissions,
as any programmer can define her own types of permissions.

176 Nikander, Partanen

The tag-set can be used to pass several permissions in one certificate. This possibil-
ity is important, as creating a new certificate for each permission that one wants to del-
egate would be all too tedious and rapidly explode the number of certificates.

4.2 Dynamic policy

To make the security policy dynamic instead of static or semi-static, our implementa-
tion of protection domains no longer has a static set of permissions. When a class tries
to access a protected resource the reference monitor asks the protection domain
whether it implies the specific permission required, and the protection domain in turn
asks the Policy for the permission. The Policy tries to produce a certificate chain reduc-
tion that would imply the permission in question. If it fails, the access is not granted.

The SPKI drafts propose that the Prover (i.e. the class) is responsible of presenting
a valid certificate chain to the Verifier (i.e. the Policy) at the time of access request or
authentication [5]. This approach effectively moves the burden of certificate storage,
retrieval and part of the chain reduction from the server to the client software. The
server is only left to verify that the chain presented is a valid one. This approach may
be suitable to controlling user access, since the user is likely to know which certificates
it has been issued and may even be able to store these certificates on a smart card or in
some other practical way.

However, mobile code
downloaded from the Web can-
not know if it has been issued
local certificates or not, and it
certainly cannot possess all
these certificates from each
site that might want to use it.
Thus, this approach is doomed
to fail in our architecture and
we do not pursue it any fur-
ther. Instead, we think that the
Policy needs to locate the rele-
vant certificates as well as to
reduce the certificate chains.

Many different solutions
have been proposed to the cer-
tificate storage. We have pre-
sented one possibility in [13],
suggesting storing the certifi-
cates in the DNS directory.
Furthermore, Aura has ana-
lysed several different algo-
rithms for chain reduction [3].

Cert

Issuer

Subject

Deleg Tag

Comment

Valid

SPKICertificate

Certificate

{abstract}

Signature

11

1

1

0..1

0..1

1

0..1

Fig. 2. SPKI certificate object structure

Distributed Policy Management for JDK 1.2 177

5 Implementation

A number of changes to the Java classes are required in order to allow the administra-
tor to define the Java security policy using SPKI certificates instead of the configura-
tion file. More specifically, we need to change the way the Policy object and the
protection domains behave. In addition, we need to create a Java implementation of the
SPKI certificates, and a way to store them so that they can be retrieved easily.

The way we implemented the SPKI certificates is depicted in Figure 2. The in-
memory representation of the certificate consists of the certificate data and the signa-
ture, represented as Java objects. The data in turn includes the issuer, subject and au-
thorization (tag) objects, and may include delegation, validity and comment objects.

Our implementation of the Java Policy object is called SPKIPolicy. It gives the
protection domains exactly those permissions that are delegated to the domains
through valid SPKI certificate chains. A valid chain must start from the Self key. The
authorizations given by the certificates are transformed to Java permissions according
to the principles given in Sect. 4.1.

The prototype uses a
simple depth first algorithm
to find valid certificate
chains. Although not opti-
mal for performance, this
algorithm is good enough
for our prototype; the
number of certificates in our
database is relatively small.
The chain reduction is sim-
ple: two certificates form a
valid piece of a chain if they
are both valid, the first cer-
tificate has delegation set to
true and the subject of the
first certificate is the same
as the issuer of the second certificate. The authorization that results from such a chain
is the intersection of the two authorization fields. The authorization fields are converted
into Permission objects, and imply() method is used to intersect the authorization
fields. The subset is found by checking if either one of the permissions implies the
other. This is sufficient for now, but a more generic method is clearly needed. However,
this would require significant modifications to the JDK 1.2 library.

The SPKIPolicy uses the Java KeyStore to store its public key, i.e., the Self key
for the SPKI certificate chain validation. A separate certificate repository is used to
store the certificates. In the prototype, the certificate repository was implemented using
a local file (see Figure 3). However, in the future we expect it to use DNS or some
other dynamic, distributed directory service.

To implement a dynamic security policy instead of a static one we needed to
change the way the protection domains behave. In the default implementation the pro-

Certificate
Repository

{abstract}

SPKICertificate
Repository

{abstract}

LocalSPKI
Repository

Policy

{abstract}

SPKIPolicy

KeyStore

{abstract}

Fig. 3. The Policy and certificate repositories

178 Nikander, Partanen

tection domains get their permissions when they are initialized. We created a subclass
of the class PermissionCollection, called DynamicPermissions, that does not have a
static set of permission objects at all. An instance of this class is given to the domain
instead of a regular PermissionCollection object (see Figure 4). Now, every time the
AccessController checks whether the protection domain’s PermissionCollection im-
plies a certain permission, the collection asks the Policy object to give it the permis-
sion. The check succeeds or fails depending on what the Policy returns.

To make the Java Runtime
read SPKI certificates from the
jar files and put them to the pro-
tection domains we had to cre-
ate a class of our own that
handles the SPKI file verifica-
tion. In addition, we had to
slightly modify the java.\
util.jar.JarVerifier to
make it invoke our SPKI verifier.

The system security properties file lib/security/java.security contains
several configuration variables for the security architecture, including the policy con-
figuration file locations. A property called policy.provider can be used to
change the default Policy implementation. This is done by specifying the fully quali-
fied class name of the new implementation in the property:

policy.provider=fi.hut.tcm.spki.policy.SPKIPolicy

5.1 Performance measurements

As noted in Section 4, a static security policy obviously has some performance advan-
tages when compared to dynamically resolving the permissions. We measured the per-
formance of our prototype and compared it to the performance of the default JDK
implementation to see if the difference was unacceptable. Since the main performance
changes to the default JDK implementation occur in class loading and permission
checking, these two functions are the ones we measured.

Originally, we expected the class loading to get slightly slower or stay the same, as
we would not need to figure out what permissions new protection domains would get,
but would instead need to resolve the certificates from the jar files. Since class loading
is fairly well optimised in the JDK, it was also possible that no change in the perform-
ance would be noticed. As to the permission checking, we expected the access right
check to be slower, since we not only verify whether the class’ permissions imply the
permission needed, but also resolve what permissions the class has at the moment.

The actual measurements were made with JDK 1.2 beta 4 in Solaris 2.6 running on
Ultra 1 hardware. The results are averages from 10 test runs. We expressed the same

PermissionCollection

DynamicPermissions

Fig. 4. The ProtectionDomain and PermissionCollections

ProtectionDomain

SPKIPolicy

Distributed Policy Management for JDK 1.2 179

security policy in the form of a configuration file and SPKI certificates. The average
length of an SPKI certificate chain was 3. The results are given in Table 3.

Our prototype is not optimised in any means; it does some unnecessary work. At the
moment it handles the SPKI certificates of the classes to be loaded in addition to the
regular signatures and not instead of them, although the regular signatures are not used
for anything in our system. The results show that our system is about three times
slower in class loading and only slightly slower in access checking.

When analysing in more detail where the time is spent during the class loading,
about 80% of the JDK loading time seems to be spent on checking the X.509 certifi-
cates. In our prototype, the time used in checking SPKI certificates is roughly equal to
the time spent in X.509 certificate checking. Thus, this explains only 40% of the in-
creased loading time. Currently we cannot fully explain the other part of the increase;
it seems to be spent at the Sun provided JAR file handling routines. Unfortunately, the
JDK distribution does not include source code for these.

Thus, when the time spent on checking X.509 certificates is substracted from the
total time, our prototype is about 2.2 times slower than the default implementation in
class loading. Less than half of this time is spent checking the SPKI certificates. Once
we understand better the reasons for the degradation, it should be possible to get per-
formance quite close to the default implementation.

6 Creating distributed protection domains

The dynamic and distributed nature of SPKI based Java protection domains opens up
new possibilities for their use. In particular, we would like to be able to perform the
following functions:
• Dynamically delegate a permission from one domain, executing in one Java virtual

machine, to another domain, executing in another Java virtual machine. For exam-
ple, when a distributed application requests a service from a server, it might want to
allow a certain class, an agent, in the server, to execute as if it were the user that
started the application in the first hand.

• Create a secure connection between domains executing in distinct Java virtual ma-
chines. For example, a banking applet might want to create a secure connection
back to the bank, using a proprietary security protocol.

In order to be able to perform these kinds of functions, the domains involved must have
local access to some private keys, and a number of trust conditions must be met. The

Table 3: Preliminary performance measurements

JDK Our Prototype

Time to load 10 classes (in 10 different domains) 1690 ms 4990 ms

Time to resolve 10000 access rights 38900 ms 39200 ms

180 Nikander, Partanen

requirement of access to a private key can be easily accomplished by creating a tempo-
rary pair of keys for each policy domain. This is acceptable from a security point of
view, because the underlying JVM must be trusted anyway, and so it can be trusted to
provide temporary keys as well. The temporary key can be signed by the local machine
key, denoting it to as belonging the domain involved.

Delegation. Let us now consider the trust requirements of the delegation. The situa-
tion here is that Alice has loaded some Java code C to perform a function X that she
wants to be performed. However, X cannot be accomplished locally, but it must be per-
formed on a server administered by Bob using Java code S.

From Alice’ point of view the trust requirements are the following:
• Alice must trust C and S to be able to perform X on her behalf, independent on

their execution location.
• Alice must trust Bob to execute S on her behalf.
• Finally, as a result, Alice must trust S, when run by Bob, to perform X.
Using SPKI certificates, these can be expressed roughly as follows:

CertC: (KAlice, hash(C), Yes, X, always)
CertS: (KAlice, hash(S), Yes, X, always)
CertBob: (KAlice, KBob, Yes, execute S, always)

Now, the fact that C has a local, temporary key KC and that S has a local, temporary
key KS can be expressed as

NameC: (KAlice, KC, Yes, hash(C) at KAlice, now)
NameS: (KBob, KS, Yes, hash(S) at KBob, now)

These certificates can be considered as name certificates, effectively late binding the
hashes of C and S, as names in the local namespaces of Alice and Bob, respectively, to
the temporary keys KC and KS.

Given these, C can check CertBob and NameS, and thereafter authorize S to perform X
Auth: (KC, KS, Yes, X, now)

The fact that Alice authorizes S on Bob to perform X can be depicted through the fol-
lowing sequence:

Similarly, the checks performed by C before creating Auth can be described as the
sequence:

From Bob’s point of view, on the other hand, the requirements are the following:
• Bob must trust S to perform X on Alice’ (or everybody’s) behalf.
Again, using SPKI certificates this can be expressed as

CertAlice: (KBob, KAlice, Yes, X, always)

K Alice

hash C()X

KC KS
X

K Alice

KBob
hash S()

KS

X

Distributed Policy Management for JDK 1.2 181

Now, given the certificates created, Bob can check that S is permitted to perform X:

Secure connection. In the case of a secure connection, Alice wants to allow a class
C to open a secure connection to a class S, being run by Bob. Respectively, Bob wants
to allow the class C, being run by Alice, to open a secure connection to the class S, run-
ning locally.

From Alice’ point of view, the trust requirements can be stated as follows:
• Alice must trust C to open secure connections to S.
• Alice must trust Bob to be trustworthy to run S.
Similarly, from Bob’s point of view,
• Bob must trust S to accept secure connections from C.
• Bob must trust Alice to be trustworthy to run C.
In a way analogous to the delegation case, temporary keys can be created for the
classes C and S, and using suitable SPKI certificates these keys can be seen as proper
keys to be used in a key agreement protocol.

7 Conclusions

We have shown how JDK 1.2 access control management can be effectively and se-
curely distributed using SPKI certificates. The new systems allows new permission
types to be taken into use dynamically, allows the creator of an application to control
the division of Java classes into distinct security domains in a natural way, provides
worldwide interorganizational scalability, and allows the permissions of a domain to
be dynamically extended.

In section 3 we analysed the default implementation of the JDK 1.2 access control
architecture and suggested some improvements. In Sect. 4 we described the functional
details and modifications needed to implement the improvements. Only one change
was needed in the actual library in order to load SPKI certificates in addition to X.509
certificates. The rest of the system consists of the policy manager and a new type of
PermissionCollection. The result is a dynamic security policy defined with SPKI cer-
tificates. A distributed directory service, such as the one proposed in [13], is needed for
storing the certificates.

The actual prototype implementation, described in Sect. 5, consists of a generic
SPKI certificate package that extends the java.security.cert.Certificate
interface, the custom policy manager, and the minor modifications needed in the li-
brary proper. For the purpose of this prototype we only implemented a local certificate
repository. Although the prototype is not optimised in any way, its performance was
clearly adequate, especially in the permission checking.

KBob

K Alice

KC
hash C()

KS
hash S()

182 Nikander, Partanen

Furthermore, we sketched how the new system can be used to delegate permissions
dynamically from one Java virtual machine to another, and how SPKI certificates can
be used to control the creation of secure connections between classes in separate vir-
tual machines. These can be seen as initial steps towards a secure distributed Java envi-
ronment. Currently we are building an ISAKMP [11] framework in Java. That will be
used to implement the sketched delegation systems. One further possibility would be
to design CORBA like security services for interoperating Java virtual machines on the
top of the resulting system.

References

1. E. Amoroso, Fundamentals of Computer Security Technology, Prentice Hall, Eng-
lewood Cliffs, New Jersey, 1994.

2. K. Arnold and J. Gosling, The Java Programming Language, Addison-Wesley,
1996.

3. T. Aura, “Comparison of Graph-Search Algorithms for Authorization Verification
in Delegation”, Proceedings of the 2nd Nordic Workshop on Secure Computer Sys-
tems, Helsinki, 1997.

4. M. Blaze, J. Feigmenbaum, and J. Lacy, “Decentralized trust management”, Pro-
ceedings of the 1996 IEEE Computer Society Symposium on Research in Security
and Privacy, Oakland, CA, May 1996.

5. C. M. Ellison, B. Frantz, B. Lampson, R.Rivest, B. M. Thomas and T. Ylönen, Sim-
ple Public Key Certificate, Internet-Draft draft-ietf-spki-cert-
structure-05.txt, work in progress, Internet Engineering Task Force, March
1998.

6. C. M. Ellison, B. Frantz, B. Lampson, R.Rivest, B. M. Thomas and T. Ylönen,
SPKI Certificate Theory, Internet-Draft draft-ietf-spki-cert-theory-
02.txt, work in progress, Internet Engineering Task Force, March 1998.

7. C. M. Ellison, B. Frantz, B. Lampson, R.Rivest, B. M. Thomas and T. Ylönen,
SPKI Examples, Internet-Draft draft-ietf-spki-cert-examples-
01.txt, work in progress, Internet Engineering Task Force, March 1998.

8. Li Gong, Java™ Security Architecture (JDK 1.2), DRAFT DOCUMENT (Revi-
sion 0.8), http://java.sun.com/products/jdk/1.2/docs/guide/
security/spec/security-spec.doc.html, Sun Microsystems, March
1998.

9. Li Gong and R. Schemers, “Implementing Protection Domains in the Java Devel-
opment Kit 1.2”, Proceedings of the 1998 Network and Distributed System Security
Symposium, San Diego, CA, March 11–13 1998, Internet Society, Reston, VA,
March 1998.

10. I. Lehti and P. Nikander, “Certifying trust”, Proceedings of the Practice and The-
ory in Public Key Cryptography (PKC) ’98, Yokohama, Japan, Springer-Verlag,
February 1998.

11. D. Maughan, M. Schertler, M. Schneider and J. Turner, Internet Security Associa-
tion and Key Management Protocol (ISAKMP), Internet-Draft draft-ietf-

Distributed Policy Management for JDK 1.2 183

ipsec-isakmp-10.txt, work in progress, Internet Engineering Task Force,
July 1998.

12. P. Nikander and A. Karila, “A Java Beans Component Architecture for Crypto-
graphic Protocols”, Proceedings of the 7th USENIX Security Symposium, San An-
tonio, Texas, Usenix Association, 26-29 January 1998.

13. P. Nikander and L. Viljanen, “Storing and Retrieving Internet Certificates”, Pro-
ceedings of the 3rd Nordic Workshop on Secure Computer Systems, Trondheim,
Norway, November 1998.

14. J. Partanen and P. Nikander, “Adding SPKI certificates to JDK 1.2", Proceedings of
the 3rd Nordic Workshop on Secure Computer Systems, Trondheim, Norway, No-
vember 1998.

15. J. Partanen, Using SPKI certificates for Access Control in Java 1.2, Master’s The-
sis, Helsinki University of Technology, August 1998.

16. R. L. Rivest and B. Lampson, “SDSI — a simple distributed security infrastruc-
ture”, Proceedings of the 1996 Usenix Security Symposium, 1996.

17. ITU-T Recommendation X.509 (1997 E): Information Technology - Open Systems
Interconnection - The Directory: Authentication Framework, ITU-T, June 1997.

184 Nikander, Partanen

Publication VI

This paper was originally published as Pekka Nikander, Yki Kortesniemi and Jonna
Partanen, “Preserving Privacy in Distributed Delegation with Fast Certificates,” in
Imai, Zheng (Editors), Public Key Cryptography — Second International Workshop on
Practice and Theory in Public Key Cryptography, PKC’99, Kamakura, Kanagawa, Ja-
pan, 1–3 March 1999, LNCS, Springer-Verlag, March 1999.

Preserving Privacy
in Distributed Delegation

with Fast Certificates

Pekka Nikander†, Yki Kortesniemi‡, Jonna Partanen‡

† Ericsson Research
FIN-02420 Jorvas, Kirkkonummi, Finland

pekka.nikander@ericsson.com

‡ Helsinki University of Technology, Department of Computer Science,1

FIN-02015 TKK, Espoo, Finland
yki.kortesniemi@hut.fi, jonna.partanen@hut.fi

Abstract. In a distributed system, dynamically dividing execution between
nodes is essential for service robustness. However, when all of the nodes cannot
be equally trusted, and when some users are more honest than others, controlling
where code may be executed and by whom resources may be consumed is a non-
trivial problem. In this paper we describe a generic authorisation certificate ar-
chitecture that allows dynamic control of resource consumption and code
execution in an untrusted distributed network. That is, the architecture allows the
users to specify which network nodes are trusted to execute code on their behalf
and the servers to verify the users’ authority to consume resources, while still al-
lowing the execution to span dynamically from node to node, creating delega-
tions on the fly as needed. The architecture scales well, fully supports mobile
code and execution migration, and allows users to remain anonymous.

We are implementing a prototype of the architecture using SPKI certificates
and ECDSA signatures in Java 1.2. In the prototype, agents are represented as
Java JAR packages.

1 This work was partially funded by the TeSSA research project at Helsinki University of Technology
under a grant from TEKES.

186 Nikander, Kortesniemi, Partanen

1 Introduction

There are several proposals for distributed systems security architectures, including the
Kerberos [14], the CORBA security architecture [23], and the ICE-TEL project pro-
posal [6], to mention but a few. These, as well as others, differ greatly in the extent they
support scalability, agent mobility, and agent anonymity, among other things. Most of
these differences are clearly visible in the trust models of the systems, when analyzed.

In this paper we describe a Simple Public Key Infrastructure (SPKI) [7] [8] [9]
based distributed systems security architecture that is scalable and supports agent mo-
bility, migration and anonymity. Furthermore, all trust relationships in our architecture
are explicitly visible and can be easily analyzed. The architecture allows various secu-
rity policies to be explicitly specified, and in this way, e.g., to specify where an agent
may securely execute [27].

Our main idea is to use dynamically created SPKI authorisation certificates to dele-
gate permissions from an agent running on one host to another agent running on an-
other host. With SPKI certificates, we are able to delegate only the minimum rights the
receiving agent needs to perform the operations that the sending agent wants it to carry
out. The architecture allows permissions to be further delegated as long as the generic
trust relationships, also presented in the form of SPKI certificates, are preserved.

A typical application could be a mobile host, such as a PDA. Characteristic to such
devises are limited computational power, memory constraints and an intermittent, low
bandwidth access to the network. These pose some limitations on the cryptographic
system used. Favourable characteristics would be short key length and fast operation
with limited processing power.

In order to be able to distinguish running agents, and delegate rights to them, new
cryptographic key pairs need to be created, and new certificates need to be created and
verified. To make this happen with an acceptable speed, we have implemented the rele-
vant public key functions with Elliptic Curve based DSA (ECDSA), yielding reasona-
ble performance.

In our architecture, cryptographic key pairs are created dynamically to represent
running agents. This also has a desirable side effect of making anonymous operations
possible while still preserving strong authorisation. In practical terms, some of the cer-
tificates that are used to verify agent authority may be encrypted to protect privacy.
This hinders third parties, and even the verifying host, from determining the identity of
the principal that is responsible for originally initiating an operation. This allows users’
actions to remain in relative privacy, while still allowing strong assurance on whether
an attempted operation is authorised or not.

We are in the process of implementing a practical prototype of our architecture.
The prototype is based on distributed Java Virtual Machines (JVM) running JDK 1.2,
but the same principles could be applied to any distributed system. The main parts of
the prototype architecture are already implemented, as described in [15], [21], and
[25], while others are under way.

The rest of this paper is organized as follows. In Sect. 2 we describe the idea of author-
isation certificates, their relation to trust relationships and certificate loops, and the se-

Preserving Privacy in Distributed Delegation with Fast Certificates 187

curity relevant components of the SPKI certificates. Sect. 3 summarizes the dynamic
nature of the SPKI enhanced JDK 1.2 security architecture. Next, in Sect. 4, we de-
scribe how our ECDSA implementation complements the Java cryptography architec-
ture. In Sect. 5, we define the main ideas of our architecture, and show how SKPI
certificates and dynamically generated key pairs can be used to anonymously, but se-
curely, delegate permissions from one JVM to another. Sect. 6 describes the current
implementation status, and Sect. 7 includes our conclusions from this research.

2 Authorisation and Delegation

The basic idea of authorisation, as opposed to simple (identity) authentication, is to at-
test that a party, or an agent, is authorised to perform a certain action, rather than
merely confirm that the party has a claimed identity. If we consider a simple real life
example, the driver’s licence, this distinction becomes evident. The primary function
of a driver’s licence is to certify that its holder is entitled, or authorised, to operate ve-
hicles belonging to certain classes. In this sense, it is a device of authorisation. How-
ever, this aspect is often overseen, as it seems obvious, even self-evident, for most
people.

The secondary function of a driver’s licence, the possibility of using it as an evi-
dence of identity, is more apparent. Yet, when a police officer checks a driver’s licence,
the identity checking is only a necessary side step in assuring that the operator of a ve-
hicle is on legal business.

The same distinction can and should be applied to computer systems. Instead of us-
ing X.509 type identity certificates for authenticating a principal’s identity, one should
use authorisation certificates, or signed credentials, to gain assurance about a princi-
pal’s permission to execute actions. In addition to a direct authorisation, as depicted in
the driver’s licence example, in a distributed computer system it is often necessary to
delegate authority from a party to a next one. The length of such delegation chains can
be pretty long on occasions. [17]

2.1 Trust and Security Policy

Trust can be defined as a belief that an agent or a person behaves in a certain way. Trust
to a machinery is usually a belief that it works as specified. Trust to a person means
that even if that person has the possibility to harm us, we believe that he or she chooses
not to. The trust requirements of a system form the system’s trust model. For example,
we may need to have some kind of trust to the implementor of a software whose source
code is not public, or trust to the person with whom we communicate over a network.

Closely related to the concept of trust is the concept of policy. A security policy is a
manifestation of laws, rules and practices that regulate how sensitive information and
other resources are managed, protected and distributed. Its purpose is to ensure that the
handled information remains confidential, integral and available, as specified by the
policy. Every agent may be seen to function under its own policy rules.

In many cases today, the policy rules are very informal, often left unwritten. How-
ever, security policies can be meaningful not only as internal regulations and rules, but

188 Nikander, Kortesniemi, Partanen

as a published document which defines some security-related practices. This could be
important information when some outsider is trying to decide whether an organization
can be trusted in some respect. In this kind of situation it is useful to define the policy
in a systematic manner, i.e., to have a formal policy model.

Another and a more important reason for having a formally specified policy is that
most, or maybe even all, of the policy information should be directly accessible by the
computer systems. Having a policy control enforced in software (or firmware) rather
than relying on the users to follow some memorized rules is essential if the policy is to
be followed. A lot of policy rules are already implicitly present in the operating sys-
tems, protocols, and applications, and explicitly in their configuration files. Our mis-
sion includes the desire to make this policy information more explicit, and make it
possible to manage it in a distributed way.

2.2 Certificates, Certificate Chains, and Certificate Loops

A certificate is a signed statement about the properties of some entity. A certificate has
an issuer and a subject. Typically, the issuer has attested, by signing the certificate, its
belief that the information stated in the certificate is true. If a certificate states some-
thing about the issuer him or herself, it is called a self-signed certificate or an auto-cer-
tificate, in distinction from other certificates whose subject is not the issuer.

 Certificates are usually divied in two categories: Identity certificates and authorisa-
tion certificates. An identity certificate usually binds a cryptographic key to a name. An
authorisation certificate, on the other hand, can make a more specific statement; for ex-
ample, it can state that the subject entity is authorised to have access to a specified
service. Furthermore, an authorisation certificate does not necessarily need to carry
any explicit, human understandable information about the identity of the subject. That
is, the subject does not need to have a name. The subject can prove its title to the certif-
icate by proving that it possesses the private key corresponding to the certified public
key; indeed, that is the only way a subject can be trusted to be the (a) legitimate owner
of the certificate.

Certificates and trust relationships are very closely connected. The meaning of a
certificate is to make a reliable statement concerning some trust relationship. Certifi-
cates form chains, where a subject of a certificate is the issuer of the next one. In a
chain the trust propagates transitively from an entity to another. These chains can be
closed into loops, as described in [17].

The idea of certificate loops is a central one in analyzing trust. The source of trust is
almost always the checking party itself. A chain of certificates, typically starting at the
verifying party and ending at the party claiming authority, forms an open arc. This arc
is closed into loop by the online authentication protocol where the claimant proves
possession of its private key to the verifying party.

2.3 Authorisation and Anonymity

In an access control context, an authorisation certificate chain binds a key to an opera-
tion, effectively stating that the holder of the key is authorised to perform the opera-
tion. A run time challenge operates between the owner of operation (the reference

Preserving Privacy in Distributed Delegation with Fast Certificates 189

monitor) and the key, thus closing the certification loop. These two bindings, i.e., the
certificate chain and the run time authentication protocol, are based on cryptography
and can be made strong.

In an authorisation certificate, a person-key binding is different from the person-
name binding used in the identity certificates. By definition, the keyholder of a key has
sole possession of the private key. Therefore, the corresponding public key can be used
as an identifier (a name) of the keyholder. For any public key cryptosystem to work, it
is essential that a principal will keep its private key to itself. So, the person is the only
one having access to the private key and the key has enough entropy so that nobody
else has the same key. Thus, the identifying key is bound tightly to the person that con-
trols it and all bindings are strong. The same cannot be claimed about human under-
standable names, which are relative and ambiguous [10].

However, having a strong binding between a key and a person does not directly
help the provider of a controlled service much. The provider does not know if it can
trust the holder of the key. Such a trust can only be acquired through a valid certificate
chain that starts at the provider itself. The whole idea of our architecture centres
around the concept of creating such certificate chains when needed, dynamically pro-
viding agents the permissions they need.

The feature of not having to bind keys to names is especially convenient in systems
that include anonymity as a security requirement. It is easy for a user to create new
keys for such applications, while creating an authorised false identity is (hopefully) not
possible.

2.4 SPKI Certificates

The Simple Public Key Infrastructure (SPKI) is an authorisation certificate infrastruc-
ture being standardized by the IETF. The intention is that it will support a range of trust
models. [7] [8] [9]

In the SPKI world, principals are keys. Delegations are made to a key, not to a key-
holder or a global name. Thus, an SPKI certificate is closer to a “capability” as defined
by [16] than to an identity certificate. There is the difference that in a traditional capa-
bility system the capability itself is a secret ticket, the possession of which grants some
authority. An SPKI certificate identifies the specific key to which it grants authority.
Therefore the mere ability to read (or copy) the certificate grants no authority. The cer-
tificate itself does not need to be as tightly controlled.

In SPKI terms, a certificate is basically a signed five tuple (I,S,D,A,V) where
• I is the Issuer’s (signers) public key, or a secure hash of the public key,
• S is the Subject of the certificate, typically a public key, a secure hash of a public

key, a SDSI name, or a secure hash of some other object such as a Java class,
• D is a Delegation bit,
• A is the Authorisation field, describing the permissions or other information that

the certificate’s Issuer grants to or attests of the Subject,
• V is a Validation field, describing the conditions (such as a time range) under

which the certificate can be considered valid.

190 Nikander, Kortesniemi, Partanen

The meaning of an SPKI certificate can be stated as follows:
Based on the assumption that I has the control over the rights or other information

described in A, I grants S the rights/property A whenever V is valid. Furthermore, if
D is true and S is a public key (or hash of a public key), S may further delegate the
rights A or any subset of them.

2.5 Access control revisited

The traditional way of implementing access control in a distributed system has been
based on authentication and Access Control Lists (ACLs). In such a system, when exe-
cution is transferred from one node to another, the originating node authenticates itself
to the responding node. Based on the identity information transferred during the au-
thentication protocol, the responding node attaches a local identifier, i.e., an user ac-
count, to the secured connection or passed execution request (e.g., an RPC call). The
actual access control is performed locally by determining the user’s rights based on the
local identifier and local ACLs.

In an authorisation based system everything works differently. Instead of basing ac-
cess control decisions on locally stored identity or ACL information, decisions are
based on explicit access control information, carried from node to node. The access
rights are represented as authorisation delegations, e.g., in the authorisation field of an
SPKI certificate. Because the certificates form certificate loops, the interpreter of this
access control information is always the same party that has initially issued it. The
rights may, though, have been restricted along the delegation path.

In Sect. 5 we show how this kind of an infrastructure can be effectively extended to
an environment of mobile agents, represented as downloadable code, that is run on a
network of trusted and untrusted execution nodes.

3 An SPKI based Dynamic Security Architecture for
JDK 1.2

As described in more detail in [25], we have extended the JDK 1.2 security architec-
ture with SPKI certificates. This makes it possible to dynamically modify the current
security policy rules applied at a specific Java Virtual Machine (JVM). This dynamic
modification allows an agent running on one trusted JVM to delegate permissions to
another agent running on another trusted JVM.

Table 1: The parts of the JDK 1.2 access control Architecture

Class or classes The role of the class or classes

Permission and its subclasses Represent different “tickets” or access rights.

ProtectionDomain Connects the Permission objects to classes.

Policy and its subclasses Decide what permissions each class gets.

AccessController The reference monitor. [1]

Preserving Privacy in Distributed Delegation with Fast Certificates 191

The components of the basic and SPKI extended access control architecture are enu-
merated in Table 1 and discussed in more detail in Sections 3.1-3.2. The most relevant
changes needed to the basic architecture are described in Sect. 3.2.

3.1 Access Control in JDK 1.2

The JDK 1.2 has a new, capability based access control architecture. Java capabilities
are objects called permissions. Each protected resource in the system has a corre-
sponding permission object that represents access to the resource. There are typically
many instances of a given permission, possessed by and thus granting access for differ-
ent classes.

Permissions are divided into several subtypes that extend the Permission class.
Each resource type or category, such as files or network connections, has its own Per-
mission subclass. Inside the category, different instances of the Permission class corre-
spond to different instances of the resource. In addition, the programmers may provide
their own Permission subclasses if they create protected resources of their own.

Just as in any capability-based
access control system, the Java
classes must be prevented from
creating permissions for them-
selves and thus gaining unauthor-
ised access. This is done by
assigning the classes to protection
domains. Each class belongs to
one and only one protection do-
main. Each ProtectionDomain ob-
ject has a PermissionCollection
object that holds the permissions
of that domain. Only these permissions can be used to gain access to resources. The
classes cannot change their protection domain nor the PermissionCollection of the do-
main. Thus, the classes are free to create any Permission objects they like, but they
cannot affect the access control decisions and gain unauthorised access.

The actual access control is done by an object called AccessController. When a
thread of execution requests access to a protected resource such as a file, the Access-
Controller object is asked whether the access is granted or not. To determine this, the
AccessController checks the execution context to see if the caller and all the previous
classes in the call chain have the Permission object corresponding to the resource. The
previous classes in the call chain are checked to ensure that a class does not bypass the
access control simply by calling another class with more permissions.

3.2 Policy Management

A security policy defines the rules that mandate which actions the agents in the system
are allowed or disallowed to do [1]. Java security policy defines what permissions
each protection domain gets. The objects implementing the security policy manage-

Fig. 1. Classes, domains and permissions

Class 1

Class 2

Class 3

Class 4

Class 5

Domain A

Domain B

Permissions

Permissions

192 Nikander, Kortesniemi, Partanen

ment in JDK are subclasses of the Policy class. The implementation can be changed
easily by just creating and installing a new Policy subclass.

The default policy implementation of JDK 1.2 uses a set of configuration files to
define the security policy. This system has several small defects discussed in [21] and
[25]. Furthermore, this approach makes delegating permissions from a class in one
JVM to another class in some other JVM virtually impossible, as the delegating party
should be able to edit the configuration file of the other JVM. We have solved these
problems by replacing the configuration files with a capability-based policy definition
that uses SPKI certificates to represent capabilities.

In our model, the policy manager and the dynamic permission evaluation are
slightly more complex than in the basic implementation. In the SPKI extended system,
the main task of the policy manager is to attempt to reduce a set of SPKI certificates to
form a valid chain from its own key, called the Self key, to the hash of the classes com-
posing a protection domain, and to interpret the authorisation given by the chain into
Java Permission objects. This chain reduction includes checking the validity of the cer-
tificates, checking that all but the last certificate have the delegation bit set, and inter-
secting the authorisation fields to get the final authorisation given by the chain.

In the default JDK implementation, the ProtectionDomains get the permissions
when they are initialized, and the permissions are not revised after that. We have made
the policy evaluation more dynamic. When a class tries to access a protected resource,
the reference monitor asks the protection domain whether it contains the specific per-
mission required, and the protection domain in turn asks the Policy for the permission.
The Policy will try to produce a certificate chain reduction that would imply the per-
mission in question. If it fails, the access is not granted.

The SPKI drafts propose that the Prover (i.e. the class) is responsible of presenting
a valid certificate chain to the Verifier (i.e. the Policy) at the time of access request or
authentication [7]. We argue that this approach does not work with mobile agents. Re-
quiring that each mobile agent includes the logic for locating all certificates needed to
access resources is infeasible and counterproductive. Instead, we think that the Policy
will need to locate the relevant certificates as well as to reduce the certificate chains.

4 Adding Elliptic Curve based Certificates to Java

Java defines and partially implements security related functionality as part of its core
API. This functionality is collected in the java.security package and its subpack-
ages. To facilitate and co-ordinate the use of cryptographic services, JDK 1.1 intro-
duced the Java Cryptography Architecture (JCA). It is a framework for both accessing
and developing new cryptographic functionality for the Java platform. JDK 1.1 itself
included the necessary APIs for digital signatures and message digests.[7]

In Java 1.2, JCA has been significantly extended. It now encompasses the cryptog-
raphy related parts of the Java Security API, as well as a set of conventions and specifi-
cations. Further, the basic API has been complemented with the Java Cryptography
Extension (JCE), which includes further implementations of encryption and key ex-
change functionality. This extension, however, is subject to the US export restrictions

Preserving Privacy in Distributed Delegation with Fast Certificates 193

and is therefore not available to the rest of the world. To fully utilise Java as a platform
for secure applications, the necessary cryptographic functionality has to be developed
outside the US.

4.1 The Java Cryptography Architecture

One of the key concepts of the JCA is the provider architecture. The key idea is that all
different implementations of a particular cryptographic service conform to a common
interface. This makes these implementations interchangeable; the user of any crypto-
graphic service can choose whichever implementation is available and be assured that
his application will still function.

To achieve true interoperability, Java 1.2 defines cryptographic services in an ab-
stract fashion as engine classes. The following engine classes, among others, have been
defined in Java 1.2:
• MessageDigest – used to calculate the message digest (hash) of given data
• Signature – used to sign data and verify digital signatures
• KeyPairGenerator – used to generate a pair of public and private keys suitable for a

specific algorithm
• CertificateFactory – used to create public key certificates and Certificate Revoca-

tion Lists (CRLs)
• AlgorithmParameterGenerator – used to generate a set of parameters to be used

with a certain algorithm
A generator is used to create objects with brand-new contents, whereas a factory cre-
ates objects from existing material.

To implement the functionality of an engine class, the developer has to create
classes that inherit the corresponding abstract Service Provider Interface (SPI) class
and implement the methods defined in it. This implementation then has to be installed
in the Java Runtime Environment (JRE), after which it is available for use.[7] [8]

4.2 Implementing an Elliptic Curve Cryptography Provider in
Java 1.2

In our project we implemented the Elliptic Curve Digital Signature Algorithm
(ECDSA). The signature algorithm and all the necessary operations are defined in
IEEE P1363 and ANSI X9.62 drafts. To facilitate the interoperability of different im-
plementations, Java 1.2 includes standard names for several algorithms in each engine
class together with their definitions. ECDSA, however, is not among them. We there-
fore propose that ECDSA should be adopted in Java 1.2 as a standard algorithm for
signatures.

Similarrly with the DSA implementation in JDK 1.2, we have defined interfaces for
the keys, algorithm parameters (curves) and points. These are used to facilitate the use
of different co-ordinate representations and arithmetics. Our implementation of
ECDSA uses prime fields and affine co-ordinates. The mathematics have been imple-
mented using the BigInteger-class. The BigInteger class is easy to use and flexible as it
implements several operations necessary for modular arithmetic and provides arbitrary
precision. The down side is that performance is not optimal. If the key length could be

194 Nikander, Kortesniemi, Partanen

kept small enough, the arithmetic could be based on the long type. The necessary op-
erations could be based on using a few long type variables for each value. With regu-
lar elliptic curves, which require a key length of at least 160 bits, this approach might
be inconvenient, but if hyperelliptic curves were used, the approach could prove feasi-
ble.

Even further improvements in performance could be achieved by implementing the
key mathematic operation in the hardware, e.g., in a mobile host. With the small key
size of (hyper)elliptic curves, this would not pose unreasonable demands on the proc-
essor design or memory.

5 Extending Java Protection Domains into Distributed
Agents

The dynamic and distributed nature of the SPKI based Java protection domains, de-
scribed in Sect. 3, opens up new possibilities for their use. In particular, it is possible to
dynamically delegate a permission from one domain, executing on one Java virtual
machine, to another domain, executing on another Java virtual machine. For example,
when a distributed application requests a service from a server, it might want to allow a
certain class, an agent, in the server to execute as if it were the user that started the ap-
plication in the first hand. This ability allows us to view the protection domains not just
as internal Java properties, but they can be considered to represent active agents that
are created and executed in the network.

In order to be able to per-
form these kinds of functions,
the domains (or agents) in-
volved must have local access
to some private keys, and a
number of trust conditions must
be met. The requirement of hav-
ing access to a private key can
be easily accomplished by cre-
ating a temporary key pair for
each policy domain, i.e., for
each incarnation of an agent.
This is acceptable from a secu-
rity point of view, because the
underlying JVM must be
trusted anyway, and so it can be
trusted to provide temporary
keys as well. The public tempo-
rary key can be signed by the
local machine key, denoting it as belonging to the domain involved.

To analyze the trust conditions, let us consider the situation depicted in Fig. 2. The
user wants to use a protected resource , located on the server . However, we as-

U S

R

Fig. 2. The user requests for a service needing the re-
source through intermediate nodes .

U
R N1 … Nk, ,

N1 Nk
… AS

A1
Ak

TA1 TAk

PA1
PAk

TA N

Flow of trust
Flow of execution

U R S

Preserving Privacy in Distributed Delegation with Fast Certificates 195

sume that it is not possible or feasible that the user would have a direct secured con-
nection with . As an example application, the user may be using a mobile terminal
whose connectivity cannot be guaranteed. So, instead of a direct connection the user’s
actions are carried out by one or more intermediate nodes , each acting on the user’s
behalf.

The setting is still slightly more complicated by the assumption that the code that
actually executes at the server and the intermediate nodes consist of independent
agents, which are dynamically loaded as needed. In practical terms, in our prototype
these agents are Java class packages (jar files), carrying SPKI certificates within them-
selves. The agents are named as for the agent eventually running at the server ,
and as for the agents running at the intermediate nodes .

It is crucial to note that when the execution begins, the user typically does not
know the identity of the server , the intermediate nodes , or the agents . In-
stead, she has expressed her confidence towards a number of administrators (described
below), who in turn certify the trustworthiness of and . Correspondingly, the
server has no idea about the user or the nodes . Again, it trusts a number of ad-
ministrators to specify an explicit security policy on its behalf.

5.1 Trust requirements

Since we assume that the nodes in the network do not necessarily nor implicitly trust
each other or the executable agents, a number of trust conditions must be met and ex-
plicitly expressed.

First, from the user’s point of view, the following conditions must be met.
• The user must trust the server to provide the desired service granting ac-

cess to the resource . This trust is expressed through a sequence of trust adminis-
trators , where the last administrator confirms that indeed is a server
that provides the service .

• The user must trust the agent , and delegate the right of accessing the re-
source to it. However, the actual runtime identity (i.e, the temporary public key)
of the particular activation of , running on on the behalf of on this occa-
sion, is not initially known but created runtime. On the other hand, must certify
the code of so that it may be loaded on her behalf.

• The user must consider each of the intermediate nodes to be trustworthy
enough to execute code on and to participate in accessing the resource on her be-
half. For simplicity, in this case we have assumed that the trustworthiness of the
nodes is certified by a single trust authority , directly trusted by the user .

• The user must trust the intermediate agents , while running on the nodes ,
to execute on her behalf and to participate in the process. Again, the temporary
public keys of the actual incarnations of the agents are created only at runtime.
From the server’s point of view, a number of similar conditions must be met.

• The user must be authorised to access the resource . Since the resource is
controlled by the server , the source of this authority must be itself. Typically,
this authorisation is achieved through a chain of independent security policy ad-
ministrators .

U
S

N i

S N i

AS S
Ai N i

U
S N i AS Ai,

S N i
S U N i

U S SR
R

TA i TA k S
SR

U AS
R

AS S U
U

AS
U N i

R

TA N U
U Ai N i

U R R
S S

PA i

196 Nikander, Kortesniemi, Partanen

• The server must trust the intermediate nodes to faithfully represent the user
1. This means, among other things, that when an agent is running on any of these

nodes, trusts that the node has faithfully created and certified the temporary key
pair that represents the agent. For simplicity, we have assumed that the server as-
sumes the user to be competent enough to determine which nodes to trust. Thus,
in practice, the certificate chain used to delegate the right to access the resource
may be combined with the chain certifying ’s proficiency in determining node
trustworthiness.

5.2 Expressing the Trust Requirements with SPKI Certificates

Using SPKI certificates, it is possible to explicitly express the static and dynamic trust
and delegation relationships. In the following, the appearance of the symbols

 and as the issuer or the subject of the certificates denotes the
(static) public key of the respective principal. On the other hand, to explicitly commu-
nicate the dual nature of the agents as dynamically loaded code and dynamically cre-
ated key pairs that represent them, denotes a hash code calculated over the code
of the agent , and denotes a temporary key that the node has created for the
agent . Furthermore, the symbol is used to denote the permission to access the re-
source .

Normal SPKI certificates are represented as 4-tuples , where the validity
field is left out. Correspondingly, SPKI name certificates are represented as

, denoting that the issuer has bound the for the principal .

User trust requirements. First, ’s trust on is represented through a certifi-
cate chain Cert. 1 ... Cert. 3.

Cert. 1

… Cert. 2

Cert. 3

Second, must further certify that the agents, when run, may use whatever rights
 has granted to the agents as code. Since does not know where the agents will be

run, SPKI certificates containing indirect naming are used to denote this delegation.

Cert. 4

where is an SPKI name denoting the running agent , running on an
arbitrary node , named by .

Next, must certify that the nodes are trustworthy to execute code. has dele-
gated this right to ; thus, a chain of two certificates is needed for each node. In
practice, the right of running code on the issuer’s behalf is represented by a number of
SPKI naming certificates that transfer the node name , used above, from ’s name
space to the name space of the trust authority . The trust authority , on it’s be-

1 More generally, the server must trust the intermediate nodes to faithfully represent any user, or at
least any user that has the authority and a need to access the resource .

S N i
U

S
R

S
S

U
R

U

U S N i TA i TA N, , , , PA i

h A()
A K A N, N

A R
R

I S D A, , ,()

I′s name() S,() I name S

U S

U TA1 true SR, , ,()

TAk S false SR, , ,()
U

U U

U U′s N′s h Ai()() false act as h Ai(), , ,()
N′s h Ai()() Ai

N U
U U

TA N

N U
TA N TA N

Preserving Privacy in Distributed Delegation with Fast Certificates 197

half, names a specific node as a node , which, consecutively, has the authority to
bind the agent hash to a public key.

 Cert. 5

Cert. 6

Furthermore, the user must certify the actual code of the agents . In a real sit-
uation, this would happen through another certificate chain. However, for simplicity,
we assume that the user has written the agents herself, and therefore certifies their code
directly.

Cert. 7

Server trust requirements. Similar to the user, the server must authorise the
user to access the resource , represented as the chain Cert. 8 ... Cert. 10.

Cert. 8

… Cert. 9

Cert. 10

Since the user is allowed to directly denote which nodes she trusts, no other certifi-
cates are needed on the server’s behalf.

Initial reductions. Reducing Certificates 1–3, one gets the certificate

Cert. 11

This is sufficient for the user, and to anybody acting on the user’s behalf, to verify
that the server really provides the desired service , which allows one to access the
resource .

Respectively, reducing the Certificates 4–6, the result is

Cert. 12

denoting that the user has delegated to the agent , as named by the node ,
the right to use the rights assigned to the agent’s code1.

5.3 Runtime Behaviour

The run time permission delegation is advanced step by step, from the user through the
intermediate nodes to the server. We next describe the initial step, a generic intermedi-
ate step, and the final step at the server.

Initiation of action. As the user initiates her access, she contacts the first inter-
mediate node . The node loads the agent , generates a temporary key for
the agent, and creates an SPKI name certificate (Cert. 13) to name the agent.

Cert. 13

Reducing this with Cert. 12 gives the newly created key the acting right.

1 The reader should notice that this, naturally, allows to delegate this right to itself. However, this is
acceptable and inevitable, as the node is trusted for creating and signing the agent’s public key.

N i N
h Ai()

U′s N() TAN ′s N(),()

TAN ′s N() N i,()
U Ai

U h Ai() true R, , ,()
S

U R

S PA1 true R, , ,()

PAk U true R, , ,()

U S false SR, , ,()

S SR
R

U N i′s h Ai()() false act as h Ai(), , ,()
U Ai N i

N i
N i

U
N1 A1 K A1 N1,

N1′s h A1()() K A1 N1,,()

198 Nikander, Kortesniemi, Partanen

Cert. 14

Combining this, on the semantic level1, with Certificates 7–10, results in the crea-
tion of Cert. 15 that finally denotes that the newly created key has the delegated per-
mission to access , and to further delegate this permission.

Cert. 15

Intermediate delegation. Let us next consider the situation where the node
has gained the access right.

Cert. 16

The node initiates action on the next node, , that launches and names the
agent running on it.

Cert. 17

Reducing this with the chain leading to Cert. 12 results in

Cert. 18

Having this, together with the Cert. 12 chain, can be sure that it is fine to dele-
gate the right expressed with Cert. 16 further to .

Cert. 19

Combining Cert. 19 with Cert. 16 results in

Cert. 20

which effectively states that , running on node , is permitted to access
the resource and to further delegate this permission.

Final step. In the beginning of the final step, agent , executing on node , has
gained the right to access .

Cert. 21

Agent now launches agent to run on the server . creates a temporary
key for the agent, and publishes it as a certificate.

Cert. 22

Again, combining this with the Cert. 12 chain gives

Cert. 23

which allows the agent to decide to delegate the right to access the resource .

Cert. 24

Reducing Cert. 24 with Cert. 21 results in Cert. 25.

Cert. 25

1 With semantic level we mean here that mere syntactic SPKI reduction is not enough, but that the in-
terpreter of the certificates must interpret the expression “ “.

U K A1 N1, false act as h Ai(), , ,()

act as h Ai()

S
R

S K, A1 N1, true R, ,()
N i

S K, Ai N i, true R, ,()
N i 1+

N i 1+ ′s h Ai 1+()() K Ai 1+ N i 1+,,()

U K Ai 1+ N i 1+, false act as h Ai 1+(), , ,()
Ai

Ai 1+

K Ai N i, K Ai 1+ N i 1+, true R, , ,()

S K Ai 1+ N i 1+, true R, , ,()
Ai 1+ N i 1+

R

Ak Nk
R

S K Ak N k, true R, , ,()
Ak AS S S

K AS

S′s h AS()() K AS
,()

U K AS
false act as h AS(), , ,()

Ak R

K Ak N k, K AS
false R, , ,()

S K AS
true R, , ,()

Preserving Privacy in Distributed Delegation with Fast Certificates 199

The final certificate, Cert. 25, can now be trivially closed into a certificate loop by
, since itself has created the key , and therefore can trivially authenticate it. In

other words, this can be seen easily to reduce into a virtual self-certificate Cert. 26.

Cert. 26

Cert. 26, closed on the behalf of the agent , finally assures the server that the
agent does have the right to access the protected resource .

5.4 Preserving privacy

Using SPKI Certificate Reduction Certificates (CRC) provides the user a simple
way to stay anonymous while still securely accessing the resource . If any of the pol-
icy administrators on the trust path leading from to is available online and
willing to create CRCs, the user can feed it the relevant items of Cert. 9, Cert. 10, and
Certs 4–6 and Cert. 7. This allows the policy administrator to create CRCs
Cert. 27 and Cert. 28, for Certs 4–6 and Cert. 7, respectively.

Cert. 27

Cert. 28

Then, in the rest of the algorithm, Cert. 27 is used instead of Cert. 12, and Cert. 28
is used instead of Cert. 7. Using this technique, other nodes than do not see ‘s
key at all. The only identity information they can infer is that the user who effectively
owns the computation is some user whom has directly or indirectly delegated the
permission to access the resource .

To further strengthen privacy, may encrypt parts of the certificates that it is-
sues. Since these certificates will be used by itself for creating CRCs only, nobody
else but itself needs to be able to decrypt the encryption. This makes it virtually
impossible to find out the identities of the users that has issued rights in the first
place.

6 Implementing the architecture

We are building a JDK 1.2 based prototype, where distinct JVM protection domains
could delegate Java Permission objects, in the form of SPKI certificates, between each
other. At this writing (September 1998), we have completed the integration of SPKI
certificates to the basic JVM security policy system [25], implemented the basic func-
tionality of ECDSA in pure Java [15], and integrated these two together so that the
SPKI certificates are signed with ECDSA signatures, yielding improved performance
in key generation.

Our next steps include facilities for transferring SPKI certificates between the Java
Virtual Machines, and extending the Java security policy objects to recognize and sup-
port dynamically created delegations. Initially, we plan to share certificates through the
file system between a number of JVMs running as separate processes under the UNIX
operating system.

S S K AS

S S false R, , ,()
AS S

AS R

U
R

PA i S U

PA i

PA i N i′s h Ai()() false act as h Ai(), , ,()

PA i h Ai() true R, , ,()

N1 U

PA i
R
PA i

PA i
PA i

PA i

200 Nikander, Kortesniemi, Partanen

In addition, we are building a prototype of the ISAKMP [18] security protocol
framework. This will allow us to create secure connections between network separated
JVMs. The ISAKMP also allows us to easily transfer SPKI certificates and certificate
chains between the virtual machines.

In order to support dynamic search and resolving of distributedly created SPKI cer-
tificate chains [3], we are integrating the Internet Domain Name System (DNS) certifi-
cate resource record (RR) format into our framework. This will allow us to store and
retrieve long living SPKI certificates in the DNS system [22].

7 Conclusions

In this paper we have shown how authorisation certificates combined with relatively
fast, elliptic curve based public key cryptography can be used to dynamically delegate
authority in a distributed system. We analyzed the trust requirements of such a system
in a fairly generic setting (Sect. 5.1), illustrated the details of how these trust require-
ments can be represented and verified with SPKI certificates (Sect. 5.2), and explained
how the agents delegate permissions at run time by creating new key pairs and certifi-
cates. Finally, we outlined how the system can be utilized in a way that the user’s iden-
tity is kept anonymous while still keeping all authorisations and connections secure
(Sect. 5.4).

We are in the process of implementing a prototype of the proposed system. At the
moment, we have completed the basic integration of SPKI certificates into the JDK 1.2
access control system (Sect. 3) and our first pure Java implementation of the ECDSA
algorithms (Sect. 4). The next step is to integrate these with a fully distributed certifi-
cate management and retrieval system. The resulting system will allow distributed
management of distributed systems security policies in fairly generic settings. In our
view, the system could be used, e.g., as an Internet wide, organization borders crossing
security policy management system.

References

1. Amoroso, E., Fundamentals of Computer Security Technology, Prentice Hall, Eng-
lewood Cliffs, New Jersey, 1994.

2. Arnold, K. and Gosling, J., The Java Programming Language, Addison-Wesley,
1996.

3. Aura, T. , “Comparison of Graph-Search Algorithms for Authorisation Verification
in Delegation”, Proceedings of the 2nd Nordic Workshop on Secure Computer Sys-
tems, Helsinki, 1997.

4. Beth, T., Borcherding, M., Klein, B., Valuation of Trust in Open Networks, Univer-
sity of Karlsruhe, 1994.

5. Blaze, M., Feigmenbaum, J., and Lacy, J., “Decentralized trust management”, Pro-
ceedings of the 1996 IEEE Computer Society Symposium on Research in Security
and Privacy, Oakland, CA, May 1996.

Preserving Privacy in Distributed Delegation with Fast Certificates 201

6. Chadwick, D., Young, A., “Merging and Extending the PGP and PEM Trust Mod-
els - The ICE-TEL Trust Model”, IEEE Network Magazine, May/June, 1997.

7. Ellison, C. M., Frantz, B., Lampson, B., Rivest, R., Thomas, B. M. and Ylönen, T.,
Simple Public Key Certificate, Internet-Draft draft-ietf-spki-cert-
structure-05.txt, work in progress, Internet Engineering Task Force, March
1998.

8. Ellison, C. M., Frantz, B., Lampson, B., Rivest, R., Thomas, B. M. and Ylönen, T.,
SPKI Certificate Theory, Internet-Draft draft-ietf-spki-cert-theory-
02.txt, work in progress, Internet Engineering Task Force, March 1998.

9. Ellison, C. M., Frantz, B., Lampson, B., Rivest, R., Thomas, B. M. and Ylönen, T.,
SPKI Examples, Internet-Draft draft-ietf-spki-cert-examples-
01.txt, work in progress, Internet Engineering Task Force, March 1998.

10. Ellison, C., “Establishing Identity Without Certification Authorities”, In Proceed-
ings of the USENIX Security Symposium, 1996.

11. Gong, Li, Java™ Security Architecture (JDK 1.2), DRAFT DOCUMENT (Revi-
sion 0.8), http://java.sun.com/products/jdk/1.2/docs/guide/
security/spec/security-spec.doc.html, Sun Microsystems, March
1998.

12. Gong, Li and Schemers, R., “Implementing Protection Domains in the Java Devel-
opment Kit 1.2”, Proceedings of the 1998 Network and Distributed System Security
Symposium, San Diego, CA, March 11–13 1998, Internet Society, Reston, VA,
March 1998.

13. International Telegraph and Telephone Consultative Committee (CCITT): Recom-
mendation X.509, The Directory - Authentication Framework, CCITT Blue Book,
Vol. VIII.8, pp. 48-81, 1988.

14. Kohl, J. and Neuman, C., The Kerberos Network Authentication Service (V5),
RFC1510, Internet Engineering Task Force, 1993.

15. Kortesniemi, Y., “Implementing Elliptic Curve Cryptosystems in Java 1.2”, in Pro-
ceedings of NordSec’98, 6-7 November 1998, Trondheim, Norway, November
1998.

16. Landau, C., Security in a Secure Capability-Based System, Operating Systems Re-
view, pp. 2-4, October 1989.

17. Lehti, I. and Nikander, P., “Certifying trust”, Proceedings of the Practice and The-
ory in Public Key Cryptography (PKC) ’98, Yokohama, Japan, Springer-Verlag,
February 1998.

18. Maughan, D., Schertler, M., Schneider, M. and Turner, J., Internet Security Associ-
ation and Key Management Protocol (ISAKMP), Internet-Draft draft-ietf-
ipsec-isakmp-10.txt, work in progress, Internet Engineering Task Force,
July 1998.

19. McMahon, P.V., “SESAME V2 Public Key and Authorisation Extensions to Ker-
beros”, in Proceedings of 1995 Network and Distributed Systems Security, Febru-
ary 16-17, 1995, San Diego, California, Internet Society 1995.

20. Nikander, P. and Karila, A., “A Java Beans Component Architecture for Crypto-
graphic Protocols”, Proceedings of the 7th USENIX Security Symposium, San An-
tonio, Texas, Usenix Association, 26-29 January 1998.

202 Nikander, Kortesniemi, Partanen

21. Nikander, P. and Partanen, J., “Distributed Policy Management for JDK 1.2”, In
Proceedings of the 1999 Network and Distributed Systems Security Symposium,
3-5 February 1999, San Diego, California, Internet Society, February 1999.

22. Nikander, P. and Viljanen, L., “Storing and Retrieving Internet Certificates”, in
Proceedings of NordSec’98, 6-7 November 1998, Trondheim, Norway, November
1998.

23. OMG, CORBAservices: Common Object Services Specification, Revised Edition,
Object Management Group, Farmingham, MA, March 1997.

24. Partanen, J. and Nikander, P., “Adding SPKI certificates to JDK 1.2”, in Proceed-
ings of NordSec’98, 6-7 November 1998, Trondheim, Norway, November 1998.

25. Partanen, J., Using SPKI certificates for Access Control in Java 1.2, Master’s The-
sis, Helsinki University of Technology, August 1998.

26. Rivest, R. L. and Lampson, B., “SDSI — a simple distributed security infrastruc-
ture”, Proceedings of the 1996 Usenix Security Symposium, 1996.

27. Wilhelm, G. U., Staamann, S., Buttyán, L., “On the Problem of Trust in Mobile
Agent Systems”, In Proceedings of the 1998 Network And Distributed System Se-
curity Symposium, March 11-13, 1998, San Diego, California, Internet Society,
1998.

28. Yahalom, R., Klein, B., Beth, T., “Trust Relationships in Secure Systems - A Dis-
tributed Authentication Perspective”, In Proceedings of the IEEE Conference on
Research in Security and Privacy, 1993.

Publication VII

This paper was originally published as Pekka Nikander, Authorization in Agent Sys-
tems: Theory and Practice, Technical Report, 1/99 in Series A, Telecommunications
Software and Multimedia Laboratory, Helsinki University of Technology, ISBN 951-
22-4464-0, ISSN 1455-9722, February 1999. A revised version of this paper has been
submitted to Computer Security Foundations Workshop 1999.

Authorization in Agent Systems:
Theory and Practice

Pekka Nikander

pekka.nikander@ericsson.com

Ericsson Research1

Abstract. In a distributed agent based system, there are trust relationships that
flow in several directions. First, the user must be able to trust that all the nodes in
the execution environment are trustworthy to execute agent programs on the
user’s behalf. Second, the user must trust the agent programs to behave as an-
nounced, and to correctly perform intermediate security checks. Third, the exe-
cution environments must trust that the agent programs behave sanely. Last, the
execution environment must gain assurance that an agent running on the behalf
of a user has been authorized to access resources on the user’s account.

In this paper, we describe a formal language that allows us to reason about
these trust relationships, and a base for a practical implementation that allows
the most important trust relationships to be expressed in the form of SPKI certif-
icates.

1 Introduction

In a distributed system that supports mobile code, or agents, there are several types of
entities. In order for the system to be secure, these entities must trust in each other in a
number of ways.

In this paper we distinguish two basic types of entities: principals, which are active
entities and include users, nodes, and active agents; and objects, which are passive en-
tities and include program code, files, devices, and other resources. The purpose of the
theory we present is to be able to specify and argue about security related trust rela-
tionships that the principals have among themselves and towards the objects. Our goal
is to assess all the trust relationships in a uniform way, and to show that basically all
access control decisions are trust evaluations. The task is complicated by the fact that
an active agent is a dynamic entity, i.e., some program code running on a node, execut-
1 Pekka Nikander was at Helsinki University of Technology when most of this work was accomplished.

204 Nikander

ing on the behalf of some other principal, and having access to a number of resources.
Therefore, the system must be able to express dynamic, changing trust conditions.

On the theory level, our approach somewhat resembles the Digital Distributed Sys-
tems Security Architecture (DSSA) [9] and the related theory by Abadi et al. [1][11].
However, there are two major differences. First, we explicitly express and reason about
further types of trust relations, e.g., make explicit which nodes are trusted to load pro-
grams.1 Second, our system uses anonymous, key-bound credentials instead of names
and access control lists. Furthermore, we always make explicit distinction between the
types of trust along the lines of Yahalom et al. [19] (see Sect. 3). Other sources of ideas
include the PolicyMaker approach by Blaze et al. [3], and the SDSI/SPKI approach be-
ing standardized by the IETF [5][6][7] [17]. We rely on and extend the SDSI/SPKI
proposal.

The Secure Delegation Model (SDM), developed and introduced by Nataraj Naga-
ratnam in his dissertation [13], is another closely related system. On conceptual level,
the SDM model resembles our approach. However, our approach is both broader and
simpler. First, the SDM system only deals with access control; it does not directly ad-
dress other trust relations that are required. Second, in the SDM system there are a
larger number of concepts and types of certificates. In our system, there are fewer con-
cepts and basically only two types of certificates: authorization certificates and naming
certificates.

Anyhow, on the implementation level, our approach differs quite a lot from the sys-
tems mentioned above. First, we assume that all principals have secure access to a pri-
vate key.2 This allows us to unify principals and keys along the lines of SDSI [17] and
SPKI [5][6][7].3 In other words, many principals do not have names other than their
keys. Therefore, we do not need to consider naming problems. Second, within our sys-
tem, almost all expressions of trust are (at least potentially) representable in the form
of authorization certificates. This directly leads into a system where access control lists
(ACL) are no more needed, as all the relevant information is directly available in the
certificates. The deviation from ACLs and replacement of them with authorization cer-
tificates is a major improvement from a distributed management point of view. This as-
pect is discussed in a companion paper [15].

As a further difference, our system does not assume separate certification authori-
ties. Instead of them, each principal basically speaks for itself, and makes security re-
lated decisions based on authorization whose source is the principal itself [12].

The rest of this paper is organized as follows. In Sect. 2, we describe the entities in
our system. After that, in Sect. 3, we discuss the forms of trust involved when agents
are used to access resources. Sect. 4 describes our theory, and gives a number of exam-
ples. In Sect. 5, we discuss the issues associated with the practical implementation of
our system, and give a number of more complex examples. Sect. 6 briefly shows how

1 The notion of trusting execution nodes is informally present in [11], but it is not used when reasoning
about the overall security of a system.

2 This is reasonable from the security point of view as well. We have to trust the underlying operating
system. Therefore we may as well trust it for providing secure key generation, storage, and use.

3 In a totally trusted execution environment, such as a single computer executing a trusted operating
system, there is no need to have keys in our system. However, our focus is on distributed computing,
where the keys are necessary.

Authorization in Agent Systems: Theory and Practice 205

our system may be used to implement discretionary, mandatory, and role based access
control. The current implementation status is described in Sect. 7. Finally, Sect. 8 in-
cludes a summary and our conclusions.

2 Entities

The basic concepts in our system are principals, objects, and actions. The purpose of
the system is to make sure that each occasion when a principal acts on an object is se-
cure both from the principal’s point of view and from the object’s point of view. That
is, the acting principal is typically running on the behalf of some other, primary, princi-
pal. Therefore it is the responsibility of the primary principal to make sure that the sys-
tem is in a secure state even after the action, e.g., after delegating some rights to
another principal. On the other hand, the object acted upon is protected by a principal
(a node) that has direct control over it. This principal is responsible for making sure
that the action is indeed authorized.

2.1 Principals
In our system, there are three basic types of principals:

• A user is a person or other active entity outside the system. Within the system, the
user is primarily represented by an implicit agent that is able to use the user’s pri-
vate key. In a practical implementation, such an agent might be a smart card run-
ning within a trusted device.

• A node is a networked computer that has a protected private key. Thus, in our ter-
minology a node includes both the hardware and the operating system.1 A node is
able to run programs on the behalf of the users, thereby creating agents. Not all
nodes are necessarily trusted.

• An agent is an active program running on a node on the behalf of some user. An
agent does not necessarily represent the user, but gains authority only through ex-
plicit delegation.

In addition to these basic types, the system allows groups and thresholds. These are ex-
plained in Sect. 2.2.

When compared with DSSA, our system does not explicitly include channels, roles
or delegations. All of these are unified in the concept of an agent. That is, an agent is
the only kind of principal that is directly able to make actions, and hence corresponds
to the DSSA channel. Furthermore, an agent is always acting on behalf of some user,
and therefore equals to DSSA delegation, and is in some way restricted in its authority,
thereby acting in a DSSA role.

1 The system could be extended to make a distinction between the hardware plus the boot loader and
the operating system along the lines of DSSA. However, for simplicity, we have left that distinction
out.

206 Nikander

2.2 Names and Thresholds

A principal is usually denoted by its public key. However, there are two reasons why it
sometimes is advantageous to give a principal an explicit name. First, for a human,
names are easier to handle than keys. Second, names facilitate late binding and groups.

We have directly adopted the SPKI/SDSI name scheme to our system. In this ap-
proach, names are always bound or relative to keys. There are no global keys. For ex-
ample, denotes the principal known as “Alice” to the principal . Along
the same lines, one can also define , which denotes the principal that is
known by the name “Bob” to the principal denoted before. That is, the principal
knows another principal, which it decided to call “Alice”. She, in turn, knows someone
that she decided to call “Bob”. The expression denotes the latter, whoever he might be.

Names also make it possible to denote groups. A name is bound to a key (or an-
other name, or an object) by a certificate. That is, attests that has the
key by signing a certificate . In our theory, this is ex-
pressed as . A group is simply formed by assigning sev-
eral keys to a single name.

A threshold is a group where a number of the group members are required to work
in concert. In this paper, a threshold is denoted as , denoting a threshold
where any of the principals must agree on an action. Thresholds are
most suitable, e.g., when certifying high security keys. Basically, a group is a threshold
of the type .

2.3 Objects and Actions

The passive entities in the system are called objects. An object is basically anything
that does not have (even potential) access to a key. Typical examples of objects include
files, programs, and devices. Processes are typically not considered objects in our sys-
tem, since they are considered to be agents.

An action is an (atomic) operation on an object. The set of actions in a system is de-
fined by the underlying operating system(s). The definitions of actions need not be glo-
bal, but they may be local to a particular node. That is, we do not require any universal
set of actions, but let each and every node to define their own set of actions.

However, there are two distinct action types that are considered common. These are
the actions of naming and delegation. As they are directly related to the forms of trust,
they are described in more detail in the next section.

3 Forms of Trust

In our system, the basic forms of trust are related to naming, delegation, execution, and
access. When compared with Yahalom et al. [19], naming corresponds to identification,
delegation most closely to recommendation, and execution requires trust in the ability
to securely generate keys, to keep secrets, to perform algorithmic steps, and not to in-
terfere with other entities’ actions. Access is not directly covered by their scheme.

K1 Alice() K1
K1 Alice Bob()

K1

K1 K1 Alice()
K Alice K1 K Alice K1 Alice(), ,()

K1 K1 Alice() K Alice=()certs

k
n
---K1 … Kn

k n K1 … Kn

1
n
---K i

Authorization in Agent Systems: Theory and Practice 207

A principal, let’s say Alice, may be trusted to name other principals and objects by
another principal (Bob). The state that Bob trusts Alice for naming is probably the
strongest form of trust. Therefore it must be used most cautiously. By referring to a
name relative to Alice, Bob implicitly delegates Alice the right to decide whom to actu-
ally refer. That is, by using a name like , Bob allows Alice to decide
who or what Carol is. For example, if Bob authorizes to access a file on
his behalf, Alice may decide Carol to be herself, Bob, or anybody else.

Trust in a party to delegate is a slightly more restricted form of trust. When Bob al-
lows Alice to further delegate an authority given by Bob, Bob again allows Alice to
make a decision on his behalf. For example, Bob may permit Alice to access his bank
account, and to further delegate this proxy.

The difference is small but crucial. In the case of naming, by deciding to use a
name Bob allows Alice to make the naming decision without any reference whatsoever
to Bob. However, in the case of delegation, Alice must explicitly refer to the authority
she has received from Bob.

The trust in the ability to execute is a large but relatively unproblematic concept.
When a node is trusted as an execution platform, it basically means that the node is be-
lieved to be competent and faithful to generate cryptographic keys, to keep private keys
secret, and to run the agents’ programs without interfering with the execution. Closely
related, the trust placed in a program means that the program is believed to be compe-
tent and faithful to perform the algorithms that it is supposed to do.

Finally, the trust to access is related to the confidentiality and integrity require-
ments of the complete system. When a principal is trusted to access an object, it is be-
lieved that by accessing the object the principal will comply with to the defined
security policy, and thereby will not endanger the overall security requirements.

3.1 Direct and Delegated Trust

Trust may be expressed either directly or through delegation. Within the computer sys-
tem, almost all forms of trust must be considered delegated. The only inherently direct
forms of trust are the implicit trust that the user places to his or her smart card and the
embracing device, and the trust by a node in its administrator(s). These are the two
forms of trust that everything else is based on. All other expressions of trust may well
be genuine, but from the computer system’s point of view, they always represent dele-
gations on the behalf of either a user or a node.

This reflects a number of very basic properties of trust. First, the only principal eli-
gible for evaluating trust paths is the source of the trust itself. Second, trust is inher-
ently non-transitive. That is, only the user itself may be considered authorized to make
trust decisions on his or her behalf. Correspondingly, whenever a node makes an ac-
cess control decision, there must be an unbroken, qualified trust path from the node it-
self to the requester of the action. Another issue is, of course, that both the user and the
node may delegate their inherent rights to other principals.

K Alice Carol()
K Alice Carol()

208 Nikander

4 Theory

In this section, we introduce our theory and give a number of examples, starting from a
simple one and advancing to more complex ones. Using the examples, our intention is
to lay a theoretical foundation for the practical system, introduced in Sect. 5, where we
also describe a couple of even more complex examples, displaying the full power of
the system developed.

4.1 Basics

There are three basic sets, the set of principals , the set of actions , and the set of
objects . (The set of principals may be considered to be a subset of objects: .
However, this is not used in our theory.)

A principal term, denoted as , indicates a principal directly or indirectly.
All principals are principal terms. A name and a threshold

 are the other possible principal terms. A specific principal term may be
unresolvable, meaning that a name is not bound to a principal, or that at least
members of a threshold are unresolvable.

Actions and objects are denoted as (subscripted) letters and . The fact that a
principal is allowed to act on an object is expressed as . If the principal
is allowed to delegate such a right, it is expressed as .

In our theory, we want to make a distinction between genuine trust and expressed
trust. In the formulae, genuine, direct trust is declared as trust operators ,

, , and . On the other hand, trust explicitly expressed
by a principal is given in the form of naming, delegation, execution, and access certifi-
cates.

4.2 Statements and expressions
A statement is a formula that may be true or false. In our theory, we want to make a
distinction between statements and expressions. While a statement is a generic for-
mula, an expression is a statement uttered by a principal. An expression may be true or
false just like a statement. There are the following kinds of expressions.
• If and are principal terms, is an action, and is an object,

 and are expressions.
• If , , and are principal terms, and is an object, is an ex-

pression.
• If and are principal terms, and are expres-

sions.
The statements themselves are defined inductively.
• All expressions are statements.
• If and are principal terms, is a statement.
• If is a principal term, and is an object, is a statement.
• If is a principal term, an action, and is an object, is a state-

ment.

P A
O P O⊂

A B C …, , ,
Pi P∈ A o …()

k
n
--- A1 … An

n k– 1+

ai oi
A a o, ,()access

A a o, ,()deleg

 trustsname
 trustsdeleg trustsexec trustsaccess

A B a o
A B a o, ,()accesscerts A B a o, ,()delegcerts

A B C o A B o() C=()certs

A B A B()namecerts A B()execcerts

A B A B,()local
A o A o,()local
A a o A a o, ,()access

Authorization in Agent Systems: Theory and Practice 209

• If is a principal term, and is a statement, is a statement basically im-
plying that believes in even if may be inexpressible.

• If and are principal terms, is a statement.
• If and are principal terms, , , ,

, and are statements.
• If is a principal term, and is an object, is a statement.
• The usual forms of propositional logic are adhered, i.e., if and are state-

ments, so are (not), (and), (or), (im-
plies), (and are equivalent), etc.

In our system, only expressions are ever physically transmitted. The rest of statements
are used to analyse and argue about trust relationships. In the rest of this section, we
mostly ignore the distinction between expressions and statements. We shall return to
the difference in Sect. 5.

4.3 Axioms

The basic axioms of our theory are the following.

All tautologies of propositional logic. A1

If and , then A2

If and , then A3

If , then for every A4

Sameness of principal expressions basically means that they act in the same way and
have the same rights.

A5

A6

A7

With locality we basically mean that the first principal has created the second principal
either directly or indirectly, or that the principal has created the object.

A8

A9

A10

 for all A11

A s A scerts
A s s

A B A B=
A B A trusts*B A trustsname B A trustsdeleg B

A trustsexec B A trustsaccess B
A o A trustsexeco

s1 s2
s1¬ s1 s1 s2∧ s1 s2 s1 s2∨ s1 s2 s1 s2→ s1

s2 s1 s2↔ s1 s2

s1 s2→|– s1|– s2|–

A s1 s2→()certs|– A s1certs|– A s2certs|–

s|– A scerts|– A

A B=() A scerts B scerts↔()→|–

A B=() A a o, ,()access B a o, ,()access↔()→|–

A B=() A a o, ,()deleg B a o, ,()deleg↔()→|–

A A,()local|–

A B,()local B C,()local∧ A C,()local→|–

A B,()local B C=()∧ A C,()local→|–

A o,()local A a o, ,()access→|– a

210 Nikander

When the principal finds out that a local agent has been delegated a right to a local ob-
ject by the principal itself, it believes this statement, and permits access.

A12

Threshold principals are defined inductively.

A13

A14

A15

Trust. All principals trust in themselves. The operator denotes unconditional
trust, and implies all other forms of trust.

A16

A17

If Alice trusts Bob to be capable to do naming, this implies that whenever Bob binds a
principal to a name, Alice is willing to do the same binding.

A18

Policy. The axioms and definitions alone do not allow much to be concluded. A
number of policy statements must be added to be base system.

For the purpose of our forthcoming examples, we have chosen to implement a uni-
form policy. That is, all the trustworthy nodes are expected to have a similar security
policy. This simplifies the proofs, as the policy rules may be considered common
knowledge.

First, in our example policy, full trust is required for believing naming and execu-
tion recommendations.

A o,()local A B,()local A B a o, ,()accesscerts∧ ∧
B a o, ,()access→

|–

A scerts
1
1
--- A

 scerts↔|–

n
n
--- A1…An

 scerts

A1 scerts
n 1–
n 1–
------------ A2…An

 scerts∧↔

|–

k
n
--- A1…An

 scerts

k
n 1–
------------ A1…An 1–

 scerts …

k
n 1–
------------ A2…An

 scerts

∨

∨

↔

|–

 trusts*

A trusts*A|–

A trusts*B

A trustsname B A trustsdeleg B

A trustsexec B A trustsaccess B∧ ∧
∧→

|–

A trustsname B B B o() C=certs∧
A B o() C=certs→

|–

Authorization in Agent Systems: Theory and Practice 211

A19

A20

Next, all honest principals are free to claim that anyone they trust has access to some
object that they themselves do not (necessarily) have access to. In our logic, this is ex-
pressed by the following policy rules. These rules show how genuine trust is trans-
formed into expressible trust. The acts represented by these statements must not be
considered automatic, but explicit policy expression published by . We denote this
by adding a star to the end of the axiom number.

A21*

A22*

In our shared policy, we want to make the explicitly expressed right to perform delega-
tion even stronger. This feature is natural in the sense that if a principal is authorized to
delegate a right, it has full control over whom to delegate. In other terms, it can alone
determine when it would turn a cascaded delegation into a direct delegation. In our
policy, this decision is assumed to be applied uniformly.

A23

A24

Finally, we may consider both principals and objects to be trustworthy for execution.
When both a principal and an object are trusted, we can create an agent from the object
on the principal. By the rule introduced, the new agent is trusted to access objects on
our behalf, and to further delegate this access.

A25

4.4 Distributed modalities

Since our system is a distributed one, not all agents share the same initial beliefs. That
is, Alice may consider Carol trustworthy for several things while Bob doesn’t. There-
fore, we want to argue about the trust relationships distinctly from each principal’s be-
half. In our theory, each principal has a separate set of assumptions. Some of these
assumptions may be shared. A principal’s assumption is denoted as where is
the principal and is the assumption. If an assumption is shared between several prin-
cipals, this is denoted by writing the names of all the principals to the formula.

The principals may share expressions. That is, when a principal is able to derive a
statement that is also an expression, it may decide to share it with all the other princi-

A trusts*B B C()namecerts∧ A trustsnameC→|–

A trusts*B B C()execcerts∧ A trustsexecC→|–

A

A trustsaccess B A B a o, ,()accesscerts→|–

A trustsdeleg B A B a o, ,()delegcerts→|–

A B a o, ,()delegcerts A B a o, ,()accesscerts

B C a o, ,()accesscerts

∧
∧ A C a o, ,()accesscerts→
|–

A B a o, ,()delegcerts B C a o, ,()delegcerts∧
A C a o, ,()delegcerts→

|–

A trustsexeco A trustsexec B∧
A trustsaccess B o() A trustsdeleg B o()∧→

|–

e
A|– A

e

212 Nikander

pals. This is denoted by writing the expression down as a shared assumption, for exam-
ple,

.

As we shall see, making a distinction between the points of view of each principal is
important. For example, this allows us to bring forth a number of implicit trust as-
sumptions, or cases where one principal assumes that another principal considers a
third principal trustworthy.

From the so called authentication logics (e.g. BAN, GNY, SvO) our theory differs
in a few crucial respects. First, we have wanted to make a clear distinction between ex-
pressions, or expressible statements, and statements in general. This is the reason why
we consider formulae for genuine trust (e.g.) and expressed trust
() distinct. As a part of this distinction, we have deliberately made it im-
possible to express mediated trust (i.e., to express formulae that have several nested
modalities).

From this point of view, the operator has a dual function. When used as a
part of an expression, it denotes that the principal (possibly) publishes its belief. How-
ever, when it is applied to any other statement, it just denotes that the principal is deter-
mined to be willing to believe in the statement.

4.5 Direct delegation

Let us now consider the situation of direct delegation. Alice wants to access an object
that is controlled by Bob. To do this, she must allow Bob to run an agent that will
perform the access on her behalf. The object is naturally local to Bob.

B1

We first state the initial assumptions held by Alice. First, Alice trusts Bob to be capable
of running and naming agents. Furthermore, for simplicity, we have assumed in this
example that Bob assumes Alice to trust in his naming ability without explicitly ex-
pressing it.

B2

B3

Moreover, Alice trusts a program (an object) to be able to function as the basis for
the agent that will run on her behalf.

B4

Let us now consider Bob’s other initial assumptions. First, he must consider Alice to be
trustworthy both to access the object and to further delegate this trust.

B5

A A a o, ,()accesscerts
A B,|–

A trustsname B
A Bnamecerts

 certs

A'
o

B o,()local
B|–

A trustsexec B
A|–

A trustsname B
A B,|–

p

A trustsexec p
A|–

o

B trustsaccess A
B|–

Authorization in Agent Systems: Theory and Practice 213

B6

The trust requirements are shown in Figure 1.

Basic derivations. Since the object is local to Bob, from assumption B1 and ax-
iom A11 we get

D1

denoting that Bob himself has access to the object.
Since Bob trusts in Alice for access and delegation (assumptions B5, B6), he can

decide to publish these facts (A21*, A22*).

D2*

D3*

Now, since Alice trusts in Bob to run agents, she may as well express her trust in the
agents to be. From B2 and B4 we can derive (A25)

D4

and further (A21*)

D5*

This latter expression is published since Bob needs it.

Creating an agent. When Alice wants to access the object, she contacts Bob and asks
Bob to create an agent for her. Bob creates the agent and gives it a name.

D6

However, Bob does not give any resources to the agent yet, as he has not yet checked
whether the agent is trustworthy. He just announces the newly created agent.

D7*

Since Bob assumes Alice trusts in his ability in naming (B3), Bob can assume Alice to
accept Bob’s statement (by A18).

B trustsdeleg A
B|–

Alice Bob

name, exec

access, deleg

Fig. 1. Trust requirements in direct delegation

o

B a o, ,()access
B|–

B A a o, ,()accesscerts
B A,|–

B A a o, ,()delegcerts
B A,|–

A trustsaccess B p()
A|–

A B p() a o, ,()accesscerts
A B,|–

B A',()local B p() A'=()∧
B|–

B B p() A'=()certs
B A,|–

214 Nikander

D8

Now, using axioms A3 and A6 and his assumptions, Bob is able to derive that Alice
would be willing to delegate her access right to the agent.

D9

Combining this with D2* and his belief on Alice’s ability to delegate (D3*), Bob can
derive (by A23)

D10

Finally, from A12, B1, D6, and D10 he is able to deduce

D11

which proves that the newly created agent indeed is allowed to access on behalf of
Alice.

4.6 Indirect Delegation of Access Rights

Let us now consider a situation where Bob does not directly know Alice, but lets his
trusted friend Carol delegate the access rights. This is depicted in Figure 2.

In this case, Bob trusts in Carol and Carol trusts in Alice.

I1

I2

I3

I4

A B p)() A'=()certs
B|–

A A' a o, ,()accesscerts
B|–

B A' a o, ,()accesscerts
B|–

A' a o, ,()access
B|–

o

Alice Bob

name, exec

Fig. 2. Trust requirements in indirect delegation

Carol

B trustsaccessC
B|–

B trustsdelegC
B|–

C trustsaccess A
C|–

C trustsdeleg A
C|–

Authorization in Agent Systems: Theory and Practice 215

Both Bob and Carol decide to publish their trust (A21*, A22*).

I5*

I6*

I7*

I8*

Since delegation is unconstrained in our policy (A23), these yield directly expressions
that correspond to D2* and D3*. From there on, the derivation continues as in the pre-
vious case.

4.7 Executing via a Proxy Agent

Let us now consider a more complex situation where Alice has a proxy host between
herself and Bob (we keep the access/delegation path from Bob to Alice simple instead
of having Carol there). Alice first summons an agent , which runs on . The agent

 then, on its behalf, starts the agent on Bob. For simplicity, the same program
will be run on both cases.

The assumptions B1–B6 are still valid. In addition to them, Alice must also trust in
the proxy node to faithfully execute and name agents. The proxy and Bob take Al-
ice’s trust in the proxy’s naming ability for granted.

B7

B8

The initial trust requirements are depicted in Figure 3.

B C a o, ,()accesscerts
B C A, ,|–

B C a o, ,()delegcerts
B C A, ,|–

C A a o, ,()accesscerts
C A B, ,|–

C A a o, ,()delegcerts
C A B, ,|–

P

A'' P
A'' A' p

P

A trustsexecP
A|–

A trustsnameP
A B P, ,|–

Alice Bob

name, exec

access, deleg

Proxy

(access)

Fig. 3. Initial trust requirements in simple proxied delega-
tion.
The dashed access trust means that the proxy host must con-

216 Nikander

Basic derivations. The basic derivations by Bob are similar to the previous case.

P1

P2*

However, since Alice does not directly communicate with Bob, she considers the proxy
instead of Bob.

P3

P4*

Since the forthcoming proxy agent needs to further delegate execution to Bob, it must
be able to trust in Bob’s ability in naming and execution. However, since the agent will
run on the behalf of Alice, it should not take this trust for granted but derive this trust
from what Alice expresses. To accomplish this, this time Alice explicitly expresses her
trust in Bob.

P5*

P6*

Setting up the Proxy Agent. Now, the proxy host sets up the agent

P7

P8*

By B8 and A18, both the proxy and Bob can derive

P9

and further

P10

(Additionally, at this point, Alice must convince that the newly created agent is
allowed to execute on on behalf of Alice. That is, the memory and CPU resources of
the node is represented as objects, and access to them is authorized in a way analo-
gous to Sect. 4.5.)

Now, the new proxy agent has been added to the set of principals, and it, too, has a
number of trust relationships, depicted in Figure 4

Starting the final agent. As a next step, the proxy host initiates an agent at Bob. As
before, Bob creates the agent and gives it a name.

P11

B a o, ,()access
B|–

B A a o, ,()accesscerts
B A P, ,|–

A trustsaccess P p()
A|–

A P p() a o, ,()accesscerts
A P B, ,|–

A B()namecerts
A P B, ,|–

A B()execcerts
A P B, ,|–

P A''

P A'',()local P p() A''=()∧
P|–

P P p() A''=()certs
P B,|–

A P p)() A''=()certs
P B,|–

A A'' a o, ,()accesscerts
P B,|–

P A''
P

P

P

B A',()local B p() A'=()∧
B|–

Authorization in Agent Systems: Theory and Practice 217

P12*

Since the proxy agent is created on behalf of Alice, it may be considered to fully
trust in Alice.

B9

Taking advantage of the expressions P5* and P6*, Bob can determine that the proxy
agent should be considered (A19, A20) to trust in Bob.

P13

P14

This allows Bob to derive (P12*, A18) the fact that the proxy agent believes in his
naming.

P15

This allows Bob to further infer (A3, A6)

P16

which, along with P10 and P2* allows Bob to derive (A23)

P17

which leads to the desired result

Alice Bob

name, exec

access, deleg

Proxy

Fig. 4. Trust relationships with the added proxy agent

Host

Proxy
Agent

B B p() A'=()certs
B P,|–

A''

A'' trusts*A
B|–

A'' trustsname B
B|–

A'' trustsexec B
B|–

A'' B p() A'=()certs
B|–

A'' A' a o, ,()accesscerts
B|–

B A' a o, ,()accesscerts
P|–

218 Nikander

P18

5 Practice

In this section, we abstract
away from the underlying
trust relationships, and con-
centrate on the expressed
ones, represented in the
form of certificates. This
simplification is based on
the postulate that the SPKI
reduction rules [6] are
sound, assuming there is
enough trust to back them
up.

Now, if we consider the
previous derivations from
this practical point of view,
there are a number of pub-
lished expressions (those
marked with a star). Com-
bining examples given in
Sections 4.6 and 4.7, we get
the following sets of five and
three certificates.

Set 1: Pre-established
certificates. These certifi-
cates are typically created long before any agents are started. They represent the static
trust situation before anything starts to happen.

Cert. 29

Cert. 30

Cert. 31

Cert. 32

Cert. 33

Cert. 34

Set 2: Dynamically created certificates. These certificates are created during
run time. However, the first one of these, Cert. 35, could be created already before-
hand. Alternatively, instead of creating Cert. 35, Alice could wait for Cert. 36, and then
create a direct delegation to .

A' a o, ,()access
B|–

Alice Bob

TTP1TTPn

Host1 Hostn

Agentn+1

Agent1 Agentn

Flow of access rights & right to delegate access

Agents implicitly trust the primary principal

An agent host must trust the previous host
for allowing it to initiate agents

The user must trust all hosts for executing
and naming agents.

Fig. 5. Trust requirements in a generic delegated setting

and intermediate agents, if any.

A B()namecerts

A B()execcerts

B C a o, ,()accesscerts

B C a o, ,()delegcerts

C A a o, ,()accesscerts

C A a o, ,()delegcerts

A'

Authorization in Agent Systems: Theory and Practice 219

Cert. 35

Cert. 36

Cert. 37

5.1 Generalized delegation

Let us now consider a more generic situation, where there are several trusted delegat-
ing parties between Bob and Alice, and several trusted agent hosts between Alice and
Bob. This situation is depicted in Figure 5. In a practical setting, however, the actual
situation may be still more complex. For example, instead of directly trusting the
proxy hosts, Alice may decide to trust in some intermediate principal, e.g., a security
officer, to decide which hosts are trustworthy and which hosts are not. Furthermore,
there may be several principals in the sequences that lead to the belief that a particular
host is trustworthy.

In the same way, proxy host may not directly know the preceding proxy host that
requests for an agent to be created, but determines its trustworthiness through a se-
quence of delegations. This even more general situation is shown in Figure 6. All of
these trust requirements should, and could, be explicitly represented in the system.

5.2 Looping Trust

If we consider each of the explicit trust relationships depicted in Figure 6, we soon re-
alize that each and every of them can be considered to form a loop in way or another.
In such a loop, a principal allows some form of trust to be mediated on its behalf. In
each case, the trust chain is eventually reflected back to the initiating principal itself.
This reflection may happen, for example, when a proxy host checks that a new proxy

A P p() a o, ,()accesscerts

P P p() A''=()certs

B B p() A'=()certs

Alice Bob

TTPTTP

Host1 Hostn

Agentn+1

Agent1 Agentn

Flow of access rights & right to delegate access

An agent host must trust the previous host
for allowing it to initiate agents

The user must trust all hosts for executing
and naming agents.

Fig. 6. Trust requirements in a fully delegated setting (implicit trust not shown)

Host2

Agent2

TTP(s)

TTP(s)

TTP(s)

TTP(s) TTP(s)

TTP(s)

TTP(s)

220 Nikander

agent is indeed authorized to consume resources; it checks trust that is reflected back
by a previous agent. Similarly, when Bob checks that the final agent is allowed to ac-
cess the protected resource, he is looking at access trust that has circulated through the
outermost loop in Figure 6.

Let us now consider each of the loops in detail.

Competence of execution and
naming. In our setting, we have as-
sumed that Alice must consider each of
the proxy hosts (and Bob as well) com-
petent enough to execute and name
agents. When Alice initiates the first
agent on the first host, she directly
checks that the host belongs to the set
of trusted hosts (Figure 7). That is, the
first proxy host must be able to show
Alice a certificate chain that reduces
into a certificate that implies the re-
quired trust.

When an intermediate agent in-
vokes the next agent (or the final
agent running on Bob), the situation is
slightly more complex (Figure 8). In
this case, the authentication protocol is
run and verified by the agent . How-
ever, since it is making the trust deci-
sion on Alice’s behalf (since it is
running on Alice’s behalf anyway), it
may well trust in a certificate chain ini-
tiated by Alice. The forming chain is
closed into a trust loop by the uncondi-
tional trust the agent has in Alice.

Permission to proxy host re-
sources. In a way, the co-trust of the
competence of an agent to name and
execute is the permission, issued by
the host to the agent, to use processor, memory and network resources on a proxy host.
In this case, the next host must be able to check that the previous agent (or Alice her-
self) is authorized to initiate an agent, and thereby to consume processor time, mem-
ory, and network bandwidth. The generic case corresponding to this loop is depicted in
Figure 9.

Alice

Host1

Agent1

TTP(s)

A chain of
certificates

Authentication
protocol

Fig. 7. Execution & naming loop (simple case)
A P1exec P1name∧()certs

Alice

Agenti

TTP(s)

Hosti+1

Agenti+1

Hosti

Authentication
protocol

Fig. 8. Execution & naming loop (generic case)

Full trust

Ai
Ai 1+

Ai

Authorization in Agent Systems: Theory and Practice 221

When analysing more carefully, it
becomes apparent that the previous
proxy agent cannot per se have the per-
mission to use resources on the next
host. This permission must either be
possessed by the proxy host (the host

), being delegated the existing agent
(), or it must be received from an
earlier agent. The latter case corre-
sponds closely to the situation where
Bob check’s the credentials of Alice,
described next.

Using the credentials Alice has.
Here, the only difference with theprevious case is that the permission to use a protected
resource is not assumed to be given to the previous proxy agent “somehow”, e.g., by
the underlying proxy host, but to be received (indirectly) from Alice (Figure 10). The
permission to act on the protected resource is delegated to Alice (indirectly) by the
checking host (which is Bob in Figure 10). Alice has delegated this credential (permis-
sion to act) to the first agent, which has delegated it further until we reach the final
agent. The final agent runs on the checking host (Bob), that is, the host protecting the
resource.

There are a couple of dif-
ferences in this loop when
compared with the previous
loop. First, the final agent
has already been started, and
is local. Therefore no au-
thentication protocol is
needed. Second, each au-
thorization step from an
agent to agent has been pre-
ceded by a security check,
performed by the credential
transferring agent. These
differences are distinct. We
need to make a difference
between the checks made
while performing an authentication protocol, and the checks made later. Similarly, we
need to make a difference between delegation of rights from an underlying host to a
agent and from a preceding agent to a next agent. In all of these cases security checks
are needed, and are theoretically similar, but different in implementation.

Agenti

TTP(s)

Hosti+1

Agenti+1

Hosti

Authentication
protocol

Fig. 9. Permission to use resources (generic case)

Pi
Ai

Alice Bob

TTP1TTPn

Host1 Hostn

Agentn+1

Agent1 Agentn

Fig. 10. Checking user credentials

222 Nikander

5.3 Exemplifying Policy

When we compare the practical setting described in Sections 5.1 and 5.2 with the the-
ory and policy detailed in Sect. 4, it becomes apparent that the policy rules A19, A20,
and A25 are not adequate for arguing about the practical situation. That is, they require
direct trust in order to believe naming or to allow execution. On the other hand, the
practical settings require that even these kinds of trust (that is, not only access and del-
egation trust) may be delegated.

Furthermore, in a practical setting we cannot simply assume that all the nodes and
agents share the same policy. That means that those derivations above that relied on the
use of the policy rules as common knowledge do not hold any more. In practice, more
communication is needed between the nodes. More certificates must be created and
sent.

If we want to exemplify all policy decisions within the current theory, we have to
remove the common policy rule axioms, and separately spell out the policy for each
principal. To maintain even relative simplicity in the examples, we decided not to do
that.

6 Access Control Models

One of the strengths our model is that it can be tailored to support most currently used
access control models. In Sect. 6.1 we describe the approach taken to support “Unix-
style”, ACL-based discretionary access control. Next, in Sect. 6.2, we show how Bell-
LaPadula or MLS style MAC can be implemented, and finally, in Sect. 6.3, we show
how the approach can be used to support Clark-Wilson style role based access control.

6.1 Discretionary Access Control

In the standard discretionary access control (DAC) model, each object is owned by a
user. The owner has full control over deciding who has access to the object, and in
which way. Usually, the owner also has the right to transfer the ownership of an object
to some other user. A reference monitor abstraction, implemented in the local operat-
ing system, is responsible for enforcing protection.

In our system, each object is protected by a local principal (usually a node). The lo-
cal principal has full control over the object, and is able to authorize access to the ob-
ject. The simplest way to support traditional DAC is to assign an owner to an object by
creating an all-covering certificate that authorizes the user to have full access over the
object. By creating new certificates, the user can specify which other principals have
access to the object. Group names can be used to implement Unix-style groups. Fur-
thermore, all of this basic access management can be accomplished even when there is
no on-line connection between the owner and the object.

Changing the owner of an object requires some more mechanisms. The principal
protecting an object must implement a special action for changing ownership. Once the
right to perform such an action has been assigned to the owner, he or she can initiate an
agent, at the protecting principal, that changes the ownership by revoking the old all-

Authorization in Agent Systems: Theory and Practice 223

covering certificate and creating a new one for the new owner. The change is immedi-
ate, but requires an on-line connection.

6.2 Mandatory Access Control

The typical Bell-LaPadula or Multi Layer Security style mandatory access control
(MAC) systems compartmentalize the objects and the users in layers and divisions in a
security lattice (or semi-lattice). The users are allowed to write-up and read-down.

To support this, we must first assign a security level for each object and principal.
This can be accomplished by setting up (threshold sets of) high security principals that
assign the security levels of objects and other principals. Thus, the security level is just
one credential among the others. To facilitate lightweight creation of new agents and
objects, it is most convenient if the nodes (which must be trusted anyway) are made
members of the groups that may assign security levels to principals and objects. Each
node may be given the highest security level it supports.

The second and more difficult step is to augment the security policy in such a way
that the no-read-up (NRU) and no-write-down (NWD) properties are held. To do this,
we first must separate the set of actions into three subsets, one corresponding to read-
only actions, one corresponding to write-only actions and one corresponding to read-
write actions. Once this has been done, either by local configuration or by means of
even further high security certificates, all nodes responsible for object protection may
easily augment their policy checking rules. Creating a new agent is clearly a read-write
kind of action, effectively forcing each new agent to run at the same security level as
the invoking agent.

Now, in addition to the DAC like access—delegation chain checking, the verifying
host controls that the NRU and NWD rules are followed. Using the high security cer-
tificates it can determine the security level of the access requesting agent and the target
object and the type of the request, and decide if the levels and type of request are com-
patible.

Thus, it is plausible to conclude that our system can be fairly easily adapted even to
a MLS environment. However, care must be taken in the implementation of the secu-
rity controls in each of the nodes. On the other hand, all the nodes can run the same op-
erating system software, have a similar local configuration, independent on their
security level. The nodes are assigned security levels by making them believe in the
higher authorities, and empowering them to assign objects and agents into desired lev-
els.

6.3 Role Based Access Control

In a role based access control (RBAC) system, each user belongs to one or more roles.
The set of active roles determines the applicable access rights.

In our system, roles can be modelled as groups. Using SPKI/SDSI names, permis-
sions can be assigned to all members of a group, i.e., all users acting in a particular
role. A distinct role controller is then capable of invoking certificates that assign users
to the groups based on their active set of groups.

224 Nikander

In a usual RBAC system, one of the duties that are accomplished with roles is en-
forcing the least privilege principle. That is, a principal selects a role that has the mini-
mum privileges needed to complete an operation. In our system, this aspect of RBAC
does not need to be bound to roles. That is, from RBAC point of view, each created
agent executes in a role. The agent does not automatically receive all the rights the in-
voking principal has, but only those explicitly authorized to it.

In a typical RBAC system, another goals is to enforce Clark-Wilson style separa-
tion of duties. Basically, this requires assurance that a user may not act in incompatible
roles, i.e., in roles whose duties have been separated. Due to the distributed nature of
our system, it is hard and sometimes even impossible to determine on whose behalf an
agent is actually acting. That is, if certificate reduction certificates (CRCs) are allowed,
a user can ask the party that has delegated the user a credential to issue that credential
directly to an agent acting on the user’s behalf. In such a case, the verifying principal
does not see the user’s key anywhere in the checked certificate chain.

Thus, a principal could acquire membership in one group, start an agent, ask the
agent to be delegated credentials in the form of CRCs, leave the group, and perform
the same operations for the next group. Care must be taken to prevent such possibili-
ties. As an immediate but probably partial remedy we suggest that the principal(s) re-
sponsible for assigning users to groups never create naming CRCs or allow agents to
be direct members of role groups. Furthermore, any principals that delegate rights to
role groups shall not either short circuit the groups membership by creating CRCs or
by other means.

7 Implementation status

The system is being developed at the TeSSA project at Helsinki University of Technol-
ogy. The project Web pages are available at http://www.tcm.hut.fi/
Research/TeSSA/. Those parts of the system that are already implemented are de-
scribed separately [12][15][16]. In the implementation, agents are represented as Java
Development Kit 1.2 security domains [10]. All the certificates are implemented using
the IETF SPKI proposal [5][6][7].

8 Summary and Conclusions

All human activity inherently involves trust. Unfortunately, trust in a computerized,
distributed system is much harder to achieve than in a system based on direct human
interaction. Due to lack of direct social interaction, the basis of trust is much more
formed by implicit assumptions, explicit agreements and public reputation rather than
previous experiences.

In this paper we have described a formal system and its practical implementation.
The system allows one to argue about four types of trust: trust that a principal is au-
thorized to access a certain resource, trust that a principal will faithfully run agents,

Authorization in Agent Systems: Theory and Practice 225

trust that a principal will faithfully perform naming, and, finally, trust that a principal is
authorized and capable of justly delegating the other forms of trust.

The theory is presented in the form of a formal logic. With the logic, we have
shown how each principal in a system can draw conclusions from its initial assump-
tions and certified expressions received from other principals. Widening the view to
practical settings, we described how almost all of the trust relationships involved may
actually engage chains of delegated authorization. We also briefly described how the
described system could be adapted to support discretionary, mandatory, and role based
access control models.

During the course, it became apparent that the process where a principal starts an
agent in a node is not too different from the situation where an already running agent
attempts to access a local protected resource. In both cases, the invoking agent’s au-
thorization must be verified. The relevant certificates need to be verified and trust rela-
tionships resolved.

The model developed brings authorization and trust in distributed agent systems
within the reach of formal treatment. Furthermore, we have started to implement the
system in real environment, i.e., using Java based agents in the Internet.

References

1. M. Abadi, M. Burrows and B. Lampson, “A Calculus for Access Control in Dis-
tributed Systems,” ACM Transactions on Programming Languages and Systems,
Vol. 15, September 1993.

2. T. Beth, M. Borcherding, and B. Klein, Valuation of Trust in Open Networks, Uni-
versity of Karlsruhe, 1994.

3. M. Blaze, J. Feigmenbaum, and J. Lacy, “Decentralized trust management,” in
Proceedings of the 1996 IEEE Computer Society Symposium on Research in Secu-
rity and Privacy, Oakland, CA, May 1996.

4. D. Chadwick and A. Young, “Merging and Extending the PGP and PEM Trust
Models - The ICE-TEL Trust Model,” IEEE Network Magazine, May/June, 1997.

5. C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and T. Ylönen,
Simple Public Key Certificate, Internet-Draft draft-ietf-spki-cert-
structure-05.txt, work in progress, Internet Engineering Task Force, March
1998.

6. C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and T. Ylönen,
SPKI Certificate Theory, Internet-Draft draft-ietf-spki-cert-theory-
02.txt, work in progress, Internet Engineering Task Force, March 1998.

7. C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and T. Ylönen,
SPKI Examples, Internet-Draft draft-ietf-spki-cert-examples-
01.txt, work in progress, Internet Engineering Task Force, March 1998.

8. C. Ellison, “Establishing Identity Without Certification Authorities,” in Proceed-
ings of the USENIX Security Symposium, 1996.

9. M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson, “The Digital Distributed
System Security Architecture,” In Proceedings of 1989 National Computer Secu-
rity Conference.

226 Nikander

10. Li Gong, and R. Schemers, “Implementing Protection Domains in the Java Devel-
opment Kit 1.2,” in Proceedings of the 1998 Network and Distributed System Secu-
rity Symposium, San Diego, CA, March 11–13 1998, Internet Society, Reston, VA,
March 1998.

11. B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication in Distrib-
uted Systems: Theory and Practice,” ACM Transactions of Computer Systems, pp.
265–310, 10(4), November 1992.

12. I. Lehti, and P. Nikander, “Certifying trust,” in Proceedings of the Practice and
Theory in Public Key Cryptography (PKC) ’98, Yokohama, Japan, Springer-Verlag,
February 1998.

13. N. Nagaratnam, Practical Delegation for Secure Distributed Object Environments,
PhD Dissertation, Computer Engineering, Syracuse University, April 1998.

14. B. C. Neumann, “Proxy-Based Authorization and Accounting for Distributed Sys-
tems,” in Proceedings of the 13th International Conference on Distributed Comput-
ing Systems, Pittsburgh, PA, May 1993.

15. P. Nikander and J. Partanen, “Distributed Policy Management for JDK 1.2,” in Pro-
ceedings of the 1999 Network and Distributed Systems Security Symposium,
3-5 February 1999, San Diego, California, Internet Society, February 1999.

16. J. Partanen, Using SPKI certificates for Access Control in Java 1.2, Master’s The-
sis, Helsinki University of Technology, August 1998.

17. R. L. Rivest, and B. Lampson, “SDSI — a simple distributed security infrastruc-
ture,” in Proceedings of the 1996 Usenix Security Symposium, 1996.

18. G. U. Wilhelm, S. Staamann, and L. Buttyán, “On the Problem of Trust in Mobile
Agent Systems,” in Proceedings of the 1998 Network And Distributed System Secu-
rity Symposium, March 11-13, 1998, San Diego, California, Internet Society, 1998.

19. R. Yahalom, B. Klein, and T. Beth, “Trust Relationships in Secure Systems - A
Distributed Authentication Perspective,” in Proceedings of the IEEE Conference on
Research in Security and Privacy, 1993.

227

228

