

Modelling of cryptographic protocols
A concurrency perspective

FINAL DRAFT

Draft 4 December 1997 3:31 pm, 149 pages

Copyright

 1996, 1997 Pekka Nikander

All rights reserved.

Modelling and Verification of Cryptographic Protocols

i

Abstract

Understanding the real behaviour of a cryptographic protocol is a very demanding
task. This is mainly due to the immense amount of possible actions, some of which
are progressing in parallel, that may happen during even a single protocol run. If one
takes into consideration several, concurrently running but interacting protocol ses-
sions, even the modelling problem becomes almost unsolvable.

This is a literature study that attempts to collect and present the most important fac-
tors of modelling and verification of cryptographic protocols in an easily comprehen-
sible and relatively concise form. In a way, this work covers over one hundred articles
and conference papers published in the area of cryptographic protocols, plus quite a
lot of introductory material.

The approach taken is aimed for the uninitiated reader, having basic background in
communications protocols and cryptography, but not necessarily any deeper notion of
applying cryptography in communications. In particular, it is assumed that the reader
may not be familiar with modal logic or process algebra. Thus, these basic tools are
covered in somewhat length.

Most of the protocol modelling approaches covered by this work can be roughly clas-
sified in two categories. One thread of research was forstered from the so called BAN
logic, a form of so called authentication logic introduced by Burrows, Abadi and
Needham back in 1989. This branch includes a number of modal logics that are usu-
ally denoted with cryptic acronyms like AT, GNY or SvO. The origins of the other
offshoot, or the research based on utilization of process algebraic formalisms, cannot
be identified that easily. It seems to base on modelling of all kinds of communication
protocols, security considerations being only a relatively new development. However,
only the basics of this latter approach has been covered by this work. The interested
reader should probably also refer directly to the newest papers. Good sources of
information are the proceedings of the annual IEEE Symposium on Security and Pri-
vacy, as well as the annual IEEE Computer Security Foundations Workshop.

This work consists of three parts and a number of appendices. Part I presents the
basic background. It contains introductory discussions about distrubuted systems
security, cryptography, cryptographic protocols, modelling of communication proto-
cols, and protocol flows as well as the goals that are attempted to be achieved by exe-
cuting cryptographic protocols. Part II contains introductions of modal logic and
process algebra. These presentations are both tailored towards the problem domain;
therefore, they cannot be recommended as generic introductions to the formalisms.
Part III contains a comparison of the various BAN logic based approachies, and gives
some initial ideas how modal logic and process algebra based approaches could be
unified by using a fairly general underlying semantic model. Within this discussion
the built-in problems involved with comprehending encrypted data and trusting integ-
rity protected data is highlighted. Finally, the appendices include a simplified proto-
col example, a brief discussion about a typical, rather complex real life protocol, and
a summary of the formulae defined in the various BAN variations.

ii

Modelling and Verification of Cryptographic Protocols

Modelling and Verification of Cryptographic Protocols

iii

Foreword and Acknowledgements

The history of this work stems back to the end of 1994 when I became fascinated by
the idea of encrypted communications. At that time, I pretty soon realised that imple-
menting cryptographic protocols is considerably harder than implementing just plain
protocols. Starting from this initial understanding, I started my study of the field. It
became almost immediately clear that there was few if any comprehending works
about modelling and verification of cryptographic protocols. On the other hand, lots
of information appeared to be available in the form of scientific papers and other
short publications. This work tries to ease the situation a little bit.

The real foundation for this work was laid in Spring 1996 during my five week stay at
the Isaac Newton Institute for Mathematical Sciences at Cambridge University. I
appreciate that Ross Anderson, Tom Berson and Peter Landrock took the burden of
arranging the Computer Security, Cryptology and Coding Theory programme in the
first hand. Without Kaisa Nyberg taking the action of arranging me the possibility for
the participation, this work would have never achieved the level of insight presented.

During my stay in Cambridge I was happy to join several intriguing discussions with
Matt Blaze, Li Gong, Richard Kemmerer, Kathy Meadows, Birgit Pfitzmann, and
Paul Syverson, to name just a few of all the wonderful people that were there. Also, I
am deeply in debt to Shareen and Ross Anderson and Dorothy and Tom Berson in
another respect. With their generous help I was able to take part in the lively social
life that was going on. That gave me the opportunity to meet and discuss with some
of the most knowledgable and experienced people in the area of cryptography and
computer security.

During the lengthy process it has taken to get all this written, I have received constant
support from my supervisor Arto Karila. I am grateful for that. I also want to thank
Petri Aukia, Oiva Karppinen, and Jonna Partanen, as well as the rest of the staff of
Nixu Oy for their interest and support during this work. Especially, I want to thank
Lea Viljanen; without her help the last few weeks of proofreading and fixing small
mistakes would have been much more painful.

Finally, I want to thank Kirsi Sarvas for her patience and support. With her love and
caring everything has been a lot easier.

Helsinki, December 1997

Pekka Nikander

 I gratefully acknowledge the funding received from MATINE under contract number XXX.

iv

Modelling and Verification of Cryptographic Protocols

Modelling and Verification of Cryptographic Protocols

v

Table of contents

Table of contents

Abstract

.. i

Foreword and Acknowledgements

............................ iii

PART I

CHAPTER 1

Motivation

...3

Organization of the material

......................................4

Notation

..5

CHAPTER 2

Background

...7

Distributed system security

.......................................8

Distributed systems — a definition

...............................8

Security functions

..9

OSI security services

...12

CORBA security architecture

...................................12

Security contexts and associations

.............................14

Discussion

...15

Cryptology

...15

Symmetric cryptosystems

..16

Public key cryptosystems

..17

One-way hash functions and digital signatures

..............17

Random number generation

....................................18

Security of cryptosystems

.......................................18

Cryptographic protocols

...20

Modelling of communication protocols

.....................21

Expressing protocol goals

.......................................23

Models, states and actions

......................................24

Logical formulae

...25

A protocol example

...26

The protocol

...26

Run based protocol specification

...............................27

Protocol model

..28

LTS, ACP and CSP specifications

..............................29

Knowledge and beliefs

...30

Cryptanalysis and protocol failures

...........................31

Flaws in protocols

...32

Table of contents

vi

Modelling and Verification of Cryptographic Protocols

Elementary flaws

...32

Password-guessing flaws

..32

Freshless flaws

...32

Oracle flaws

..32

Type flaws

...33

Internal flaws

...33

Cryptosystem-related flaws

.....................................33

Lessons learned

..33

Summary

..33

CHAPTER 3

The purpose of cryptographic
protocols

..35

Introduction

...35

High level protocol goals

..36

System integrity and data confidentiality

.....................36

Authorization, audit trail and intrusion detection

...........37

Peer identification

..37

Authentication and non-repudiation

...........................38

Intermediate level protocol goals

..............................39

Key agreement, confirmation, freshness and secrecy

........39

Correspondence and secrecy

...................................40

Message and data item level goals

............................40

Message integrity and identification of the originator

......40

Confidentiality

..41

Freshness, timeliness, nonces and replay prevention

.......42

Redundancy at message level

..................................43

Summary

..44

PART II

CHAPTER 4

Modal logic

...47

Syntax and semantics

...48

Frames and models

..48

Truth value of formulae

...50

Truth and validity

..51

Logics, proofs and consistency

................................51

Logics

..51

Theorems, axioms and provability

.............................52

Soundness and completeness

...................................52

Consistency

...53

Some standard logics

...53

Well-known axioms

..53

Modelling and Verification of Cryptographic Protocols

vii

Table of contents

The logic S5

...54

The logics KT4 and KD45

......................................54

Logics of knowledge and belief

................................55

Possible-worlds interpretation of protocol models

..........56

Knowledge of different agents

..................................57

Knowledge, common knowledge and distributed

knowledge..

58

Belief as conditional knowledge

................................59

Temporal logic

..60

Linear time temporal logic

......................................60

Branching time temporal logic

.................................61

Combining knowledge and time

...............................63

Summary

...68

CHAPTER 5

Model checking and
Process Algebra

...71

Introduction to models of concurrency

.......................72

States, actions and events

.......................................72

Communication

...73

Deadlocks and divergencies

....................................73

Abstraction and hiding

..74

Traces and equivalencies

..74

Process graphs and Labelled Transition Systems

.........74

Process graphs

..74

Examples

..75

Labelled transition systems

.....................................76

Algebraic approaches

...76

ACP — Asynchronous Communicating Processes

...........76

CCS — Calculus of Communicating Systems

................81

CSP — Communicating Sequential Processes

...............83

Semantics

..85

Graph isomorphism

..85

Traces

..86

Strong and weak bisimulation

..................................86

Observational congruence, or rooted

-bisimilarity

.........88

Branching bisimulation

..89

Handling divergencies

...89

Failures-divergencies semantics

................................90

Model checking

..91

Tackling state space explosion

..................................91

Comparing process models

.....................................92

Visualisation approaches

..92

Checking validity of formulae

..................................93

Summary

...93

Table of contents

viii

Modelling and Verification of Cryptographic Protocols

PART III

CHAPTER 6

Comparison of some BAN-based
approaches

..97

Introduction to the selected papers

...........................97

The original BAN logic by Burrows, Abadi and Needham

.98

CKT5 by Bieber

..99

The GNY logic of Gong, Needham and Yahalom

..........101

The Abadi-Tuttle (AT) logic

...................................102

Towards unified semantics: SvO

.............................102

Adding time by Paul Syverson

................................103

Yet another approach: AUTLOG by Wedel and Kessler

..104

Comparison of syntactic approaches

.......................104

Differences in the semantic approaches

...................106

Models of computation

..106

Adding time

...108

A set of beliefs vs. beliefs based on possible

worlds relations

..108

Idealization vs. explicit recognition of messages

..........109

Summary

..110

CHAPTER 7

Future directions

.......................................111

Process algebras and protocol models

.....................111

Action vs event based models

.................................112

Temporal and modal interpretation

.........................112

Summary

..114

CHAPTER 8

Conclusions

..115

Modelling and Verification of Cryptographic Protocols

ix

Table of contents

APPENDIX A

A protocol example

...................................117

The protocol

...117

Actions

...118

Run based protocol specification

............................120

Protocol model

...121

LTS, ACP and CSP specifications

...........................122

Knowledge and beliefs

...125

APPENDIX B

ISAKMP / Oakley —
A real world example

................................127

ISAKMP framework

..127

Establishing the initial association: base exchange

.....128

Using Oakley to establish the initial association

........130

Defining an Internet AH/ESP association:
 Oakley Quick Mode

..130

APPENDIX C

Rules in the modal approaches

..............133

BAN-logic (Burrows, Abadi, Needham)

...................133

Beliefs

..133

Saying (writing, sending)

......................................133

Seeing (receiving, reading)

...................................133

Message authentication

.......................................134

Freshness

..134

Jurisidiction

...134

Key derivation and generation

...............................134

GNY logic(Gong, Needham, Yahalom)

....................134

Reasoning rules

...134

Seeing (reading, receiving) axioms

..........................134

Possession axioms

..135

Freshness axioms

...135

Recognition axioms

..135

Interpretation axioms

..136

Jurisdiction axioms

..137

AT-logic (Abadi and Tutle)

....................................137

Reasoning rules

...137

Belief axioms (modalities)

....................................137

Message authentication axioms

..............................137

Seeing (reading, receiving)

...................................137

Saying (writing, sending, meaning)

..........................137

Jurisdiction

..137

Freshness

..138

Key derivation and generation

...............................138

Table of contents

x

Modelling and Verification of Cryptographic Protocols

SvO-logic (Syverson and van Oorshot)

....................138

Reasoning rules

..138

Believing

..138

Message authentication

.......................................138

Key agreement

..138

Receiving (seeing, reading)

...................................138

Seeing

..138

Comprehending

..139

Saying (writing, sending, meaning)

.........................139

Jurisdiction

...139

Freshness

..139

Nonce verification

..139

Goodness of keys

...139

Having

...139

Wedel-Kessler logic (AUTLOG)

............................139

Reasoning rules

..139

Modalities

...139

Jurisdiction axioms

..139

Posession axioms

...140

Recognition axioms

..140

Freshness axioms

..140

Seeing (receiving, reading)

...................................140

Nonce verification

..140

Saying (sending, writing, meaning)

.........................140

Authentication and key confirmation axioms

...............140

Comprehension axioms and localization equivalences

...141

Localization equivalence axioms

............................141

Key derivation and generation axioms

......................141

APPENDIX D

References

...143

Modelling and Verification of Cryptographic Protocols

1

P

ART

 I

CHAPTER 1 Motivation ...3

Organization of the material.. 4

Notation... 5

CHAPTER 2 Background ...7

Distributed system security ... 8

Cryptology... 15

Cryptographic protocols.. 20

Modelling of communication protocols 21

A protocol example ... 26

Cryptanalysis and protocol failures................................. 31

Flaws in protocols ... 32

Summary ... 33

CHAPTER 3 The purpose of cryptographic
protocols..34

Introduction ... 35

High level protocol goals .. 36

Intermediate level protocol goals 39

Message and data item level goals 40

Summary ... 44

2

Modelling and Verification of Cryptographic Protocols

Modelling and Verification of Cryptographic Protocols

3

CHAPTER 1

Motivation

Experience has shown that designing reliable and correctly functioning communica-
tion protocols is hard. Designing secure communication protocols is even harder. The
reason for this is that while non-cryptographic protocols are designed to recover from
random or statistical errors, cryptographic protocols must be able to securely recover
when a malicious, deliberate attack is being conducted by an untrustworthy commu-
nication party, or some number of such parties. In spite of this difference, most of the
problems encountered are more or less the same. However, it appears to be the case
that the designer of a cryptographic protocol must be far more rigorous in specifying
the initial assumptions, goals and failure models than a colleague working with “nor-
mal” communication protocols.

Besides the designer, also the implementor often needs much more insight to the pro-
tocol design than his or her non-crypto colleague. There are numerous reported inci-
dents where an apparently innocent neglect, an unfortunate implementation choice,
or a simple misunderstanding has led to disastrous results. For example, the initial
implementation of the Internet Secure Socket Layer (SSL) protocol used a crypto-
graphically weak random number generator as a supply for session keys. Thus, even
though the protocol appeared to be secure in most other respects, the weak random
numbers used allowed an attacker to easily determine a relatively small range of pos-
sible key values. In fact, the set was small enough so that the actual key value could
be determined in mere seconds by trial-and-error [42].

The diversity of the security needs of distributed systems and the difficulty of proto-
col design has led to a number of different approaches to solve, model and reason
about the security of communication protocols. In this study we concentrate on the
modelling and verification of communication protocols that are designed to be used
in a hostile environment and that take a black box approach towards the crypto-
graphic algorithms used. That is, we explicitly leave out all distributed systems where
the specific details of the cryptosystem applied play a crucial role in the correct
behaviour of the system.

Furthermore, we concentrate only on approaches that either use a modal logic
approach (i.e. the BAN logic [20] or a similar approach) or a model checking
approach. In the latter case, our intention is to apply process algebraic methods to the
models used. When beginning this work, this choice was not obvious. However,
lately the good results reported by Kevin Lowe and others on using CSP and its deriv-
atives [68] show that the approach is, indeed, worthwhile. Furthermore, we have tried

Motivation

4

Modelling and Verification of Cryptographic Protocols

to map some of the common and corresponding aspects between the modal logic and
model checking approaches. The few noteworthy results are collected in Chapter 7.

Thus, the purpose of this study is to collect together various results achieved in mod-
elling and verification of cryptographic protocols using modal logic and process alge-
braic approaches. The aim is to give the uninitiated reader an overview of the field,
the necessary theoretic background to understand the formalisms used, and an up-to-
date perspective to the research being conducted. It is assumed that the reader has a
basic working knowledge in theoretical computer science, cryptography, distributed
systems and communication protocols. No prior knowledge of modal logic or process
algebra is assumed.

While this is a descriptive presentation reporting work conducted by others, towards
the end we present a comparison of the two families of methods considered. In addi-
tion, an outline of a unified protocol model that can be used as a semantic model for
both modal logic and process algebraic formulae is given.

The reader should note that while mostly being a theoretical study, the emphasis of
this presentation is on the practical applicability of the methods described. Therefore,
in Chapters 4, “Modal logic” and 5, “Model checking and Process Algebra” where
most of the theoretic background is given, few proofs are presented. Similarly, those
aspects of the theories that have no apparent practical application and that are not
necessary for later development have been left out or only lightly touched. On the
other hand, there are a number examples binding the theory described to the practical
aspects of protocol design and implementation.

1.1 Organization of the material

In Chapter 1, this chapter, we introduce the problem domain and notation used. The
next chapter, Chapter 2, “Background”, outlines the basic ideas of security in distrib-
uted systems, gives a brief introduction to cryptology as it applies to the issues being
studied, gives basic notion of cryptographic protocols in general, introduces the ideas
of protocol modelling, and briefly describes and discusses the difference between
cryptographic attacks and protocol failures.

Chapter 3, “The purpose of cryptographic protocols”, on page 35, contains a descrip-
tion of cryptographic protocols and protocol goals. Theoretical aspects of protocol
security as well as protocol goals on various levels are discussed.

Chapters 4, “Modal logic” and 5, “Model checking and Process Algebra”, introduce
modal logics and process algebraic theories. In particular, the logics of knowledge
and belief as well as temporal logics are discussed. The problems of combining both
knowledge and temporal operators within a single system is briefly touched. In addi-
tion to Bergstra and Klop’s ACP process algebra, Milner’s CCS and Hoare’s CSP are
described. Various equivalence and refinement relations are described, emphasis
being on those that have probable practical applicability. The problem of state space
explosion is described along with some attempts to solve it.

Chapter 6, “Comparison of some BAN-based approaches” describes work reported in
literature. In Chapter 7, “Future directions”, a semiformal protocol modelling frame-
work is outlined, describing how temporal and modal logic formulae could be inter-
preted in this framework and how different kinds of process algebraic semantics
could be applied to the framework.

Chapter 8, “Conclusions”, collects the results of this study into a concise form.

Modelling and Verification of Cryptographic Protocols

5

Motivation

1.2 Notation

Some of the more usual notations used in this study are summarized in Table 1,
below. In addition to the formulae shown here a large number of other formulae are
also used. However, they are typically used only in one part of this study, and
explained when first used.

TABLE 1.

Notations

Notation Explanation

Generic notations

An ordered set (a tuple) of the elements , …,

An (unordered) set of the members , …,

 is a member of (belongs to) the set

A function whose domain (source) is and codomain (tar-

get) is

Quantifiers, used in semiformal examples

a

Protocol models

Alice, Bob, … Protocol parties, see Table 4 on page 21 for more information

The party sends a message to the receiver who receives it

The party sends a message to the receiver

The party receives the message

Logical formulae

Logical variables, i.e. placeholders for arbitrary logical formulae

Verum (true) and falsum (false)

Negation of

Conjunction of and

Disjunction of and (i.e. or)

Logical implication, i.e. if then

Logical equivalence

Modal and temporal formulae

Necessitation, or any corresponding modal operator. See Chapter
4, “Modal logic”, on page 47. “Always (in the future)” when used
in temporal sense.

Possibilitation, or any corresponding modal operator. “Sometimes
(in the future)” when used in temporal sense.

A temporal operator “at least once in the past”.

A temporal operator “always in the past”.

Knowledge formulae

The party acting in knows

The party acting in believes that

e

1

…

e

n

, ,

e

1

e

n

e

1

…

e

n

, ,{ }

e

1

e

n

x S

x

S

F S

1

S

2

:

F

S

1

S

2

,

S R

m

:

S

m

R

send

S R m

, ,

()

S

m

R

receive

R m

,

()

R

m

…, ,

T

,

Role

 knows Role

Role

 believes Role

Motivation

6

Modelling and Verification of Cryptographic Protocols

Note on the use of the gender referring pronouns.

In this study, we have always
assumed that the

first

 protocol party mentioned is Alice, i.e.

she

. The

second

 protocol
party, in turn, is Bob, and therefore

he

. When there are more parties involved, we
assume that both female and male actors are playing the game.

Process algebraic formulae

 (concatenation)

Sequential composition

Alternative composition

Parallel composition

a. The actual logical theory developed is based propositional, not predicate logic. There-
fore the quantifiers are used only in order to express semiformal formulae and facts, and
not as a part of the actual formal treatment.

TABLE 1.

Notations

Notation Explanation

xy

x y

+

x y

||

Modelling and Verification of Cryptographic Protocols

7

CHAPTER 2

Background

In this chapter we give the necessary background needed to understand the rest of this
work. First, in Section 2.1, “Distributed system security”, we describe the terminol-
ogy and goals of distributed systems security in general. After a definition
(Section 2.1.1) we will discuss the security functions needed to achieve network
security (Section 2.1.2), the OSI security model (Section 2.1.3) and the CORBA
object oriented security model (Section 2.1.4). Possibly the most noteworthy detail
here is our discussion of the semantics of the word “authentication”, on page 11.
After the CORBA security model, in Section 2.1.5, we will define the concepts of
security context and associations, which play a crucial role as a semiformal outline
model for several security protocols.

The second major section, Section 2.2, “Cryptology”, is a fairly standard brief intro-
duction to cryptology in general. In this work, we will not go very deep into the
details of cryptology, and the level of discussion here reflects that. Thereafter, in Sec-
tion 2.3, “Cryptographic protocols”, we briefly introduce the idea of cryptographic
protocols. A deeper discussion is deferred until Chapter 3, “The purpose of crypto-
graphic protocols”.

Section 2.4, “Modelling of communication protocols”, works as an introduction to
the main subject of this work. Here we introduce the basic concepts of models
(Section 2.4.2) and the way logical formulae can be used to express facts about proto-
cols (Section 2.4.3).

To give the uninitiated reader a better intuition of the modelling aspects, the next sec-
tion, Section 2.5, “A protocol example”, gives a brief example of modelling a toy pro-
tocol. This section is intended to work as an orientation basis for understanding the
later chapters.

The chapter is concluded with two sections, Section 2.6, “Cryptanalysis and protocol
failures”, on page 31 and Section 2.7, “Flaws in protocols”, on page 32, that discuss
the sorts of problems, failures and flaws that have been found in cryptographic proto-
cols. The purpose is to give a glimpse of some of the more delicate aspects of proto-
col security.

Background

8

Modelling and Verification of Cryptographic Protocols

2.1 Distributed system security

Cryptographic protocols are designed to provide security in distributed systems.
Whereas ordinary communication protocols enable the parts of a distributed system
to communicate with each other (thereby creating a distributed system to begin with),
a cryptographic protocol enables the parts to communicate

in a secure way.

Note that
the usage of the indefinite form here is intentional: there are several meanings for the
word

security

, as we shall see.

In fact, the meaning of the word

security

, or how to reach security, is not at all
straightforward or simple. To make our intentions clear, we next present a

 model for
distributed systems.

Thereafter we briefly define the meaning of some of the most
common security terms such as

availability

,

confidentiality

,

integrity

,

identification

,

authorisation

,

delegation

,

authentication

 and

non-repudiation

. The OSI Security
model is described as a comparison to our model. Finally, we will discuss how our
definitions differ from the other definitions used in literature, and why.

2.1.1 Distributed systems — a definition

A distributed system is a computer system that consists of a number of

nodes

, which
communicate with each other through a

network

. The nodes are typically general pur-
pose computers; they have the capability to perform computations and store limited
(but possibly large) amounts of information. Sometimes the nodes are referred to as

agents

 or protocol

parties

. The word agent is commonly used when discussing the
(intensional

1

) knowledge or beliefs a node can be thought to have, and the word (pro-
tocol) party when discussing the system from a protocol’s point of view. When dis-
cussing cryptographic protocols, sometimes the term

principal

 is used. This
emphasized the party’s knowledge of cryptographic keys.

The network typically consists of a number of links and broadcast networks. How-
ever, in this study the physical implementation or connectivity topology of the net-
work is not interesting. Instead, we suppose that the network is fully connected, or
that all pairs of nodes are equally capable to communicate with each other through
the network.

We assume that all the nodes are relatively independent of each other. Each of them
executes a potentially different program. After some initial phase (of key distribu-
tion), the only means of communication between the nodes is the network. All com-
munication is accomplished by sending and receiving messages

2

. A node sends a
message to another node by placing the message along with the address of the
intended recipient onto the network. Whenever the network operates reliably, the
recipient will receive all the messages other nodes have sent to it, maybe after some
delivery delay. In practical terms, this corresponds closely enough to most modern
data communication networks, e.g. the Ethernet and the Internet.

The network is assumed to be unreliable and potentially hostile. That is, there are no
guarantees that a message sent will ever be delivered, nor that a delivered message
was ever sent by the claimed sender. Another point of view is to think that the net-
work is operated by a powerful adversary who is capable of eavesdropping, deleting,

1. The term “intensional knowledge” is commonly used in artificial intelligence research. It is
used to emphasize that the knowledge is ascribed by the system designer to the agents, not
computed by the agents themselves. See e.g. Chapter 9 of [37] for more details.

2. In data communication terms, this model can be referred as connectionless datagram serv-
ice.

Modelling and Verification of Cryptographic Protocols

9

Background

modifying and generating any messages. The adversary may deliver a legitimate mes-
sage unaltered to the intended recipient, or he may not.

In the formal models, we usually assume that the adversary is

not

 able to generate

some messages,

i.e. legitimate looking but forged (cryptographically protected) mes-
sages. Even though it is typically

possible

 that a party is capable of generating any
single one of all possible messages, there are so many possible messages altogether
that in practice it is not possible to generate all of them. That is, there are so many
possible messages that an adversary cannot enumerate them all. When the messages
are protected by cryptography, it is

possible

 that the adversary may create a legitimate
looking message by pure

chance

. However, the probability of such a chance is so
small that the possibility is neglected, and it is assumed that the adversary

cannot

 cre-
ate legitimate looking messages without having the right key(s) in its possession.

A further assumption is that at least some of the nodes in the network are trustworthy.
That is, we assume that at least some of the nodes execute a program that behaves
according to the assumptions given in the protocol specification. The number and
identity of trustworthy nodes, as well as the level of trust we have in them, differs
from one protocol to another. Thus, it is desirable to be able to explicitly specify how
much and in which ways we have to trust to the nodes in order to maintain the secu-
rity of the system being studied.

A

secure channel

 is a means of communications between two parties that can be con-
sider secure. (The actual security of the channel is not an issue in the definition, even
though it is in practice.) Similarly, an insecure channel is a means of communication
that cannot be considered secure. The purpose here is to model that some communi-
cation is insecure, some secure, and to figure out on what basis insecure channels
may be turned into secure ones, e.g. by means of cryptography.

The goal is to design protocols that ensure the security of system as long as all trust-
worthy nodes behave according to the level of trust expected. That is, whatever the
network decides to do, and whatever the untrusted nodes do, the system remains
secure. It is quite possible that no computation will be accomplished (e.g. the net-
work does not forward any messages at all). We are not interested in that; our only
interest is that if the system is initially in a secure state, it will remain secure inde-
pendent of what happens within the system.

2.1.2 Security functions

The usually defined security functions (also called security services) are

availability

,

confidentiality

,

integrity

,

identification

,

authorization

,

delegation

,

authentication

 and

non-repudiation

 [6, 58]. We will mostly ignore availability, define confidentiality and
integrity as the fundamental functions, consider identification orthogonal to authori-
zation, combine authorization and delegation into a compound framework, and view
authentication and non-repudiation as functional adjectives instead of actual func-
tions

1

. In the following, these functions are discussed in more detail.

However, before going into details, we want to emphasize one point. In our terminol-
ogy,

identification

is used for what is typically called authentication. That is, in the
general cryptographic literature the original meaning of the word authentication, i.e.
ensuring authenticity, or ensuring something being authentic, has been extended to
denote authentication of identification, or ensuring that the identity claimed is
authentic. In our opinion, this convention leads to error prone thinking. If authentica-

 1. We are well aware that considering authentication and non-repudiation as properties of the
other functions does not follow the usual conventions. See page 11 for a more detailed
explanation.

Background

10

Modelling and Verification of Cryptographic Protocols

tion means only authenticity of claimed identity, the other forms of authenticity are
easily neglected, e.g. authenticity of authorization. In this text the word authentica-
tion is used in the more general way, meaning that the authenticity of something is
being assured.

Availability, confidentiality and integrity.

Availability, confidentiality and integrity
are the basic dimensions of security. A system being

available

 means that it is able to
perform its intended computations and able to deliver the results in the intended way.
Usually the term also implies that there is some upper bound for the time waited.
Data

confidentiality

, on the other hand, means that whatever happens, the data stored
into and computed by the system will be available only to legitimate parties. In other
words, data is never revealed to illegitimate people or unintended parts of the system.
Data

integrity

 is the dual of confidentiality: the data (and operations) of the system
may be modified only by the intended parties.

In this study, availability issues are mostly ignored. The confidentiality and integrity
of data are seen as the basic security properties to be maintained. Our approach may
or may not be consistent with a given real world situation. Sometimes data confiden-
tiality is not an issue at all, e.g. if the data being processed is publicly available else-
where. On the other hand, sometimes data confidentiality may be much more
important than integrity, e.g. when communicating intelligence data. In that case, in
addition to the contents of the data, the existence of the data will probably be confi-
dential.

Confidentiality and integrity properties can be found on different architectural levels
of a system. At the highest level, the system may be divided into two or more subsys-
tems (e.g. subnetworks), one or more of which may contain information that may not
be seen nor modified by the others. Respectively, at the lowest level a single field
within a message being transferred may be confidential, i.e. may not be revealed to
anyone but the intended recipient. This may be the case even if the contents were to
be disclosed a moment later.

Identification, authorization and delegation.

Identification and authorization are
typically means to ensure data confidentiality and integrity. Sometimes they can be
considered primary security properties of their own, but more often their sole purpose
is to ensure that remote messages or remotely originated operations are initiated by
legitimate parties, thereby ensuring that read or modification requests do not endan-
ger data confidentiality or integrity.

Identification

 denotes detecting and ensuring the identity of a communicating party.
For example, one may want to identify the sender or the recipient of a message. In
our context, we require that identification is always done without doubt. This is
sometimes called

strong identification

 as opposed to weak identification, which typi-
cally means detecting identity without gaining much assurance about it.

As we noted earlier, in literature the word

authentication

is often used as a synonym
for strong identification. We reserve authentication to denote gaining assurance about
the authenticity of an (electronic) document; this is discussed below in more detail.
As an example of how authentication is used to denote what we call identification, Li
Gong defines authentication as “a procedure by which one principal [party] assures
his identity to another principal”. [45, page 37]. He further makes the point that it is a
common practice to base authentication (i.e. identification in our terminology) on
indirect bases, e.g. on proving possession of a secret that is supposedly known only
by the intended parties. More generally, identification is usually based on something
a party knows, possesses or is .

Modelling and Verification of Cryptographic Protocols

11

Background

When speaking about distributed systems, two different types of identification are
typically distinguished.

Message origin identification

1

 denotes gaining assurance
about the identity of the originator of a message. Message origin identification shall
always be combined with message integrity in order to assure that the message was
received intact.

Peer identification

2

, on the other hand, denotes assurance that the communicating
party at the other end of a connection has the assumed identity. Peer identification is
usually meaningful only in the context of secure channels. For example, we may be
interested in knowing that a remote user issuing a command really has a legitimate
identity in order to do so. Peer identification is typically combined with connection
integrity, confidentiality, or both.

Whereas identification denotes assurance about identity,

authorization

 refers to the
legitimate rights of a user. It is important to notice that in this sense identification and
authorization are orthogonal to each other. It is a common practice to use a user’s
identity as a base for access control decisions, thereby requiring identification in
order to check authorization. This is unnecessary, and in fact we will later argue that
whereas most current cryptographic protocols try to identify a communicating party,
it would often be more appropriate to ensure the party’s authorization to communi-
cate instead of (or in addition to) ensuring her identity.

Authorization can be somewhat simplistically seen as a two step process where the
source of authorization (e.g. a security officer) authorizes a given party to perform
some operation, and later on, when the party intends to perform the operation, a secu-
rity system checks that the party has the authorization needed. Authorization may
also be delegated, i.e. the authorized party may authorize another party to perform the
operation on his behalf. In fact, if the source of authorization never performs any
authorized operations herself, all authorization can be considered delegated.

Authentication and non-repudiation.

While confidentiality and integrity are sys-
tem or data properties, and identification, authorization and delegation are typically
means to identify users and ensure legitimacy of operations, authentication and non-
repudiation measure the level of confidence one can place upon an electronic docu-
ment. That is we, consider authentication and non-repudiation as attributes denoting
the strength of e.g. identification.

In our terminology,

authentication

means that the party seeking authentication is able
to convince itself about the authenticity of an electronic document or other informa-
tion, i.e. that the document has been constructed by the party or parties that claim so,
and that the document is unaltered. The notion of an electronic document shall be
understood in a very broad sense here. In fact, any information may be authenticated.
This means that the agent considering the authenticated information

believes

3

 with-
out doubt that the information is true. In addition to having been sent to the authenti-
cating party as a message, the authenticated information may be deduced by the
authenticating party from e.g. data received during a protocol run. To make distinc-
tion between generic strong beliefs and authenticated information, we define authen-
tication to refer only to such

information about other agents that has been gained

1. What we call message origin identification is often called message origin authentication,
see e.g. [58]

2. Similar to message origin identification, our peer identification is more commonly referred
as peer authentication [58].

3. The agent believes in the information, it does not

know

 it, since the authentication method
used may be based on initial beliefs that might be wrong. For example, the agent may ini-
tially believe that a private key is only known by a single party while the key has already
been compromised.

Background

12

Modelling and Verification of Cryptographic Protocols

during the normal operation of the authenticating agent

, i.e. after any initial key dis-
tribution or other similar period.

Again, we emphasize that our definition of authentication slightly differs from the
common usage in literature. The word authentication is usually associated with iden-
tification, i.e. defined to mean the process of gaining assurance about the identity of
some party, e.g. the originator of a message. Our sense is more general, and can be
easily understood in the usual way when referring to identification. For example, peer
authentication can be seen as detecting the authenticity of the message exchange with
which the peer is able to convince the other about its identity.

Non-repudiation

means that the authenticity of a document can be proven in such a
way that the intended parties cannot repudiate, or deny, the authenticity of the docu-
ment. That is, a non–repudiable, or indisputable, document can be presented to an
independent judge who is able to determine the authenticity of the document by
inspecting solely the document (and maybe some publicly available information,
such as a public key available from a directory).

1

 Thus, the difference between
authenticated information and non–repudiable information is that the party having
authenticated information believes in it, but cannot necessarily convince others to
believe in it, while a party believing in non–repudiable information is able to con-
vince others to believe in it as well. In this sense authentication can be seen as a
weaker form of non-repudiation [61].

2.1.3 OSI security services

The OSI Security Architecture (ISO/IEC 7489-2) [58] defines a number of security
services. The defined services are enumerated in Table 2 above. As the service names
alone indicate, the OSI security framework uses a terminology different from ours. In
particular, authentication is seen as a service similar to our identification function,
and non-repudiation is seen as a separate application level service. This is in sharp
contrast with our terminology where authentication and non-repudiation are used as
attributive terms describing the validity level of security information.

The OSI terminology also lacks the system architecture point of view. The basic
security services, confidentiality and integrity, are only applied to communication
protocols, not to distributed systems as whole. In the OSI world, the distributed sys-
tems viewpoint is partially covered in the ODP (Open Distributed Processing) archi-
tecture, which is more or less separate from the basic OSI protocol architecture.
However, issues pertaining to ODP are beyond the scope of this study.

In fact, it has been argued that the OSI security architecture contains little (if any)
insight to the significance of or relations between the security services defined. This
has been criticized and alternative models have been proposed in e.g. [61]. However,
even there no clear distinction has been made between identification and authentica-
tion in the sense we present it here.

2.1.4 CORBA security architecture

As an alternative, more system oriented view to distributed systems security we want
to briefly introduce the CORBA security architecture. CORBA, the Common Object
Request Broker Architecture, is a framework standard developed by OMG, the

 1. When speaking about digital signatures, most signatures are seen as non-repudiable in our
sense. However, there are digital signature schemes where co-operation by either the origi-
nator or the receiver of a document is needed to determine the authenticity of a signature.

Modelling and Verification of Cryptographic Protocols

13

Background

Object Management Group. The CORBA security architecture defines a number of
distributed systems security services from the applications’ and manager’s point of
view.

The CORBA architecture defines a number of distinct security services:

•

The identification and authorization framework is built around the definition of an
abstract

principal

. A principal may have many different identifies for different
purposes (e.g. audit identity, non-repudiation identity). Authorization is based on
principal’s privilege attributes (e.g. capabilities), not identity. This allows privi-
lege attributes to be delegated from a principal to another. The principal identities
and privileges are represented as credentials. The purpose of authentication is to
ensure the legitimacy of given credentials.

TABLE 2.

OSI security services according to ISO/IEC 7489-2

Security service name
Possible
layers Service description

Peer entity authentication 3, 4, 7 The identity of peer protocol party is
known and believed, i.e. authenticated

Data origin authentication 3, 4, 7 The identity of the party having created
a message is authenticated

Access control service 3, 4, 7 A host refuses or accepts connections
based on some authorization data

Connection confidentiality 1-4, 6, 7 All data flowing on a connection are pro-
tected against eavesdropping

Connectionless confidentiality 1-4, 6, 7 A single message is protected against
eavesdropping

Selective field confidentiality 6, 7 A single or a number of selected data
within a message are protected against
eavesdropping

Traffic flow confidentiality 1, 3, 7 Not considered in this study

Connection integrity with recovery 4, 7 All data flowing on a connection are pro-
tected against modification in such a
way that the protocol tries to recover
from detected modifications

Connection integrity without recovery 4, 7 All data flowing on a connection are pro-
tected against modification. However,
modification is only detected, and no
attempt is made to recover from it.

Connection integrity selective field 7 Some data flowing on a connection are
protected against modification.

Connectionless integrity selective
field

7 Some data within a message are pro-
tected against modification.

Non-repudiation at origin 7 The identity of the originator of a mes-
sage is known and believed, and it can
be proven that he has once sent the mes-
sage.

Non-repudiation at receipt 7 The identity of the recipient(s) of a mes-
sage is (are) known and believed, and it
can be proven that she has (they have)
once received the message.

Background

14

Modelling and Verification of Cryptographic Protocols

•

Security of communication between objects is arranged around security associa-
tions. A security association represents a level of trust between the parties taking
part in the association. An association may be used to establish security contexts
which allow the traffic to be encrypted or otherwise protected. Method invocation
level confidentiality and integrity are seen as separate protection functions.

•

Both communicating parties may optionally implement access control services.
The access control decisions are based on the parties’ privilege attributes repre-
sented in the credentials. Access control can happen both at the communication
(ORB) and at the application level.

•

Non-repudiation is arranged as a separate service at the application level. An
application wishing to have non-repudiable information to be later presented
invokes an API function in order to obtain a signature to a message. The recipient
of the message can verify the signature using another API function.

•

Administration issues are arranged around the concept of security policy
domains. There are separate security policy domains for separate security serv-
ices.

•

The framework provides an audit trail as a separate service.

The services of CORBA security architecture are summarized in Figure 1 on page 14.

2.1.5 Security contexts and associations

Distributed systems security can be abstracted with the concepts of security context
and security association. A

security association

 is a set of security related variables
shared by two systems. A security association is usually considered to be unidirec-
tional, or one-way. That is, a given security association AB only covers traffic origi-
nated by Alice and destined to Bob, but not traffic originated by Bob being delivered
to Alice. A separate security association is needed for the opposite direction. A secu-
rity association is considered to cover only those variables that are needed to protect
data pertaining to the related communication session such as the cryptographic func-
tions and session keys used. Policy related data, for example, is typically not consid-
ered a part of the association. [6]

authentication and
security associations

authorization and
access control accountability

application
level services

principal
authentication

access to
security context application level

access decisions

application level
audit log messages

credentials
non-repudiation

services

communication
infrastructure

services

security association
and delegation communication

level access control
message protection

host system
infrastructure

protection of
long term keys

security
context

implementation

policy based
access decisions

audit log
implementation

administration
services

message protection policy
access control

policies
auditing
policy

audit
classifica-

tion
policy

delegation
policy

domain management services

FIGURE 1.

CORBA security services [86]

Modelling and Verification of Cryptographic Protocols

15

Background

In some texts, what we call security associations are sometimes called secure chan-
nels. Such a language usually wants to emphasize the channel nature, or wholeness,
of a secure means of communication, while the term security associations empha-
sizes the constructive view, or a view where an association is composed of variables
belonging to it.

A

security context

 is a collection of security associations and other security related
data such as variables describing the host security policy. While the concept of secu-
rity association is closely connected to the concept of a communication session, a
security context emphasises the contextual aspect of the system security variables. In
particular, when thinking in broad terms a security context may be considered to con-
tain any initial and evolving beliefs and trust relationships the protocol parties may
have

1

. [61]

2.1.6 Discussion

It seems to us that the primary goal of distributed systems security is to ensure the
availability, confidentiality and integrity of the system data. Identification, authenti-
cation, delegation and other security functions, such as auditing and intrusion detec-
tion, are means to work towards the primary goals, or to alleviate damage in case a
security violation occurs. In our terminology, authentication is the event of gaining
assurance about authenticity of digital data, independent of what the information con-
tent of the data is or how the data has been obtained. Along the same line, non-repu-
diation refers to the property that the information content of some digital data can be
proven to an impartial judge.

The view presented is somewhat different from most of the more practical views on
distributed systems security. However, we consider it important to make a clear dis-
tinction between identification and authorization, because these functions are often
unnecessarily mixed due to the requirements of old, host based access control sys-
tems. Furthermore, thinking about the everyday meaning of the word ‘authentic’, it
seems natural to us to enlarge the domain of authentication outside the sole function
of authenticating an identity. This generalization leads naturally to the notion where
authentication and non-repudiation are both seen as adjective terms measuring the
level of assurance a protocol party may have. To our knowledge, this observation has
not been explicitly made before, even though the word authentication has been
implicitly used to refer also to authentication performed for other than identification
purposes.

2.2 Cryptology

Cryptology

is the branch of mathematics that covers cryptography and cryptanalysis.

Cryptography

, for one, is the science and art of designing and using cryptographic
algorithms.

Cryptanalysis

, respectively, is the science and art of breaking cryptoalgo-
rithms.

In this section we briefly describe the terminology and common practice of cryptog-
raphy as it relates to our study of cryptographic protocols. In particular, we describe
the concepts of symmetric and public key cryptosystems, one way hash functions and
digital signatures as well as cryptographically strong random number generators. The
view is external; the cryptosystems described will be used as

building blocks

 in the

1. Note that this definition of security context is slightly different from that in [

61

]. This is
mainly due to the recently arisen practice of using the concept of security association.

Background

16

Modelling and Verification of Cryptographic Protocols

cryptographic protocols being studied. In this study we concentrate on the properties
the cryptosystems have and how these properties can be formally described within
the model being developed.

The reader should note that this section does not try to give a comprehensive view to
cryptology or even a section of it. For such a view from a practical point of view,
refer e.g. to

Applied Cryptography — Protocols, Algorithms and Source Code in C

 by
Bruce Schneier [99].

Terminology.

The following terms are assumed to be known by the reader and only
briefly described:

•

cipher

, or

cryptosystem

, refers to a particular (numerical) algorithm (which may
or may not be distributed) that converts plaintext into ciphertext and possibly vice
versa.

•

plaintext

 is a message that has not been encrypted. The structure and contents of a
plaintext message is clear to anyone having access to it.

•

ciphertext

 is the result of encrypting plaintext, or in the case of encrypting multi-
ple times, an already encrypted message. A ciphertext can be converted back to
unencrypted value by decrypting. The structure and contents of ciphertext cannot
be determined without decryption or successful cryptanalysis.

•

hash value

 is a value calculated from a message by applying a one way cipher.
One way ciphers, usually called cryptographic hash functions, and hash values are
described in more detail below.

•

encryption

 and

decryption

 are the operations or algorithms of converting plaintext
to ciphertext and vice versa. Together they form a cipher.

•

key

 is an arbitrary number (or a pair of numbers) that is used to encrypt and
decrypt messages. In this study, it is considered impossible to decrypt messages
without the appropriate key.

2.2.1 Symmetric cryptosystems

A symmetric cipher is a cryptosystem where the same key is used for both encryption
and decryption. The basic model is depicted in Figure 2 above. The basic benefit of
symmetric algorithms is that they are typically relatively fast. Thus, their main use is
to protect large amounts of data. Respectively, the drawback is that both the sender
and the recipient(s) must all share the same key. Therefore symmetric encryption is
not alone sufficient evidence to determine origins or authenticity of a message, but
must be combined with other knowledge such as a log of all messages sent or recog-
nition of a freshly generated random number, i.e. a nonce.

In addition to protecting large amounts of data, symmetric ciphers are often used in
identification systems that use a trusted third party (e.g. Kerberos) as well as in reau-
thentication protocols where the possession of an earlier session key is taken as evi-
dence of authentication.

FIGURE 2.

Encryption and decryption with a symmetric key

Encryption Decryption
Plaintext Ciphertext Plaintext

Key Key

Modelling and Verification of Cryptographic Protocols

17

Background

2.2.2 Public key cryptosystems

A public key algorithm is designed so the key used for encryption is different from
the key used for decryption (see Figure 2). Furthermore, it is computationally infeasi-
ble to deduce the decryption key from the encryption key (and often also vice versa).
This is a clear improvement from a symmetric algorithm since the information
needed is different for the different parties. This allows public key systems to be more
easily used for authentication purposes than symmetric algorithms.

The fundamental drawback of public key systems is that they are relatively slow; typ-
ically in order of 100–1000 times slower compared to symmetric algorithms of simi-
lar security level. Therefore they are normally used for encrypting relatively small
amounts of data, for example a number of symmetric keys that will be later on used
for transferring larger amounts of data.

While public key systems are the most common means used to prove the possession
of a private secret (key) known only to the holder, thereby authenticating e.g. the
identity of a communicating party, or to transfer session keys that will be used later,
these both goals can be achieved by other means as well. For example, zero knowl-
edge protocols can be used to prove possession of some secret, and key agreement
systems such as Diffie-Hellman can be used to securely distribute session keys.

2.2.3 One-way hash functions and digital signatures

A cryptographic one-way hash function is a function that is relatively easy to com-
pute, but virtually impossible to reverse. That is, given it is easy to compute ,
but given , it is very hard to find a value with = . In addition to this, a
one-way hash function shall be collision-free; it must be hard to generate a pair
with . The most common purpose of a hash function in a cryptographic
protocol is to provide evidence that a message has not been tampered with. Given that
a party somehow trusts in a hash value (e.g. the hash value itself or some information
needed to generate the value was received encrypted), it is easy for him to verify that
a received message is the same message as the sent one.

Strictly mathematically, there is no evidence that there are at all functions for which
the theoretical complexity of the function and its reverse are different

1

. In this study,
we don’t care about this; in practice, there seem to be plenty of functions that are
good enough for our purposes.

A

message authentication code

, or MAC, is a one-way hash value generated from a
shared secret and the authenticated message. That is, Alice, the sender of a message,
calculates e.g. where is a shared key and is the message sent, comma

 1. The algorithm itself must be polynomial for obvious reasons. According to [99, p. 238], the
scientists have not been able to prove that there is no polynomial time algorithm for crack-
ing or reversing the cryptosystem.

FIGURE 3.

Encryption and decryption with asymmetric keys

Encryption Decryption
Plaintext Ciphertext Plaintext

key key
Encryption Decryption

x

h

x

()

h

x

()

y

h

y

()

h

x

()

x y

,

h

x

() h

y

()=

h

k m k

, ,

()

k

m

Background

18

Modelling and Verification of Cryptographic Protocols

denoting concatenation, and sends the pair to Bob. If Bob believes that
he has never sent the value , and that is only known to Alice and himself,
he can deduce that the message was necessarily sent by her.

A digital signature, on the other hand, is a hash value encrypted with the private key
of a party. For example, if Alice wants to prove to someone that she is the originator
of a message , she calculates where denotes the encryp-
tion of using key and is the private key of Alice. When Bob, or anyone
else knowing Alice’ public key, receives the message , he can cal-
culate , decrypt the signature with Alice’s public key, and com-
pare the values.

The basic difference between a MAC value and a digital signature is that a MAC
value can only be verified by the intended recipient (having the shared key) whereas a
digital signature can be verified by anyone. One should note, however, that there are
many types of digital signature schemes, each having different properties with
respect to what is authenticated, whether the signature is repudiable or not, or
whether the sender or receiver has to actively operate when resolving disputes. For
more information, see e.g. [91].

We shall see that one-way hash functions, message authentication codes and digital
signatures play a crucial role in cryptographic protocols. Some basic reasons behind
this are that hash functions are typically fast to compute, potentially reduce the
amount of data sent through the network, and in some cases make known-plaintext
cryptanalysis harder when compared to e.g. plain encryption.

2.2.4 Random number generation

Many cryptographic protocols need newly generated, or fresh, random numbers.
These are typically used as session keys or cryptographic nonces

1

. Typically the ran-
dom numbers are produced by

cryptographically secure pseudo-random

 number gen-
erator. This means that the generated number sequence

1.

looks random, i.e. passes all (or most) statistical tests of randomness that can be
found,

2.

is unpredictable, i.e. it must be computationally infeasible to predict what the next
random number will be even given the complete knowledge of the algorithm and
all the previous numbers in the stream, and sometimes

3.

cannot be reliably reproduced, i.e. even when given the same input values, the
generator will generate a different sequence each time. [99, page 45]

The last property is usually desirable (e.g. when generating session keys). However,
if a random number generator is used to construct a stream cipher, it is not wanted.

2.2.5 Security of cryptosystems

The security of a cipher depends on the algorithm and keys used. The quality of the
algorithm and the length of the keys are somewhat different issues and shall be con-
sidered separately. However, they are both based on information theory.

From an information theoretical point of view, a cryptoalgorithm having

perfect
secrecy

 is defined as one where a ciphertext gives a cryptanalyst no additional infor-
mation about the encrypted message. This is only possible to achieve using non-

1. The term “nonce” is defined later in detail, see section 3.4.3, “Freshness, timeliness, nonces

and replay prevention”, on page 42.

m

h

k m k

, ,

()

,

h

k m k

, ,

()

k

m

enc

k

Alice

h

m

()

,

()

enc

k m

,

()

m

k

k

Alice

m

enc

,

k

Alice

h

m

()

,

()

h

m

()

enc

k

Alice

h

m

()

,

()

Modelling and Verification of Cryptographic Protocols

19

Background

repeating, completely random keys at least as long as the messages sent. Such a
cryptosystem is called the

one-time pad

. One-time pads are hard to use in practice
since they require that a key of the length of messages to be encrypted must be
exchanged in the key distribution phase. Furthermore, when all the bits in the key
have been used, a new key must be agreed upon using means external to the system,
or the encrypted communication stops. [29, 99, 101]

Unconditionally secure

 cipher is a cryptosystem where the key value cannot be deter-
mined for sure independent on the amount of ciphertext available. , key equiv-
ocation, measures the uncertainty in key given an amount of ciphertext . Hellman
has shown that given enough ciphertext encrypted with the same key, it is always the-
oretically possible to determine the key, if there is a means to distinguishes a mean-
ingful plaintext message from a meaningless one [29]. However, if the plaintext
message is an evenly distributed random string so that there are no statistical or other
means to differentiate plaintexts from each other, the key cannot be determined. Due
to this reason, when developing cryptographic protocols, it is wise to restrict encryp-
tion to random strings, if otherwise possible.

In practical terms, perfect secrecy is only achievable by using a perfect one-time pad.
However, it is possible to create a cryptographic protocol where all encryption is
unconditionally secure. To achieve such a case, only random data may be sent
encrypted. For example, if the purpose of the encrypted contents is to work as a
nonce, or a fresh random identifier, unconditional secrecy may be achieved. However,
if there is any meaningful data whose confidentiality must be protected, the only way
to achieve unconditional security is to use a one-time pad. From this point of view,
perfect secrecy and unconditional security may be considered (almost) identical.

From a computational complexity point of view, all cryptographic algorithms have
the worst case complexity of at least NP. Given a plaintext, a ciphertext, and a key, it
is always possible to determine, in polynomial time, whether the given ciphertext cor-
responds to the plaintext and key. Therefore a cryptoalgorithm cannot be more com-
plex than NP. However, the computational complexity is not the best means to
measure the security of a cryptoalgorithm, since it measures worst case complexity.
Good worst case complexity is not enough, since a secure cryptosystem must be hard
to solve in (almost) all cases. [29, 99] Alternative means to measure cryptographical
complexity is beyond the scope of this text.

What comes to symmetric key length, Schneier argues by thermodynamic principles
that a brute-force attack against a key length of 192 is only possible if the computer
used is able to losslessly compute using all the energy from several stars, and a brute-
force attack against key length of 256 is impossible in our universe unless computers
are built “from something other than matter and occupy something other than space”
[99, page 158]. Thus, if there were no differential cryptanalysis or other better-than-
brute-force attacks for a given symmetric cryptosystem, key length of 192 would cer-
tainly be good enough for all purposes.

1

The case of public key cryptosystems is somewhat different. Majority of the public
key cryptosystems used today are based either on the difficulty of factorising large
numbers or taking a discrete logarithm in a finite field (for example, modulo prime).
Neither of these problems have been proved to be hard, i.e. NP–complete. Thus, it is
possible (though apparently unlikely) that a breakthrough will appear in discrete
mathematics which will make solving these problems much easier than today. It is
also possible that so called DNA-computing or quantum computers may yield solv-

1. Note, however, that if the quantum computers ever become reality, this argument may
become false.

H

C

k

()

k

C

Background

20

Modelling and Verification of Cryptographic Protocols

ing some NP–complete problems somewhat more tractable. Putting these possibili-
ties aside, Schneier argues that “in every decade we can factor numbers twice as long
as in the previous decade” [99, page 162]. Based on that, he gives a recommendation
for RSA key length for the next 50 years. The recommendation is replicated inTable 3
on page 20.

2.3 Cryptographic protocols

The term

cryptographic protocol

 is used in the literature to denote several, somewhat
different classes of protocols. Perhaps the largest definition includes all communica-
tion protocols that use cryptography in one or another way. A less covering definition
restricts the term to denote those protocols where the specific type of cryptography
used is an intrinsic part of the protocol security. From the wider point of view, PGP
encrypted electronic mail might be considered a cryptographic protocol. From the
narrower point of view, only protocol such as zero knowledge proofs etc., where the
cryptography is bound with the protocol, are considered cryptographic protocols.

As already mentioned, in this study we concentrate on a class of cryptographic proto-
cols often called

authentication protocols

. However, also other kinds of protocols are
occasionally lightly touched.

Basically, an authentication protocol is a cryptographic protocol whose purpose is to
create enough of evidence that one or more of the communicating parties may rea-
sonably believe in something. That is, an authentication protocol has a

goal

 (or a set
of goals) that the parties want to achieve. For example, in a client–server system the
client may want to convince the server that it has legitimate rights to access the serv-
ice provided by the server, and the server wants to allow access only to legitimate cli-
ents. By exchanging cryptographically protected information the client may prove
that it really is a legitimate client, having right to access the service. In other words,
the goal of an authentication protocol is achieved by means of exchanging crypto-
graphically protected messages.

Modelling formally the goals of a cryptographic protocols is by no means simple nor
straightforward. Event the actual meaning of the words

authentic

 or

authentication

differ slightly from situation another. Usually this involves information about the
identity of the parties as well as timeliness. With timeliness, which is often also
referred as freshness, we mean that a party has all reason to believe that the purported
other party is involved with the communication

now

. With this property one can
assure that the authentication process is performed on-line, and that it is not a ques-
tion of a replay attack. We will return, in more detail, to the goals of cryptographic
protocols in Chapter 3, “The purpose of cryptographic protocols”, on page 35.

An example.

Let’s consider a case where one party, namely Alice, wants to send

another party, Bob, a letter. Alice and Bob do not know each other very well, but they

TABLE 3.

Long-range factorising predictions [

99

, page 162]

Year RSA key length in bits

1995 1024

2005 2048

2015 4096

2025 8192

2035 16,384

2045 32,768

Modelling and Verification of Cryptographic Protocols

21

Background

have a common friend, Trent, that they both trust. Alice and Bob have both been pre-
viously communicating with Trent, and they have shared a symmetric cryptographic
key with Trent. Trent, being very decent person, has one key for dealing with Alice
and another for dealing with Bob.

Now, given this situation and the trust relationships, it is well possible to device a
protocol that allows Alice and Bob to establish a shared symmetric key for mutual
communication. Trent could be trusted to introduce Alice and Bob to each other, and
to guarantee that the newly established key is known by anyone else. However,
designing, modelling, verifying, and correctly implementing such an protocol is not
at all easy, as we shall see.

2.4 Modelling of communication protocols

A communication protocol is a predefined sequence of message exchanges between
two or more parties. Most protocols involve more or less nondeterminism, at least in
the form of failure behaviour. Typical protocols also allow some nondeterministic
behaviour for one or more parties, i.e. a party may opt to send a message A or a mes-
sage B in a certain situation. However, most of the protocols that we consider have
very little nondeterminism: either the messages flow in the strict predefined order, or
a failure occurs.

The purpose of a communication protocol is to convey information or knowledge
between the parties involved. The actual information flow (as opposed to the message
flow) may be unidirectional or bidirectional; the same applies to knowledge. The dif-
ference between information and knowledge is subtle. In this study, information will
refer to any information in the Shannonian sense whereas knowledge refers to inten-
sional knowledge of a party within a distinct protocol model (cf. section
4.4.3, “Knowledge, common knowledge and distributed knowledge”, on page 58).

Notation.

We have adapted the common practice of referring to nodes participating
in protocols with names. The names are defined in Table 4, adapted from [99].

Two formats are used to denote messages exchanged between nodes. In the first for-
mat the sender , the intended recipient and the message are given in a straight-
forward way:

In the second format, the sending and receiving of messages are seen as separate
actions. In the action the sender, recipient and message are denoted. In the

 action only the receiver and message are given, since it is not clear which
message of a potentially large number of identical messages the network has decided
to deliver:

TABLE 4.

Dramatis Personae (adapted from [

99

, page 23])

Alice First participant in all the protocols

Bob Second participant in all the protocols

Carol Participant in the three-party protocols

Eve The Environment, or an Eavesdropper

Mallory Malicious active attacker

Sue More or less trusted Server in a protocol

Trent Truster arbitrator or other trusted party

S

R

m

S R

m

:

send

 receive

Background

22

Modelling and Verification of Cryptographic Protocols

Sometimes these formats are abbreviated, leaving out the sender, the recipient, or
both. The abbreviated forms are used when the sender or the recipient are unambigu-
ous from the setting.

Terminology.

An

action

, or event, is the basic building block of all protocols. An
action is any externally visible or internally meaningful operation a party is at least
theoretically able to perform. Typical actions are e.g. sending a message, receiving a
message, and generating a new random number. All the formal models we will con-
sider have actions in a form or another.

A

state

 is a element of a model that denotes a period of no actions. After each action,
a protocol party enters a state. When another action is executed, the state is left, and
another state is entered. A state may be associated with properties, often expressed in
the form of propositions. These can be used in giving semantics to a protocol model.

A

protocol run

, or

trace

, is a sequence of actions. For example, in a protocol where
Alice sends Bob message and Bob receives it, the possible actions can be defined
as denoting that Alice sends Bob the message , and

 denoting that Bob receives the message .

A protocol

 specification

 is a formal statement that specifies the desired properties of a
protocol. What the desired properties are, on the other hand, depend on the goals of
the protocol (see Section 2.4.1, below). For example, a temporal logic based specifi-
cation implies that a correctly behaving implementation will never execute certain
runs. Respectively, a knowledge based specification defines the knowledge state of
the involved parties in the end of any successful protocol run.

A

protocol model

, on the other hand, is a formal model that can be directly used as a
basis of a protocol implementation. A protocol model is often expressed in terms of
actions, states and state-transition rules. For example, a protocol model may define
that when Alice has received the message from Bob, she may either send or

 back. In this case, if Alice sends anything else to Bob (or if she does not send
anything at all), it is considered a violation of the model.

The basic distinction between these two is that a specification typically describes how
a protocol shall

behave

 whereas a model gives an internal, implementable representa-
tion of the protocol. The idea of

verification

is to ensure that a given protocol model
fulfils the given specification(s).

An example.

Let’s have a closer look at the simple case of the two possible actions,
 and . From these actions, we can construct a set of

runs.

The set of all (even impossible) protocol runs of length 2 is

From these, the only

possible

 runs are

send

S R m

, ,

()

receive

R m

,

()

m

send Alice Bob

m

, ,

()

m

receive Bob

m

,

()

m

m

m

1+

m

1–

send Alice Bob

m

, ,

()

receive Bob

m

,

()

send Alice Bob

m

, ,

() send Alice Bob

m

, ,

()

,

receive Bob

m

,

() receive Bob

m

,

()

,

send Alice Bob

m

, ,

() receive Bob

m

,

()

,

receive Bob

m

,

() send Alice Bob

m

, ,

()

,

,
,

,

{

}

 send Alice Bob m , , () send Alice Bob m , ,() () ,
send Alice Bob

m

, ,

() receive Bob

m

,

()

,

,{
}

Modelling and Verification of Cryptographic Protocols

23

Background

The latter one is the only

possible

ones since only these preserves the information
properties of the protocol. That is, it is naturally not possible to receive a message
before it is sent. However, it is well possible to send the same message again, even
though the first one has not been received.

The only

successful

 run is .

This is the only

successful

 one since only this leads to the intended result. That is,
only in this case Alice manages to send the message to Bob.

2.4.1 Expressing protocol goals

As already mentioned, the purpose of a protocol is to convey information or knowl-
edge. This goal can be formally expressed in several ways. An external specification
may describe the goal as requiring that the future system behaviour will be restricted
in a certain way after a successful protocol run. This is sometimes implied by a more
generic specification which defines the legitimate system behaviour during both the
protocol run and after it. For example, a specification may state that a subsystem
never expresses any confidential information except when encrypted with a symmet-
ric key that is only known to the subsystem itself and to a single trusted party. This
implies that after a protocol run where the subsystem and a trusted party have agreed
on a session key, the subsystem may send confidential information using the given
key, but not in any other conceivable way.

As an alternative to a behavioural specification, one can make statements about the
successful final states of a protocol model in terms of information or knowledge. For
example, a specification can state that after a successful protocol run the key gener-
ated during the run is

only

 known by the participating nodes, that the key

is

 known by
the nodes, and that each of the nodes “knows” that the other node also has the key. A
state restriction can also be expressed as a relation between the states of nodes within
the model. For example, a specification may state that after a successful protocol run,
if Alice is in state A, Bob’s local state is either B or C, but not any other state.

Safety properties.

A

safety property

 states that if the protocol fulfils the property,
nothing “bad” will happen. More specifically, if a protocol run starts in a good initial
state, the system will never enter an undesired state. Safety properties are often
expressed in terms of sets of runs. The property defines a set of runs that are consid-
ered good according to the property. If it can be shown that a protocol implementa-
tion never executes any traces outside the set, the implementation fulfils the given
property.

For example, a safety property may require that if an agent learns any confidential
information, it has been earlier given the explicit authority to read the information:

Liveness properties.

While safety properties require that nothing bad happens, live-
ness properties require that eventually something good happens. There are two possi-
ble reasons why a system may stop performing visible actions: deadlock and livelock.
Deadlock means that the system has reached a dead end: no further actions can be
performed. A livelock, instead, occurs when the system continues to perform actions
indefinitely, but all actions performed are ones we are not interested in. Furthermore,
we will require that in a real livelock situation the system is

not able to

proceed to
any of the desirable states, i.e. to return to a state where a desirable action is possible.
This is in contrast to situations where the system is able to proceed, but just nondeter-

send Alice Bob

m

, ,

() receive Bob

m

,

()

,

m

a

Agent

m

Messages Confidential

m

()

,,

learn

a m

,

() access

a m

read

, ,

()

:

Background

24

Modelling and Verification of Cryptographic Protocols

ministically happens to choose an undesirable action every time. In the latter situa-
tion, if the nondeterministic choices are performed randomly, the system will

eventu-
ally

return to a sane state.

The question about livelocks is connected to issues of scheduling, fairness of the
scheduler, and timeouts. From the security point of view, liveness properties can be
used to model availability. These are interesting and valid issues; however, in our
study we will mostly ignore all liveness properties. In a typical protocol model, a fail-
ure will be modelled as a deadlock whereas successful operation will lead to a suc-
cessful termination. There is seldom even a possibility for livelocks within the
models used in this study.

Benefits gained.

Given all this, one may ask why to formally express the protocol
goals in the first hand. There are several reasons for this. First, and maybe foremost,
natural language, being informal, is often inaccurate or even ambiguous. Formal
specification means accuracy, coverage and explicitness. It also allows one to use a
language that is more close to the verification semantics, thereby reducing complex-
ity. However, this all comes, of course, with a cost. Formal specifications are some-
times harder to understand. And, unless special care is taken, using a formalism may
abstract away one or more properties that are important after all.

From now on, we will mostly work on the assumption that all the desired protocol
goals are, to the extend needed, possible to express in the formal notations used.
However, we urge the reader to remember that this assumption has often turned out
false in the light of new developments.

2.4.2 Models, states and actions

The internal behaviour of a concurrent system can be modelled using states and
actions. The two main brands of such models are Petri nets [90] and process algebraic
formalisms

1

 such as Labelled Transitions Systems (LTS), Algebra of Concurrent
Processes (ACP) [8, 13], Calculus of Communicating Systems (CCS) [80] and Com-
municating Sequential Processes (CSP) [55, 56, 54]

2

. The basic idea in all the men-
tioned formalisms is pretty similar: to build a model where the global state of a
system consists of a number of local states and an action means a change in one or
more local states simultaneously

3

.

From a non-formal, applicative point of view the main difference between Petri net
formalisms and process algebraic models is that Petri nets are not easily composeable
while process algebraic models are. That is, it is not straightforward to take two Petri
nets representing subsystems of a large system and to combine them together, while
process algebras have been developed from the beginning to make this easy. Due to
this reason we will concentrate on process algebraic models in this study.

The basic formalism we will use to define protocol models is Labelled Transition
Systems (LTS) [41]. ACP and CSP formulae will be used to specify and discuss pro-
tocol models when appropriate. As an example, an LTS model along with ACP and

1. Compared to plain state machines, these formalisms are more suitable for representing par-
allel actions. Given some semantics for parallelism (e.g. interleaving semantics), they can
be converted into state machines. However, the resulting state machines are often very large
and clumsy to handle.

2. In addition to these, there is a large number of other formalisms, some of which are more
industrially oriented (e.g. SDL, Estelle, Lotos). However, the formal model theoretic
semantics of many of these are either incomplete, or too complex for practical full scale
verification.

3. This is not strictly true for Petri nets, but close enough for our purposes.

Modelling and Verification of Cryptographic Protocols

25

Background

CSP formulae describing Alice sending Bob a message through the Network is given
in Figure 4. All these models will be discussed in more detail in Chapter 5, “Model
checking and Process Algebra”.

A standard method to determine whether a protocol model fulfils a property is
exhaustive search, or reachability analysis. All reachable states of a model are cre-
ated, and in each state the tested property is evaluated. If the property evaluates true
in all reachable states, all protocol runs fulfil the property.

In practice, exhaustive reachability analysis is not possible but for the simplest mod-
els. Due to concurrent operations and nondeterministic choices the number of possi-
ble states explodes as the system complexity increases. A typical realistic protocol
model may easily contain a huge number of reachable states. With current technol-
ogy, an exhaustive search can be applied to models having 10

7

 – 10

8

 states, some-
times even 10

12

 states.

There are quite a few methods that have been used to reduce the number of states that
have to be checked. Most of the proposed and used ones have been more or less heu-
ristic, i.e. dependent on the problem being studied (see e.g. [76]). However, two
model refinement techniques called Failures-Divergencies Refinement (FDR) [68]
and Chaos-Free Failures-Divergencies Refinement (CFFD) [110] seem to be univer-
sally applicable and very promising, especially when modelling real life protocols.
These methods will be briefly discussed in more detail in Section 5.4.7.

2.4.3 Logical formulae

A logic is a set of well formed formulae that includes all tautologies and is closed
under the rule of detachment () [43]. In practice, a logical for-
mula is a sentence using the logical operators to describe
properties concerning a model (here the box is an example of a modal operator).
A number of primitive propositions are given a truth value at all possible pro-
tocol states using a valuation . For each proposition the valuation
gives a subset of states where is true. The primitive propositions are then com-
bined using the logical operators to logical formulae.

The propositions typically denote facts about the model and can easily be evaluated
at the various states of the model. For example, the string may be under-
stood as denoting that at a given state the agent has once sent the message or
another message consisting of the concatenation of and some other data.

FIGURE 4.

Alice sends a message to Bob through the Network

Eve,
the NetworkAlice Bob

send m
receive m

ACP specification: A || E || B,

(send

m

, send

m

) = send

m

,

(receive

m

, receive

m

) = receive

m

CSP specification: A || E || B

if

 and

 then

 and

p

i

V

2

S

:

p

i

V

p

i

 sent a m , ()

a

m

m

Background

26

Modelling and Verification of Cryptographic Protocols

Using logical connectives and the type of propositions described, one can express
facts about possible and permissible runs, acceptable initial and final states etc. As an
example, a requirement that each received message must have once been sent can be
expressed as .
Using a temporal operator denoting “at least once in the past”, a similar require-
ment can also be expressed as . The truth of the latter for-
mula in a given state can be evaluated by determining whether the agent receives
the message at the given state (i.e. the previous local action was) and
whether the agent has sent the message in the past.

Considering the local states of agents, it is also possible to express the intensional
knowledge or beliefs using modal operators. For example, if the operator denotes
that the agent

believes

 that the formula following the operator is true, the formula
 denotes that if receives a message along

with a hash value constructed from a key and the message, believes that the mes-
sage was once sent by . In order to be able to evaluate the truth of this formula, the
semantics of the belief operator must be given. We will return to this issue later in
Section 4.4, “Logics of knowledge and belief”.

2.5 A protocol example

Let’s consider a practical example. Our system shall consist of three parties: Alice,
Bob and Eve. Here Eve denotes the network. In order to keep the example utterly eas-
ily understandable from the protocol modelling point of view, the range and domain
of both encryption and hash functions has been kept unrealistically small. This may
sometimes make it hard to believe that the protocol has anything to do with security.
However, the reason for the security of our example lies in the unrealistically small
computational capabilities of the network (it is assumed that the parties have equally
small computational capabilities, but that doesn’t really matter). In real life, the rea-
son why cryptographic protocols are secure partially lies in the limited computing
capabilities of the adversaries. This works, since given large enough key and hash
value domains it is — as mentioned above — thermodynamically infeasible to launch
a brute-force attack against the functions.

In concrete terms, we assume that all the parties are only able to remember three dig-
its in the range {0...9} and nothing else. That makes it impossible for the parties to
store more than one earlier protocol run in order to use that information for cryptanal-
ysis. It also makes it impossible for the parties to store the representations of encryp-
tion and hash functions in memory as tables. Furthermore, it is assumed that a
random numbers in the range (0…9) are unpredictable enough and that it is infeasible
to try them all. It is also assumed that the encryption function

 and hash function cannot be cryp-
tanalysed nor inverted (not even by exhaustive search). We also suppose that only
Alice is able to encrypt anything and Bob decrypt, even though we do not explicitly
denote any keys.

2.5.1 The protocol

The purpose of the example protocol is to send one digit of information from Alice to
Bob without revealing it to Eve. The protocol will function as follows. Let be the
digit to be sent.

 1. Alice generates a random nonce

a

Agents

m

Messages

b

Agents

:

,

received

a m

,

() sent

b m

,

()

:

receive

a m

,

() send

b m

,

()

a

m

receive

a m

,

()

b

m

B

a

a

receive

a m h k m

,

()

, ,

()

B

a

send

b m

,

()

a

m

k

a

b

B

a

enc 0

…

9

{ }

0

…

9

{ }

:

h 0

…

99

{ }

0

…

9

{ }

:

m

 n

Modelling and Verification of Cryptographic Protocols

27

Background

2.

Alice calculates and , and

sends

 the message to
Bob (via Eve).

3.

Upon

receiving

 the message, Bob decrypts revealing and calculates

 to make sure that the message was not tampered with.

4.

To inform Alice that he has got the message, Bob calculates
and

sends

 it to Alice (again via Eve).

5.

When Alice

receives

 Bob’s response, she is able to convince herself that Bob has
got the digit.

The flow of messages is illustrated in Figure 5.

The actual formalization is quite lengthy and somewhat boring, even though highly
instructive. To keep the presentation here brief, the full protocol example is given in
Appendix A.

Actions.

To model the protocol the following actions are defined:

2.5.2 Run based protocol specification

Given the protocol descriptions, we can formally specify the following sets:

•

set of possible actions (the alphabet), which is finite,

•

the set of all runs , which is infinite but enumerable,

•

the set of possible runs , which is also enumerable,

•

a subset of containing only the runs of length 5 (a finite set), and finally

•

the set of legal runs .

Alice or Bob sends a message consisting three
digits (, , and) to the network.
(2*10*10*10 = 2000 different actions).

Alice or Bob receives a message consisting of
three digits.

 Alice or Bob sends a digit .

 Alice or Bob receives a digit.

 Alice or Bob generates a random number.

enc

m

()

h

n m

,

()

n

enc

m

() h

n m

,

()

, ,

enc

m

()

m

h

n m

,

()

h

n m

1+

()

mod10

,

()

FIGURE 5.

An example protocol flow

Eve,
the NetworkAlice Bob

send n,enc(m),h(n,m) receive n,enc(m),h(n,m)

send h(n,m +1 mod 10)receive h(n,m +1 mod 10)

2. 3.

4.5.

send Alice

…

Bob 0…9 0…9 0…9

, , ,

()

n

e

m

()

h

n m

,

()

receive Alice

…

Bob 0…9 0…9 0…9

, , ,

()

send Alice

…

Bob 0..9

,

()

h

n m

1+

()

mod10

,

()

receive Alice

…

Bob 0…9

,

()

generate 0…9()

all

succesfull

Background

28

Modelling and Verification of Cryptographic Protocols

More of these sets are shown in the appendix. For brevity, here we give only a formal
trace specification for the set of legal runs:

2.5.3 Protocol model

Next we develop a protocol model consisting of a local state machine for Alice and
Bob. The appendix shows how a (partial) state machine for Eve, or the environment,
can be modelled. Its states includes all the information Eve is able to gather during a
single protocol run. To keep things simple in this example, we assume that none of
the parties are able to remember information from earlier protocol runs.

The local state of Alice consists of the message to be sent , a nonce , and
a state variable denoting the actions Alice has performed so far. The latter also
dictates exactly what Alice is ready to perform next:

The symbols , , , denote the initial state of Alice, the state
where Alice has generated , the state where Alice has sent the first message and
is waiting for a reply from Bob, and the state where she has received his reply,
respectively.

In the same way, Bob’s local state consists of , and (see the appen-
dix).

Using the state variables, we can define the set of legal states for Alice and Bob:

It is quite straightforward to define the sets of acceptable actions in each state, e.g.:

denoting that the acceptable actions for Alice, , in the initial state,
, are the generate actions. When Alice has generated a nonce, she can

perform only one action, the send action corresponding to the message to be sent,
, and the nonce generated, . This set is described above as

.

A successful protocol run is when Alice and Bob both end in their final states. All
other sequences shall lead to a failure, i.e. a deadlock.

succesfull

s

0

s

1

…

s

4

, , ,

5

P

s

0

s

1

…

s

4

, , ,

()

:

{ }

P

s

0

s

1

…

s

4

, , ,

()

n m

,

s

0

generate

n

()=

s

1

send Alice

n

enc

m

() h

n m

,

()

, , ,

()=

s

2

:

=

receive Bob

n

enc

m

() h

n m

,

()

, , ,

()

=

=

s

3

send Bob h

n m

1+

()

mod10

,

()

,

()=

s

4

receive Alice h

n m

1+

()

mod10

,

()

,

()=

m

Alice

n

Alice

s

Alice

m

Alice

0

…

9

, ,{ }

n

Alice

0

…

9

, , ,{ }

where

 denotes the empty value

s

Alice

init generated sent received

, , ,{ }

init

generated

sent

received

n

Alice

m

Bob

n

Bob

s

Bob

S

Alice

s m n

, ,

s

init=

n

=

s

init

n

,

:

{ }

=

S

Bob

s m n

, ,

s

init=

n m

= =

s

init

n

m

,

:

{ }

=

A

Alice

init

m

Alice

, ,

() generate 0()

…

generate 9()

, ,{ }

=

A

Alice

generated

m

Alice

n

Alice

, ,

() send Alice

n

Alice

enc

m

Alice

() h

n

Alice

m

Alice

,

()

, , ,

()

{ }

=

A

Alice

A

Alice

init

…,

()

m

Alice

n

Alice

A

Alice

generated

m

Alice

n

Alice

, ,

()

Modelling and Verification of Cryptographic Protocols

29

Background

2.5.4 LTS, ACP and CSP specifications

The individual LTS models for Alice and Bob are given in Figures 27, on page 122
and 28, on page 122 in the Appendix A. Figure 6 gives the combined LTS without
any explicit network model, i.e. .

The behaviour of Alice and Bob can be described as ACP formulae. Table 5 on
page 29 explicitly gives the behaviour of Alice at different states using ACP specifi-
cations. Given the definitions in the table, the total behaviour of Alice can be defined
as

It is worth noting that in state (see the table), Alice is ready to perform only
one action: to receive a message that is sent to her and that contains a one way hash
over and . In this way we can express, in ACP, that the system will
deadlock unless someone, i.e. Bob, sends a correct reply, and that reply is indeed
received by Alice.

Global protocol states.

 The combined LTS based protocol model given in Figure 6
is based on synchronous communication and therefore unrealistic. That is, the receipt
of a message appears

simultaneously

 with the sending of the message. This is unreal-
istic and does not conform to the environment model described earlier.

In order to produce a more realistic protocol model, we keep the models for Alice and
Bob similar, but add a third component, Eve the environment. Eve is always able to
receive messages from both Alice and Bob, and it is able to send any of the messages
she has received so far to Alice or Bob. However, communication will only happen if
a party is ready to send or receive a message. In this sense, communication between

TABLE 5.

ACP formulae for Alice’ behaviour in different states

State ACP formula

a

a. See Appendix A for the explanations of the formulae.

init

generated

sent

received

A

c Alice Bob

x

,

() c Bob Alice

x

,

()

,{ }

B

FIGURE 6.

The combined LTS representing both Alice’ and Bob’s actions

init
init

gener’d
init

sent
recv’d

recv’d
sent

generate(n

Alice

)

c(Alice->Bob, n

Alice

,

c(Bob->Alice, h(n

Alice

,
 m Alice +1 mod 10))

 enc(m Alice), h(n Alice , m Alice))

ALICE INIT

m

0

m

10

<

=

SENT

m n

,

n

m

1 mod 10+

INIT

m

generate

n

()

GENERATED

m n

,

()

0

n

10

<

=

GENERATED

m n

,

send Alice

n

enc

m

() h

n m

,

()

, , ,

()

SENT

m n

,

=

SENT

m n

,

receive Alice h

n m

1+

()

 mod 10

,

()

,

()

RECEIVED

m n

,

=

RECEIVED

m n

,

=

Background

30

Modelling and Verification of Cryptographic Protocols

Alice and Eve as well as between Bob and Eve is synchronous. The presence and
behaviour of Eve makes the communication between Alice and Bob asynchronous.
The most important consequence of this is that if Alice has sent a message to Bob,
she does not know if he has received it before she got a response back from him.

A possible model for Eve, where she is always able to receive anything, and able to
send anything she has earlier received, is given in the appendix. Naming the ACP
behaviour of Eve as , the behaviour of the overall system can be defined as the
ACP formula . Analysis of this shows that the only possible suc-
cessful protocol run is the one intended.

The environment model given in the appendix allows the environment to send only
messages that it has already learned. However, if we consider a real world situation,
an adversary can send absolutely anything to the protocol parties. It relies on the
responsibility of the parties to decide whether the message received is acceptable or
not. In our toy model, Eve has 1/10 probability of generating a message Bob will
accept as a genuine one from Alice, and 1/10 probability of responding to Alice’ mes-
sage in such a way that Alice believes it coming from Bob. In real life, where the
ranges and domains of cryptoalgorithms are much larger, these probabilities will be
negligible and considered zero in this study.

Using the alternative environment model where Eve is able to both send and receive
anything, the total model of the system becomes much more complex. Yet another
environment model would allow Eve to generate some messages, but in such a way
that all these messages would be “illegal”. In the case of our toy model, this is easy
by deliberately choosing a number of messages where the hash function checking
does not succeed. Another direction is to allow Eve to remember messages from pre-
vious protocol runs. Using this approach, it can be shown that Eve is able to launch a
reply attack against Bob but not against Alice. In other words, Eve is able to make
Bob believe that Bob has received a message from Alice, even though Alice has not
sent any messages during the protocol run, but Eve is not able to convince Alice that
she has succeeded in sending a message to Bob if Bob has not received the message.

2.5.5 Knowledge and beliefs

There is one issue left to be discussed in the light of the example: the question of
knowledge. The apparent purpose of the protocol seems to be to transfer the one digit
of information, , from Alice to Bob. Unfortunately it can be shown that since suffi-
ciently powerful Eve (one that remembers earlier messages) can make Bob believe
that he has received a message even when he has not, this primary goal has not been
achieved. Instead, it can be shown that after a successful protocol run, Alice knows
that Bob knows , and that Bob indeed does know , but Bob does not know
whether the he knows was actually sent by Alice during the protocol run, or if it is
a reply attack sent by Eve.

Using modal formulae, and the notion to be fully introduced later in Chapter 4, the
end result can be written as follows:

Alice knows that Bob has received .

Bob indeed has received .

It is not true that if Bob receives an
that it would really be sent by Alice.

 EVE
ALICE EV E BOB

m

m

m

m

Alice Bob

m has () knows m

Bob

m has () m

Bob

m sees Alice m writes () m

Modelling and Verification of Cryptographic Protocols

31

Background

The reader should notice that what is referred as knowledge above (i.e. Alice knows)
is actually beliefs that hold only if the initial premises hold. The question how to for-
mally make these kinds of statements and to reason about them will be discussed in
Chapter 4, “Modal logic”.

2.6 Cryptanalysis and protocol failures

There are roughly three different kinds of methods to break a cryptographic protocol.
One of these, external compromise, cannot be effectively coped with within the sys-
tem. For example, if someone uses social engineering or blackmailing to get hold of a
user’s long lasting keys, there is not much that can be done at the protocol level in
order to alleviate the problem. The other two breaking methods — cryptanalysis and
protocol failures — can be made more difficult by careful protocol design and analy-
sis.

Cryptanalysis refers to methods where, for example, a session key or other sensitive
information is revealed by breaking a cryptographic algorithm used. The ability to
produce two meaningful messages having the same hash value (the so called birthday
attack) can be considered cryptanalysis as well. Putting the design and analysis of the
ciphers aside, there is still quite a lot a protocol designer can do to make cryptanalysis
as hard as possible. For example, using encryption only to protect confidential infor-
mation and hash values to retain message integrity and authenticity, one can effec-
tively increase the unicity distance of a given cipher (cf. section 2.2.5, “Security of
cryptosystems”, on page 18). [71]

Protocol failures, on the other hand, are situations where the protocol contains a
design flaw that allows an adversary to break one or more of the protocol goals. A
protocol failure may make it possible to impersonate as a legitimate party or break
the confidentiality or integrity of the system

without

 breaking a cryptoalgorithm. For
example, it may be possible for an attacker to run several runs of protocol simultane-
ously, thereby getting from one protocol run a message that can be substituted into
another protocol run. A classification of protocol flaws is given in section 2.7, “Flaws
in protocols”.

Gustavus Simmons describes a number of different protocol failures in his famous
article in the Communications of the ACM [102]. He describes a number of crypto-
graphic protocols where the use of a particular cryptosystem (e.g. RSA or DSA/DSS)
is more or less crucial to the success of the protocol failure. Even though in this study
our main concern is in protocol failures that are

independent

 on the cryptosystem
used, there is a lot to learn. In particular, we want to re-emphasize the following
points from Simmons’ article:

•

Carefully enumerate all of the properties of all of the quantities involved, both
explicitly stated and implicitly assumed.

•

Take nothing for granted. In particular, if there is a way to violate a property, care-
fully analyse what security considerations this violation may have.

•

If the outcome of the protocol can be influenced by violating one or more assump-
tions, carefully determine if this can be exploited to advance some meaningful
deception.

In this study, the prevention and analysis of protocol failures is the main concern.
What comes to cryptanalysis, the goal is to enumerate methods that make cryptanaly-
sis harder, not to try to make it altogether impossible.

Background

32

Modelling and Verification of Cryptographic Protocols

2.7 Flaws in protocols

Ulf Carlsen has presented a classification of cryptographic protocol flaws in [23]. An
understanding of different types of flaws helps one to design better protocols and to
understand the design choices others have made planning their protocols. In this sec-
tion we present Carlsen’s classification in an abbreviated form.

Carlsen makes a distinction between

 specification flaws

,

implementation-dependent
flaws

 and

implementation flaws

. Specification flaws are mistakes at the high level def-
inition of the protocol. Examples of functional flaws are freshless and oracle flaws,
both discussed below. Meanwhile, an implementation-dependent flaw is a deficiency
at the specification level in such a way that the specification can lead to at least one
faulty and one non-faulty implementation. That is, the specification itself is not nec-
essarily wrong, but it is sufficiently imprecise so that it is possible to produce a mal-
functioning protocol implementation. Implementation flaws, as the name suggests,
are mistakes made at the implementation phase of a (correct) protocol specification.

In this study, our main concern is in specification flaws, and to a lesser extent in
implementation-dependent flaws. Handling of implementation flaws is beyond the
scope of this study. However, where possible we try to device methods which make it
harder to make mistakes at the implementation level.

2.7.1 Elementary flaws

Carlsen considers basic violations of cryptographic functions or understanding of
what to protect and what not as elementary flaws. As an example he gives the original
X.509 authentication protocol where messages where encrypted before signing. This
allowed an attacker to replace the signature with his own, thereby allowing him to
trivially impersonate the originator of the message.

2.7.2 Password-guessing flaws

Some cryptographic protocols use passwords to generate keys or other cryptographic
information. If the protocol allows an adversary to test if a given password is valid, he
can launch a brute force search on the password space, i.e. test all possible passwords
one after another. Typically the number of passwords people tend to generate is much
smaller than the key space of cryptographic information. In this way, a password-
guessing flaw makes cryptanalysis much easier.

2.7.3 Freshless flaws

In many cryptographic protocols it is important to be sure that some datum, e.g. a ses-
sion key, has been recently generated (cf. the definition of freshness in Section
3.4.3, “Freshness, timeliness, nonces and replay prevention”, on page 42). The classi-
cal example of a freshness flaw is the flaw in the original Needham-Schroeder private
key protocol, where B had no possibility to ensure the freshness of the session key.

2.7.4 Oracle flaws

An oracle flaw refers to a situation where a cryptographic protocol can be misused to
produce illegal cryptographically protected messages or reveal the contents of crypto-
graphic information. A typical example is a situation where the attacker simultane-
ously uses two protocol sessions in such a way that one protocol session can be
misused to produce valid looking forged messages on the second session.

Modelling and Verification of Cryptographic Protocols

33

Background

The basic method to prevent oracle flaws is never to encrypt (or decrypt) anything
unknown, i.e. anything whose structure is not completely known or that is not per-
fectly authenticated. [70]

2.7.5 Type flaws

Explicit typing is a method of ensuring that the structure of cryptographically pro-
tected data cannot be misused. Using explicit protocol identifiers, run numbers, trans-
mission steps, message types etc. helps to prevent an adversary from using some
colleted message as a forgery for another message. However, it is not advisable to use
explicit typing in encrypted parts of messages, since using explicit typing there
allows the adversary to launch partially-known plaintext attacks.

Another typing flaw refers to randomly generated items. All random items transferred
unmodified or protected in a reversible way, i.e. encrypted, form potential covert
channels. For example, the generator of a random number may each time ensure that
the low order bit of the random number conforms to information he wants to send.
[102]

2.7.6 Internal flaws

In Carlsen’s classification, flaws caused by a failure of a protocol party to perform a
necessary operation are called internal flaws. For example, it may be crucial for a
protocol party to check the structure of a MAC protected message before forwarding
it. Similarly, a party’s neglect to check the contents of a message before encrypting it
may lead to oracle flaws. Internal flaws are typically implementation-dependent.

2.7.7 Cryptosystem-related flaws

The basic approach in this study as well as most other papers is to specify crypto-
graphic protocols without any particular cryptosystem in mind. However, some cryp-
tosystems have properties that make them unsuitable for a particular protocol. Some
of the flaws considered by Simmons in [102] can be considered cryptosystem related
as well.

Many cryptosystem related flaws are highly complex and hard to detect. According to
Carlsen, “Countermeasures to cryptosystem-related flaws can only be determined on
a case-by-case-basis.” [23, page 198]. However, to us it seems to be preferable to try
to make explicit the properties a cryptosystem is assumed to have, and the properties
it is assumed not to have (if possible).

2.7.8 Lessons learned

Carlsen suggests that formal protocol specification and analysis should have explicit
models for typing, type checking and internal actions. These would definitely dimin-
ish the number of new type and internal flaws, thereby probably making the probabil-
ity of oracle flaws smaller as well.

2.8 Summary

 In this chapter, we have briefly covered the necessary background. First, we dis-
cussed distributed systems security in general. From our point of view, the real secu-
rity objectives of any system are availability, confidentiality and integrity.
Identification, authorization and delegation are means used to restrict the users’
access to the system, thereby trying to ensure confidentiality and integrity. In our par-

Background

34

Modelling and Verification of Cryptographic Protocols

lance, authentication (or authenticity) and non-repudiation are used more as adjective
terms, denoting level of assurance one has over identity, authorization, delegation or
other information. Auditing, intrusion detection and other similar methods are used to
detect and analyse security incidents, while the other security services are used to
prevent or alleviate them.

We also briefly discussed OSI and CORBA security architectures, noting how the
OSI model shows relatively little understanding of the role of various services. The
CORBA security architecture is clearly better in this respect (and much more recent
than the OSI model); however, even there identification is seen as one of the basic
goals of system security.

After the discussion of distributed systems security in general, a brief rehearsal of the
basics of cryptology was given. Various cryptographic algorithms, i.e. symmetric and
asymmetric ciphers, one-way hash functions, digital signatures, message authentica-
tion codes and cryptographically strong random numbers were briefly described. This
section was concluded with some notions about the security of cryptosystems.

In Section 2.4, “Modelling of communication protocols”, we introduced some basic
notion used to describe cryptographic protocols. Some methods of formally describ-
ing protocol goals were briefly introduced. The concepts of models, states and actions
were defined from the point of view of process algebras and logical model theory.
Basic logic formulae were introduced. After this, in Section 2.5, “A protocol exam-
ple”, we gave an example on how the various formalisms can be used to model an
utterly simple sample protocol. The example is given in full detail in Appendix A, “A
protocol example”, on page 117.

Finally, in Sections 2.6 and 2.7 we discussed the various types of flaws that have been
found in cryptographic protocols. In this work, our main interest will be in modelling
cryptographic protocols in such a way that possible specification flaws and imple-
mentation-dependent flaws could be avoided.

Modelling and Verification of Cryptographic Protocols

35

CHAPTER 3

The purpose of
cryptographic protocols

Cryptographic protocols are communication protocols that have been designed to
operate in a potentially hostile environment. They use cryptographic algorithms to
protect messages or parts of messages from disclosure and modification. The reason
for using ciphers is that it seems to be the only feasible means to protect data in a hos-
tile environment. The protection is based on computational complexity: given a large
enough domain of values, it is practically impossible to test each of them.

In this chapter the concept of

cryptographic protocols

 is discussed in detail. In the
light of this discussion, the scope of study is limited to a subclass of cryptographic
protocols. In particular, we will not consider protocols based on more “advanced”
cryptosystems such as zero-knowledge protocols, blind signatures or secret sharing
schemes. The focus of this study is on identity authentication and key exchange pro-
tocols, as well as on the applicability of these protocols to authorization methods.

The

goals

 of cryptographic protocols are considered from a few points of view. In
particular, we will first consider high level protocol goals, or what is the purpose of a
cryptoprotocol from the system point of view. The specific goals of a (sub)protocol,
in particular key agreement, correspondence and secrecy are considered. Also the low
level concepts, such as message authenticity and freshness, are considered. Goals are
expressed mostly informally in this chapter. We will return to the goals later on, and
formalize some of them.

A real life example of the ISAKMP / Oakley protocol, a forthcoming IETF standard,
can be found in Appendix B, “ISAKMP / Oakley — A real world example”.

3.1 Introduction

According to Li Gong, a protocol can be seen as a specification for the format and
timing of messages exchanged between two or more communicating parties. A cryp-
tographic protocol, on the other hand, is a protocol that employs cryptographic mech-
anisms such as encryption and one-way hash functions to guarantee the integrity,
confidentiality, identity of origin or destination, order, or timeliness of the messages.
All these message properties contribute to the

meaning

 of the messages, and there-
fore to the goals of the protocol. [45, page 1]

The purpose of cryptographic protocols

36

Modelling and Verification of Cryptographic Protocols

The

purpose

 of a cryptographic protocol is to achieve a goal. The goals of different
protocols vary quite much. As an example, the purpose of a protocol may be to
exchange a session key that will be used to ensure integrity of a forthcoming session,
to authenticate the identity of one or more parties involved in the protocol, or to
check if a given protocol party is authorized to perform some action. The goals are
the main subject of this chapter, and will be considered in more detail in sections
below.

Some

initial assumptions

, or an initial state, must hold so that a protocol can achieve
the intended goals. In most protocols some of the parties involved must be more or
less trustworthy, or operate in a predefined way. For example, if a key distribution
centre (KDC) in a symmetric key authentication protocol cannot be trusted, there is
no possibility the protocol could achieve its goals. In addition to being trustworthy,
the parties must share some common knowledge, possess some private or shared
keys, and have capability to perform protocol actions and cryptographic functions.

Most of the literature seems to more or less ignore computational capabilities of the
protocol parties. The issue of trustworthiness seems to be confusing, and there are a
number of papers expressing explicit trust models, whereas most papers lack an
explicit trust analysis (though, an implicit trust model is typically present). The
knowledge of the parties in terms of keys and such is almost always clearly defined.

The

means

 of achieving the goals is to exchange cryptographically protected mes-
sages. The properties of typical cryptographic protocols in the view of determinism
and possible message sequences were already briefly mentioned in Section 2.4,
“Modelling of communication protocols”. The main properties are relative determin-
ism, i.e. only one message in transit at a time, and predetermined sequences of mes-
sages with no or very little branching.

3.2 High level protocol goals

In this study, the concept of

high level protocol goals

 refers to the system level goals
of a protocol, or the actual external behaviour the protocol is designed for. For exam-
ple, a typical high level goal is to keep the data stored in the system confidential.
However, it is not always easy to identify or not even clear what are the actual highest
level goals of protocol. It is even probable that a given protocol will be used in vari-
ous situations where the ultimate goals are different. Thus, it must be understood that
sometimes the goals like the ones specified below will play the role of a subgoal, and
sometimes they must be considered as standing on their own.

3.2.1 System integrity and data confidentiality

The primary purpose of information system security is to take care of the integrity of
the information, keep it confidential, and ensure it is available

1

 when needed. In this
sense, integrity and confidentiality must be seen from a high level point of view. This
is in contrast to message level integrity and confidentiality, which will be considered
later in Section 3.4. Thus, the system level integrity and confidentiality may refer to
the data in a shared relational data based, a GIS database or an ICCC system.

The system level security decisions are typically

policy

 based. That means that the
people who are responsible for the system have defined an informal or a formal secu-

1. Availability is beyond the scope of this study.

Modelling and Verification of Cryptographic Protocols

37

The purpose of cryptographic protocols

rity policy

 that specifies who are the legitimate users of the system, and what they are
allowed to do.

Thus, typically the primary purpose of a cryptographic protocol is to ensure that the
system confidentiality and integrity, as dictated by the applicable security policy, are
not compromised by the communication channel protected by the protocol. This is
often achieved by integrating the cryptographic protocol into the authorization and
possibly audit trail systems. However, this can sometimes be dangerous if the pri-
mary goals are forgotten.

In contrast to formalisms we will be using, the prevailing techniques to study confi-
dentiality (and integrity) seem to be information flow and inference analysis. In the
models used, there typically are security classes, information containers (variables/
files/etc.), and information elements (values). These are used to study whether there
is any possibility for higher level information to end up in lower level containers
(leakage) or, sometimes, for lower level algorithms to modify higher level informa-
tion (loss of integrity) [29]. However, it does not seem to be clear how — if in any
way — these formalisms should be applied to the study of cryptographic protocols.

3.2.2 Authorization, audit trail and intrusion detection

Ignoring the issues of information flow and inference analysis, the primary means to
maintain the integrity and confidentiality of system data are authorization functions
and intrusion detection mechanisms. An authorization function is a security subsys-
tem within a computer system that tries to ensure that all operations performed within
the system are legitimate from the high level security policy point of view. An audit
trail is a gathering of security related events collected from all parts of the system. An
intrusion detection mechanism, on the other hand, is a subsystem that tries to find any
suspicious behaviour by inspecting the data colleted by the auditing subsystem.

From a cryptographic protocol point of view, authorization seems to be an important
but relatively little studied area. Most of the work seems to have concentrated around
how to extend an already existing identification system to carry authorization data as
well (e.g. [57, 73, 85]), or more on the practical aspects of distributed authorization
and delegation (e.g. [65, 81]). However, recent work conducted independently at
AT&T Bell Labs on the PolicyMaker concept [15] and at MIT on the SDSI system
[95] seem to be quite promising also from a formal point of view. In addition to that,
these research systems are turning into real security infrastructure in the Internet in
the form of the Simple Public Key Infrastructure, or SPKI, which is being defined by
the IETF [36].

The main difficulty in the area of distributed authorization and access control seems
to be the concept of delegation and its variations. As briefly mentioned earlier, it
seems to be beneficial to treat all authorization information delegated. This also
means that the actions of delegating authority and checking authority should be con-
sidered completely distinct. At least, this seems to be the case with PolicyMaker.

The areas of audit trail and intrusion detection facilitate postmortem analysis of
breaches in confidentiality and integrity. These areas are beyond the scope of this
study.

3.2.3 Peer identification

Mutual or unidirectional identification of communicating parties often seems to be a
primary goal for cryptographic protocols. Even though there are good reasons to
argue that in most cases the purpose of peer identification is to facilitate authorization
and thereby securing confidentiality and integrity, there seems to be situations where

The purpose of cryptographic protocols

38

Modelling and Verification of Cryptographic Protocols

identification is a goal of its own. For example, in an electronic mail system the iden-
tity of the sender of the message is often equally or more important than the integrity
and confidentiality of the message.

However, what is often ignored when considering peer identification is whether the
identification should only be authentic or also non–repudiable. In the case of personal
email, authentication is often enough. There are seldom if ever cases where a private
person wants to sue someone because of a sent email message. However, if email is
used to negotiate and agree about a business contract, it is reasonable to require the
messages to be non–repudiable. Thus, if there is any argument about the intended
meaning of the contract, the record of negotiations can be presented as evidence in
the court.

The question of anonymity.

In many cases, identification seems to be a controver-
sial issue. Especially in the case of private persons using commercial services it
seems to be that the user does not benefit from identification at all while the service
provider can greatly benefit from knowing the customer’s identity. The identification
information allows the service provider to collect large amounts of data about the
users, and they can use this data for marketing and other purposes. Commercial deci-
sions and deeds based on these kind of data are often discriminating, irritating or in
other respects harmful to the individuals or the society.

Thus, based on the argumentation above, we claim that

•

in most cryptographic protocols identification is an undesirable “goal”,

•

in some (very few) protocols authentication of identity is required, and

•

in a fair number of protocols identification should be non-repudiable.
In concrete terms, we claim that in many cases where a cryptographic protocol seeks
for peer identification it should be checking the authority of a party or in other means
insure the integrity of data.

3.2.4 Authentication and non-repudiation

In the terminology used, authentication and non-repudiation are seen as adjectives
used to measure one’s confidence and ability to transfer confidence. From this point
of view, we can define six types of security data as given in Table 6. These dimen-
sions are often combined; for example, in the case of non–repudiable event record
(audit trail) it is usually desirable to have both the occurrence of an event

and

the
identity of involved parties non-repudiable.

TABLE 6.

Measures of authentication and non-repudiation

Only authenticated Non–repudiable

Authorization
information

Bob is sure that the peer party
requesting an action is permitted
to perform the action, but he
cannot prove it. However, he
doesn’t necessarily know that
the requestor is Alice.

Bob is sure and can prove that
the peer party requesting an
action is permitted to perform
the action. However, he doesn’t
necessarily know that the
requestor is Alice.

Audit trail infor-
mation

Bob records that an action has
been performed, but the record is
based only on Bob’s word.

Bob can prove that the action has
been performed.

Identification
information

Bob knows that it is Alice, but he
cannot prove that.

Bob knows that it is Alice, and
he can prove it.

Modelling and Verification of Cryptographic Protocols

39

The purpose of cryptographic protocols

3.3 Intermediate level protocol goals

Whereas system confidentiality and integrity are clearly high level goals, and author-
ization, identification and audit trail with various levels of authenticity and non–repu-
diability sometimes are subordinate to them and sometimes clearly represent goals of
their own, we will next consider

intermediate level

protocol goals. These are meas-
ures that do not directly contribute to confidentiality or integrity nor are immediately
connected to other high level goals, but allow protocols to be combined so that the
higher level goals will be fulfilled.

The intermediate level goals are always almost “meaningless” when treated isolated,
i.e. their relevance to the security of the whole system is not necessarily apparent.
They typically focus more or less on the level of formal reasoning, and are explicitly
expressed in formal models. Actual intermediate level goals used within a given for-
mal framework depend on the high level goals and the framework itself.

Establishing a session key is a common goal which allows all subsequent traffic on a
connection to be encrypted, authenticated or both. Key agreement, confirmation,
freshness and secrecy will be considered first. Correspondence and secrecy are two
intermediate level goals formalized by Woo and Lam [114]. Correspondence refers to
full determinacy, whereas secrecy aims to formalize information flow. These will be
considered in Section 3.3.2, after the properties of keys.

3.3.1 Key agreement, confirmation, freshness and secrecy

The most common intermediate goal for a cryptographic protocol is to establish a
shared session key or some other shared key. There are several purposes for key
exchange, the most common of which is to protect forthcoming traffic between the
communicating parties, i.e. to create a new secure channel. Other purposes are, for
example, to facilitate a possibly forthcoming reauthentication, to establish a security
context for delegation of rights within an on-line delegation framework, and to use
the key as a shared key in a subsequent different cryptographic protocol.

It is typically required that the parties

agree

 on a key, and that the key is

confirmed

,

fresh

 and

secret

. Agreeing on a key means that both parties have the same key value.
Confirmation denotes that both parties

know

 that the other party has the same key
value as they have. Freshness indicates that the key value is new, i.e. that is has been
generated during the protocol run. Being secret refers to the fact that the key may

only

 be known by the involved parties (plus possibly a trusted third party).

To give an idea how to express these properties formally, let’s consider a (partial) pro-
tocol model with parties Alice, Bob and Eve, a local state variable for each agent

, a set of local information containing all the information a party knows or can
compute, and the already familiar actions , and . The knowledge
operator is used to denote intensional knowledge.

Agreement:

(The key Alice has is the same key that Bob has)

Confirmation:

(Alice and Bob both know that the keys are the same)

k

a

a

l

a

generate

send

receive

a

 knows

k

Alice

k

Bob

=

Alice knows

k

Alice

k

Bob

=

()

Bob knows

k

Alice

k

Bob

=

()

The purpose of cryptographic protocols

40

Modelling and Verification of Cryptographic Protocols

Freshness:

(The key has been generated during the current run)

Secrecy:

(The key is possessed or can be computed only by Alice or Bob)

3.3.2 Correspondence and secrecy

Woo and Lam introduced the concepts of correspondence and secrecy as intermediate
level protocol goals in [114]. In their terminology, correspondence is the property of
the protocol that after a successful protocol execution, the protocol parties must have
proceeded in locked-step fashion. This is connected to authenticity and identification
issues. Secrecy, on the other hand, specifies that certain information (e.g. session
keys) is not accessible to any outside party (e.g. an intruder).

More specifically, correspondence can be specified using

correspondence assertions

.
Such an assertion effectively requires that a global transition in a given set strictly
precedes a given action. For example, let’s consider a situation where Alice wants
Bob to authenticate his identity to Alice. Now, correspondence requires, for example,
that if Bob sends a message contributing to the authentication to Alice, Alice must
have earlier sent a request requesting Bob to do so.

In the model of [114], secrecy is divided in two parts:

general secrecy

 and

specific
secrecy

. A

general secrecy condition

 requires that an intruder cannot discover any
secret information except through an explicitly modelled compromising action. The
specific secrecy is expressed with

security assertions

. A specific assertion states who
(and only who) may possess a secret piece of information after a protocol run. For
example, in the Otway-Rees protocol, it can be required that in the end of the proto-
col, if a party has a key shared by Alice and Sue, the party

is

 Alice or Sue.

Woo and Lam have developed their own formalism to denote these properties. How-
ever, standard branching time temporal logic seems to be quite suitable for the pur-
pose.

3.4 Message and data item level goals

Message and datum level properties are the building blocks which all the intermedi-
ate and high level goals are based on. They indicate which protocol messages or parts
of them have been protected. These properties will be indicated in various ways in the
formalisms that will be used.

Message level protection itself is achieved using one or more cryptosystems (crypto-
graphic algorithms), and is not of interest here. In this study, we will usually assume
that the level of protection achieved with the use of cryptosystems is absolute. That
is, we ignore the possibility of breaking message level protection by cryptanalysis.
However, we will consider what kind of properties will make it easier to break the
cryptosystem, and how to make breaking it harder.

 3.4.1 Message integrity and identification of the originator

Integrity and authenticity of origin refer to the ability to detect that a message has not
been modified during transit and the ability to believe in the semantic meaning of a
message. A party may consider a message integral (i.e. not modified) but still not

s

i

s

i

:

generate

k

Alice

()=

k

Alice

l

a

a

Alice Bob

,{ }

Modelling and Verification of Cryptographic Protocols

41

The purpose of cryptographic protocols

consider its origin authenticated, i.e. keep it possible that the information conveyed in
the message is not necessarily true. Furthermore, a party may consider a message’s
origin authenticated, i.e. believe to know where the message was originally created,
but still choose not to believe in the semantic meaning. Thus, a party’s ability to
believe in the meaning conveyed by a message depends on the integrity of the mes-
sage, on the authenticity of the origin of the message, and on the level of trust the
party is able to place in the originator.

The usual methods to achieve message level integrity are digital signatures, MACs
and other uses of hash functions. In [19] Boyd and Mao argue that integrity and
authentication of origin should always be protected with hash functions and never by
encrypting the data. The basic reason behind this is to make cryptanalysis harder. We
will elaborate this below at section 3.4.4, “Redundancy at message level”, on
page 43.

In particular, integrity is the property of a message being unmodified, i.e. having, on
receipt, the same format and information contents that it had on sending. Message
level integrity alone is a relatively weak property; it does not say anything about

who

sent the message in the first place. However, if the alleviated sender of the message
can be directly seen or indirectly determined (e.g. by using a session id) from the
message, and the origin can be

authenticated

, a stronger notion is achieved. In this
case, the recipient can be sure that the message was (once) generated by a known pro-
tocol party. Furthermore, if the protocol party is

trusted

 only to send meaningful mes-
sages, it can be inferred that the party believed in the knowledge conveyed by the
message at the time the message was sent (cf. freshness below).

Most of the formalisms covered by this study express message level integrity only
indirectly. For example, in most authentication logics there are a number of deduction
rules that effectively express that whenever the use of cryptographic functions
ensures that the message integrity and origin can be authenticated (and the message is
fresh, see below), the recipient can believe in the knowledge conveyed by the mes-
sage.

Example.

Let’s consider a message interpretation rule of the GNY–logic [46],
restated in a more easily readable notation:

This expresses that if a party , e.g. Alice, receives a message that contains a hash
function over and , she has both and (maybe because she just received
them), she believes that is a valid key to protect traffic between her and another
party , e.g. Bob, and she believes that at least one of and is fresh, then she can
believe that the party sent the hash value, thereby ensuring integrity of the mes-
sage. The latter fact, i.e. ensuring the integrity, is expressed by the first half of the
consequence: Alice believes that Bob conveyed the pair . Thus, effectively, Bob
ensures the integrity of .

3.4.2 Confidentiality

In cryptographic protocols that do not perform the actual data transfer but e.g. estab-
lish a security context for it, there is usually very little data that has to be kept confi-
dential. Typical examples are session keys and sometimes nonces used to achieve
authentication of the identity of the parties.

According to [19], one should only encrypt data that

must

 be encrypted, and try to
make sure that everything encrypted is statistically random. This helps to keep the

a

 receives

h x k

,()

a

 has

x k

,()

a

 believes

k
a b

()

a

 believes fresh

x

() fresh

k

()

()

a

 believes

b

 conveyed

x k

,()()

a

 believes

b

 conveyed

h x k

,()()

a

x

k

x

k

k

b

x

k

b

x k

,()

x

The purpose of cryptographic protocols

42

Modelling and Verification of Cryptographic Protocols

unicity distance of a cipher large

1

, thereby making cryptanalysis harder. Furthermore,
it should be enforced that a datum encrypted will never appear in plaintext.

Authentication logics generally do not explicitly consider confidentiality issues. The
main use of confidentiality, namely secrecy of keys, is usually considered an implicit
property of

good

keys. For example, the formula denotes that
believes that is a good key for her and . This, among other things, implies that
is only known by , and maybe by a trusted server, say Sue.

Many model checking approaches, on the other hand, have a strict notion of confi-
dentiality. A model in such an approach usually contains an explicit notion of the
adversary, or the environment Eve. A datum being confidential means that it is only
available at the local states of the intended parties. Now, if the datum ever appears at
the local state of the environment, the secrecy of the datum has been compromised.

A couple of basic problems in defining confidentiality is to exactly specify what con-
fidentiality means in the given setting, and what are all the possible actions that can
lead to loss of confidentiality. For example, in some situation it may be perfectly fine
if a trusted server Sue knows a key in addition to the actual parties Alice and Bob, but
in another situation this would be considered a catastrophic failure. Similarly, in
some situations it can be assumed that Bob will never reveal to Carol any secrets
Alice has given to him; in others, Bob may be eligible to do so.

Thus, it seems to be inherently more difficult to model and analyse confidentiality
than integrity at the message level. It would be nice to better understand the reasons
behind this.

3.4.3 Freshness, timeliness, nonces and replay prevention

The reason behind sending messages within a protocol is to convey meaning (i.e.
knowledge or information). Such a meaning typically has temporal properties. In par-
ticular, most messages will remain meaningful, or retain their original meaning only
for a limited period of time. A message is said to be

fresh

 if it still has its original
intended meaning when received.

Freshness is deeply connected to message sequences. First, a message may become
obsolete due to its original sender sending a new message. Second, the freshness of a
message is affected by message sequences in the first place. For example, if a
received message contains a nonce, i.e. a freshly generated random number, which is
known to be generated during the current protocol run, there are good chances that
the message is fresh. Thus, freshness can be seen as a function of message sequences
and knowledge about fundamentally fresh events.

Nonces are the most usual method to ensure message freshness. A protocol effec-
tively contains a challenge-response pair where one party (say Alice) generates a new
random number, which is the nonce. The party conveys this number to the other party
(Bob) and expects a reply containing information about the nonce. The nonce and the
reply are usually cryptographically connected to each other in such way that only the
peer (Bob) can have generated the reply.

1. Usually the key (or other data) encrypted will be later used to protect other data that has

redundancy, thereby making it at least theoretically possible to determine whether a guess
for the key value is possible or not. Therefore it is not possible to keep the unicity distance
of cipher infinite even if the key protected were totally random.

a

 believes

k
a b

a

k

b

k

a

b

Modelling and Verification of Cryptographic Protocols

43

The purpose of cryptographic protocols

Li Gong has attempted to formalize freshness [45, page 11]. His

Principle of Mes-
sage Freshness

states that a party, let us say Alice, can believe a message to be fresh
iff

1.

the message is originated by herself and she cannot have used an identical mes-
sage before, e.g. the message contains a newly generated nonce, or

2.

it is highly unlikely that the message could have been constructed (by anyone)
without some information that can only be gained through a fresh event, e.g.
receiving a nonce (from Alice), or

3.

the party can base her belief on the authority of some trusted party (e.g. Sue), who
explicitly denotes to believe in the freshness of the message.

Furthermore, Gong argues quite convincingly [45, page 66] that using timestamps to
ensure freshness is doomed to fail in most situations. In particular, he shows that
using time to prove freshness is risky unless all clocks are well synchronized at all
times. Already before his observation it was well known that if the clock of the
checking party is running too slow, there is a window for replay attack. Gong shows
that if the clock of the party creating the timestamp is, or

has been

, running too fast,
there is also a possibility for forgery. The alerting issue here is that a clock may

never

(i.e. not just at the time of the forgery) run too fast; this may be hard to achieve in
practice.

3.4.4 Redundancy at message level

Redundancy is a key factor to ensure message integrity and to harden message confi-
dentiality. Basically, adding the result of a cryptographic hash function (or other
integrity preserving data) to the message is adding redundancy to the message. In
other words, integrity means redundancy, in particular, authenticated integrity means
redundancy that is hard to reproduce without some secret information. On the other
hand, lack of redundancy in encrypted data increases confidentiality. If an encrypted
datum is completely statistically random, there is no way for an attacker to determine
the plaintext value of the datum or the encryption key from the message alone.

Li Gong [45, page 10] makes a distinction between

explicit

 and

implicit

 redundancy.
According to Gong, if anyone can recognize the redundancy (after decrypting the
message), the redundancy is explicit. On the other hand, if the recognition of redun-
dancy can only be performed by the intended recipient(s), i.e. the party (parties) pos-
sessing some secret information, the redundancy is implicit. From the confidentiality
point of view, only explicit redundancy must be considered harmful.

As already mentioned, Boyd and Mao [19] argue that encryption should only be used
on data that has as little redundancy as possible, while integrity should be preserved
by hash functions. In the light of Gong’s notion, this can be extended slightly. Now, it
seems to be beneficial to require that anything encrypted should only contain

implicit
redundancy

, while message integrity is to be preserved with explicit redundancy in
the form of hash functions or similar mechanisms.

The issue of redundancy is connected to attacks called verifiable-text attacks. A veri-
fiable-text attack [45, page 73] is an attack where a cryptographic protocol can be
compromised via an exhaustive search of some small key space. Typically the item
that an adversary tries to determine is a user’s password or some key directly deter-
mined by it. If a protocol somehow contains a possibility for the adversary to gather
messages which can be used to test validity of different guesses, there is a possibility
that the adversary will sooner or later find out a good candidate for the correct pass-
word (or other item) with high probability. Gong gives an explicit algorithm to deter-
mine whether a protocol is apparently vulnerable to verifiable-text attacks. However,
there are situations where combining protocols (e.g. using the same password in two

The purpose of cryptographic protocols

44

Modelling and Verification of Cryptographic Protocols

different identity authentication systems) may open a possibility for verifiable-text
attacks even though both protocols alone were immune to such an attack. [45]

3.5 Summary

In this chapter we have discussed the goals of cryptographic protocols at various lev-
els. From the system point of view, the purpose of a cryptographic protocol is to help
in maintaining the overall availability, confidentiality and/or integrity of the informa-
tion system. Sometimes authorization, audit trail, intrusion detection and peer identi-
fication can also be considered as highest level goals, even though typically their
purpose is to contribute to the system level goals.

At an intermediate level, or protocol level, the most important aspects are agreement,
confirmation, freshness and secrecy of keys. From another point of view, some of
these properties can be modelled by using the concepts of correspondence and
secrecy as introduced by Woo and Lam [114].

at the lowest level, looking at an individual message or a part of it, important aspects
are message integrity, authentication of origin, confidentiality and freshness. Redun-
dancy plays an important role when considering integrity and confidentiality proper-
ties.

Modelling and Verification of Cryptographic Protocols

45

P

ART

 II

CHAPTER 4 Modal logic ...47

Syntax and semantics .. 48

Logics, proofs and consistency 51

Some standard logics... 53

Logics of knowledge and belief 55

Temporal logic... 60

Combining knowledge and time 63

Summary ... 68

CHAPTER 5 Model checking and Process Algebra ...71

Introduction to models of concurrency 72

Process graphs and Labelled Transition Systems............ 74

Algebraic approaches .. 76

Semantics .. 85

Model checking... 91

Summary ... 93

46

Modelling and Verification of Cryptographic Protocols

Modelling and Verification of Cryptographic Protocols

47

CHAPTER 4

Modal logic

Modal logics are formal logics usually based on first order propositional or predicate
logic. As we have already seen, modal formulae can be used to express knowledge,
beliefs, temporal relations, and other similar modalities. For example, we can use a
temporal formula to express that a session key is never (i.e. not in the past, not now,
nor in the future) communicated in clear. Similarly, a knowledge formula may
express that Alice knows that Bob knows that Alice has the key value in her posses-
sion. Temporal and knowledge formulae can also be combined; we will return to this
in section 4.6, “Combining knowledge and time”.

Modal logics are generally considered to be originated in the work of C. I. Lewis
early in this century [43, page 15]. They were initially used to express different kinds
of modalities like necessity, possibility and obligation. Modal logics were later devel-
oped by Kripke who introduced the model theory used in this work. Jaakko Hin-
tikka’s seminal work

Knowledge and Belief

, which appeared in 1962, is the first book
length treatment of the logic of knowledge. The study of modal logics gained more
popularity from the beginning of the 1980s as its application to distributed computer
systems began.

The knowledge and beliefs we will be discussing shall be considered intensional,
external concepts. That means that a protocol party does not necessarily contain any
data structures or computational capabilities to infer the knowledge or beliefs it is
said to pertain. Instead, knowledge and beliefs are used to express assumptions the
protocol designer or a protocol analyser may attribute as the reasons behind a party’s
behaviour. Since the purpose of a protocol is often to transfer knowledge, knowledge
formulae are especially suitable for expressing protocol goals.

The purpose of this chapter is to motivate the reader and introduce enough of model
theory so that the reader will be able to understand the relation of protocol models to
modal formulae. The models used will work as frames for multimodal logics with
different modalities for time and knowledge or belief. We will be considering multi-
agent systems where each agent has its own knowledge or belief operator; the time
modalities are the same for all, even though we do not assume the existence of a glo-
bal clock. Our time structure is discrete and branching. Thus, only those parts of the
theory of modal logic that are needed to understand these concepts are considered.
For readers more interested in modal logic in general we direct to any of [24, 37, 43].

k

Modal logic

48

Modelling and Verification of Cryptographic Protocols

The rest of this chapter is largely based on

Reasoning about Knowledge

 by Fagin,
Halpern, Moses and Vardi [37], and

Logics of Time and Computation

by Goldblatt
[43]. The basic ideas about knowledge based programming and multi-agent systems
are adapted from the former, while the latter — being more concise — has been the
main source of formal denotation.

4.1 Syntax and semantics

In the next few sections we will consider both ordinary modal logics, or modal logics
with just one modality, and multimodal logics, i.e. logics with several separate modal
operators. There is considerably less work published on multimodal logics than with
logics with just one modality. This unfortunate fact affects our presentation on some
occasions.

The language for a propositional (multi)modal logic is built from a set of atomic for-
mulae (propositions) , the usual propositional operators and the
truth constants (falsum) and (verum), and one (or more) modal operators. The
standard modal operators are the “box” and the “diamond” , which are often,
but not always, defined in terms of each other. Fagin et al. [37] have adopted the
notion of using an operator to mean that the agent knows the formula , and
a similar operator for beliefs. In this text we use the convention introduced in
[108] of expressing knowledge and beliefs explicitly as and .
To express temporal modalities, the standard discrete time operators
will be used (see Table 7 on page 60). All the modal operators will be momentarily
discussed and defined formally.

Example.

Using the language introduced we can express, as examples, some facts
about keys:

•

 is never expressed in clear:

where indicates that the message is sent during the current round, and

 is the set of (unencrypted) submessages of . The modal operator

denotes that the formula inside it is

always

 true, i.e. at all occasions it holds

that if any message is sent, is not contained in it as plaintext.

•

Alice knows that Bob knows that Alice has the value :

where is the set of data Alice has in her possession.

4.1.1 Frames and models

The model theory of modal logics is based on the concepts of frames and models. A
frame is a relational structure representing a number of states, or worlds, and relation-
ships between them. A model, on the other hand, is a frame augmented with a valua-
tion function. The valuation function gives the truth value, i.e. true or false, for each
basic proposition, i.e. the members of , at all the states of a corresponding frame.

Formally, a multimodal

frame

 is an -tuple where is a
non-empty set (of the states) and are binary relations on S: .
Given a set of propositions, a

model

 on a frame is a n+2 -tuple
 where is a valuation function . The valuation

T

K

a

a

B

a

a

 knows

a

 believes

UO

k

send

m

()

k

submsg

m

()

()

send

m

()

m

submsg

m

()

m

m

k

k

Alice Bob

k

has

Alice

() knows knows

has

Alice

n

1+

F S R

1

…

R

n

, , ,()

=

S

R

1

…

R

n

, ,

R

i

S S

M mpS R

1

…

R

n

V

, , , ,()

=

V

V

2

S

:

Modelling and Verification of Cryptographic Protocols

49

Modal logic

defines the truth value of the elements of at the various states. That is,
 can be thought as the set of states where the proposition is true.

Example.

Let us consider a very simple protocol model with Alice and Bob. The
local state of Alice and Bob is modelled as a set that represents the explicit infor-
mation content of a , being Alice or Bob. In this simple model, Alice and Bob are
only able to possess an arbitrary number of noninterpreted (large) integers. For exam-
ple, Alice’s local state might be

indicating that Alice has in her possession, the two numbers and . The only pos-
sible action in the protocol is where Alice sends Bob the integer .

Now, let’s consider a model where Alice and Bob can only possess the two integers
above, and nothing else. Let the set of integers Alice knows, and the set
of integers Bob knows. In this case, the propositions can be defined as following:

•

•

•

•

V p

()

p

()

p

p1,

p2

p3,

p4

p1,

p2

p3,

p4
p1,

p2
p3,

p4

p1,p2

p3,

p4

p1,p2

p3,p4

p1,p2

p3,

p4

p1,p2
p3,

p4

p1,p2

p3,p4

p1,p2
p3,p4

p1,

p2
p3,

p4

p1,

p2

p3,p4

p1,

p2
p3,p4

p1,

p2

p3,p4
p1,

p2
p3,p4

p1,p2
p3,

p4

p1,p2
p3,p4

FIGURE 7.

Temporal relations in the simple protocol example

send(i1)
send(i1)

send(i2) send(i2)

send(i1)
send(i1)

send(i2)

send(i2)

send(i2)

send(i1)

send(i1)

send(i1)

send(i2)

send(i2)

send(i1)

send(i2)

K

a

a

a

K

Alice

i

1

342457621567678=

i

2

236523567732567=

,{ }

=

i

1

i

2

send

i

()

i

K

Alice

K

Bob

p

1

i

1

K

Alice

()

=

p

2

i

2

K

Alice

()

=

p

3

i

1

K

Bob

()

=

p

4

i

2

K

Bob

()

=

Modal logic

50

Modelling and Verification of Cryptographic Protocols

Thus, the only possible states of the system are

Given the only possible action , we can define a relation for future time.
First, we will say that two possible states of the system are in immediate
succession, , iff there is an action such that at and at

. That is, Alice can send Bob if she has it, and Bob have just received it
if he has it in the next state. Now, in this context, our (somewhat unusual) definition
of time is the transitive closure of . Both (thick arrows) and (all
arrows, both thick and thin) are illustrated in Figure 7.

The reader should note that the model is only one possible model
among several. The most apparent variations are ones where the set of possible states
is a subset of states given above. For example, we can leave out all states where Alice
initially knows nothing as uninteresting. If we do so, we have to restrict and
appropriately as well.

4.1.2 Truth value of formulae

A statement saying that the formula is true (holds) at a state in a model is
denoted as

It’s truth value is defined inductively as follows:

where the modal operator is defined by the relation . If there are several modal
operators, each of them is defined separately. The truth values of the other proposi-
tional formulas with the standard operators are defined as usual using
falsum and implication.

 Example. Given the definition, the truth values of normal propositional formulae at
the various states of the example should be clear. Now, using the example model, we
can used the relations and to defined the temporal operators , henceforth,
and , next, as follows:

Thus, for example, expresses that if either Alice or Bob possesses some-
thing, they will possess it also in all future times. The truth of this formula can be
determined by examining all the states in the model, evaluating the values of ,
and in all states. Doing this reveals that the formulae are true in all states.
Thus, we can say that the formulae are

true in the model .

iff

(i.e. never)

iff implies

iff for all , implies

iff for all ,

iff for all ,

S p

1

p

2

p

3

p

4

, , ,

p

1

p

2

p

3

p

4

, , , …

p

1

p

2

p

3

p

4

, , ,, , ,{ }

=

send

i

()

R

F

s

1

s

2

,

S

s

1

R

send

s

2

send

i

()

s

1

i K

Alice

:

s

2

i K

Bob

:

i

R

F

R

send

R

send

R

F

M S R

F

V

, ,()

=

R

F

V

s S

M

M

|=

s

M

|=

s

p

s V p

()

M

|/=

s

M

|=

s

M

|=

s

1

2

M

|=

s

1

M

|=

s

2

M

|=

s

t S

sRt

M

|=

t

R

R

F

R

send

O

M

|=

s

t u sR

F

u

{ }

M

|=

t

M

|=

s

O

t u sR

send

u

{ }

M

|=

t

p

i

p

i

p

i

p

i

p

i

p

i

M

Modelling and Verification of Cryptographic Protocols

51

Modal logic

Similarly, denotes that if Alice knows the first integer but not the
second, Bob knows the first integer in the next state. This will also appear true, since
if Alice does not know the second integer, the only action she can perform is sending
the first integer. Thus, all actions (i.e. the only possible action) lead to state where
Bob also knows the first integer.

4.1.3 Truth and validity

A formula is said to be

true in model

, if it is true in all states of the model:

 iff

A formula is

valid

 in a frame if it is true in all models based
on .

For example, the formula is true in the example model. However, it is not
valid since it is easy to make a new valuation where the truth values of are
assigned differently

1

. A formula can also be valid in a class of frames, in which case
it is valid in all frames belonging to the class.

4.2 Logics, proofs and consistency

In the section above we defined a formal language based on a set of propositional for-
mulae . The next step is to define a logic, or a set of formulae that include all prop-
ositional tautologies and is closed under the rule of detachment, that corresponds to a
given set of models or frames. We will skip the details of definitions of various kinds
of logics, and concentrate on the issues of theoremhood, soundness, completeness
and consistency. The style is practical and deviates somewhat from the standard pres-
entation. The deviations are made to ease the reading for an uninitiated reader, and
noted in footnotes where appropriate. For a more formal definition, see e.g. [43].

4.2.1 Logics

From our practical point of view, a logic is a set of formulae that are true in a given
set of models or frames

2

. For example, the set of predicate logic tautologies is a
logic, since all tautologies are true in all states in any model. However, the logic
is not very interesting from our point of view, since it does not consider the formulae
that are relevant for our discussion. On the other hand, we can define the set of true
formulas in a given model as a logic:

However, such a logic is not necessarily decidable or even axiomatisable. As our
interest in logics is of practical nature, i.e. as we would like to use logical deduction
to determine whether a given formula is deductible within the logic, this is undesira-
ble.

1. What such a model might express is a completely different issue, and not considered here.

2. Thus, we ignore unsound logics from the very beginning.

p

1

p

2

p

3

O

M

M

|=

M

|=

s

 for all

s S

F S R

1

…

R

n

, , ,()

=

F

p

i

p

i

p

i

PL

PL

M

M

|=

{ }

=

Modal logic

52

Modelling and Verification of Cryptographic Protocols

4.2.2 Theorems, axioms and provability

A formula that is a member of a logic (and therefore true

1

), is called a theorem. The
theoremhood of a formula is denoted as meaning that is a member of the
logic , i.e.

The logics we will consider will be axiomatisable. This means that we can define a
set of initial theorems, or axioms, and inference rules in such a way that all the theo-
rems can be proven by applying the inference rules and axioms. More specifically, let

 be an axiom system, i.e. a set of axioms and inference rules. A

proof

 in is a
sequence of formulae, each of which is either an axiom (or an instance of an axiom
schema), or follows by an application of an inference rule from the formulae earlier
in the sequence. To denote that the formula is provable in , i.e. has a proof in

, we write .

For example, the smallest of the so called normal modal logics is the logic called K.
K can be given in terms of an axiom system consisting of two axiom schemata and
two inference rules:

1.

All tautologies of propositional logic are axioms in K.

2.

(Distribution Axiom)

3.

From and infer (Modus ponens)

4.

From infer (Necessitation or Knowledge Generalization)

Axiomatisability and logical proofs make it possible to reason about systems whose
models are infinite or so large that model checking would be infeasible (Compare to
Chapter 5, “Model checking and Process Algebra”). Given a proof for a formula, it is
straightforward to check that the proof applies, i.e. to check that the formula is a the-
orem. However, the problem of finding a proof for a true formula is not easy; in fact,
there are axiomatisable logics that are undecidable. However, that goes beyond the
scope of this study.

4.2.3 Soundness and completeness

A logic (or an axiom system) is said to be

sound

 with respect to a model (or a frame,
or a class of frames), if all theorems are true in the model (respectively, valid in the
frame or the class of frames), i.e. if for all formulae

The logic (or a corresponding axiom system) is

complete

 with respect to a model
 if all true formulae are members of the logic (can be proven), i.e. if for all formu-

lae ,

If a logic is sound and complete (with respect to something), it is said to be deter-
mined (by that something).

So far, all logics we have considered (and even our definition of logic) have been
implicitly sound. From now on, we will explicitly only consider sound logics, unless
otherwise stated. In this chapter there will be a number of logics which are known to

1. We still assume that all logics are sound.

|–

|–

 iff

AX

AX

AX

AX

AX

|–

()

 |– implies M |=

M

M

|=

implies

|–

Modelling and Verification of Cryptographic Protocols

53

Modal logic

be complete; later on, most of our logics will be incomplete, though. In practical term
this means that there will be true facts about our protocol models that cannot be
proven within the logic used.

4.2.4 Consistency

A formula is said to be

consistent

 with respect to if is not provable in .
Equivalently, adding an

inconsistent

 formula to a logic makes it possible to prove
, which makes it possible to prove anything (one can infer anything from

false assumptions). A logic (i.e. set of formulae) is said to be consistent if , i.e. it
is not possible to prove impossible in the logic. Inconsistent logics are not of interest
to us.

Because most of our logics will be incomplete, there will be cases where one can add
 and to the logic yielding two different consistent logics. Though, of course, it

is not possible to add

both

 and , and still get a consistent logic.

4.3 Some standard logics

We are usually interested in logics that are sound (and possibly complete) with
respect to some

class

 of models or frames. It is not very useful to develop a logic for
a single protocol model; for the next protocol, a new logic should be developed. For-
tunately, there is a pretty well established taxonomy and theory of modal logics hav-
ing a single modality. The main difference between different kinds of modalities is in
the structure of the relations defining the modalities. However, there seems to be
less information about multimodal systems having several relations within the same
frame or model.

4.3.1 Well-known axioms

The standard logics are usually described by the names of so called well-known axi-
oms. Most of these axioms also correspond to simple first-order properties of the
respective relations .

Name Schema

Name in
epistemic logic

Property of
corresponding
relation

 K: Distribution axiom valid in all frames

T: Knowledge axiom reflexive

D: Consistency axiom serial

4: Positive introspec-
tion axiom

transitive

B: symmetric

5: Negative introspec-
tion axiom

euclidean

L: weakly connected

Dum:

|–

|/–

R

i

R

 ()()

() ()

()() ()

Modal logic

54

Modelling and Verification of Cryptographic Protocols

The axioms T, D, 4 and 5 will be used to describe knowledge and belief. Axioms T, 4,
L and Dum will be used in describing temporal relations. We will also use some other
axioms to describe time.

Example.

Let’s consider again the above described simple example where Alice
sends integers to Bob. By inspecting the relations and , we will notice that
neither is reflexive, serial or euclidean. The relation is transitive while is
not. However, if we remove the states where Alice initially has nothing and therefore
cannot send anything, the resulting model is serial with respect to both and .
Considering this latter model, the axioms K, D and 4 describe the modal operator
corresponding to .

Understanding the axioms.

Some of the axioms have easily understandable, intui-
tive meanings. In the framework of knowledge and beliefs, T denotes that all known
facts are true. This can be replaced by D, which requires that impossible cannot be
believed. 4 describes that a party knowing something knows that he knows it, while 5
describes a situation where a party also knows what he does

not

 know. This is some-
times undesirable.

In the context of time, T describes modal operators which consider the current time
as a part of the operator’s range, e.g.

now

 and at all future times. Compare this to a
similar system without T, where the same operator would mean “at all future times,
but not necessarily now”. If T is left out from a modal logic, it is necessary to add D
(or a formula taking care of a similar function) in order to prevent one from achieving
impossible results in the future. Transitivity (4) is a natural aspect of time. If the
moment A is in the future, and B is in A’s future, then B is certainly in the current
future as well. 5 is simply meaningless in this context, and doesn’t appear. L, on the
other hand, is a property that describes linear time. As we will be using branching
time models, L usually doesn’t appear in this study. Dum (named after Michael Dum-
met) is used in section 4.5.1, “Linear time temporal logic”, on page 60 to make the
logic complete.

4.3.2 The logic S5

S5 is perhaps the best known modal logic. It is described by the axioms K, T, 4 and 5,
and corresponds to a relation which is reflexive, transitive and euclidean, i.e. an
equivalence relation. In our context S5 can be used to describe knowledge. We will
return to this later, but this moment the reader can imagine a protocol model where a
party at all times knows that the current global state is one of a number of states
(though not which one). When something happens that changes this knowledge,
another set of states is considered possible. These sets of states will, however, never
overlap, i.e. their intersections are always empty.

When thinking of S5 in the light of the intuitive descriptions of the axioms, it
becomes apparent that S5 describes a kind of logically

ideal

 knowledge. An agent
that knows everything it knows and everything it

does not know

 seems slightly unnat-
ural. However, if we think the knowledge expressed by S5 as the things that

can pos-
sibly be known

, the situation becomes more natural. In this study we will concentrate
on beliefs, and S5 won’t be much used.

4.3.3 The logics KT4 and KD45

The logic KD45 can be used to describe beliefs, and KT4 as a partial logic for dis-
crete, branching time. To describe branching time properly, other axioms are also
needed; they will be described later. Most of the logics that we will use later in this
study are based on these logics.

R

send

R

F

R

F

R

send

R

send

R

F

R

F

Modelling and Verification of Cryptographic Protocols

55

Modal logic

KD45 is a logic where the T axiom of S5 is “replaced” with D. The underlying rela-
tion is no more reflexive, but it is still serial (reflexivity implies seriality). Consider-
ing the model in practical terms, whereas in S5 in each state the set of possible states
contains the state itself, in KD45 in each state there is

some

(i.e. at least one) state
that is considered possible. Looking at the difference from the point of view of
knowledge and belief, in S5 every known statement is true, i.e. if , then is true
indeed, since the current state is included in the set of states that determine the truth
of . On the other hand, in KD45 this does not necessarily hold, i.e. in KD45 it is
possible to believe in formulae that are false. However, even in KD45 it is not possi-
ble to believe formulae that are impossible, or false everywhere in the model.

While KD45 was “reduced” from S5 by replacing T with D, KT4 is “S5 without the
axiom 5”. The resulting system is no more euclidean, allowing the system to branch
into separate futures. However, KT4 as itself is not strong enough to function as a
proper model for time alone. For example, nothing requires a KT4 model to be con-
nected whereas usually branching time models contain one common reference point
where the time starts to branch. Transitivity, on the other hand, is typically an impor-
tant aspect of time models.

4.4 Logics of knowledge and belief

In the context of communication protocols, knowledge and beliefs are used to denote
facts and assumptions a protocol party has about the current state and about the
knowledge and beliefs of other parties. If we think about a distributed system, each
node has their own state which contains data, history record and other explicit infor-
mation the node has gained during the protocol run. The node has no direct access to
the local states of other nodes, nor the (abstract) local state of the environment. How-
ever, the node may hold (or may be thought to hold) assumptions about the local state
of the other nodes (or the environment). These assumptions are typically based on
some initial assumptions (that are thought to have been achieved through a mutual
preagreement) and the communication events that the node has executed so far. These
assumptions are called beliefs. If a node knows for sure that a belief is true (i.e. it
does not depend on any assumptions), it can be called knowledge.

For example, in the light of our Alice-sends-Bob-integers example, when Alice has
sent Bob an integer, she knows for sure that Bob has the integer, because the protocol
model does not allow the integer to be sent unless it is simultaneously received. How-
ever, if the communication were asynchronous, i.e. if Alice didn’t “know” that all
sent messages are simultaneously received, she couldn’t know nor even believe that
Bob has got the message; the message might have been lost.

An alternative way to think about knowledge and beliefs is to imagine them as meas-
ures of certainty a node has about logical formulae describing the state of some other
node or nodes. For example, Alice knowing Bob possesses a certain integer means
that according to the model Alice has about the state of affairs, she does not consider
any such state possible where Bob does not know the integer. However, there may be
several global states where Bob knows the integer, and Alice does not necessarily
know which one of these several states is the real one. Thus, knowledge and beliefs
denote a protocol party’s assumptions about the global state of the system. These
assumptions affect the future behaviour of the party.

We want to emphasise again that this view of knowledge and beliefs does not mean
that a protocol implementation would explicitly encode the knowledge or beliefs in
its local state. Rather, the formulae described in this section are used by the protocol
designer or external observer to describe the reasons behind the protocol party’s

Modal logic

56

Modelling and Verification of Cryptographic Protocols

behaviour. That is, the knowledge and beliefs are intensional properties, not explicit
information represented in the implementation.

4.4.1 Possible-worlds interpretation of protocol models

The global states in a protocol model denote the possible states of affairs, often called

possible worlds

. At each global state, a protocol party certainly knows its local state.
However, since it does not have any direct access to the local state of other elements
of the model, it cannot determine for sure in which global state the system is. Thus, is
has to consider a number of states, or worlds, possible.

This view of keeping several global states (worlds) possible is represented as a
modality in a logic. The relation corresponds to agent ‘s considerations of what
is possible. The possibility relation and knowledge are interchangeable. Given a com-
plete set of knowledge sentences, one can use each sentence to divide the set of all
states into a set of possible states and a set of impossible states. The set of states a
party considers possible is then clearly the intersection of possible states of individual
statements. Respectively, given a possibility relation, one can calculate the value of
the assumed statement in the states which are considered possible from the current
state. If the assumed statement is true in all possible states, then the knowledge or
belief statement clearly holds.

Example.

Let’s consider our already familiar simplistic protocol model of Section
4.1.1 from Alice’s point of view. Initially, Alice knows everything about her own data
possessions, but cannot know anything about the state of Bob. Thus, in any initial
state where she has not sent anything yet, she has to consider all variations of Bob’s
state possible.

Due to the synchronicity of the model, whenever she sends a

new

 message to Bob,
her knowledge increases. This may seem counterintuitive; however, the synchronicity
of communication can be thought to contain implicit acknowledgement. That is,
whenever Alice sends something to Bob, she simultaneously receives an acknowl-
edgement from Bob that he has got the message.

Now, since Alice’s knowledge depends on what she has sent and what she has not, it
is necessary to change the set of possible worlds from our earlier model. However,
even though it would be possible to add propositions to explicitly express what Alice
has sent and what not, this is unnecessary and won’t be done.

The resulting set of possible worlds is illustrated in Figure 8 on page 57. In the figure,
the dotted arrows represent Alice’s considerations about what is possible and what is
not, while solid arrows denote actions. In the model, Alice certainly always considers
the actual state possible. However, this is not explicitly stated in the figure. The
reader can imagine a dotted circular arrow next to each node.

From the figure we can clearly see how, independent of her local state, Alice initially
considers four states possible (the exact states differ according to her local state, of
course). After sending one integer, the number of possible states is reduced to two.
And in the one case where Alice initially knows both the integers, after sending them
both to Bob, Alice knows for sure that both Bob and she have both integer values in
their possession.

What is interesting in the figure is that several distinct states now have the same truth
values for all propositions in the set of propositions . Thus, there are several states
where all statements of propositional logic have the same truth value. However, there
is at least one modal statement that makes a distinction between these states.

R

i

a

i

Modelling and Verification of Cryptographic Protocols

57

Modal logic

If Bob’s knowledge was considered instead of Alice’s knowledge, the figure would be
remarkably similar in this case. The actual states would be different, of course, but
the overall figure would look like pretty much the same. This is due to the synchro-
nous nature of communication, and does not hold in asynchronous systems or in sys-
tems with more than two protocol parties.

4.4.2 Knowledge of different agents

 Extending the scope of consideration from the knowledge (or beliefs) of a single pro-
tocol party to knowledge of multiple parties complicates the model considerably. A
two party synchronous system is still rather straightforward to model since there are
only internal actions and synchronous actions that affect both protocol parties at the
same time. However, if there are more than two agents, or if the communication is
asynchronous (which is roughly equal to introducing a third agent, the network,
between the two agents), a protocol party has to consider the possibility of communi-
cation between other parties. For example, if there is a malicious attacker Mallory
between Alice and Bob in the integer-sending-protocol, Alice has no way whatsoever
to know if the integers she has sent have ever reached Bob. In such a case, a crypto-
graphic protocol, maybe something similar to the one given as an example in section
2.5, “A protocol example”, is the only remedy.

In a multi-party (or multi-agent) system the protocol model contains distinct possibil-
ity relationships for different agents. In other words, in different protocol states dif-
ferent agents consider different other protocol states possible. For example, in a
protocol where Alice, Bob and Carol communicate, Alice must always keep it possi-

p

1

,

p

2

p

3

,

p

4

p

1

,

p

2

p

3

,

p

4

p

1

,

p

2

p

3

,

p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,p

4

p

1

,p

2

p

3

,p

4

p

1

,

p

2

p

3

,

p

4

p

1

,

p

2

p

3

,p

4

p

1

,

p

2

p

3

,p

4

p

1

,

p

2

p

3

,p

4

p

1

,

p

2

p

3

,p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,p

4

FIGURE 8.

Evolving of Alice’s knowledge in the example protocol

send(i

1

)

p

1

,

p

2

p

3

,

p

4

p

1

,

p

2

p

3

,p

4

send(i

1

)send(i

1

)send(i

1

)

send(i

1

) send(i

1

)

p

1

,p

2

p

3

,p

4

p

1

,p

2

p

3

,p

4

send(i

2

)

send(i

2

)

send(i

2

)

send(i

2

)

send(i

2

)

send(i

2

)

p

1

,p

2

p

3

,p

4

p

1

,p

2

p

3

,p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,p

4

p

1

,p

2

p

3

,p

4

Modal logic

58

Modelling and Verification of Cryptographic Protocols

ble that Bob and Carol are communicating without her knowledge (unless, of course,
we state that Alice somehow has a priori knowledge that such communication will
not happen). Trying to model such a system yields extremely complex protocol mod-
els. However, there are two ways to alleviate this problem: one is to assume that Bob
and Carol only communicate according to a protocol, and Alice knows the possible
flows of the protocol. The second possibility is to assume that Bob and Carol will
communicate everything they know, and thus consider them as one party in the proto-
col model. The latter method is often used when analysing security protocols.

Fortunately, in most of the protocols under study, one can distinguish one or two
trusted protocol parties who are assumed to act according to the specification, and a
number of untrusted parties that can be collapsed into one agent along with the net-
work. This makes the protocol models somewhat easier to comprehend and handle.

4.4.3 Knowledge, common knowledge and distributed knowledge

Knowledge, in distinction to beliefs, is generally considered to state true facts. That
is, if something is known it is by definition true. In a possible-worlds model this can
be stated as a requirement that in all worlds the current world is considered possible.
This corresponds to reflexivity of the possibility relation, and to the axiom T. The rea-
son for this is simple: earlier we defined that a modal statement is true if the state-
ment subject to the modal operator is true in all possible worlds. Now, if the current
state is possible, and a knowledge statement holds, then the stated fact is certainly
true.

Example.

In the Alice-sends-Bob-integers model, when Alice has sent the first inte-
ger, she knows that Bob has that integer value:

Now, since Bob has got the integer from Alice, he knows that Alice knows it as well:

Because of the synchronicity of communication, it is clear that Alice knows that Bob
knows that she has the first integer, and vice versa:

By examining the model, we’ll see that this can be continued ad infinitum, i.e. Alice
knows that Bob knows that Alice knows that Bob knows that Alice knows etc.

Common knowledge.

The example case where Alice knows something, and Bob
knows that Alice knows, and Alice knows that Bob knows that she knows etc., is an
example of

common knowledge

. In general, common knowledge refers to a situation
where a single fact is known by a group, and everyone in the group know that all the
others in the group know the fact, that everyone knows that everyone knows etc.
Common knowledge is very usual in everyday life; some may say that it is so usual
that most people don’t pay any attention to it. For example, in a situation where a
group of people are discussing an issue, and nobody is sleeping nor is suspected to
sleep, the flow of the conversation can be seen and is assumed by the participants to
be common knowledge.

Before we formally define common knowledge, we first extend our knowledge oper-
ator to groups. The notation

Alice

p

3 knows

Bob

p

1 knows

Alice Bob

p

1 knows () knows Bob Alice p 3 knows () knows

Alice Bob Carol

, ,{ } knows

Modelling and Verification of Cryptographic Protocols

59

Modal logic

denotes that all the members of the group, i.e. in this case Alice, Bob and Carol, each
know . In other words, whatever the members of the group regard possible, they do
consider it impossible for to be false.

Group knowledge is not necessarily common knowledge. For example, even though
Alice knows that , she may consider possible a world where is true but where
Bob considers possible a world where is not true. In such a situation, even if Alice
knows , she does not know if Bob also knows or not.

Formally, group knowledge is defined in a straightforward way. In a given state of a
model , the group knows if and only if all the members of the group know :

Now, let be an abbreviation for , and be an
abbreviation for . With this, we can define that is
common knowledge within the group , , as

Distributed knowledge.

While common knowledge is something that everyone in a
group knows, distributed knowledge refers to something that someone would know if
he had direct access to the knowledge of all the members of the group. That is, a
group G has as distributed knowledge “if the ‘combined’ knowledge of the group
implies ” [37]. Considering the possibility relations, distributed knowledge com-
bines knowledge from all of the relations of the group members, effectively taking an
intersection of the worlds that group members consider possible.

Thus, formally, distributed knowledge can be defined as

where the are the possibility relations of the group members.

Example.

In the usual Alice&Bob model, the distributed knowledge of Alice and
Bob is always the total knowledge of the system; i.e. if Alice and Bob where able to
combine their knowledge, they would always know in which global state the system
is.

4.4.4 Belief as conditional knowledge

We now return our attention to belief. As noted, in a realistic protocol model, it is sel-
dom possible to know anything significant for sure. All knowledge gained is more or
less based on some initial assumptions which may hold or not.

From a formal point of view, the main difference between knowledge and belief is
that what is known must be true while beliefs can be false. Using our protocol model,
knowledge requires that the actual global state is among the states that an agent con-
siders possible, while belief allows that the agent’s knowledge is false, i.e. that he
does not consider the actual global state possible.

The usual approach to model beliefs instead of knowledge is to drop the reflexivity
requirement of the possibility relation, thereby the axiom T, and to replace it with
seriality and the axiom D. Seriality is required to make it impossible to believe false
sentences. However, here we take a slightly different approach and model belief as

s

M

G

M

|=

s

G

 knows iff for all a G M |= s a knows ,

G

 knows () 0 G knows () k 1+
G G

 knows () k () knows

G

G

 common

M

|=

s

G

 common iff for all k 1 2 …, , = M |= s G knows () k

G

 distributed

M

|=

s

G

 distributed iff for all t s t ,() R i
a

i

G

 :

R

i

Modal logic

60

Modelling and Verification of Cryptographic Protocols

conditional knowledge. That is, the formula is equivalent to
 where denotes the initial assumption(s).

Given this, we typically only consider worlds (i.e. global states) where holds.
Restricting the consideration in this way, and ignoring actions that make any initial
condition fail, belief can be handled as knowledge according the rules of S5 logic.

4.5 Temporal logic

Temporal logics are logics having modal connectives that express temporal relation-
ships. The two most usual modal connectives are , usually read as “henceforth” (at
all future times) or “always” (at all, future and past, times), and , usually read as “at
some time” (future or future/now/past). Those temporal operators we will be using,
along with their intuitive meanings, are given in Table 7.

1

The time model used is always discrete. Given a global state, the set of possible
actions gives the set of possible futures. A branching time temporal logic will be
achieved by including the set of performed actions into the local state of the environ-
ment. But, before going to this, we’ll consider some general aspects of temporal log-
ics.

4.5.1 Linear time temporal logic

A modal logic defined by discrete, reflexive total orderings as the possibility relation,
is a so called discrete Diodorean logic, often called S4.3Dum. This logic is deter-
mined by the frame where denotes the set of natural numbers. The axi-
oms for this logic are the standard axioms K, T, 4, L, and Dum. T implies that the
modal operators include the current state (hence instead of), 4
states that time is transitive, and L denotes that time is weakly connected. The Dum
axiom is needed to make the logic complete, and it’s role is beyond the scope of this
study.

A single run of a protocol can be considered as a model for the linear time temporal
logic. The successive states s

0

, s

1

, … form the total order of states in the frame. How-
ever, if there ever is a possibility of different actions in a given state, there will be sev-
eral runs per protocol. Typically the number of different runs grows so large that it
would be infeasible to consider them individually. However, it is possible to give lin-
ear time semantics for such branching models. Doing this, the branching structure of
the model is ignored, and only the possible outcomes of the computational process
are considered. We will briefly return to this point in section 7.2.

TABLE 7.

Temporal operators

Operator Intuitive meaning

 is true now, and will be at

all

 future states

 is true now, or will be true at

some

 future state

 is true now, and will be at all states

until

 a state is entered where is true

 has been true at all past times

 has once been true at some past time

1. Note that we have left out the

nexttime

 operator usually included in temporal logics.
Leaving it out makes things simpler.

A

 believes

A

 knows

()

U

O

,()

,()

<,()

Modelling and Verification of Cryptographic Protocols

61

Modal logic

Syntax and semantics.

As an example, we’ll describe a linear temporal language for
our usual models. The language LTL-X consists of atomic formulae , the usual
operators and constants of propositional logic, and the temporal operators of Table 7
on page 60. A temporal model is a triple , where the possibility rela-
tionship can be considered as a reflexive transitive closure of a relation indicating
the possible actions at each state. The meanings of different formulae at the states of
the model are defined inductively in the following way

In this semantic interpretation, the following equalities hold:

 iff and iff

 iff

 iff and iff

Thus, and can be defined by means of , and the past time operators are inter-
changeable. Indeed, it would be possible to defined a past time operator

S

,

since

, cor-
responding to the future time operator until, and define the other past time operators
with it.

4.5.2 Branching time temporal logic

A branching time temporal logic can be used to consider the branching runs gener-
ated by a protocol specification. To illustrate its intention, we will first consider an
example.

Example.

Let’s consider a fragment of the earlier example where Alice initially has
both integers and in her possession,
and Bob has nothing. To make the event sequences explicit, we add the environment
Eve to the model. Eve stores in her local state the sequence of events, thereby acting
as a bookkeeper for time. To make things slightly more realistic, we also allow Eve to
delay indefinitely the delivery of messages, i.e. she does not necessarily immediately
forward any messages she has got. We also allow her to duplicate messages; this
makes things easier since we do not have to count how many times a message is
received and delivered by Eve.

The new model with Alice, Bob and Eve is illustrated in Figure 9 on page 62. In the
figure, Eve’s state is not explicitly shown; it can be seen from the message sequences.

iff

iff implies

iff for all future states ,

iff there is future state such that

iff there is a future state such that and

for all intermediate states ,

iff for all past states ,

iff there is a past state such that

M S R V

, ,()

=

R

M

M

|=

s

p

s V p

()

M

|/=

s

M

|=

s

M

|=

s

M

|=

s

M

|=

s

t u sRu

{ }

M

|=

t

M

|=

s

t u sRu

{ }

M

|=

t

M

|=

s

U

t u sRu

{ }

M

|=

t

v u sRu uRt

{ }

M

|=

v

M

|=

s

t u uRs

{ }

M

|=

t

M

|=

s

t u uRs

{ }

M

|=

t

M

|=

s

M

|=

s

M

|=

s

M

|=

s

M

|=

s

M

|=

s

T

U

 M |=
s

 M |=
s

 M |=
s

 M |=
s

U

i

1

342457621567678=

i

2

236523567732567=

Modal logic

62

Modelling and Verification of Cryptographic Protocols

Alice sending a message (to Eve) is denoted with S1 or S2. Bob receiving a message
(from Eve) is denoted with R1 or R2. As it can be seen, the event sequences form a
tree which branches very quickly. In the model, after receiving one copy of both mes-
sages, Eve effectively decides the next action. Because she is always able to receive
either message and (after receiving a copy) send either message, there is typically
four possible futures from a given state. However, there is also an infinite number of
states where there is only three possible futures, i.e. the message sequences where
Alice infinitely sends only one message or another.

Considering the model above, we can express the following statements:

•

In the past, there has been a state where Bob hasn’t known , i.e. :

•

In all future states, there is always some future state where Bob potentially will
know :

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,p

4

p

1

,p

2

p

3

,p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,p

4

p

1

,p

2

p

3

,

p

4

S1

S1

S1

S2

S2

R2

R1

R2

p

1

,p

2

p

3

,

p

4

S2

p

1

,p

2

p

3

,

p

4

S1

S2

S1 R1

S2

R1
S1

S2

R1

S1

S2

R1

R2

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,p

4

S2S2

R2R2
S1S1

p

 1
,p

 2
p

3

,

p

4

p

1

,p

2

p

3

,p

4

p

1

,p

2

p

3

,

p

4

p

1

,p

2

p

3

,p

4

 S1

S1

S2

S2

R2

R2

R1

FIGURE 9.

Event sequences in a system with Alice, Bob and Eve

i

1

p

3

M

|=

p

3

i

1

M

|=

p

3

Modelling and Verification of Cryptographic Protocols

63

Modal logic

Syntax and semantics.

We’ll present a language CTL-X, based on Computational
Tree Logic [27] without the next time operator. The presentation is partially based on
[43] with some insight gained from [12].

To take the branching structure of a protocol model to the level of logic, it is neces-
sary to distinguish between two different dimensions for the (future) time quantifiers:
branching and necessitation. In the branching dimension, it is possible to consider
only one branch, or all the possible branches. In the other dimension, a modality can
denote that something is true at all states or only at

some

 state. Thus, we get the fol-
lowing modalities:

Handling of past time depends on whether the underlying model is history preserving
or not. That is, if all joins in possible event paths in the model denote joins of truly
parallel computations (instead of continuing from a choice), each path denotes a
unique history, and past time can be considered linear [40]. We will adopt this view,
and unwind process models to form history preserving models when necessary.

The future time operators can be defined in terms of two different until -operators,
let’s say and , leading to a language

where denote the primitive propositions, is false constant as usual, arrow
denotes implication, the other propositional connectives are defined in means of fal-
sum and implication, modal sentences are formed using the until-operators, and other
modal operators can be defined in terms of them. The modal semantics are defined as
follows:

4.6 Combining knowledge and time

It’s time to return back to the notions of knowledge and belief, and consider models
where we can express both time and knowledge or belief. To keep things simpler,
here we will only consider models where the assumptions of the protocol parties are
assumed to hold, i.e. models with time and knowledge instead of time and belief.

In a distributed system, there is an intrinsic relationship between knowledge, time
and communication [92]. From a given agent’s point of view, the only possible way
of gaining (or losing) knowledge is via communication actions and internal actions

Our notation CTL notation Description

 is true

everywhere

 along all branches

 is true in some state along all branches, i.e. it is

inevitable

 is true in all states along some branch

 is true in some state along some branch, i.e. it is

possible

iff for

all

 branches, there is a state such that and

 for all intermediate states

iff for

some

 branch, there is a state such that and

 for all intermediate states

G

[]

F

[]

G

[]

F

[]

U

U

p

i 1 2

1
2

U

1

U

2

=

p

i

M

|=

s

U

t

M

|=

t

M

|=

u

u sR

u uR

t

,

M

|=

s

U

t

M

|=

t

M

|=

u

u sR

u uR

t

,

Modal logic

64

Modelling and Verification of Cryptographic Protocols

generating fresh nonces. The communication actions, i.e. the sending and receiving
of messages, as well as internal actions can be considered atomic, and therefore
sequential in time. Thus, given a single agent, its history can be considered to consist
of periods of inactivity where time flows by, interleaved with actions that change the
knowledge state of the agent.

Thus, in a model where time and knowledge are combined, each agent has an initial
knowledge state where it considers a number of worlds possible. This knowledge
state, and therefore the set of possible worlds, is changed only (and always) when the
agent sends or receives a message, or performs some internal action changing its
internal state. As we always consider communication to happen synchronously
between an agent and the environment, this means that each communication action
changes the knowledge set of the communicating agent and the environment, but

not

the state of any

other

 agent. The internal actions, on the other hand, only change the
knowledge state of the agent itself.

Surprisingly, there seems to be little literature about models capable of representing
both knowledge and time with modal operators. Thus, being unable to refer to any
established theory, we’ll suffice in presenting a simple example illustrating the
intended direction of ideas.

A protocol example.

Let’s consider a simple example where Alice sends Bob one of
a number of possible messages, and Bob sends an acknowledgement once he has got
the message. Eve, the environment, is able to destroy and duplicate any messages, but
not able to create any new messages by herself. Furthermore, we’ll first consider a
situation without any resending: if Eve decides to delete the message from Alice to
Bob or the acknowledgement from Bob to Alice, the system deadlocks.

Without loss of generality, to ease illustrations, let’s consider a situation where Alice
has a choice between only two possible messages, and . According to her pro-
tocol specification, she first decides whether to send or — the decision event
is denoted by and — then sends the message according to her decisions —
or — and finally accepts an acknowledgement, denoted as . Bob, on his
behalf, is initially ready to receive either message, or , after which he sends an
acknowledgement . The models for Alice and Bob are illustrated in Figure 10.

The model for Eve is a little bit more complicated this time. It basically consists of
three distinct channels operating in parallel. Each channel is able to receive a sent
message, immediately deciding to delete it or to carry it and offer it for delivery, and
in the latter case also able to deliver the message once it has been received. Two of
the channels are needed to handle the two different messages, while the third is capa-
ble of handling the acknowledgement.

More specifically, for each channel, indicates the action where the channel
receives a sent message, but immediately deletes it. The action is its counterpart
after which the message sent is available for delivery. The label denotes the

m

1

m

2

 m 1 m 2
d

1

d

2

s

1

s

2

r

ack

r

1

r

2

s

ack

d

1

d

2

s

1

s

2

r

ack

r

ack

A model for Alice

FIGURE 10.

 Models for Alice and Bob

s

ack

s

ack

r

1

r

2

A model for Bob

s

drop

s

ok

r

dup

Modelling and Verification of Cryptographic Protocols

65

Modal logic

action where a message is delivered and duplicated, so that it can be sent again, and
 is used for the situation where the delivered message is not duplicated. A possible

model for a channel is given in Figure 11.

The three channels operating in parallel can be illustrated as a three dimensional cube
where each dimension denotes the possible actions of one channel. Understanding
each channel as a one action channel , the combined model can be shown as a sim-
ple cube; the notion of other actions bring into life a number of “shadow cubes”
denoting the states where a message was dropped. The simple cube and “shadow
cube” pictures are shown in Figure 12, where the actions beginning and ending in the
same state are not shown.

Combining the models of Alice, Eve and Bob by synchronizing in the appropriate
actions leads to a event tree illustrated in Figure 13 on page 66. The temporal rela-
tionships are clearly visible in the figure. Each arrow represents a immediate succes-
sor relation in the temporal frame, and the reflexive transitive closure of the arrows
fully define a model for a discrete branching time temporal logic. The past time oper-
ators, however, can be considered linear since no state has more than one immediate
ancestor.

Because Alice’s state, and thereby Alice’s knowledge, can only be changed by an
internal action of Alice or by a communication action Alice is taking part in, the only
transitions changing Alice’s knowledge are and . Similarly, the
actions and change the knowledge state of Bob. Now, using this informa-
tion we can impose the equality relationships denoting the worlds Alice and Bob con-
sider possible at each state. This is represented in Figure 14, where the solid lines
display the boundaries of Alice knowledge sets, and dashed lines the boundaries of
Bob’s sets.

s

ok

s

drop

A graph model for Eve

r

ok

r

dup

s

ok

s

drop

FIGURE 11.

 A model for a channel, and the same model unwound to a tree

s

ok

s

drop

r

ok

r

dup

s

ok

s

drop

s

ok

, s

drop

s

*

s

ok

s

drop

An event tree model of Eve

r

ok

c

x

c

ack

c

ack

c

ack

c

ack

c

1

c

1

c

1

c

1

c

2

c

2

c

2

c

2

Three channels of Eve,
each as a solid arrow

Three channels of Eve, a partial figure.
Solid arrows indicate succeeded sendings,
dashed unsuccessful ones

FIGURE 12.

 A complete model for Eve consisting of three parallel channels

d

1

s

1

d

2

s

2

, , ,

r

ack

r

1

r

2

,

s

ack

Modal logic

66

Modelling and Verification of Cryptographic Protocols

Based on this model, it is easy to give examples of formulae containing both knowl-
edge and temporal operators. To do that, let’s define a couple of propositions:

•

 Alice has sent

•

 Alice has sent

•

 Bob has received

•

 Bob has received

With these, we can express, for example, the following facts that hold at the initial
state of the model:

•

It is possible (i.e. there is a future along some path) that Alice knows that Bob has
received the message she has sent:

The reading goes something like this: it is not true that never along any branches
Alice knows that Bob has received a message and she has sent the very same mes-
sage, i.e. there is at least one branch where eventually this is true.

•

It is possible that Bob has received the message Alice has sent, but Alice does not
know if Bob has received anything:

d

2

d

1

s

1

,s

drop

s

1

,s

ok

r

1

,r

dup

r

1

,r

ok

s

ack

,s

drop

s

ack,

s

ok

r

ack

,r

ok

r

ack

,r

dup

s

1

,s

drop

s

1

,s

ok

r

2

,r

dup

r

2

,r

ok

s

ack

,s

drop

s

ack,

s

ok

r

ack

,r

ok

r

ack

,r

dup

FIGURE 13.

 A combined protocol model

d

2

d

1

s

1

,s

drop

s

1

,s

ok

r

1

,r

dup

r

1

,r

ok

s

ack

,s

drop

s

ack,

s

ok

r

ack

,r

ok

r

ack

,r

dup

s

1

,s

drop

s

1

,s

ok

r

2

,r

dup

r

2

,r

ok

s

ack

,s

drop

s

ack,

s

ok

r

ack

,r

ok

r

ack

,r

dup

FIGURE 14.

 Alice’s and Bob’s knowledge sets

s

1

m

1

s

2

m

2

r

1

m

1

r

2

m

2

Alice

s

1

r

1

()

s

2

r

2

()() knows ()

s

1

r

1

()

s

2

r

2

()()

Alice

r

1

r

2

() knows ()()

Modelling and Verification of Cryptographic Protocols

67

Modal logic

•

Along every possible path, Alice sends either or :

•

Along every possible path, Alice knows that if she knows that Bob has received a
certain message, he knows that she has indeed sent it:

•

Bob does not ever know if Alice knows that he has received a message:

In the examples above we have applied the temporal operators on formulae built from
atomic propositions using propositional logic and knowledge operators. Considering
the situation the other way round, i.e. applying knowledge operators on formulae
continuing temporal operators, we encounter a slight philosophical problem. The
model above, taking it literally, means that we, as an external observer, have a com-
plete knowledge about all possible futures of every possible state. Now, how should
we consider the situation to be from Alice’s and Bob’s point of view? Keeping our
extensional point of view towards knowledge, it seems to be eligible to assume that
Alice and Bob are also reconsidered to “know” all the possible futures. Thus, their
only inability is to distinguish the current actual state from all the states that were
possible based on their information.

Using this interpretation, we can express more statements:

•

Alice knows that Bob will never know (i.e. along all paths Bob does not know) if
she knows that he has received a message:

•

Alice knows that it is possible that she will know that Bob has received a mes-
sage:

•

Bob knows that it is inevitable that Alice knows that he knows that she has sent

 • Alice knows that here is a state where Alice has sent , but Bob will never know

that:

A variation.

Let’s consider a slightly more complicated variation of the protocol
where Alice tries to send the message two times, or until she receives an acknowl-
edgement, and where Bob sends an acknowledgement two times in reply to a
received message. The capabilities of Eve are not changed. The modified models for
Bob and Alice are given in Figure 15. The combined model becomes rather compli-
cated, as can be seen from Figure 16. It displays some possible execution paths and
some incomplete paths of the combined model without action names.

In Figure 16, the grey (red) lines denote the second sending of on the behalf of
Alice, and (the blue lines) behaviour caused by the handling of this message. This
may happen immediately after the first sending, or at any later moment when Alice
has not yet received an acknowledgement. To denote that this action is fully parallel
with the behaviour that is happening in the meantime, we have drawn it from each

m

1

m

2

s

1

s

2

()

Alice Alice

r

1 knows Bob s 1 knows ()
Alice

r

2 knows Bob s 2 knows ()
 knows (

)

Bob Alice

r

1

r

2

() knows () knows ()

Alice Bob Alice

r

1

r

2

() knows () knows ()() knows

Alice Alice

r

1

r

2

() knows ()() knows

m

1

Bob Alice Bob

s

1 knows () knows () knows

m

1

Alice

s

1

Bob

s

1 knows ()() knows

m

1

Modal logic

68

Modelling and Verification of Cryptographic Protocols

possible state where it can be sent into a corresponding state where it has indeed been
sent, but not acted on (yet). Due to the restrictions of the Eve model, actually some of
the states where Eve has received both the first and the second sending of are
indistinguishable, if a straight process algebraic parallel composition of the models
are taken (cf. Chapter 5, “Model checking and Process Algebra”). However, we have
represented even these states, or “phantom” states, in the figure in order to make the
true parallelism (non-interleaving behaviour) more apparent. Furthermore, the three
points with the light grey (yellow) background denote points where there are other
possible futures in addition to those presented.

The complexity of the example clearly indicates that is would be very laborious and
error-prone to construct these kinds of models for real life protocols without the help
of some kind of formal calculus and maybe also computer-assisted tools.

4.7 Summary

We have introduced the concepts of a modal and multimodal logics, and given
semantics for them. The semantics are based on the possible-world interpretation of
Kripke-structures and corresponding frames. We briefly discussed some of the better

d

1

d

2

s

1

s

2

r

ack

A model for Alice

FIGURE 15.

 Modified models for Alice and Bob

s

ack

s

ack

r

1

r

2

A model for Bob

s

2

s

1

r

ack

r

ack

s

ack

r

1

s

ack

r

2

FIGURE 16.

 Some complete and some partial paths of a model with resending

m

1

Modelling and Verification of Cryptographic Protocols

69

Modal logic

known axioms of modal logic, including K, T, D, B, 4, 5, L and Dum. The intuitive
semantic meaning of these axioms was discussed from both the epistemic and tempo-
ral point of view. We also briefly considered the concepts of soundness, completeness
and determinedness of a logic; however, most issues pertaining to them are beyond
the scope of this study.

Given the basic theory and concepts, we described a logic of knowledge in terms of
examples. We also briefly considered two possible interpretations for beliefs. A linear
time temporal logic without a nexttime operator was considered along with an exam-
ple. A similar branching time temporal logic, CTL-X, was discussed.

Finally, in the end of the chapter we considered how one could combine both tempo-
ral and epistemic modal operators within a single logic. We presented a simple exam-
ple using our usual protocol parlance, and noticed how the model becomes extremely
large pretty soon as the complexity of the protocol is increased.

Modal logic

70

Modelling and Verification of Cryptographic Protocols

Modelling and Verification of Cryptographic Protocols

71

CHAPTER 5

Model checking and
Process Algebra

Now we turn our attention to a number of ways of modelling concurrent systems, and
especially introduce some process algebraic formalisms including CCS, CSP and
ACP. The reason behind this presentation is to familiarize the reader with some con-
cepts and tools used in analysing communication protocols in general. We will
present a number of examples in order to illustrate the usage. The purpose of this
presentation is to familiarize the reader with the concurrency perspective later appar-
ent in Chapter 7, “Modelling of cryptographic protocols”. Furthermore, a CSP based
formalism has been lately used by Kevin Lowe and others at Oxford to model crypto-
graphic protocols with very promising results [67, 68]. However, those are beyond
the scope of this study.

All communication protocols can be represented as concurrent systems. The protocol
parties, and in the case of cryptographic protocols the intruder(s) as well, act in paral-
lel, starting and stopping actions without any

direct

 causal relationships with the oth-
ers. Experience has shown that understanding concurrent behaviour without formal
tools is almost impossible. In a system where many actions are being performed in
parallel, human intuition is typically not good enough to grasp all the possible behav-
iours of the system. A mathematical model tries to alleviate this problem.

There are many approaches to modelling concurrency, including Petri nets, automata,
process algebraic formalisms, and event structures, to mention but a few. Different
formalisms have different ways to express issues and different analysis tools. Our
goal is to cover enough of concurrency theory to allow the reader to follow and
understand the model checking approaches of protocol analysis used later in this
study. We have chosen to present the theory from process algebraic view. The reason
for this is basically twofold. First, the abstract algebras developed allow an easy con-
struction of more complex models by combining simple ones. Second, a state based
algebra seems to be easy to understand and a natural way of thinking to many compu-
ter professionals.

The rest of this chapter is organized as follows. First we will consider terminology
and generic properties of state based models of concurrency. After that, we will intro-
duce process graphs and labelled transition systems, two isomorphic semantic for-
malisms that can be used to illustrate system models. Next a number of theoretic
process algebraic approaches are briefly considered, namely ACP, CCS and CSP. The

Model checking and Process Algebra

72

Modelling and Verification of Cryptographic Protocols

toy cryptographic protocol example of Section 2.5 is presented in ACP and CSP. This
allows a comparison from a practical point of view.

Having the basic concepts in hand, it is possible to introduce some semantic equiva-
lencies. This relatively large area is touched only lightly, in order to underline the dif-
ficulty of deciding which kind of semantics is appropriate in which situations. And
finally, having discussed both notation and semantics, we will briefly consider the
issue of model checking. In particular, a number of generic approaches, tools, and
difficulties are discussed.

5.1 Introduction to models of concurrency

As we have already seen, all models of concurrency have a concept of state. How-
ever, this is about the only common definition between the various formalisms. They
differ in they approach to events, concurrency of events, refinement of events, ways
of expressing communication, composition of models, etc. In this section, the basic
concepts of state, actions, events, communication, deadlocks, livelocks, abstraction,
hiding, and traces are considered. Composition and other algebraic properties are left
to the next section.

5.1.1 States, actions and events

A (global) state is a description of the system under consideration at a particular
moment. In a real world system there are typically moments without any visible
behaviour and moments of change. It is customary to consider each period of exter-
nally stable looking moments as a state and the periods of change as transitions
between the states. Of course, it is possible to have a finer look and view the states as
consisting of several internally distinguishable states and internal actions between
them, and to consider periods of change as consisting of several, maybe even contin-
uous number, of states each representing a different amount of computation having
been performed. However, to be practical it is necessary to try to find out a suitable
level of abstraction. This is often one of the hardest problems in modelling of sys-
tems.

We will adopt a view where states are seen as periods of time without any visible
action, and transitions as instantaneous changes between states. If wished, transitions
can be seen as the moments where some action is completed, the action itself having
been performed during the state ending with the transition, or, if the action can be
considered started already earlier, during some previous states. Thus, in our view, the
progress of some (started) action is considered invisible to an external observer; only
the completion of the action can be noticed.

It is customary to call models where transitions can be repeated during a protocol run

action based models

, and the transitions are

actions

 in this case. On the other hand, if
a transition represents a phenomenon that can only happen once (or not at all) during
a protocol run, the transitions are called

events

 and the models

event based models

. It
is possible to transform an action based model into an event based model by associat-
ing with each possible occurrence of an action a separate event. Of course, and event
based model can be transformed into an action based model by labelling the events
with action names.

In an event based model states can be represented as collections of events that have
happened. In such a system, when an event has happened it is impossible to return to
a state where the event had not happened. Thus, there are no loops, i.e. when a state is
left, there is no way to return to it. A disadvantage of this is that the models tend to

Modelling and Verification of Cryptographic Protocols

73

Model checking and Process Algebra

become very large, often infinite, whereas a similar system could often be repre-
sented with a small action based model. However, because of their structure, the
event based models keep track of history, i.e. occurrence of actions, and can be pro-
vided with a schedule-automaton duality [50].

Many models can be given both interleaving and non-interleaving semantics. In a
non-interleaving semantics two actions can be seen as happening truly in parallel,
whereas in an interleaving semantics actions are seen as indivisible, and parallel exe-
cution of two actions is seen as executing the actions in arbitrary order. Thus, an
interleaving semantics has a law like , expressing that in parallel
with is equal to executed before or executed before . The basic benefit of
interleaving models is that they typically lead to a more tractable algebra. On the
other hand, expressing action refinement, i.e. replacing of one action with a subsys-
tem, is typically easier in a non-interleaving model.

We will mostly use action based interleaving models, occasionally rolling out the
model into a corresponding event based model. We will also sometimes consider non-
interleaving semantics for a model; however, this is always explicitly indicated.
Unless otherwise noted, the user should expect interleaving action based semantics.

5.1.2 Communication

For a protocol specifier, it is beneficial if the system can be represented as subsystems
communicating with each other. This requires a possibility to explicitly represent
communication between the subsystems. Various models have taken different
approaches to this. In Petri nets, communication is represented with transitions
between subsystems. These transitions are indistinguishable from transitions repre-
senting actions internal to the subsystems. Because Petri net transitions are basically
unnamed, it is somewhat hard to represent and combine half-transitions expressing
the individual acts of communication.

In process algebraic approaches, communication is constructed by introducing an
implicit or explicit communication function which expresses which of the actions of
a subsystem do communicate with actions of other subsystems. In CSP, actions carry-
ing the same label are considered always to communicate, and — somewhat similarly
— CCS communication is always the case between actions with the same dashed and
undashed name (or name and co-name). On the other hand, ACP requires an explicit
introduction of a communication function which basically transforms pairs of actions
into new actions representing the communication. We will return to this below in sec-
tion 5.3, “Algebraic approaches”.

5.1.3 Deadlocks and divergencies

Two properties of concurrent systems related to protocol error conditions are dead-
locks and divergencies. A deadlock is a situation where the system inappropriately
stops executing actions. This is in contrast to successful termination, where the end of
execution is seen as a proper phenomenon. Deadlocks can be accidentally introduced
by combining systems with different resource reservation policies or communication
assumptions. Within a model, a deadlock can be represented as a state with no possi-
ble transitions. In models with successful termination, the set of final states must be
made explicit in order to distinguish deadlocks from other terminal states.

A divergency, or livelock, is a situation where the system continuously executes
(invisible) actions without being able to proceed. A divergency is represented as a
loop in an action based model, and it translates to an infinite sequence of events in an
event based model. A livelock can occur, for example, when two processes continu-
ously send each other error messages that trigger new error messages.

a b

||

ab ba

LI

=

a

b

a

b

b

a

Model checking and Process Algebra

74

Modelling and Verification of Cryptographic Protocols

It is possible to distinguish two types of divergencies. The first type, or true livelocks,
are situations where there the system does

not

 have a possibility of proceeding nor-
mally, i.e. whatever nondeterministic choices are made, the system keeps on the track
of executing actions belonging to the loop. The second type of divergencies, on the
other hand, refer to situations where it is

possible

 that the system will continue to stay
in the loop indefinitely, but where there is also a possibility of exiting the loop.

5.1.4 Abstraction and hiding

Abstraction, or hiding, in the language of a process algebras, refer to operations that
abstract away, or hide, some information about a process model without changing its
actual behaviour. Typically this means that all occurrences of one or more actions are
replaced with a special externally invisible action . Some of these may then later be
removed, depending on the exact semantics of the underlying model. It is important
to notice that abstraction itself does not introduce nor delete deadlocks or divergen-
cies. It only narrows our window to the process, i.e. allows us to observe less actions
than before.

Abstraction is usually needed to figure out whether a more specific process model,
often called an implementation, is equivalent to a coarser process model, a specifica-
tion. Those actions not present in the specification are abstracted away from the
implementation model, and the abstracted model is compared to the specification.
Thus, in a way, abstraction can be seen to introduce a coarser equivalence class based
on the used semantic equivalence, whatever it is.

5.1.5 Traces and equivalencies

As already discussed in section 2.4, “Modelling of communication protocols”, on
page 21, a trace (or run) is a sequence of actions (or events) representing the exter-
nally visible behaviour of a system. Traces also form the most coarse equivalence
semantics of systems. Under trace semantics, two systems are considered equivalent
iff their sets of traces are equal. If the systems are considered in isolation, the trace
semantics is often good enough. However, if two equivalent systems are placed into a
communications environment, it is well possible that the systems will exhibit differ-
ent behaviour. In particular, it is possible that one system will occasionally deadlock
in a situation where the other system is always able to proceed. This indicates a need
for finer set of equivalence classes, and indeed a number of semantics to express the
differences have been developed. Some of these will be considered in Section 5.4,
“Semantics”. We will see how some of them preserve information about deadlocks
and/or divergencies.

5.2 Process graphs and Labelled Transition Systems

It is usually easier to understand the behaviour of a simple system from a pictorial
notation. To make this possible, we introduce two graphical presentations, namely
process graphs and labelled transition systems. These will be later used interchangea-
bly to illustrate protocol models. It should be noted that it is possible to give other
kinds of semantics to the algebraic approaches as well, and indeed e.g. [8] introduces
several alternative semantics for ACP.

5.2.1 Process graphs

A process graph is a rooted directed multi-graph. Formally, a graph consist of a set of
nodes or states , an initial node (the root) , a set of edges or transitions , and two

S

r

T

Modelling and Verification of Cryptographic Protocols

75

Model checking and Process Algebra

functions and defining the source and target of all edges. A proc-
ess graph is an graph with each edge has a label from the set of actions in such a
way that all edges between the same nodes carry a different label, and with a subset

 of defining the set of states which are considered terminal states. In formal
terms, this adds a labelling function and the characteristic function of ,

. This leads to a definition of a process graph as a tuple
. We will consider process graphs equal modulo isomorphism of

root and termination preserving bijections of with other structure reflecting
the state space changes appropriately.

A process graph can be represented as a picture with circles for the nodes and
labelled arrows as the edges, each connecting the source of an edge to the target of it.
A finite graph is a graph with finitely many nodes and edges. A process tree is an acy-
clic process graph where each node is the target of at most one edge. In this study, we
will only consider finite process graphs as action based models, and process trees as
action labelled event based models.

5.2.2 Examples

The most simple process graph has no nodes and no edges. The trivial graph, denoted
, has one node and no edges. A one-step action has two nodes and one edge con-

necting them, the latter being an terminal node. A deadlock is represented by a trivial
graph where the node is not terminal. A simple livelock is a graph with an edge form-
ing a loop with the one node as the source and target of it. Some of these along with a
couple of other examples are given in pictorial form in Figure 17 below. The initial
node is represented as an incoming unlabelled arrow, and the terminal nodes with
unnamed outgoing arrow.

s T S

:

t T S

:

A

F

S

T A

:

F

S

0 1

,{ }

:

S r T s t A

, , , , , , ,()

S S

'

0

A trivial graph
representing deadlock

a

An action ‘a’ An unlabelled
divergency

a a

b c
b c

a

A graph representing ab + ac A graph representing a(b + c)

FIGURE 17.

Examples of process graphs

Model checking and Process Algebra

76

Modelling and Verification of Cryptographic Protocols

5.2.3 Labelled transition systems

A labelled transitions system, or LTS for short, is a tuple

which consists of a set of states , set of transition labels (the actions), and a set of
transitions relations , one for each , and an initial state (or root) .
In other words, a labelled transition system can be considered to be a set of states
with a number of transition relations imposed on it. Each relation expresses a set of
possible transitions in terms of their initial state, final state and associated action
label.

It can be shown that there is a natural isomorphism from process graphs to labelled
transition systems modulo terminal nodes. That is, given a LTS there is a unique cor-
responding set of process graphs where the set of states is the same, the set of graph
actions is equal to the set of LTS transition labels , and the set of edges as well as
functions , and are uniquely determined by the transitions relations, and the
root of the process graph is equal to the initial state of the LTS. Correspond-
ingly, given a process graph there is a unique LTS with the same set of states, a set of
transition labels equal to the set of actions, initial state equal to the root, and the set of
transition relations uniquely determined by the set of edges and the functions ,
and .

Due to this isomorphism, from now on we will freely use the terms process graph and
labelled transition system interchangeably. Moreover, it is usually natural to consider
the terminal nodes of an LTS to represent terminal states. This makes the distinction
even more indistinguishable. However, if we have an occasion where the different
structure of these two semantics are meaningful, this is explicitly noted.

5.3 Algebraic approaches

The term process algebra was introduced by J. A. Bergstra and J. W. Klop of the Cen-
tre of Mathematics and Computer Science (CWI) at Amsterdam in the beginning of
1980’s. It is closely related to Robin Milner’s CCS and to the CSP work of Tony
Hoare. In this study, we denote all these and other similar formalisms with the names
algebraic approach or process algebra. From this view, their basic characteristic is an
abstract algebra, or process calculus, which allows the construction of more complex
processes from simple ones.

It is possible to construct several different models that can act as sound and/or com-
plete models for the different algebras. It is also possible to give different equivalence
semantics, and preorders based on the equivalencies. In this section, we will describe
the algebras both from an usage point of view and using the process graphs as a
model for the algebra. Equivalence and refinement semantics are covered later. A
more formal introduction to process algebras can be found e.g. in [8].

5.3.1 ACP — Asynchronous Communicating Processes

The process algebra ACP was introduced by Bergstra and Klop in [13]. In this section
and elsewhere in this study we follow the presentation given in [8].

S T
t

t T

:

s

0

, , ,

S

T

t

S S

t T

s

0

A

T

s

t

r

s

0

s

t

Modelling and Verification of Cryptographic Protocols

77

Model checking and Process Algebra

The ACP system can be specified using an equational specification. It consists of

•

a set of constants (the actions),

•

a partial communication function which is commutative and associ-
ative,

•

a constant denoting the deadlock process,

•

binary operators for choice (+), sequential composition (.) and three different
kinds of parallel composition (||, ||_and |) , and

•

unary operator for encapsulation.

The axioms for ACP are given in Table 8. An uninitiated reader is instructed to pro-
ceed to Figure 18 on page 86 and study the pictorial representations of some of the
axioms before considering the explanations next. In the table, the symbols , and

 denote arbitrary processes, while , and are actions, i.e. members of the set .

TABLE 8.

ACP axioms [8, page 94]

A1

A2

A3

A4

A5

A6

A7

 if is defined CF1

 otherwise CF2

CM1

CM2

CM3

CM4

CM5

CM6

CM7

CM8

CM9

 if D1

 if D2

D3

D4

x y

+

y x

+=

x y

+

()

z

+

x y z

+

()

+=

x x

+

x

=

x y

+

()

z xz yz

+=

xy

()

z x yz

()

=

x

+

x

=

x x

=

a b

|

a b

,

()=

a b

,

()

a b

|

=

x y

||

x y

||

_

y x

||

_

x y

|

+ +=

a x

||

_

ax

=

ax

()

y

||

_

a x y

||

()

=

x y

+

()

z

||

_

x z

||

_

y z

||

_+=

ax

()

b

|

a b

|

()

x

=

a bx

()

|

a b

|

()

x

=

ax

()

by

()

|

a b

|

()

x y

||

()

=

x y

+

()

z

|

x z

|

y z

|

+=

x y z

+

()

|

x y

|

x z

|

+=

H

a

()

a

=

a H

H

a

()

=

a H

H

x y

+()

H

x

()

H

y

()+=

H

xy

()

H

x

()

H

y

()=

A

A A

A

:

x

y

z

a

b

c

A

Model checking and Process Algebra

78

Modelling and Verification of Cryptographic Protocols

Basic process algebra.

A1 - A7 define the basic properties of choice, sequential
composition and deadlock. In particular, A1 - A3 define that choice is commutative,
associative and idempotent. In other terms, A1 expresses that whenever there is a
choice between two possible behaviours, it does not matter in which order the possi-
bilities are presented. Similarly, A2 effectively tells us that if there is a choice
between three possibilities, this can be regarded as first choosing between any pair of
the two, and then between the result and the third. Together the first three define that
whenever there is a choice of any number of possibilities, the possibilities can be con-
sidered as equal alternatives.

Axiom A4 says that if we have to make a choice between the alternative behaviours
and , and will continue with a similar behaviour after them in any case, it does not
matter if we consider the behaviour after as distinct to behaviour after or not.
A5 expresses the associativity of sequential composition, which is self-evident.

It is worth noting that there is no axiom . This makes a distinction
between early and late branching, apparent in the lower half of Figure 17 on page 75.
This point will be discussed later in the section describing semantics.

Deadlock behaviour is defined by the axioms A6 and A7, effectively expressing that
whenever there is a choice between something and deadlock, something will be cho-
sen, and that there is no possible behaviours after a deadlock. In particular, it must be
noted that , since it is possible to continue after , but it is not possible to con-
tinue after . This distinction is typically not made in process algebras without an
explicit notion of deadlock, e.g. CCS.

Communication function.

The axioms CF1 and CF2 say that the communication
merge | is actually an extension of the communication function . Along with CM5-
CM9 it becomes clear that will only proceed if some combination of the possi-
ble initial actions (cf. CM8-CM9) do communicate, i.e. is defined for some
pair where is an initial action of and is an initial action of . If there are
several communicating alternatives, any of them can be chosen.

Encapsulation.

The encapsulation axioms D1-D4 are used to make some behaviours
impossible. Encapsulation is typically used to restrict merge to a particular type of
parallel composition (see the example on the next page), but they may be used on
their own as well. By definition, a process restricted by a set of actions is a
process where all occurrences of actions are replaced by the deadlock. That is,
the restriction behaves similar to other than whenever is able to perform
some action belonging to the set , the restricted process does not have this option,
and deadlocks if all possible behaviours of at the given situation start with some
action belonging to . This may sound confusing, but the practical usage should
become clear from the examples.

Parallel composition.

The merge axioms CM1-CM4 define the merge operator
in terms of the so called left-merge operator and the communication merge . A

merge of two processes and , , is defined by CM1 as a process is capable to
choose between three possibilities:

1.

It is possible first to perform any first action of , and to continue with the merge

of the rest of and . This is indicated by the first right hand term of CM1, ,
along with CM2-CM4.

2.

Symmetrically, it is possible to perform any first action of , continued by the

merge of the rest of and .

x

y

z

z

x

z

y

x y z

+

()

xy xz

+=

a

a

a

a

x y

|

a b

,

()

a b

,()

a

x

b

y

x

H A

a H

H

x

()

x

x

H

x

 H

||

||

_

|

x

y

x y

||

x

x

y

x y

||

_

y

y

x

Modelling and Verification of Cryptographic Protocols

79

Model checking and Process Algebra

3.

The third possibility is to perform a joint first action of and , if the communi-

cation function defines such an action for any pair of initial actions of and .

This corresponds to the third term of right hand side of CM1, , which is sym-
metric.

This, along with the encapsulation axioms D1-D4 makes it possible to define various
kinds of parallel execution. First it must be noticed that if the communication func-
tion is defined for no action pairs of the merged processes and , the merge
is actually an interleaving parallel execution of and . However, if there is a possi-
bility of communication, the truly parallel execution can be simulated by restricting
away the results of the communication function from the merge. For example, let

, , not defined for any other pair of actions, and .
Now,

The final formula is clearly the parallel execution. There are initially three alterna-
tives:

1.

to perform the alone of the left process, in which case the only possible future

is the execution of ,

2.

to perform the first of the construct, in which case in the next step either the

second can be performed, followed by , or vice versa, and

3.

to perform first , naturally continued by the behaviour of the left process.

Abstraction.

The basic ACP does not contain abstraction axioms. The system ACP

is equal to ACP augmented with the abstraction axioms of Table 9 on page 79. This
basically adds the abstraction operator along with the rules B1-B2 that allow the
silent operation to be sometimes removed. These latter rules define a semantics for
the silent moves; this point will be considered in section 5.4.5, “Branching bisimula-
tion”, on page 89.

TABLE 9.

Hiding axioms for ACP

 [8, page 123]

B1

B2

 if TI1

 if TI2

TI3

TI4

x

y

x

y

x y

|

x

y

x y

||

x

y

A a b c

, ,{ }

=

a b

,

()

c

=

H c

{ }

=

H

a aa

+

()

b

||

()

H

a aa

+

()

b

||

_

b a aa

+

()

||

_

a aa

+

()

b

|

+ +()=

H

a b

||

_

aa b

||

_

b a aa

+

()

a b

|

aa b

|

+ + + +()=

H

ab a a b

||

()

b a aa

+

()

c a b

|

()

a

+ + + +()=

H

ab a a b

||

_

b a

||

_

a b

|

+ +

()

b a aa

+

()

c ca

+ + + +()=

H

ab a ab ba c

+ +

()

b a aa

+

()

c ca

+ + + +()=

ab a ab ba

+ +

()

b a aa

+

()

a

+ + + +=

ab a ab ba

+

()

b a aa

+

()

+ +=

a

b

a

aa

a

b

b

x

x

=

x

y z

+

()

y

+

()

x y z

+

()

=

I

 a () a = a I

I

a

()

=

a I

I

x y

+()

I

x

()

I

y

()+=

I

xy

()

I

x

()

I

y

()=

I

Model checking and Process Algebra

80

Modelling and Verification of Cryptographic Protocols

It can be shown that all ACP

 expressions can be rewritten into an equivalent expres-
sions of basic process algebra consisting only of actions in , deadlocks , and silent
moves combined with the choice and sequential composition. In other words, it is
possible to construct a sequential process specification equal to any ACP

 formula

1

.

Example.

Let’s reconsider the ACP specification of Alice’s behaviour of the example
protocol of Chapter 2 given in Table 5 on page 29. There the behaviour of Alice was
given as

where each alternative expression denotes a different initial state correspond-
ing to a different message to be sent . The set is the set of possible messages,
which in the toy example was .

The set of run alternatives is further expanded by each initial action of Alice. In each
initial state, Alice generates a nonce. From the ACP point of view, each possible out-
come of the nonce generation is considered as a distinct action. If we denote the
action of generating a nonce , where the set is the set of possible nonces, as

, we can express each initial state with the formula

That is, in each initial state there is a choice of possible future behaviours. Each
choice is determined by a different nonce generation action, and continued by a next
state uniquely determined by the initial state and the generated nonce. Considering
the states where Alice has both the message and a nonce available, the protocol
specification inimitably determines the message to be sent.

We can denote a message Alice can send in a particular state as where
 is a nonce (of the possible nonces), is an encrypted message belonging

to the set of possible encryptions, and is a hash value, one of the values of
the set . Now, the message Alice is determined to send is , which
is uniquely determined by . Thus, the possible behaviour of Alice in the state
under discussion can be defined as

where is the corresponding state of Alice where she has sent the message.

Understanding the rest of the Table 5 on page 29 in this light, we can combine the
states and give Alice’ behaviour with a single ACP formula:

Similarly, we can give an ACP formula for Bob:

1. A reader familiar with ACP and other process algebras should note that we ignore the com-
plications introduced by recursive formulae. Even though we allow the use of process vari-
ables in our specifications, it is seldom necessary to have real recursion when specifying
cryptographic protocols. Effectively, this approach simplifies the presentation from both
practical and theoretical point of view.

However, later on, in section “Failures-divergencies semantics” on page 90, we will briefly
discuss recursive formulae, divergencies, and how to handle them.

A

ALICE INIT

m
m M

=

INIT

m

m

M

0 1

…

9

, , ,{ }

n N

N

generate

n

INIT

m

INIT

m

generate

n

GENERATED

m n

,

()

n N

=

m

n

send

n e h

, ,

n N

e E

E

h H

H

send

n

enc

m

()

h n m

,

()

, ,

n m

,

GENERATED

m n

,

send

n

enc

m

() h

N m

,

()

, ,

SENT

m n

,

=

SENT

m n

,

ALICE

generate

n

send

n

enc

m

() h

n m

,

()

, ,

receive

h

n m

1+

,

()

()

n N

m M

=

Modelling and Verification of Cryptographic Protocols

81

Model checking and Process Algebra

(Note that each generate, send and receive action in the previous specifications are
distinct!).

Ignoring the possibility of an intruder, and to verify that the protocol indeed works if
there is no intruders, we can simply define a communication function combining the
corresponding send and receive actions:

If we now denote the set of send actions with , and the set of receive actions with ,
we can specify the whole system as

Discussion.

We have seen how a process algebra can be defined by giving an abstract
syntax and a number of algebraic axioms that can be used to construct and manipu-
late process expressions. In the example, we also saw in concrete terms how a simple
protocol can be specified in terms of algebraic expressions, and how these specifica-
tions can be manipulated using the axioms of the algebra. However, we are still lack-
ing an understanding how the formulae are given meaning, or semantics. This
discussion is deferred until we have seen a couple of alternative algebraic
approaches.

5.3.2 CCS — Calculus of Communicating Systems

The Calculus of Communicating Systems, or CCS, is a process calculus introduced
by Robin Milner in his monologue [79], and later revised in [80]. Our presentation is
based on [80] and a number of notes given elsewhere, e.g. [8].

CCS was originally defined from a semantic approach using a couple of different LTS
semantics as the basis. This approach is different to that of Bergstra and Klop, where
the main interest was to consider algebraic systems and finding semantics corre-
sponding to them. However, in spite of this original approach, we introduce CCS on
axiomatic bases and discuss the semantics only later along with the semantics of
ACP

 and CSP.

As an algebra, CCS has a signature which consist of

•

a set of actions , which consist of a set of names , a corresponding set of co-

names , and the silent action . In other words, .

•

the terminal process , corresponding to the deadlock of ACP.

•

a prefix operator . (period), which is used to sequentially compose a new process
from an action and a process. It the set of processes is denoted as , the prefix

can be considered as a function . This in contrast to ACP and CSP,
which define a full sequential composition as a basic operator.

•

a summation (or choice) operator +, which is similar to the choice of ACP.

BOB

receive

n

enc

m

() h

n m

,

()

, ,

send

h

n m

1+

,

()

m M

n N

,

=

send

n e h

, ,

receive

n e h

, ,

,

() comm

n e h

, ,

=

send

h

receieve

h

,

() comm

h

=

S

R

S R

ALICE BOB

||

()

Act

{ }

=

0

.

:

Model checking and Process Algebra

82

Modelling and Verification of Cryptographic Protocols

•

a communicating parallel composition operator , which is similar to ACP .

The difference is in the form of communication. In CCS, a name and a co-name

 automatically communicate, always forming a silent action . Mainly due to
this reason, CCS also includes renaming functions. However, we ignore them
since they do not contribute much to the insight of semantics.

•

a restriction operation \, which is similar to ACP .

CCS also includes recursive specifications in all of its forms. However, we ignore
them since they introduce semantic complications that are unnecessary from our
point of view. It is also possible to define a value passing calculus which can be trans-
lated in basic CCS. This is straightforward and similar in spirit to our ACP example
above, where the possible values of variables are translated into individual actions.
This point will become clear in the examples, and we will not pursue it formally.

Some of the laws of CCS are given in Table 10above. Here, the symbols , and
denote arbitrary processes, while and are actions. is a set of names, similar in
function to in ACP

. There are a number of additional laws, mostly concerned
with relabelling and recursion. Being more syntactic than semantic in nature, we do
not consider them. An other difference between our presentation and [80] is that Mil-
ner gives a very general expansion law that simultaneously handles communicating
parallel composition and restriction. We have only given a few special cases of this
law, to make apparent how the consequences of this law corresponds with some fea-
tures of ACP. The laws named with CF1, CF2 and D1-D3 are actually (some of the)
consequences of the expansion law.

TABLE 10.

Some CCS laws along with corresponding ACP

 names

CCS law ACP

 axiom name

A1

A2

A3

A6

 if

a

a. We have only presented a few special cases of the more general expansion law.

This makes the similarities with and differences from ACP more apparent.

CM1-CM3 + CF2

 if CM1-CM3 + CF1

 if D1

 if D2

D3

B1

derivable in ACP

derivable in ACP

derivable in ACP

|

||

a

a

P Q

+

Q P

+=

P Q R

+

()

+

P Q

+

()

R

+=

P P

+

P

=

P

0+

P

=

.

P

.Q

|

.

P

.

Q

|

()

.

.

P Q

|

()

+=

.

P

.Q

|

.

P Q

|

()

=

=

.

P

()

\

L

.

P

\

L

()

=

L L

.P

()

\

L

0=

L L

P Q

+

()

\

L P

\

L Q

\

L

+=

.

.

P

.

P

=

P

.

P

+

.

P

=

.

P

.

Q

+

()

.

Q

+

.

P

.

Q

+

()

=

P Q

|

Q P

|

=

P Q R

|

()

|

P Q

|

()

R

|

=

P

0

|

P

=

P

Q

R

L

H

H

Modelling and Verification of Cryptographic Protocols

83

Model checking and Process Algebra

Now, there are apparently three basic differences between ACP

 and CCS. Two of
these, namely the different way of defining parallel composition and the use of
sequential composition vs. prefix are more syntactic in nature, and do not have impli-
cations in the expressing power or semantics of the calculi. However, the third differ-
ence, i.e. the different laws handling silent actions, do impose a difference at the
semantic level. This will be discussed in section 5.4.5, “Branching bisimulation”, on
page 89.

From our point of view, ACP

 and CCS are pretty similar, even though there are both
syntactic and semantic differences. However, due to its different initial approach,
ACP

 and other purely algebraic approaches are more suitable for the analysis of dif-
ferent underlying semantics. Therefore we will mainly use notation based on ACP

 in
the rest of this study.

5.3.3 CSP — Communicating Sequential Processes

CSP, short for Communicating Sequential Processes, is mainly work of Tony Hoare,
originally introduced in [54]. Being the first algebraic approach to the theory of con-
currency, it can be considered to suffer from some slight semantic difficulties. In par-
ticular, the operations defined are not as orthogonal as in pure process algebra, and
therefore axiomatisation is more complex. These are mainly due to historical reasons,
and maybe stem from improper understanding of invisible behaviour at that time.

However, CSP has quite strong position on the practical side of using process alge-
braic notations. For example, CSP has influenced a number of concurrent program-
ming languages such as Occam and specification languages like LOTOS.
Furthermore, there is a practical analysis tool FDR [38], with the help of which CSP
has been applied to the analysis of cryptographic protocols [68, 98].

Now, given all this, we will mostly ignore the semantic difficulties behind CSP and
consider it from a very practical point of view. However, it should be understood that
CSP can be given similar kind of semantics as the other process calculi, and that the
semantic considerations given in the next section apply to CSP as well as to CCS and
ACP

.

Notation.

In CSP, like the other process algebras, a set of atomic actions is given.
While ACP has a explicit communication function , and the names and co-names
communicate in CCS, in CSP an action communicates only with itself, i.e. in
ACP terms for all . The role of the communication function is
achieved by explicitly defining the set of actions communicating in a parallel compo-
sition. For example, the notion denotes that the processes and
execute in parallel, synchronizing whenever they are about to perform either of the
actions .

In CSP, prefixing sequential composition is expressed where is an action
and is an arbitrary process. Sequential composition of processes is expressed as

, and defined in terms of basic operators. The starting process is , similar to
CCS and ACP . There is no distinction between successful termination and dead-
lock.

CSP does not have silent actions, i.e. there is no action . Instead there are two kinds
of alternative composition: external choice and internal choice . The internal
choice is completely nondeterministic, and can be represented in process alge-
bra as . The external choice is always decided by the environment, and not
directly representable in process algebra [8]. However, for practical purposes CSP

 is approximately equal to ACP .

A

a A

a a

,

()

a

=

a A

P a b

,{ }

Q

]||[

P

Q

a b

,{ }

a P

a

P

P Q

;

STOP

0

LI

P Q

LI

P

Q

+

P Q

P Q

+

Model checking and Process Algebra

84

Modelling and Verification of Cryptographic Protocols

CSP is usually used with the so called failure semantics (see below). This and the fact
that there are two different choice operators make it possible that silent steps are
always removed. However, this also means that -loops cannot be presented, and
therefore divergencies are lost in abstraction. However, the more prominent modern
CSP semantics, including the one used in the FDR tool, do preserve some divergen-
cies.

In practical use, CSP actions are usually expressed in a structural form. In this syntax,
a sending action is expressed as e.g. , where is a channel, is a subchannel
or maybe a communication primitive, and is a variable whose value is sent. Simi-
larly, a receiving action is denoted as , where is a variable receiving a value
being received. As in case of other process algebras, the sending notion is understood
to mean a specific action uniquely determined by the value of the variable being sent,
and a receiving notation means an external choice between all the possible actions of
receiving a specific value belonging to the value set (type) of the receiving variable.

Example.

Returning to our favourite example, we will present a CSP formulation of
it. In CSP, it is natural to consider a separate nonce generator in addition to the proto-
col parties Alice and Bob. It is an recursive process that selects random elements
from a given set. The generator can be expressed in CSP as a formula

Here is the only output channel of the process. The process nondeterministically
selects a value and outputs it to its output channel, evolving back to its ini-
tial state.

In CSP, Alice can be described as a process that receives the message to be sent
from the environment, a nonce from the environment, that sends a message to the
network, and finally receives a reply from the network. Giving the name to the ini-
tial input channel, to the channel via which the message is transmitted to the
network, and to the channel for the reply, Alice can be defined as

We can give a similar formula to Bob

Here the internal choice represents Bob’s ability to refuse to reply to a bad input, in
which case he stops.

In order to derive a complete CSP model, we have to define a formula for Eve, the
environment. To make things simple, we assume a faithful environment in this case,
i.e. an environment that always delivers a sent message unmodified and promptly.
Given this, we can give a formula to Eve.

Given these definitions, the whole system can be defined as

c

.

s

.!

d

c

s

d

c

.

s

.?

d

d

GEN gen

!0

GEN

gen

!1

GEN

gen

!

n GEN

LI LILI

=

gen

0

…

n

, ,{ }

m

n

in

trans

.

a

rec

.

a

ALICE in

?

m gen

?

n trans

.

a

!

n

enc

m

() h

n m

,

()

, ,()

rec

.

a

?h

n m

1+

,

()

()

GEN

||

=

BOB rec

.

b

?

n e h

, ,()

trans

.

b

!h

n

dec

e

() 1+

,

()

STOP

LI

()

=

EVE trans

.

a

?

n e h

, ,

()

rec

.

b

!

n e h

, ,

()

trans

.

b

?

h

()

rec

.

a

!

h

()

|||

==

ALICE trans

.

a rec

.

a

,{ }

EVE

]|

rec

.

b trans

.

b

,{ }

BOB

]||[|[

Modelling and Verification of Cryptographic Protocols

85

Model checking and Process Algebra

5.4 Semantics

As already briefly mentioned, an important ability of process algebraic methods is the
ability to determine if given two process definitions are equivalent, or if a given defi-
nition is a refinement of another. These allow one to check if a more specific formula,
i.e. an

implementation

, can be considered to fulfil the requirements introduced by a
less complex formula, a

specification

. It is also apparent that the definition of equiva-
lence and refinement is not quite obvious or simple. Indeed, there are literally hun-
dreds of proposed semantics used to define various kinds of equivalence classes and
partial orders of process formulae. The study of these are called

comparative concur-
rency study

, and an excellent though somewhat theoretic introduction to it can be
found in [41]. In this study, we only consider finite models. However, most of the dis-
cussion can be readily generalized to some infinite cases.

In this study, we only consider a couple of different semantics, and even them only
from a process graph point of view. The purpose of this presentation is to give a
reader a glimpse of the difficulties involved without actually considering any particu-
lar semantics in detail. Instead, we will briefly discuss the merits and problems of
some more commonly used semantics from a practical point of view. Furthermore,
we only describe the semantic equivalencies based on the definitions. The reader
should note that it is usually also possible to define a preorder based on a semantic
definition, even though not explicitly stated below. The aim of our approach is to
motive an uninitiated reader to follow our semantic considerations later in this study,
and to appreciate the criticisms that we impose on some attempts to analyse crypto-
graphic protocols.

Pictorial presentation.

To make following easier, we will illustrate the main points
of discussion with pictorial presentations of example processes. We hope that this
will give the reader some insight to the differences of the semantics without the need
of actually pursuing to the detailed formalisms. To give a feeling of the notation,
some of the ACP axioms are restated along with the example of section “Parallel
composition” on page 78 in Figure 18 on page 86. In the figure, subprocesses are rep-
resented as triangles or other filled spaces, and individual actions as arrows.

5.4.1 Graph isomorphism

Graph isomorphism is the strongest semantics considered. In this semantics, two
processes are considered equivalent (in fact, equal) if their graphical presentations are
isomorphic modulo state and edge names. Of course, edge labelling must be pre-
served.

Formally, two graphs and are
isomorphic iff there is a bijective relation = between the elements of and such
that:

•

The roots of the graphs are related, i.e.

•

The edges are related; formally, for two pairs of related elements and

, there is an edge between and carrying a label , i.e.

, if and only if there is a corresponding edge from

 to , i.e. .

•

Related nodes have similar terminal conditions, i.e. if , then .

While graph isomorphism respects the rule , already and
 are not equalities according to graph isomorphism. Thus, graph

isomorphism is typically too strong to be useful, not further considered in this study.

g S r T s t A

, , , , , , ,()

=

g

'

S

'

r

'

T

'

s

'

t

'

A

'

'

, , , , , , ,()

=

S

S

'

r r

'=

n n

'=

m m

'=

e

n

m

a

s e

()

n

=

t e

()

m

=

e

()

a

=

e

'

n

'

m

'

s

'

e

'()

n

'=

t

'

e

'()

m

'=

'

e

'()

a

=

n n

'=

n

()

'

n

'()=

x y

+

y x

+=

x x

+

x

=

x y

+

()

z xz yz

+=

Model checking and Process Algebra

86

Modelling and Verification of Cryptographic Protocols

5.4.2 Traces

Traces, on the other hand, is the weakest semantics. As already mentioned, in traces
semantics two processes are considered equivalent if their trace sets are equal. The
trace semantics does not consider the branching structure of a process at all, i.e. there
is no information about the timing of decisions made during a protocol run. In addi-
tion to the basic trace semantics there are a number other trace based semantics,
including completed trace semantics, failure trace semantics and ready trace seman-
tics, to mention but a few. These are beyond the scope of this study; the interested
reader would find e.g. Chapter 1 of [41] useful.

Trace semantics are a good solution for some purposes, especially when only safety
properties are considered (cf. section “Safety properties” on page 23). However, for
most purposes a stronger semantics, i.e. finer set of equivalence classes, is desired.
We now turn our attention to some of them.

5.4.3 Strong and weak bisimulation

Bisimulation, or strong bisimulation, between graphs and is defined as a relation
 between the nodes of the graphs such that:

•

The roots of the graphs are related, as in the case of isomorphism

•

For each edge of , there is a corresponding edge in ; however, this correspond-

ing does not need to be one-to-one, but there may be several edges in related to

a single edge of . Formally, for each , denoted

a

x y xy

x + y = y + x

a b b a

a + b = b + a

x x x

aa

x + x = x

a + a = a

x

y

yz

x

yz

x(

(z + y) + y) = x(z + y)

a a

a

a + aa

b

b a a

ab a a

a

b

b

ab

(a+aa) || b,

 = {}

FIGURE 18.

 Examples of pictorial semantic presentations

g

g

'

=

bs

g

g

'

g

g

'

e T

s e

()

n

=

t e

()

, ,

m

e

()

,

a

= =

Modelling and Verification of Cryptographic Protocols

87

Model checking and Process Algebra

 , for which there is a corresponding starting node , there is an

edge , i.e. (not necessarily unique)

such that

•

Vice versa: for each edge of , there is a (not necessarily unique) corresponding

edge of . The edge correspondence of this and the previous condition is given in
pictorial form in Figure 19 on page 87.

•

Finally, related nodes must be similar in terms of termination, as in the case of
isomorphism.

Examples of graphs that are bisimilar but not isomorphic are given in Figure 20 on
page 87.

Strong bisimulation is quite useful and relatively much used semantics. In fact, if the
system under consideration contains no silent moves, and therefore also no divergen-
cies, strong bisimulation is usually the most appropriate semantics if the branching
structure of the processes is under consideration. However, the introduction of silent
actions, or , changes the situation. Weak bisimulation [80], also called

-bisimula-

 a
n m n ' =

bs
 n

e

'

T

'

s

'

e

'()

n

'=

t

'

e

()

m

'=

'

e

()

, , ,

a

=

a
n

'

m

'

t e

()

m

 =

bs

m

'

t

'

e

'()= =

g

'

g

g g’

n

m

e n’
=

sb

g g’

n

m

e n’
=

sb

m’

e’=

sb

g g’

n

m’’

e’’
n’

=

sb

g g’

n

m

e n’
=

sb

=

sb

m’’

e’’

FIGURE 19.

Bisimulation condition presented pictorially (based on [8, page 47]

aaa a b

c

ba

c c

aa

a

FIGURE 20.

 Pairs of graphs bisimilar but not isomorphic

Model checking and Process Algebra

88

Modelling and Verification of Cryptographic Protocols

tion and observational equivalence [41, page 122], is one of the earliest attempts to
introduce a bisimulation notion in the presence of silent moves. Unfortunately, it has
later been argued to be too coarse, i.e. to identify too many processes, as we will see
in a moment.

Formally, two graphs and are considered to be weakly bisimilar if there exists a
weak bisimulation between them. Now, in order to define weak bisimulation, we have
to first introduce the concept of

generalized step

. A single action, or a step, i.e. an
edge of a graph between two nodes and carrying the label , can be denoted
as . Now, a generalized -step between two nodes and , denoted ,
is a sequence of steps , i.e. a (possibly empty) sequence
of silent steps followed by an -step, followed by another (possibly empty) sequence
of silent steps.

With the help of this new definition, weak bisimulation can be defined as a rela-
tion between the nodes of two graphs such that:

•

The roots of the graphs are related, i.e.

•

If , whenever there is a path in , there is a corresponding path

 in such that

•

If , whenever there is a path in , there is a corresponding path

 in such that . [41, page 122; 80, page 108]

This definition is identical to the definition of (strong) bisimulation other than that
whereas in the bisimulation case there is a requirement that there is a corresponding

step

 in the other graph for each step in the first graph, for weak bisimulation it is
enough that there is a corresponding

path

 for each path. Weak bisimulation identifies
much larger sets of process graphs than bisimulation.

5.4.4 Observational congruence, or rooted

-bisimilarity

The first, and maybe the worst, problem with weak bisimulation is that it is not a con-
gruence with respect to the choice operator +. That is, given two weakly bisimilar
processes and (or, equivalently, two corresponding process graphs), i.e. ,
it is not necessarily the case that . There is a stronger notion, called
observational congruence by Milner [80, page 153] and rooted

-bisimulation by van
Glabbeek [41, page 132], which fixes this problem.

It is easiest to define observational congruence by adding a root condition to the defi-
nition of observational equivalence, i.e. weak bisimulation. The root condition simply
requires that the root of a process graph is only related with the root node of the other
graph in either direction. It turns out that this is enough to yield a congruence, and the
resulting algebraic laws for -elimination can be defined as following:

T1

T2

T3

g

g

'

g

n

m

a

a
n m

a

n

m

a
n m

a

n

…

n

'

m

'

…

m

a

r r

'

n n

'

a
n m

g

a
n

'

m

'

g

'

m m

'

n n

'

a
n

'

m

'

g

'

a
n m

g

m m

'

P

Q

P Q

P R

+

Q R

+

x

x

=

x

x x

+=

a

x y

+

()

a

x y

+

()

ax

+=

Modelling and Verification of Cryptographic Protocols

89

Model checking and Process Algebra

5.4.5 Branching bisimulation

van Glabbeek argues [41, Chapter 3] that weak bisimulation, or even observational
equivalence, is a too coarse notion to really preserve the branching structure of proc-
esses. He introduces a new type of equivalence semantics called (rooted) branching
bisimulation. It can be axiomatised with the -laws

B1

B2

As the reader must have noted, these are the -laws given the axiomatisation of the
algebraic system ACP

 given in Table 9 on page 79. Furthermore, T1 = B1 and B2

can be easily derived from T1 and T2. This is no coincidence. Indeed, based on
claims presented by van Glabbeek in his dissertation, (rooted) branching bisimulation
equivalence seems to be the most preferable notion of equivalence preserving the
branching structure of a process, but simultaneously allowing one to remove a maxi-
mum number of silent moves.

An example of the difference between weak bisimulation and branching bisimulation
is show in Figure 21 on page 89, where two processes that are weakly bisimilar but
not branching bisimilar are given. The reason for the difference is that the right graph
is immediately able to perform , but the left graph must perform before being
able to perform . Branching bisimulation makes the difference, but weak bisimula-
tion does not.

Other reasons that van Glabbeek gives to prefer branching bisimulation include the
following:

•

A version of branching bisimulation called divergence sensitive branching
bisimulation corresponds to a variant of CTL* logic without the nexttime operator
(cf. section “Syntax and semantics” on page 61).

•

No other abstract semantic equivalence is as easy to decide as branching bisimu-
lation.

•

Rooted branching bisimulation equivalence is preserved under refinement of
actions, whereas weak bisimulation (or observational congruence) is not.

Similar kinds of claims can probably be given for a number of other semantics as
well. However, we will not pursue them further, but note the fact that branching
bisimulation and branching time temporal logic CTL-X can be considered corre-
sponding.

5.4.6 Handling divergencies

Until now, we have mostly ignored the question of divergencies in our study of
semantics. The notion of divergencies is important in practice, since divergencies are
easily introduced by abstraction. That is, while no designer usually explicitly con-
structs divergencies when constructing a specification or an implementation level

x

x

=

x

y a

+

()

y

+

()

x y z

+

()

=

FIGURE 21.

 Processes that are weakly but not branching bisimilar [41, page 169]

a

b

a

b

b

b

b

Model checking and Process Algebra

90

Modelling and Verification of Cryptographic Protocols

design, the need of comparing processes may lead to their existence. In concrete
terms, when an implementation level description is compared with a specification,
those actions not present in the specification are abstracted away, or hidden. If the
implementation contains loops of actions, e.g. to compensate nondeterminism intro-
duces by random errors, these loops may turn into divergencies by the abstraction
process.

The original semantic equivalencies abstracted from all divergencies; for example,
the original CSP considered a divergent behaviour as chaos, and claims that no obser-
vations are possible past this point. That is, once a process encounters a divergency,
nothing can be said about its future behaviour.

A second possibility is to assume that every divergence will be exited sooner or later,
if possible. This notion is called

fair abstraction

. Under fair abstraction,

-loops with
an exit point are abstracted away. An alternative way to describe fair abstraction is to
note that under fair abstraction deadlock and livelock are considered equal. [8, page
154].

Divergencies can be expressed in algebraic terms by introducing a new symbol, , or
delay, which denotes a simple -loop (see Figure 22 on page 90). Since loops in the
first place can only be introduced by recursive definition (which we have mostly
ignored until now), it is not possible to give a simple equational rule of how to handle

-loops introduced by abstraction. Instead, one can give a number of axioms of how
one can simplify recursive formulae. The simplest of these axioms, called DE

1

, can
be written as follows:

DE

1

Using , it is possible to describe fair abstraction with the principle , which
is called fairness principle. Using this, one can derive , where denotes
successful termination, and , which expresses the above mentioned property
of fair abstraction of considering deadlock and livelock equivalent. [8]

5.4.7 Failures-divergencies semantics

As discussed above, divergencies are typically introduced in abstraction process.
Now, while it is often perfectly reasonable to make the fairness assumption, and
thereby ignore non-livelock divergencies (and identify livelocks with deadlocks), the
methods certainly ignore some vital information about the processes. Therefore a
number of semantics explicitly considering divergencies have been introduced. Han-
dling of these are beyond the scope of this study, and therefore we just enumerate a
few:

•

The FDR model checking tool introduces by Formal Systems, London, uses a
CSP semantics explicitly modelling divergencies. The FDR semantics are trace
based, and thus coarser than most bisimulation based semantics [38].

x ix y

+=

i

x

()

i

y

()

=

FIGURE 22.

 Delay, or simple

-loop

=

+=

=

Modelling and Verification of Cryptographic Protocols

91

Model checking and Process Algebra

•

The CFFD semantics promoted by Valmari et al. preserves divergency informa-
tion, but still allows a fairly large class of processes to be identified. CFFD is finer
than FDR semantics, but still trace based and coarser than the bisimulation
semantics. However, is not comparable to weak bisimulation or other bisimula-
tion semantics that do not preserve divergencies [110].

•

The divergence sensitive branching bisimulation briefly mentioned in the section
of branching bisimulation can be considered as a third example [41].

5.5 Model checking

 Having the notation and some insight of the semantic theory of process algebra in our
hands, we now turn our attention to model checking, or methods of proving that a
process or protocol model has (or has not) a number of desired (or undesired) proper-
ties. There are a number of approaches to model checking, but we will present only a
few. The model checking approaches we will cover include the following:

•

Equivalence and preorder relations are used to determine the above mentioned
correspondence between a specification and an implementation.

•

Minimization and visualization can be used to find a minimal model equal to one
given, and to visualize the minimal model in order to bring insight to the behav-
iour of the original model.

•

Direct property checking can be used to figure out if a model fulfils any number
of properties given in some other form, e.g. with temporal logic. Property check-
ing can be combined with minimization if there are equality semantics that we
know to preserve the properties.

5.5.1 Tackling state space explosion

Before going to the approaches themselves, we will first briefly describe the so called
state space explosion problem and a number of approaches to alleviate it. Typically, a
detailed model of a communication protocol consists of a number of processes acting
in parallel. In our favourite example Alice, Bob and Eve are all parallel processes. As
we have already seen in some of the examples, given fairly general constraints that
basically restrict a number of completely deterministic systems outside the consider-
ation, parallel composition causes a well-known

state explosion

 problem. That is, the
number of states in the composite model tends to grow exponentially in the number
of processes. This easily leads to models having billions or even larger number of
states.

There are a number of methods designed to alleviate the state space explosion prob-
lem in the process algebraic approach. Those we consider here all try to reach the
same goal: cut down the number of states to be considered. However, they are appli-
cable in different situations.

First, there are relatively fast (cubic worst case complexity) minimization algorithms
based on weak bisimulation or some relative of it. These algorithms take a model rep-
resentation (i.e. an LTS) of a process and produce another process that is minimal in
number of states and equivalent to the first one in terms of used bisimulation seman-
tics. The technique can be combined with symbolic representation allowing different
values of variables to be folded together.

Another possibility is to use failure- and/or divergence preserving semantics such as
CFFD to produce a smaller model. These methods use both heuristic methods and
algorithms such as stubborn sets, and typically produce models that are smaller than

Model checking and Process Algebra

92

Modelling and Verification of Cryptographic Protocols

the original one, but not necessarily minimal. In fact, it has been shown that minimi-
zation of a process with respect to a failure-divergencies semantics has a worst case
complexity in PSPACE. However, this does not mean that the semantics are inappli-
cable; a result less than optimal is often good enough [111].

It is also possible to apply an equivalence (or a preorder relation) on the fly, i.e. dur-
ing a testing process, on the model considered. For example, it is possible to apply
the stubborn sets method during the verification and thereby lessen the number of
states that need to be checked. In the area of model checking based verification of
cryptographic protocols, most methods seem to be based on the idea of limiting the
number of states during the verification. However, it seems to be more usual to apply
some kind of problem specific heuristics instead of process algebraic equivalence
theories.

Finally, a method which seems to be surprisingly easy to apply but apparently unused
in the area of cryptographic protocols, is the reduction of state spaces at the level of
compositional construction. This method takes advantaged of the fact that the proto-
col models, like most concurrent processes, are constructed from several compo-
nents. Now, if we have a equational semantics that preserves the properties we are
interested in and that is a congruence with respect to the composition operators (typi-
cally parallel composition and hiding), it is possible to first reduce the models to be
combined, then apply the construction operator, and reduce the model again. [111]

5.5.2 Comparing process models

If the properties a protocol needs to fulfil can be defined in terms of a process model,
it is natural to perform model checking by comparing protocol models. In this setting,
we have two distinct models of behaviour. The first one, a specification, is typically
fairly simple, given directly as a single model describing only an external view of a
system, and attempts to describe how an implementation should behave. The other
process model, an implementation, is more detailed, contains some kind of represen-
tation of the communication environment the protocol is meant to operate in, and is
typically given as a parallel composition of several process models.

The aim of the verification is to check if the implementation is equal to the specifica-
tion with respect to some semantic model, or, alternatively, to determine if the imple-
mentation is an refinement of the specification, i.e. a more detailed model in the
preorder defined by the semantics. In this kind of verification it is possible to use
compositional LTS reduction as well as bisimulation and/or failures-divergencies
based minimization algorithms, depending on the properties represented by the spec-
ification.

5.5.3 Visualisation approaches

Another possibility, promoted user friendly by Valmari et al., is based on the idea of
reducing an implementation model small enough so that human inspection is feasi-
ble. The basic idea is to hide all but a few actions of the model, produce an reduced
model with respect to this hiding, and to inspect the implementation form this point
of view. It is possible to use different sets of actions left visible, thereby checking that
the implementation fulfils the mental requirements from several points of view. This
method seems to be promising in the sense that it may bring new insight to the possi-
ble execution paths of the implementation level mode.

Modelling and Verification of Cryptographic Protocols

93

Model checking and Process Algebra

5.5.4 Checking validity of formulae

Typically protocol specification, or some part of it, is not given as a process model
but as a number of logical formulae or other type of queries. The aim of verification is
to check if these properties hold in all possible states the model can reach. In this
case, semantic equivalencies and algorithms based on them must be seen as tools: the
aim of the equivalence is to diminish the number of states to be check. Typically one
of the problems in this setting is to ensure that the state space reduction algorithms
does preserve the properties expressed by the formulae. That is, any model modifica-
tion performed in the name of semantic equivalence may not remove nor introduce
any phenomena that could affect to the properties one is trying to check.

Again, it is enlightening to notice that there is no need to require that any reduction
algorithm would produce a minimal equivalent process model; it is enough to reduce
enough to bring the model within the limits that can be checked in reasonable time.
Now, it should be clear by now that the weaker the used semantics, the coarser the
equivalence classes are, and thereby the size of the smallest models within an equiva-
lence class diminish as the semantics gets weakened. Thus, the weakest semantics
that preserves the interesting properties is ideal, since the set of potential reduction
tools is largest. Therefore it is important to analyse the desired properties in terms of
the semantic theories, and, if compositional construction is taken advantage of, com-
bine the analysis results with congruence requirements.

5.6 Summary

In this chapter, we have briefly discussed the properties of concurrency in general,
thereafter concentrating on process algebraic models and methods. We first intro-
duced the basic concepts of states, actions and events, thereafter briefly discussing
how to model communication, what are deadlocks and livelocks in terms of actions
and events, and what is the purpose of abstraction and hiding. The basic model
behind all our discussion is that of process graphs, or, labelled transition systems. Of
the existing process algebraic formalisms we briefly covered ACP

, CCS and CSP.

In the second part of the chapter, we concentrated on semantic issues. The semantics
were viewed from the point of view of graph equivalence classes: a strong semantics
considers few graphs equivalent, a weak semantics larger groups. Graph isomor-
phism is clearly the strongest semantics, while plain trace semantics is the weakest
practical one. The problem with trace semantics is that it does not preserve the
branching structure of a process. Various kinds of bisimulations have been proposed
to take care of the branch preserving problem, including strong bisimulation, weak
bisimulation (aka observational equivalence), rooted

-bisimulation (aka observa-
tional congruence), and branching bisimulation. However, these do not handle diver-
gencies very well. The problem of handling divergencies was touched only lightly,
mentioning a few semantics, since most cryptographic protocols tend to behave
pretty regularly in respect to divergent behaviour.

Finally, we introduced the concept of model checking. First, the problem of state
space explosion, and some possible ways to alleviate it, was discussed. Thereafter
three different model checking approaches were mentioned: model comparison
vrt. some semantics, human inspection based on visualisation, and checking of the
validity of logical or other formulae.

Model checking and Process Algebra

94

Modelling and Verification of Cryptographic Protocols

Modelling and Verification of Cryptographic Protocols

95

P

ART

 III

 CHAPTER 6 Comparison of some BAN-based
approaches ..97

Introduction to the selected papers.................................. 97

Comparison of syntactic approaches............................. 104

Differences in the semantic approaches 106

Summary ... 110

CHAPTER 7 Future directions111

Process algebras and protocol models........................... 111

Temporal and modal interpretation 112

Summary ... 114

CHAPTER 8 Conclusions...115

96

Modelling and Verification of Cryptographic Protocols

Modelling and Verification of Cryptographic Protocols

97

CHAPTER 6

Comparison of some
BAN-based approaches

In this chapter we refer and analyse a number of protocol analysis papers. The papers
represent advancements in the area of approaches based on epistemic and doxatic
logic. We have selected the papers partly based on the number of citations and partly
by our own intuitive feeling of what seems to be more and what less important. Based
on this criteria, the papers include the well known BAN [20], CKT5 [14], GNY [46],
AT [2], and SvO [108] approaches as well as a lesser know papers by Paul Syverson
[106], and Wedel and Kessler [113]. Paper [106] represents Paul Syverson’s approach
in adding time to a BAN like logic, while the [113] paper represents a fairly compli-
cated approach with some good and some undesirable properties. Some of the discus-
sion has been influenced by [77, 97].

The main points that we will concentrate on are protocol idealization vs. explicit
message recognition, monotonicity of beliefs, and the differences in underlying
semantic models. In general, the real problem is how to interpret the meaning of a
message.

The rest of this chapter is organized as follows. In the first section, the papers are
described in rough historical order, pointing out the major contributions in each
paper, the most important differences between them, and also discussing some criti-
cism. This discussion is purposefully kept at somewhat superficial level, without
going into details; the next two sections attempt to go in greater depth. In the second
section of this chapter we have colleted together the syntactic reasoning rules of the
various logics. This perspective lets us to see the differences between the approaches
in a very concrete way. The section after this, on the other hand, concentrates on the
semantic models of the logics, and discusses, among other things, the deep differ-
ences between protocol idealization versus explicit message recognition combined
with initial beliefs. A summary concludes the chapter.

6.1 Introduction to the selected papers

In this section a number of modal logic based cryptographic protocol analysis tech-
niques are considered in some detail. The selected papers come in two flavours: the
work of Bieber (CKT5) represents a separate direction; the rest of the techniques
belong to the BAN family.

Comparison of some BAN-based approaches

98

Modelling and Verification of Cryptographic Protocols

We will first consider the original BAN approach. However, since it is generally con-
sidered outdated, the consideration is brief and sketchy, concentrating only on the
main points. CKT5 is discussed next to give perspective. The rest of the section
describes GNY, AT, SvO, adding time by Syverson, and AUTLOG by Wedel and Kes-
sler.

6.1.1 The original BAN logic by Burrows, Abadi and Needham

The paper titled “A Logic of Authentication” by Michael Burro Abadi and
Roger Needham [20] is usually considered to be the seminal work in the field of
modal logic based analysis of cryptographic protocols. The simplicity of the applica-
tion of the technique, as well as the wide publicity due to the multiple publication of
the paper, quickly led to several applications of the technique. However, the tech-
nique itself has both theoretical and practical drawbacks, and therefore the derivatives
are favoured over the original BAN in practical use.

Figure 23 below depicts the analysis process of the BAN approach. The outlined box
contains the formalized part of the process: turning a protocol specification into an
idealized protocol, and identifying the beliefs the parties initially possess are left for
informal reasoning.

The BAN-approach makes a number of external assumptions that have been later
relaxed in other approaches, e.g. BAN assumes that all parties can remember what
messages they have sent, ever. Furthermore, the designers of BAN made a conscious
decision to avoid explicit notion of time, and to base the belief analysis on opera-
tional notation of beliefs, as opposed to the intensional notion of beliefs used else-
where this study.

Having been very successful in practical terms, later research has found several defi-
ciencies in the BAN approach. For example, Mao and Boyd [71] describe four weak-
nesses: the protocol idealization is too informal and flexible, the logic mixes both
messages and formulae in the belief system, the system of deriving the initial beliefs
(assumptions) is flawed and does not give the weakest set of initial beliefs possible,
and BAN does not consider confidentiality. The last one, i.e. handling confidentiality,
was not a goal in BAN. In our opinion, however, the remaining three points are well
founded.

FIGURE 23.

BAN-logic analysis process (Adapted from [97, page 15])

Attach formulae to
protocol steps

Apply rule

Idealized protocol Initially kept beliefs

Cannot
proceed

Protocol specification Informal initial assumptions

Conclusions reached

Modelling and Verification of Cryptographic Protocols

99

Comparison of some BAN-based approaches

According to our experience, there seems to be some problems involved with the
operational approach to beliefs as well. In particular, the usage of an explicit, monot-
onously growing set of believes for each agent as the semantics seems to be some-
what arbitrary. That kind of semantics gives relatively little backing theory to
determine whether a belief held by a party actually holds at a particular moment of
time. Furthermore, determining and handling beliefs that are initially true but turn
later false is problematic. We will return to the issue of semantics in section
6.3, “Differences in the semantic approaches”, on page 106.

6.1.2 CKT5 by Bieber

CKT5 by Pierre Bieber [14] represents a quite different approach to protocol model-
ling. In fact, Bieber’s approach resembles somewhat to the approach we have out-
lined in chapter 7. The approach concentrates on giving a reasonable semantics for a
modal logic describing cryptographic protocols, and discusses how the resulting
logic can be used to describe security properties of the logics.

Bieber considers the cryptosystems used to be ideal, as usual. He assumes that there
is a separate unreliable but honest network, a number of honest agents and a number
of malicious agents. In his communication model, each message sent is received by
someone (a honest or malicious agent), and each message received was sent by some-
one. He assumes that messages are constructed from basic messages in an unambigu-
ous way; we will return to this point below. Basically this means that he considers it
impossible to decrypt or encrypt messages without the appropriate key.

The basic model consists of a set of agents , a set of actions, which can be send-
ing, receiving or internal actions, and the local histories of agents. A local history
consists of some initial state of the corresponding agent, a set of messages

 the agent has sent between the start of time and a given point of time , and
a set of messages the agent has received before . It should be noted that
what Bieber calls a local

history

 is actually a local

state

, i.e. a history up to a moment
of time. A global history (i.e. state) is a set of local histories. From now on, we will
deviate from Bieber’s terminology and speak about local and global states instead of
histories.

As usual, there may be several global states corresponding to a single local state. This
forms a number of state equivalence classes per agent, giving a usual multimodal
Kripke structure (cf. section 4.4.2, “Knowledge of different agents”, on page 57).
However, in the Bieber’s model, there is a global time (even though the agents do not
necessarily “know” this), and the knowledge relations are considered only among
local states at a given time. In our opinion, this would complicate practical analysis
considerably, since for each local state (of a given agent) all states of the other agents
must be explicitly considered, figuring out which of them are possible and which of
them are not, given the causal relationships of the sending and receiving actions. The
approach leads also to another complication: the fact whether a message has been
sent (or received) or not, is considered a modal connective; we will ignore this detail
in the following.

Comprehension of messages.

Bieber’s approach to recognizing, or comprehending,
messages is interesting. The idea is based on two parallel term algebras: a free alge-
bra, similar to the term rewriting systems used by Dolev and Yao, and a cryptoalge-
bra, representing the algebra of the actual bit patterns carried in the protocol
messages. A party is said to

know

 the meaning of a bit pattern (e.g. a term of the cryp-
toalgebra) iff its interpretation in the terms of the free algebra is identical in all
worlds the party considers currently possible. For a basic term, this property is
defined as , meaning that the interpretation of is clear to at time .

AGT

I

a

S a

0

t

, ,

()

t

R a

0

t

, ,

()

t

K

a t

,

clear

x

()

x

a

t

Comparison of some BAN-based approaches

100

Modelling and Verification of Cryptographic Protocols

Formally, Bieber defines a predicate

1

 to denote a party’s ability to fully
comprehend the contents (and therefore the meaning) of a message. In other words,
an univoque message has to be constructed of clear text messages using concatena-
tion and encryption with keys that are known to the party. Using a notation resem-
bling the original, the fact that a message is comprehensible to an agent at time

 can be expressed as

where denotes decryption, means that is a plain text message,
and means that is a valid key. means that the party

knows

 at time
that is true, i.e. holds in all states considers possible at the current state.

Bieber’s partial clearness is a notion corresponding to

recognition

 of messages in
GNY and AUTLOG. He defines a predicate :

where

This basically expresses that a message is partially clear (i.e. recognizable) iff there is
a submessage of it that is clear, i.e. plain text. A message is a submessage, on the
other hand, if it is either the containing message itself, or the containing message has
the submessage either due to concatenation or as an encrypted part of it. The reader
should note how the definition of differs in this last respect from the notion
of used in AUTLOG.

Secrecy, integrity, and authenticity.

Using notations introduced above, Bieber gives
formal definitions for secrecy, authenticity and integrity, among other things. We
repeat these definitions (or slight modifications of them) here using a different lan-
guage based on the usual notation used in this study.

The definition of secrecy is relatively simple:

Basically this states that an item (e.g. a key) is known only to and if and only
if they (originally) know it, and they can be always (at all future times) sure that if
there is a party that knows the item, then must be either or . This requirement
seems to be too strict, and in fact it stems from Bieber’s opinion that secret sharing
requires

common

 knowledge about the possession of the secret and that no-one out-
side the group knows (possesses) the secret.

1. Using the terminology of AUTLOG, a similar concept is the

localization

 of a mes-
sage, cf. section 6.1.7, “Yet another approach: AUTLOG by Wedel and Kessler”,
on page 104.

univoque

m

a

t

univoque

a t m

, ,

()

K

a t

,

clear

m

()

k

K

a t

,

key

k

() univoque

a t d k m

,

()

, ,

()

:

()

m

1

m

2

,

m m

1

m

2

,

= univoque

a t m

1

, ,

() univoque

a t m

2

, ,

()

:

()

d k m

,()

clear

m

()

m

key

k

()

k

K

a t

,

a

t

a

p_clear

p_clear

m

()

m

'

belongs

m

'

m

,

() clear

m

'()

:

belongs

m

'

m

,

()

m m

'=

m

0

k

,

key

k

()

m

'

d k m

0

,

()= belongs

m

0

m

,

()

:

()

m

0

m

1

,

m

0

m

1

m

'

,

=

m

0

m

'

m

1

,

=

()

belongs

m

0

m

,

()

:

()

belongs

submsg

private

a b

,{ }

x

,

()

a x has b x has ()

a c x has c a b ,{ }()

 knows

b c x has c a b ,{ }() knows
(

)

x

a

b

c

c

a

b

Modelling and Verification of Cryptographic Protocols

101

Comparison of some BAN-based approaches

Bieber’s definition for integrity does not seem to consider message integrity as we
know it, and remains somewhat obscure. The lemmas he gives express various facts
what a party can infer from an encrypted message it cannot decrypt. He seems to
intend to show that a key is necessary to create a message that contains an encrypted
component.

Bieber’s notation for authenticity of a message, translated in our language, can be
expressed as a formula

This states that if receives a message that contains an encrypted submessage
 that can be decrypted with some key known to , then there is some party

that has sent a message containing the submessage , and knows . Com-
bined with the definition of privacy of keys this allows one to detect when a message
has been sent by a particular party, and thereby assure its authenticity.

Proving security.

In addition to defining the security properties in the model of com-
putation provided, Bieber shows how confidentiality (and timeliness) of a message
can be protected with proper usage of nonce and encryption. This proof is not partic-
ularly interesting.

The fundamental value of Bieber’s work is in showing that security properties can be
defined in terms of low level communication primitives. He is also among the first
authors applying Kripke structure based semantics to the knowledge formulae in the
analysis of cryptographic protocols. However, his definitions and semantics seem to
be unnecessarily complicated, and simpler approaches have later emerged (e.g. AT,
AUTLOG, and the approach given in chapter 7 of this work).

Furthermore, Snekkenes [104] applies CKT5 to a protocol known to have a flaw, and
is able to use CKT5 to prove that the protocol is secure. This indicates that a strictly
epistemic logic is probably not sufficient for analysing the security of authentication
protocols [97].

6.1.3 The GNY logic of Gong, Needham and Yahalom

The GNY approach is the first one to introduce the notion of

recognizability

 and to
properly distinguish between possessing a message and believing in a statement.
Basically, instead of performing an informal protocol idealization step, the actual
protocol messages carrying actual data are analysed. Only if a message can be recog-
nized, i.e. it contains some data or structure already known and expected by the
receiver, the meaning conveyed by the message can be accepted and added to the set
of beliefs.

Another advancement in GNY is the introduction of the rationality rule, i.e. if it is
universally true that , then . This corre-
sponds to the reasoning rule modus ponens and the modal axiom K used in the later
logics.

The handling of beliefs is still somewhat arbitrary. A person analysing the protocol
will explicitly attach the beliefs a sender want to express to the protocol messages
sent. If a receiver of a message is able to recognized the message, and can believe in
its authenticity of its integrity and origin, the receiver may deduce that the sender of
the message actually believed the meaning conveyed. In GNY the attachment of

a k a a m

0

{ }

k recognizes () knows has a submsg m 0 m 2 , () knows a m 2 reads
m

1

b

,

b m

1 haswritten submsg m 0 m 1 , () b k has b m 0 { }
k

 has :

a

m

2

m

0

k

a

b

m

1

m

0

b

k

a

 believes () a believes ()

Comparison of some BAN-based approaches

102

Modelling and Verification of Cryptographic Protocols

beliefs is performed more mechanically and with less human judgment than in BAN.
However, the process can still be considered to be an informal idealization process.

The GNY approach leads to relatively complicated deduction formulae, and impoli-
ticly requires that the sender and the originator agree on the meaning of messages.
However, GNY allows the receiver to determine the level of trust it has to the sender,
and explicitly decide whether it accepts the beliefs of the sender as its own beliefs.

6.1.4 The Abadi-Tuttle (AT) logic

The AT logic is one of the more successful attempts to give better than original
semantics for a BAN-like logic. AT is also the first paper describing possible-world
semantics at the level of reasoning rules — the earlier attempts (e.g. Bieber) have
more concentrated on the lower level details of security. The semantics are consid-
ered in more detail in section 6.3, “Differences in the semantic approaches”, on
page 106.

In addition to the new semantics, AT makes a distinction between a protocol party
sending some message during the current protocol run versus having sent the mes-
sage at all i.e. maybe during an earlier protocol run. It also introduces a distinction
between messages that have been constructed by a protocol party and those that
merely have been forwarded by it. In our opinion, this latter distinction is not so use-
ful in practice, since it is hard to determine. A better approach is to clearly distinguish
actual messages from the meanings they convey, as in GNY or AUTLOG.

The state model of AT consists of send, receive and key generation actions. Informa-
tion (i.e. received messages and generated keys) cannot be lost; thus, the possession
set of a protocol party is always monotonic. The possessions of parties and local his-
tories combined give straightforward rules to determine which histories, i.e. inter-
leavings of actions, are possible and which are not. To distinguish between originally
generated and forwarded messages, a protocol party’s information (possession) set is
divided into messages and submessages

seen

, and messages and submessages

sent

.
The difference between them determines what has only been forwarded, and what is
originally generated.

Abadi and Tuttle do not consider negative beliefs, thereby retaining the monotonicity
of the beliefs in addition to the monotonicity of the information.

6.1.5 Towards unified semantics: SvO

A more recent paper [108] by Paul Syverson and Paul C. van Oorschot attempts to
unify the approaches of BAN, GNY, AT and VO [87], and succeeds in defining a sim-
ple logic (only 20 rules) with a good model theoretic, possible-worlds based seman-
tics. From our point of view, the only technical deficiency in this approach is the
mixing of actual messages and logic formulae, thereby requiring an idealization
phase along the lines of BAN and AT. The full syntax and semantics of SvO will be
described below and compared to those of the earlier approaches as well as the one
used in AUTLOG.

The SvO approach starts from an idealized version of a protocol, along the line of
BAN and AT. However, their language also considers public keys, key agreement (i.e.
DH public key), functions and message comprehensibility. Their language contains a
set of primitive terms (i.e. principals, nonces, keys, constants etc.), and a set of
terms that can be recursively constructed using functions. They also allow messages
even in the idealized protocol to contain both terms (i.e. information) and formulae
(i.e. beliefs and statements).

T

o

T

Modelling and Verification of Cryptographic Protocols

103

Comparison of some BAN-based approaches

Formally, the SvO language of messages consists of any term , any formula
, and any composition of messages where are mes-

sages and is any function. This is fundamentally different from GNY and AUT-
LOG. In GNY, a formula can only appear as an extension of a term in a message, and
in AUTLOG formulae cannot appear within messages at all.

The set of formulae is quite similar to other doxatic logics used. It is constructed of

•

primitive propositions ,

•

propositional connectives and ,

•

modal connectives and ,

•

message predicates , , , , and ,

whose truth value can be determined by studying the local history of (with

 being an exception),

•

key validity predicates and , and key possession predicate

.

They also adopt a convention for complement keys, and for complements of
bijective functions. The full set of SvO reasoning rules and axioms, using the syntax
of this paper, is given in Appendix C, “Rules in the modal approaches”, on page 133.
On the side of reasoning rules, Syverson and van Oorschot explicitly note that the
necessitation inference rules may only be applied to theorems. The model theoretic
semantics makes it possible to determine the validity of initial assumptions in each
given setting.

SvO does not attempt to address time or message ordering. In particular, SvO is not
able to detect some replay attacks that can be detected with some other logics. In fact,
they explicitly note that “the (in [106]) introduced temporal operators are necessary if
one is to even express such criteria [i.e. interleaving or certain kind of replay attacks]
in a BAN-like logic.” [108, Section 5].

However, in whole SvO is clearly one of the better BAN-derivatives, even though it
does not attempt to directly address the protocol idealization step and its drawbacks.

6.1.6 Adding time by Paul Syverson

In [106] Paul Syverson extends the AT logic with temporal operators. The new logic
is sound with respect to the model semantics defined for AT. Thus, using the same
model of computation, Syverson adds a number of standard temporal axioms:

K

4

D

L

Z

In addition to the axioms, the necessitation rule applies to the past time operator .

Within the example given in the paper, the temporal operators are used to define a
number of causal requirements and faithfulness assumptions. The causal require-

x x T

,

F

T

,

F x

1

…

x

n

, ,

()

x

1

…

x

n

, ,

F

p p

,

a

 believes a controls

a x sees a x received a x says a x said x fresh

a

x

fresh

ka b

PK

a k

,

()

a k has

k

˜

F

˜

() ()

() ()

() ()

Comparison of some BAN-based approaches

104

Modelling and Verification of Cryptographic Protocols

ments states the requirement that in a correctly functioning protocol a message
received is preceded with a corresponding message sent by the assumed, legitimate
protocol party. Similarly, the faithfulness assumptions state that a protocol party
sending a message is in a legitimate state, i.e. it actually has received a message that
is required to trigger the sending of the message. These formulae are used to define
“criterion for causal consistency”, which states that if the protocol parties are faithful,
the system will fulfil the causal requirements. Failing to fulfil the causal consistency
criterion is an indication that the protocol has some kind of a problem.

6.1.7 Yet another approach: AUTLOG by Wedel and Kessler

Wedel and Kessler describe in their paper [113] yet another extension of BAN. The
logic is based on a semantic model similar to AT, but contains explicit message recog-
nition rules somewhat similar to GNY. This different initial approach makes it possi-
ble to analyse protocols without first idealising them. In our opinion, this is a clear
advantage compared to the earlier approaches.

The important new notion Wedel and Kessler introduce are inherently connected to
the notions of message comprehension and recognition. These concepts, though in
different format and in different setting, are already familiar from e.g. CKT5 [14].
However, [113] is the first to introduce them in the setting of a BAN-like logic. The
idea introduced is based on the concept of

localization.

 All messages received from a
network by a party are first localized. This means that the party tries to determine the
structure and information content of the message using the information it already has.
For example, if a party receives an encrypted message, i.e. , and has
the relevant key , it is able to decrypt the message into a meaningful plaintext ver-
sion. This notion is expressed with the formula , which
means that in addition to

having

 the message , it also knows the structure of the
message, i.e. that it is encrypted with , or at least believes so. If, on the other
hand, does not possess , we can only deduce
where is the message

localized towards

, and in the absence of effec-
tively identical to garbage.

The actual mechanism used to localize messages is based on a function ,
whose definition and application is somewhat complex. A minor further confusion is
caused by using the symbol to denote the localization process within a proof.
Despite of these minor difficulties, the notion of message comprehension, and the
idea of attaching beliefs to comprehended messages via explicit initial assumptions is
novel and beautiful.

6.2 Comparison of syntactic approaches

The different approaches in different logics have led to different set of axioms and
reasoning rules in the logics. In the first logics (BAN and GNY), there was only rea-
soning rules. Replacing the operational notion of belief, based on explicit beliefs sets,
with an intensional notion of belief, based on modal logic, replaced this setting by
introducing two reasoning rules: modus ponens and necessitation, and giving the rest
of rules as axioms. This simultaneously led to a cleaner set of rules by shifting most
of the reasoning from belief level to non-belief level, i.e. by leaving out the explicit
modal operator from the rules.

We have collected

some

 of the reasoning rules of the logics to Table 11 below. The
table is by no means complete. Also, in most cases we have ignored minor differ-
ences between rules carrying essentially the same intuitive meaning. However, occa-
sionally these differences have been interesting enough so that we have given two

a x

{ }

k reads
k

a a x

{ }

k reads () believes
x

{ }

k

x

k

a

k

a a x

{ }

k

()

a
 reads () believes

x

{ }

k

()

a

a

k

sight

k
r k

,()

Modelling and Verification of Cryptographic Protocols

105

Comparison of some BAN-based approaches

version of an essentially same rule. These rule pairs are indicated with a large curly
brace at the right hand side of the table. However, due to our ignoring of minor
details, the reader is advised to study, in addition to the table, appendix C, “Rules in
the modal approaches”, on page 133, and preferably the original papers as well.

TABLE 11.

Comparison of the rules of the different logics

Rule or axiom BAN GNY AT SvO WK

If and , then - - R1 MP MP

If , then - M R2 N M

- - A1 1 K

- - A2 2 4

- - A3 - 5

- A4 der? der

J1 - - J1

}

- - A15 15 -

F1 A16 16 F1

- F1–F6 A17 17 F2

J2 A20 18 NV

- P1 - 8 H1

- P2,P4,
P6–P8

- 10 H2+
H3

- P3 - 9 SE1
+H1

T2 A7 6 SE1

T3,T4,
T6

A8 7 SE2

- I7 A12 13 SA1

- I7 A12 14 SA2

- I3 A13 - SA3

- I3 A13 - SA4

I1 A5 3 -

}

- - - - A1

I4 - 4 -

}

- - - - A2

impl-
icit

A21 19 S

|–

|–

|–

|–

|–

a

 believes

a

 believes a () believes
a

 believes

a

 believes a a believes () believes

a

 believes () a a believes () believes

a

 believes a believes ()
a

() believes

a

 controls a believes ()

a

 controls a writes ()

x

i

fresh x 1 … x n , , fresh

x

fresh f x () fresh

a x haswritten x fresh a x writes

a x reads a x has

a x

1 has … a x n has
a f x

1

…

x

n

, ,

() has

a x

1

…

x

n

, , has a x i has

a x

1

…

x

n

, , reads a x i reads

a x

{ }

k reads a k ˜ has a x reads

a x

1

…

x

n

, , haswritten a x i haswritten

a x

1

…

x

n

, , writes a x i writes

a h x

() haswritten a h x () reads ()
a x haswritten

a h x

() writes a h x () reads () a x writes

k
a b

a x

{ }

k reads a x haswritten

ka b

c x

{ }

k reads a x { } k haswritten ()

b x

{ }

k haswritten ()

k

b

a x

{ }

k

1– reads b x haswritten

k

b

a x

{ }

k

1– reads b x { }
k

 1– haswritten

k
a b

k
b a

Comparison of some BAN-based approaches

106

Modelling and Verification of Cryptographic Protocols

Maybe the most interesting point in the table is the last section. There we can see how
the GNY recognition rules R1–R6 can effectively be covered by a number of simpler
rules. The table indicates clearly how BAN and AT do not consider message recogni-
tion at all and how the SvO approach seems to be somewhat limited, while WK
attempts to cover the same are GNY covers, and somewhat more. Other than this, the
table may speak for itself.

6.3 Differences in the semantic approaches

A deeper difference between the discussed approaches can be found in their semantic
model, and model of computation.

6.3.1 Models of computation

In the original BAN approach, a local state of a party consists of two sets: a set of
formulae and a set of beliefs . These sets are transitively closed, including all
the formulae (messages) and beliefs that can be deduced from the contents of the sets.
A global state is a tuple of local states, as usual. A run, on the other hand, is simply a
finite sequence of global states where the sets and monotonously grow for all

. A run is a run for a protocol, if all the messages described in the protocol appear in
the message sets of the receiving parties at an appropriate moment.

The discussion about the validity and truth of beliefs formulae is vague in BAN, and
based on the direct construction of beliefs sets using the annotation rules. Thus, effec-
tively, the beliefs in the BAN sense are semantically meaningless formulae attached
to the points of a protocol run, giving no real information about the state of affairs.
The intuitive meanings of the beliefs are distinct from the semantics, i.e. the seman-
tics give no base to actually accept the intuitive meanings attached to the beliefs.

In GNY, the semantics given are pretty similar. Basically, a local state of an agent
consists of a set of possessed messages and a set of believes , having closure

- - - 5 KA

- - - - KD

- - - 11+
20

-

}

- R6 - - -

- - - 12+
20

C3+
C

}

- R5 - - R3

- R1 - - R1

- R2-R4 - - R2

- - - - R4

TABLE 11.

Comparison of the rules of the different logics

Rule or axiom BAN GNY AT SvO WK

x

a

y

b

g

xy

a b

k
a b

good

f

x

()

f k x

,

()

a b

a a h x

() has () believes
a a x has () believes

a h x

() has a a x recognizes () believes

a a x has () believes a h x () reads
a a h x

() reads () believes

a x has a h x () recognizes

a x

i recognizes a x 1 … x n , , recognizes

a x recognizes a k ˜ has
a x

{ }

k recognizes

a x has a k has P z { }
k

 1– recognizes

a

M

a

B

a

M

a

B

a

a

M

a

P

a

B

a

Modelling and Verification of Cryptographic Protocols

107

Comparison of some BAN-based approaches

properties similar to BAN. A global state is a tuple of local states. Given this,
 iff and iff . A run is a sequence of global states,

requiring monotonicity of message and belief sets as above. The only difference is
that we now have explicit rules for including new messages and beliefs in the set of
messages and beliefs:

•

For a protocol step , denoting sending a message with the

attached meaning , occurring between the states and ,

 and .

Kripke-structure based semantics.

AT takes a totally different approach. A local
state includes a local history, i.e. the sequence of actions the party has performed, and
a set of keys the party possesses. The environment state includes a global history, a
set of keys known to the adversaries, and a set of messages sent but not yet delivered.
The actions can be send, receive or key generation actions, each having a clearly
defined effect on the histories of the performing party and the environment. The set of
messages potentially possessed by a party (or the environment) can be determined
from the local history and the set of keys known using syntactic (algebraic) concate-
nation, encryption and decryption rules. This notion is determined using the functions

 which determine what parts of can be seen using the keys in
the key set , and , which determines the parts of the sender
of can be kept responsible for, given that it knows the keys in the keyset and the
messages in the message set .

The set of global states can be seen as points in a multimodal Kripke-structure. To
define the reachability relations, Abadi and Tuttle define a function that takes a
local state of a party, and hides all messages the party cannot understand. Effectively,
all messages and parts of messages that cannot be comprehended are replaced by a
special symbol denoting an encrypted message that cannot be decrypted.

1

 Given
the hiding function, two global states and are indistinguishable with respect to a
party iff where is the local state of at the global state

.

A disturbing feature of the AT semantics is that the handling of the function is
not clearly visible at the logic level. That is, there is no notion for expressing that
has received and

does

 comprehend its structure vs. it

does not

 comprehend the
structure. A rule corresponding to this situation, A11, entitles the party to believe it
has received the encrypted message. However, this does not grab the essence of the
distinction. Furthermore, it has been later shown that A11 is not sound with respect to
the semantics [113].

Towards unification: SvO.

The basic model of computation in SvO is very similar
to AT. However, there are a few differences. First, in AT the first global state is seen to
represent the beginning of the current run, in SvO there may be states before the start
of the current run (i.e. state with). This seems also to mean that there is no need
for the set of initial keys. Second, SvO makes a difference between receiving a mes-
sage and seeing it, not available in AT.

The main difference concerns the cryptographic (and algebraic) capabilities of the
parties, and how this point of view reflects to the possibility relations within the
Kripke-structure. While in all the other logics discussed in this chapter, the parties are
thought to have a fixed set of algorithms at their capability, the semantics of SvO
includes the possibility of having variation. This may lead to a situation where a party
considers possible a world that looks similar to the current one, but where it actually

1. This is somewhat similar to the *-notion of incomprehensible messages used in WK.

a

 believes B a a x has x P a

a b

x

:

a

b

x

s

i

s

i

1+

x P

a

s

i

()

P

b

s

i

1+

()

B

a

s

i

()

seen submsgs

K

–

x

()

x

K

said submsgs

K M

,

–

x

()

x

x

K

M

hide

s

i

s

j

a

hide s

a i

,

()

hide s

a j

,

()=

s

a i

,

a

s

i

hide

a

x

{ }

k

t

0

<

Comparison of some BAN-based approaches

108

Modelling and Verification of Cryptographic Protocols

would have greater algorithmic capabilities, and thus could comprehend more mes-
sages.

Formally, denotes the set of messages the party is
able to comprehend, i.e. fully understand, given the algorithmic capabilities of the
point and the seen messages of the point . Thus,

 denotes the comprehended messages in a run at
time . Now, the possibility relation (for each party) is defined by

 (for) iff

.

In our opinion, this approach does not make much sense in most practical situations.
Furthermore, it complicates semantics and makes the possibility relations non-eucli-
dean.

Other than these, and the fact that SvO can handle a larger set of cryptosystems, the
semantics of SvO and AT are almost identical.

Minor differences: WK.

The semantics given in [113] are based on SvO. Runs are
infinite sequence of states, with states both before the current era and during the cur-
rent era. The current era (or run) starts at . In addition to sending, receiving and
generating messages, a party can

name

 a message, i.e. give a new name to a received
message. A state is defined to contain the reflexive transitive closure of messages a
party can construct from the set of message generated, received or named. This is
similar to of AT, and the similar concept of SvO, but handles all mes-
sages possessed by a party, not just those that can be generated from a given message.
As usual, WK requires that only computable message can be sent, only sent message
can be received, and only basic messages (i.e. keys and nonces) can be generated.
Furthermore, only messages known to a party, i.e. messages that belong to , can be
given a new name.

The possibility relations of the Kripke-structure are defined with the help of a func-
tion . This is similar in function to in SvO, but defined in much
more detail. A world is considered possible by a party iff it belongs to a set of
so called

good worlds

, and if applied to the messages of current history is iden-
tical to sight applied to the messages in the history of . In addition to this, WK
adds new semantics for the formulae of type and . These will
be discussed in section 6.3.4, “Idealization vs. explicit recognition of messages” on
the next page.

6.3.2 Adding time

Adding time to a possible world semantics can be quite straightforward, as can be
seen in [106]. The model of computation remains the same, and the temporal aspect
is created using either local of global time. However, proving the resulting logic
sound can be tedious as there may be surprising connections between temporal and
doxatic operators.

Further handling of semantics of time is beyond the scope of this study.

6.3.3 A set of beliefs vs. beliefs based on possible worlds relations

A fundamental difference between the earlier approaches, i.e. BAN and GNY, and the
later developments, e.g. AT, SvO and WK, is in the definition and handling of beliefs.
In the former case, a belief of a party is just a formula belonging to the set of the
party’s beliefs. All beliefs held by a party at a given state are explicitly enumerated.

comprehension a r t

,()

r

'

t

'

,(), ,

()

a

r t

,()

r

'

t

'

,()

comprehension a r t

,()

r t

,(), ,

()

r

t

r t

,()

r

'

t

'

,()

a

comprehension a r t

,()

r t

,(), ,

()

comprehension a r t

,()

r

'

t

'

,(), ,

()=

t

0=

S

seen submsg

–

S

sight

comprehension

r t

,()

sight

r t

,()

a x recognizes x a y

Modelling and Verification of Cryptographic Protocols

109

Comparison of some BAN-based approaches

Whether any of these beliefs is true or not, is not directly apparent from the seman-
tics; the semantics only tell whether a party holds the belief or not. Thus, the beliefs
in this sense are operational, and can be seen as bits of information directing the
behaviour of the agent.

The latter approach is a nearly complete opposite in some sense. In a possible-worlds
based approach, the possibility relationships implicitly define a (potentially infinite)
set of beliefs for a party. The reasoning rules and axioms of a logic can be used to
infer some of the beliefs — preferably interesting ones. If the logic is sound, all of
these beliefs are true if the premises are true. Thus, if a party’s belief about an initial
state of affairs is reasonable, and it doesn’t do any unreasonable assumptions during a
protocol run, the set of beliefs it can be inferred to hold remains valid.

It is worth to note that the beliefs handled even in latter the logics are really beliefs,
not knowledge. That is, there is no assurance that the set of worlds a party initially
considers possible actually contains the real state of affairs. In other words, one or
more of a party’s initial beliefs may be false. Starting from such an initial state, the
real state of affairs may remain outside the set of worlds considered possible during
all of the protocol run. For example, if a party, say Alice, initially beliefs that a key
is only known to itself and to single known trusted party, say Bob, i.e. ,
but the key is known to someone else, e.g. Carol, then all beliefs based on the
assumption that happens to be false.

Thus, in the first approaches the reasoning rules define how beliefs evolve during a
protocol run, and there is no direct semantic support to determine whether the rules
are reasonable or not. In the latter approaches the definition of possibility relations
implicitly define the belief axioms of the logic, and it is relatively easy to determine
whether the axioms are sound with respect to the semantics. In other words, while
earlier the designer of a logic had to use one’s intuition on designing reasoning rules,
a possible worlds based semantics allows the logic designer to concentrate on the
base of the beliefs: what a protocol party can determine about its environment and the
messages seen, and what it cannot.

One important issue not immediately apparent from the papers referred, is the diffi-
culty of defining the possibility relations. All the possible worlds based semantics use
a slightly different construct for this: in AT, in SvO, or in
WK. The basic idea in all of these is the same: to make a party to consider possible a
world which is similar to the current one, but where the real meaning of some incom-
prehensible message is different from the current state. In other words, a party should
not make distinction between the possible states of affairs based on information not
available to it. In the case of cryptographic protocols, the lack of information may be
due to lack of decryption keys in addition to the usual lack of a proper message
received.

6.3.4 Idealization vs. explicit recognition of messages

In BAN, AT and SvO, protocol idealization is a fundamental step in the protocol anal-
ysis process. In this process, all or some of the actual protocol messages or their con-
structs are replaced or augmented with formulae. The logic itself does not make
much distinction between messages and logical formulae. GNY and WK take a dif-
ferent approach. In GNY, (some of) the protocol messages are explicitly annotated
with formulae, denoting that a message is supposed to communicate that the sender
of the message believes in the formula. In WK, all parties have some initial assump-
tions about the meaning of formulae, i.e. Bob believes that if Alice sends a message

, Bob is entitled to believe that Alice believes in some formula .

k

k

Alice Bob

k

Alice Bob

hide

comprehension

sight

m

Comparison of some BAN-based approaches

110

Modelling and Verification of Cryptographic Protocols

At the semantic level, the most apparent distinction based on this can be seen in typ-
ing. Only GNY and WK define clearly distinct languages for messages and logical
formulae. All the rest blur the distinction in a way or another, in the case of AT even
to the point that it is possible to believe in some meaningless datum, e.g. a nonce. At
the other end, in WK messages and formulae are distinct different sorts that cannot be
mixed anywhere.

In GNY, and to a larger extend in WK, the comprehension and recognition of mes-
sages is explicitly brought to the language level. In the original BAN approach, this
step was only implicitly available within the protocol idealization process. AT and
SvO try to be more explicit in this sense, and define the possibility relations on the
base of this concept. However, they fail to fully bring this phenomenon to the level of
the formal language.

To date, WK is most explicit in this direction. First, it has a number of recognition
rules that tell when a protocol party is able to partially comprehend (or verify) the
contents of a message (see section C.5.5, “Recognition axioms”, on page 140). In
some sense, this corresponds to the Bieber’s notion of partially clear messages. Sec-
ond, all messages received are

“localized”

before they may be used within beliefs. To
put it simply, the message localization process replaces all incomprehensible submes-
sages of a message with a special symbol , denoting an arbitrary bit string. For
example, if a message contains both plain text parts and encrypted parts, all the plain
text parts are immediately comprehensible, but the encrypted parts are only compre-
hensible if the party holds the necessary key(s) to decrypt them. Again, this is clearly
related to the notion of the explicit cryptoalgebra and free algebra used by Bieber.

6.4 Summary

We have discussed seven approaches to the modelling and analysing cryptographic
protocols using epistemic and doxatic logics and explicitly compared five of these
approaches. Making a gross simplification, the differences between the five
approaches can be summarized as follows:

•

BAN and GNY are based on an operational, set based, concept of beliefs. All the
rest use Kripke–structure based possible worlds semantics, where the difference
in beliefs is due to differences in the definition of the possibility relations.

•

BAN, AT and SvO have a protocol idealization step, where the protocol messages
are replaced or augmented with logical formulae. GNY and WK rely on explicit
message recognition in this respect.

•

BAN does not explicitly consider message comprehension. GNY takes a rule
based approach. AT and SvO do handle message comprehension at semantic
level, but this is not fully utilized at the level of the formal logic. WK make mes-
sage comprehension explicit, and gives explicit logical rules to handle this. How-
ever, its approach may be unnecessarily complicated.

Bieber’s earlier epistemic approach can be used as a valuable background to reflect
the other approaches to. Especially Bieber’s notion of partially clear messages corre-
sponds beautifully to message recognition in GNY and WK, and Bieber’s use of two
different algebras may give more insight into the message comprehension process.

*

Modelling and Verification of Cryptographic Protocols

111

CHAPTER 7

Future directions

In this short chapter we outline one possible direction for future work. The basic idea
is to combine, at the level of modelling, approaches based on process algebra and
modal logic. Using process algebra one can relatively easily build abstract but faithful
enough models of the protocol being studied. Giving a suitable mapping, the result-
ing process graph can be interpreted as a model for a multi modal epistemic logic.
Such a logic could easily also encompass temporal operators.

7.1 Process algebras and protocol models

The set of actual messages that can be sent within any protocol is finite, though large.
In addition, all well designed protocols have a maximum bound for the number of
messages. Therefore, all realistic protocol sequences, or models, are finite. Having
the parallel composition operation, process algebra suits pretty well to define such a
model. Such a model consists of a number of protocol parties connected to the envi-
ronment (see Figure 24). The environment models

both

 the communication media
conveying messages between the protocol parties

and

 an adversary capable of delet-
ing, duplicating, modifying and creating messages (cf. e.g. [7]). The protocol parties
and the environment can be represented as fairly simple process graphs. Using the
parallel composition these graphs can be combined into a single model.

Alice

Carol

Bob

Eve, the environment

FIGURE 24.

Underlying communication model

Future directions

112

Modelling and Verification of Cryptographic Protocols

The worst practical problem in this approach lies in the modelling of the computa-
tional capabilities of the environment. As the environment represents also the adver-
saries, this means that the environment is capable of

generating

 new messages based
on the information it initially has, and that it receives during a protocol run. The
approach of having two algebras — a free algebra representing information and
another algebra representing the actual bit patterns — seems to be a promising possi-
bility.

The number of

possible

 protocol messages (or well-formatted messages) is finite.
Therefore it is at least theoretically possible to define a function on the environment
states giving the messages the environment is able to generate at a given state. Fur-
thermore, since the computational capabilities are essentially binary: either a mes-
sage is accepted or it is not, it seems to be possible to represent enough of possible
values with a fairly small number of samples. That is, superimposing or folding key
and nonce values with certain properties onto representative values allows one to use
vastly smaller models than otherwise.

The beauty of the process algebraic approach lies in its relative simplicity. The details
of the model are easily understandable, yielding reasonable assurance that the model
actually represents the desired properties of the protocol under study.

7.1.1 Action vs event based models

An action based algebraic model is easier than an event based model for a human to
understand. The behaviour of the parties and the environment can be studied in isola-
tion and combined. Visualization [112] may give more insight to the behaviour. How-
ever, to understand the temporal relationships within a protocol run it is desirable to
transform the model into a at least partially event based model. Taking into account
the natural real parallelism that is part of the model, a non-interleaving semantics is
desirable. Such a transformation seems to naturally lead to concurrent Kripke struc-
tures [49] or Chu spaces [50, 93]. These formalisms have the advantage that they sup-
port the time-knowledge dualism [92] and seem to be more compact than pure event
based approaches. Due to the finiteness of actions and the finiteness of protocol run
length, even such an event based model is finite.

 7.2 Temporal and modal interpretation

Temporal interpretation.

Given an non-interleaving event based model there seems
to be a fairly natural temporal interpretation. In such a model, each state may be rep-
resented as a set of events occurred so far. That is, given a set of unique events , a
state is a the set of events that have occurred, , and the set of possible states
is a subset of the powerset of events, . [49]

Given such a model, the temporal relationship state precedes-in-time

 can be defined
very simply:

for all , iff

That is, a state precedes in time another state iff the all the events that have occurred
in the earlier have also occurred in the later state. The structure is clearly
transitive, reflexive, serial, and antisymmetric, and therefore it is straightforward to
define a linear temporal logic for the model.

However, the model is not a fully branching tree, but may contain areas of computa-
tion that are temporally unrelated, but have a common future. That is, it is possible

E

s

s E

S

S

2

E

s

1

s

2

,

S

s

1

s

2

s

1

s

2

S

,

()

Modelling and Verification of Cryptographic Protocols

113

Future directions

that there are four states such that , , , , but
 and . An example about this situation is given in Figure 25 on

page 113. It is also possible that the events and in the figure are actually more
complex processes, or that there are more than two processes executing in parallel,
creating an n–dimensional cube. Developing a temporal logic that respects the
branching structure of such a model is beyond the scope of this paper.

Epistemic interpretation.

From the information theoretical point of view, the set of
events a protocol party has participated determines the intensional knowledge the
party has. That is, if is the set of events observable by a protocol party , the set

 represents the local state of in a given global state . Now, a relationship
 defining the possible worlds in the view of can be defined:

For all states , iff .

That is, a party considers all such states possible where its local states are similar.

For a non-cryptographic protocol such a definition would suffice for most purposes.
However, given the cryptographic setting, the situation gets considerably more com-
plex. It is well possible — or actually natural in cryptographic setting — that there is
a set of events that all represent a party sending similarly format-
ted messages at a particular situation. Each of the events represents a different mes-
sage, carrying different information. However, due to the receiving party not having a
necessary cryptographic key, it cannot distinguish between the messages. That is,

 but cannot tell the difference.

A deep difference between the BAN-based advanced authentication logics lies in this
very point. (This difference was discussed on a somewhat superficial level in section
“Kripke-structure based semantics” on page 107.) The crucial point lies in dividing
the event set into disjoint sections, each representing a set of messages the party
considered cannot distinguish from each other. Such a division immediately defines
the possibility relationship for each party , leading directly to a well-defined
semantic model for a multimodal epistemic logic.

Unfortunately the sectioning of a given event set from the point of view of a protocol
party seems to be fairly complex. A promising approach seem to lie in the usage of a
separate free message algebra (or term rewriting system) long the way of Dolev and
Yao [34, 35], Bieber [14], and Wedel and Kessler [113]. In these approaches, a mes-
sage is modelled as a composition of basic messages. The parts of the message whose
information is not available to a party due to lack of cryptographic keys is turned into
a special symbol denoting incomprehensible information. Now, all events that have
the same representation in this message algebra are indistinguishable by the protocol
party.

s

1

s

2

s

3

s

4

, , ,

s

1

s

2

s

1

s

3

s

2

s

3

/

s

3

s

2

/

s

2

s

4

s

3

s

4

s

1

A

=

s

2

A e

1

{ }

=

s

3

A e

2

{ }

=

s

4

A e

1

e

2

,{ }

=

e

1

e

1

e

2

e

2

FIGURE 25.

Parallel execution of events e

1

 and e

2

e

1

e

2

E

a

a

s

i

E

a

a

s

i

R

a

a

s

1

s

2

,

S

s

1

R

a

s

2

s

1

E

a

s

2

E

a

=

E

i

e

i

1

e

i

2

…

e

i

k

, , ,

=

A e

i

i

{ }()

E

a

A e

i

j
{ }()

E

a

a

E

i

R

a

a

Future directions

114

Modelling and Verification of Cryptographic Protocols

It is important to notice that the set of events that a party cannot distinguishes
depends on time. That is, if the party later on learns a cryptographic key allowing it to
comprehend some more parts of the message, it can refine the sectioning of the event
set. Using this new information, it can further revise its view of the possible histories,
narrowing the possibility relationship. However, such resectioning is possible only
when the party receives a message, thereby revealing some previously unknown key.

To us, making this sectioning approach more explicit seems to be the only really
missing piece from the puzzle. However, pursuing this point is beyond the scope of
this study.

7.3 Summary

We have briefly suggested that it might be fruitful to consider the modal logic
approaches from a process algebraic point of view. The relatively recently developed
non-interleaving semantics for process algebras [50] seem to yield relative straight-
forward temporal and epistemic interpretations of a protocol model in general. How-
ever, in the case of cryptographic protocols a further complication is caused by the
nature of cryptographic information, forcing one to consider some event sets indistin-
guishable by a protocol party. However, every such a event sectioning must be recon-
sidered whenever the party learns more information due to the possibility of the party
being able to decrypt some previously incomprehensible part of the already received
messages.

Modelling and Verification of Cryptographic Protocols

115

CHAPTER 8

Conclusions

In this study we have considered a number of formalisms and their applicability to
analysing cryptographic protocols. However, our concern has been more on the level
of the security of the whole, distributed system than on the considerations pertaining
to a protocol alone. We have studied protocol models based on action semantics,
event semantics and knowledge semantics. The tools that have been used are modal
logics of knowledge and belief, temporal logics and process algebraic specifications
in general.

The focus of the study is on analysing and designing protocols in order to find and
prevent protocol failures. We have tried to be independent of the cryptosystems used.
This may lead to models that are insecure when used with a particular cryptosystem
while being secure if used with another one. These kinds of considerations can be
seen as protocol cryptanalysis (cf. e.g. [102]), and are beyond the scope of this study.

The three parts of this work are relatively independent. Part I contains the necessary
background information, including an introduction to distributed systems security,
cryptology, protocol modelling, cryptanalysis and protocol flaws in Chapter 2. After
that, in Chapter 3 the goals of cryptographic protocols are analysed in some depth.

Part II contains introductions to modal logic and process algebra. These introductions
are specific in nature, tailored towards the reader interested in analysing crypto-
graphic protocols. This approach is mostly visible in examples and some omissions
with respect to general theory in order to simplify the presentation.

Part III contains the real research results. However, their thorough understanding
requires the previous introductory material, as well as familiarity with at least some
of the actual research papers referred. In Chapter 6 we have compared, both on syn-
tactic and semantic level, the original BAN logic as well as a number of develop-
ments based on it. Bieber’s logic has been covered, too. In Chapter 7 we have
outlined some initial ideas how combining logical approaches and algebraic
approaches might further deepen the understanding of the actual behaviour and
underlying assumptions of cryptographic protocols.

Based on the work it is clear that there is still quite much to be done in the area of
modelling and verification of cryptographic protocols. Both the formalisms them-
selves need to be developed, and especially the automatic verification tools need

Conclusions

116

Modelling and Verification of Cryptographic Protocols

much more improvement. Furthermore, it appears that the area of combining both
epistemic (or doxatic) and temporal operators within a multimodal logical framework
is an area where even basic research is needed. Unfortunately, in order to be really
able to model the intrinsic phenomena involved in protocol failures, such a formal
theory would be needed. It might even be that such a theory would bring more light in
the inherent connections between modal logics and process algebraic models.

Until recently, the logical approaches in protocol analysis have been more successful.
This is natural in the sense that the logical formulae present human thoughts more
clearly than algebraic constraints. That is, less experience is needed in order to under-
stand protocol properties when expressed with logical formulae than with algebraic
formulae. However, recent development by Kewin Lowe and others at Oxford Uni-
versity, as well as elsewhere, has shown that the automatic verification tools based on
process algebra have recently advanced to a level where better results can be achieved
than before. This has led to a situation where the current progress based on process
algebra (especially CSP) faster than the corresponding progress based on modal
logic. Nevertheless, my personal feeling is that be there a similar technical leap at the
logical analysers, the situation may well turn back to the favour of modal logic.

Anyhow, the use of the various formalisms has shown that designing and implemen-
tation of cryptographic protocols is a very challenging task. Even the application of
the current methods, however crude they are, have shown that several protocols
designed by leading experts have contained subtle but disastrous design flaws. Given
the importance of the Internet and distributed systems in general in the future, both
more research and more engineering experience is needed to face the challenges of
the future.

Modelling and Verification of Cryptographic Protocols

117

APPENDIX A

A protocol example

This appendix describes the lengthy protocol example of Section 2.5, “A protocol
example”, on page 26, in full detail. The example system consists of three parties:
Alice, Bob and Eve, Eve denoting the combined network and eavesdropper. For sim-
plicity, the range and domain of both encryption and hash functions has been kept
unrealistically small. The reason for the security of our example lies in the unrealisti-
cally small computational capabilities of the parties.

It is assumed that all the parties are only able to remember three digits in the range
{0...9} and nothing else. That makes it impossible for the parties to store more than
one earlier protocol run in order to use that information for cryptanalysis. It also
makes it impossible for the parties to store the representations of encryption and hash
functions in memory as tables. Furthermore, it is assumed that a random numbers in
the range (0…9) are unpredictably enough and that it is infeasible to try them all. It is
also assumed that the encryption function and hash function

 cannot be cryptanalysed or inverted (not even by exhaustive
search). We also suppose that only Alice is able to encrypt anything and only Bob
able to decrypt, even though we do not explicitly denote any keys, i.e. that only Alice
has the proper encryption key, and that only Bob has the proper decryption key.

These assumptions that we make, being unrealistic, are important. They clearly indi-
cate the kind of assumptions one often implicitly makes when dealing with crypto-
graphic protocols. An unrealistic small example like this sometimes forces one to pay
attention to details that might otherwise go unnoticed.

A.1 The protocol

The purpose of the example protocol is to send one digit of information from Alice to
Bob without revealing it to Eve. The protocol will function as follows. Let be the
digit to be sent.

1.

Alice

generates

a random nonce

2.

Alice calculates and , and

sends

 the message to
Bob (via Eve).

enc 0

…

9

{ }

0

…

9

{ }

:

h 0

…

99

{ }

0

…

9

{ }

:

m

n

enc

m

()

h

n m

,

()

n

enc

m

() h

n m

,

()

, ,

118

Modelling and Verification of Cryptographic Protocols

3.

Upon

receiving

 the message, Bob decrypts revealing and calculates

 to make sure that the message was not tampered with.

4.

To inform Alice that he has got the message, Bob calculates
and

sends

 it to Alice (again via Eve).

5.

When Alice

receives

 Bob’s response, she is able to convince herself that Bob has
got the digit.

The flow of messages is illustrated in Figure 26.

A.1.1 Actions

To model the protocol the following actions are defined:

•

Alice or Bob sends a message consisting three digits (, , and) to the
network. (2*10*10*10 = 2000 different actions).

•

Alice or Bob receives a message consisting of three digits.

•

Alice or Bob sends a digit ().

•

Alice or Bob receives a digit.

•

Alice or Bob generates a random number.

Thus, altogether, there are 4420 different possible actions. Therefore there is one run
of length zero (the empty run), 4420 runs of length one, 4420 * 4420 = 19536400
runs of length two, and over 10

18

 runs of length five. Restricting the runs considered
to those where the actions appear in the right order and are performed by the right
party, there are only 10+1000+1000+100+100 = 2210 runs to consider, all of length
five. Now, given an , the digit to transfer, there are only 10 legal runs: one for each
possible nonce value. Since there are only 10 possible values for , there are only
10*10 = 100 legal runs in these sets of 2210 runs with legal action order, or of about
10

18

 total runs. All the rest represent a failure of one kind or another.

To illustrate the protocol in real terms, the functions and are given in
Tables 12 and 13. Using the tables we can enumerate all the legal protocol runs for

enc

m

()

m

h

n m

,

()

h

n m

1+

()

mod10

,

()

FIGURE 26.

An example protocol flow

Eve,
the NetworkAlice Bob

send n,enc(m),h(n,m) receive n,enc(m),h(n,m)

send h(n,m +1 mod 10)receive h(n,m +1 mod 10)

2. 3.

4.5.

send Alice

…

Bob 0…9 0…9 0…9

, , ,

()

n

e

m

()

h

n m

,

()

receive Alice

…

Bob 0…9 0…9 0…9

, , ,

()

send Alice

…

Bob 0..9

,

()

h

n m

1+

()

mod10

,

()

receive Alice

…

Bob 0…9

,

()

generate 0…9()

m

m

h

x

()

enc

x

()

Modelling and Verification of Cryptographic Protocols

119

e.g. . If , , , , …, and . Thus,
the legal runs are given in table Table 14 on page 119.

TABLE 12.

Values of encryption function

0 1 2 3 4 5 6 7 8 9

5 9 8 0 3 1 4 6 7 2

TABLE 13.

Values of hash function

0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_

0 1 1 6 8 2 2 1 8 6 6

1 9 7 0 5 2 9 4 3 1 7

2 8 1 2 5 1 6 6 2 7 5

3 4 9 5 3 9 3 0 5 4 7

4 8 5 7 8 8 5 5 7 4 1

5 5 9 3 6 8 8 1 3 6 4

6 0 5 7 9 9 1 2 4 9 6

7 7 5 1 7 4 9 1 4 0 4

8 1 0 2 0 3 2 9 4 7 6

9 7 3 3 4 6 4 8 5 3 5

TABLE 14.

Legal protocol runs for

N Alice sends Bob receives Bob sends Alice receives

g(0) s(A, 0, 5, 2) r(B, 0, 5, 2) s(B, 9) r(A, 9)

g(1) s(A, 1, 5, 9) r(B, 1, 5, 9) s(B, 6) r(A, 6)

g(2) s(A, 2, 5, 6) r(B, 2, 5, 6) s(B, 3) r(A, 3)

g(3) s(A, 3, 5, 3) r(B, 3, 5, 3) s(B, 5) r(A, 5)

g(4) s(A, 4, 5, 5) r(B, 4, 5, 5) s(B, 9) r(A, 9)

g(5) s(A, 5, 5, 8) r(B, 5, 5, 8) s(B, 1) r(A, 1)

g(6) s(A, 6, 5, 1) r(B, 6, 5, 1) s(B, 8) r(A, 8)

g(7) s(A, 7, 5, 9) r(B 7, 5, 9) s(B, 2) r(A, 2)

g(8) s(A, 8, 5, 2) r(B, 8, 5, 2) s(B, 4) r(A, 4)

g(9) s(A, 9, 5, 4) r(B, 9, 5, 4) s(B, 2) r(A, 2)

m

0=

m

0=

enc 0() 5=

h 50() 2=

h 51() 9=

h 51() 4=

enc

x

()

x

enc

x

()

h

x

()

m

0=

120

Modelling and Verification of Cryptographic Protocols

A.2 Run based protocol specification

Given the protocol descriptions, we can formally specify the set of possible actions
(the alphabet), which is finite (whose size is 4410 elements), the set of all runs ,
which is infinite but enumerable, the set of possible runs , which is also enumera-
ble, a subset of containing only the runs of length 5 (a finite set), and finally the set
of legal runs.

The set of possible actions:

All runs , possible runs , and possible runs of length 5 :

The set of successful runs:

This completes the external, trace based specification.

all

generate 0()

…

generate 9()

, ,{ }

send Alice 0 0 0

, , ,

()

…

send Alice 0 0 9

, , ,

()
 send Alice 0 1 0

, , ,

()

…

send Alice 9 9 9

, , ,

()
 send Bob 0 0 0

, , ,

()

…

send Bob 9 9 9

, , ,

()

, , ,
, , ,

, ,

{

}

receive Alice 0 0 0

, , ,

()

…

receive Alice 9 9 9

, , ,

()
 receive Bob 0 0 0

, , ,

()

…

receive Bob 9 9 9

, , ,

()

, , ,
, ,

{
}

send Alice 0

,

()

…

send Bob 9

,

()

, ,{ }

receive Alice 0

,

()

…

receive Bob 9

,

()

, ,{ }

=

all

5

all

= =

all

s

0

s

1

…

s

n

, , ,

=

n

0 1

…, ,

=

s

k

receive

a

1

x

1

x

2

x

3

, , ,

()=

a

2

s

i

i k

<, ,

s

i

send

a

2

x

1

x

2

x

3

, , ,

()=

:

s

k

receive

a

1

x

1

,

()=

a

2

s

i

i k

<, ,

s

i

send

a

2

x

1

,

()=

:

5

r

r

5=

:

{ }

=

succesfull

s

0

s

1

…

s

4

, , ,

5

P

s

0

s

1

…

s

4

, , ,

()

:

{ }

P

s

0

s

1

…

s

4

, , ,

()

n m

,

s

0

generate

n

()=

s

1

send Alice

n

enc

m

() h

n m

,

()

, , ,

()=

s

2

:

=

receive Bob

n

enc

m

() h

n m

,

()

, , ,

()

=

=

s

3

send Bob h

n m

1+

()

mod10

,

()

,

()=

 s 4 receive Alice h n m 1+ () mod10 , () , ()=

Modelling and Verification of Cryptographic Protocols

121

A.3 Protocol model

Next we develop a protocol model consisting of a local state machine for Alice and
Bob. Thereafter we present a (partial) state for Eve or the environment. This state
includes all the information Eve is able to gather during a single protocol run. To
keep things simple in this example, we assume that none of the parties are able to
remember information from earlier protocol runs.

The local state of Alice consists of the message to be sent , a nonce , and
a state variable denoting the actions Alice has performed so far. The latter also
dictates exactly what Alice is ready to perform next:

The symbols , , , denote the initial state of Alice, the state
where Alice has generated the nonce , the state where Alice has sent the first
message and is waiting for a reply fro Bob, and the state where she has received his
reply, respectively.

In the same way, Bob’s local state consists of , and :

Using the state variables, we can define the set of legal states for Alice and Bob:

It is quite straightforward to define the sets of acceptable actions in each state (there
are no legal actions in Alice’ state and Bob’s state):

No other actions are allowed in any state. The states where Alice and Bob enter after
each acceptable actions is quite straightforward and not spelled out explicitly.

A successful protocol run is when Alice and Bob both end in their final states.
All other sequences shall lead to a deadlock.

m

Alice

n

Alice

s

Alice

m

Alice

0

…

9

, ,{ }

n

Alice

0

…

9

, , ,{ }

where

 denotes the empty value

s

Alice

init generated sent received

, , ,{ }

init

generated

sent

received

n

Alice

m

Bob

n

Bob

s

Bob

m

Bob

0

…

9

, , ,{ }

n

Bob

0

…

9

, , ,{ }

s

Bob

init received sent

, ,{ }

S

Alice

s m n

, ,

s

init=

n

=

s

init

n

,

:

{ }

=

S

Bob

s m n

, ,

s

init=

n m

= =

s

init

n

m

,

:

{ }

=

received

sent

A

Alice

init

m

a

, ,

() generate 0()

…

generate 9()

, ,{ }

=

A

Alice

generated

m

a

n

a

, ,

() send Alice

n

a

enc

m

a

() h

n

a

m

a

,

()

, , ,

()

{ }

=

A

Alice

sent

m

a

n

a

, ,

() receive Alice h

n

a

m

1+

()

 mod 10

,

()

,

()

{ }

=

A

Bob

init

, ,

() receive Bob 0 0 h 0 dec 0()

,

()

, , ,

()

…

receive

b

9 9 h 9 dec 9()

,

()

, , ,

()

, ,{ }

=

A

Bob

received

m

b

n

b

, ,

() send Bob h

n

b

m

b

1+

()

 mod 10

,

()

,

()

{ }

=

122

Modelling and Verification of Cryptographic Protocols

A.4 LTS, ACP and CSP specifications

The individual LTS models for Alice and Bob are given in Figure 27 and Figure 28.
Note that we have changed both and to in order
to alleviate the need for action renaming before joining the individual models. It is
also noteworthy to realize that most “states” in the figures actually denote a number
of states (typically 10 or 100, one for each different values of or . To make
this explicit, the first possible states of Alice are given in full in Figure 29 on
page 123. Figure 30 on page 123 gives the combined LTS without any explicit net-
work model, i.e. .

The behaviour of Alice and Bob can be described as ACP formulae. Table 15 explic-
itly gives the behaviour of Alice at different states using ACP specifications. Given
the definitions in the table, the total behaviour of Alice can be defined as

TABLE 15.

ACP formulae for Alice’ behaviour in different states

State ACP formula

init

generated

sent

received

FIGURE 27.

 An LTS for Alice with states for different , combined.

m

n

init
m = m

a

n =

gener’d
m = m

a

n = n

a

generate(n

a

)

sent
m = m

a

n = n

a

c(ab, n

a

, enc(m

a

), h(n

a

, m

a

))

recv’d
m = m

a

n = n

a

c(ba, h(n

a

,
 m a +1 mod 10))

send Alice

x

,

()

receive Bob

x

,

()

c

ab x

,

()

m

m n

,

A

c

ab x

,

() c

ba x

,

()

,{ }

B

init
m =

n =

sent
m = m

b

n = n

b

c(ab, n

b

, e

b

, h(n

a

, dec(e

b

))) recv’d
m = m

b

n = n

b

c(ba, h(n

b

,
 m b +1 mod 10))

FIGURE 28.

 An LTS for Bob with states for different , combined.

m

n

ALICE INIT

m

0

m

10

<

=

INIT

m

generate

n

()

GENERATED

m n

,

()

0

n

10

<

=

GENERATED

m n

,

send Alice

n

enc

m

() h

n m

,

()

, , ,

()

SENT

m n

,

=

SENT

m n

,

receive Alice h

n m

1+

()

 mod 10

,

()

,

()

RECEIVED

m n

,

=

RECEIVED

m n

,

=

Modelling and Verification of Cryptographic Protocols

123

Global protocol states.

The combined LTS based protocol model given in Figure 30
is based on synchronous communication and therefore unrealistic. That is, the send-
ing of a message appears

simultaneously

 with the receipt of the message. This is
unrealistic and does not conform to the environment model described earlier.

In order to produce a more realistic protocol model, we keep the models for Alice and
Bob similar, but add a third component, Eve the environment. Eve is always able to
receive messages from both Alice and Bob, and it is able to send any of the messages
she has received so far to Alice or Bob. However, communication will only happen if
a party is ready to send or receive a message. In this sense, communication between
Alice and Eve as well as between Bob and Eve is synchronous. The presence and
behaviour of Eve makes the communication between Alice and Bob asynchronous.
The most important consequence of this is that if Alice has sent a message to Bob,
she does not know if he has received it before she got a response back from him.

9,

1,

0,

.

.

.

0,

0

0,

1

0,

2

0,

7

0,

8

0,

9

.

.

.

generate(0)

generate(1)
generate(2)

generate(7)generate(8)generate(9)

1,

0

1,1

generate(0)generate(1)

9,

7

9,

8

9,

9

generate(9)

generate(8)

generate(7)

.

.

.

FIGURE 29.

 Alice’ states init and generated in full.

FIGURE 30.

 The combined LTS representing both Alice’ and Bob’s actions

init
init

gener’d
init

sent
recv’d

recv’d
sent

generate(n
 a)

c(ab, n

a

, enc(m

A

), h(n

a

, m

a

))

c(ba, h(n
 a ,

 m a +1 mod 10))

124

Modelling and Verification of Cryptographic Protocols

Thus, Eve is always able to receive anything, and she is able to send anything she has
earlier received. This can be achieved by defining the environment state, or the local
state of Eve, as the collection of all messages received by the environment so far. We
accomplish this by defining as the sequence of messages received so far. Thus, the
set of all possible environment states can be defined as

or the set of possible protocol runs with all generate actions removed.

The behaviour of Eve can be defined as where is a protocol run and
 denotes a state that is able to receive anything and send any of those messages

that have been sent during . Now, if ,
would be

Now we can define a communication function which lets Eve to receive anything
Alice or Bob sends, i.e.

and Alice and Bob to receive anything Eve decides to send.

Given these preliminaries, the behaviour of the overall system can be defined as the
ACP formula . Analysing this model it can be shown that the
only possible successful protocol run is the one intended. In fact, even if we have
added the environment model, there is still only 1 (initial) + 10 (generated) + 100
(sent, not received) + 100 (sent and received) + 100 (reply sent, not received) + 100
(reply received) = 411 possible states. The primary reason for this is that Eve cannot
generate any new messages but only delay the delivery of sent messages.

The previously described environment model allows the environment to send only
messages that it has already learned. However, if we consider a real world situation,
an adversary can send absolutely anything to the protocol parties. It relies on the
responsibility of the parties to decide whether the message received is acceptable or
not. In our toy model, Eve has 1/10 probability of generating a message Bob will
accept as a genuine one from Alice, and 1/10 probability of responding to Alice’ mes-
sage in such a way that Alice believes it coming from Bob. In real life, where the
ranges and domains of cryptoalgorithms are much larger, these probabilities will be
nearly negligible.

Using the alternative environment model where Eve is able to both send and receive
anything, the total model of the system becomes much more complex. In addition to
the initial action of Alice generating a nonce, Eve can decide to send a message to
Bob. Of the 1000 alternatives Eve has, 100 will be accepted by Bob. Thus, the 10 sec-
ondary states (where Alice has generated a nonce) is replaced by a union of the legal
states and 100 alternative states where Eve has succeeded to send Bob a message that
looks legal. In real life the number of states would grow so huge that there would be
no possibilities to handle all states explicitly.

Yet another environment model would allow Eve to generate some messages, but in
such a way that all these messages would be “illegal”. In the case of our toy model,
this is easy by deliberately choosing a number of messages where the hash function
checking does not succeed. Another direction is to allow Eve to remember messages
from previous protocol runs. Using this approach, it can be shown that Eve is able to
launch a reply attack against Bob but not against Alice. In other words, Eve is able to

s

e

S

e

S

e

generate

x

()

⁄

=

EV E

r

r

EV E

r

r

r

generate 0() send Alice 0 5 9

, , ,

()

,

=

EV E

r

receive Eve 0 0 0

, , ,

()

…

receive Eve 9 9 9

, , ,

()

, ,{ }

send Eve 0 5 9

, , ,

()

{ }

send

a

x

x

1

x

2

x

3

, , ,

() receive Eve

x

1

x

2

x

3

, , ,

()

,()

communicate

a

x

e x

1

x

2

x

3

, , ,

()=

ALICE EV E BOB

Modelling and Verification of Cryptographic Protocols

125

make Bob believe that Bob has received a message from Alice, even though Alice has
not sent any messages during the protocol run, but Eve is not able to convince Alice
that she has succeeded sending a message to Bob if Bob has not received the mes-
sage.

This completes our discussion of protocol models in the light of the example. The
issues are covered in more detail in chapter “Model checking and Process Algebra”
on page 71.

A.5 Knowledge and beliefs

There is one issue left to be discussed using the example: the question of knowledge.
The apparent purpose of the protocol seems to be transfer the one digit of informa-
tion, , from Alice to Bob. Unfortunately it can be shown that since sufficiently pow-
erful Eve (one that remembers earlier messages) can make Bob believe that he has
received a message even when he has not, this primary goal is not succeeded. Instead,
it can be shown that after a successful protocol run, Alice knows that Bob knows ,
and that Bob indeed does know , but Bob does not know whether the he knows
was actually sent by Alice during the protocol run, or if it is a reply attack sent by
Eve.

The issues of knowledge and beliefs are covered in more detail in Section
4.4, “Logics of knowledge and belief”, on page 55.

m

m

m

m

126

Modelling and Verification of Cryptographic Protocols

Modelling and Verification of Cryptographic Protocols

127

APPENDIX B

ISAKMP / Oakley —
A real world example

ISAKMP, the Internet Security Association and Key Management Protocol, is a
framework for cryptographic protocols developed by the National Security Agency,
NSA, and others. The purpose of the framework is to facilitate Internet protocols that
create, redefine and detach Internet security associations. Oakley is a Diffie-Hellman
based key agreement protocol whose purpose is to create an initial security associa-
tion between two parties. Oakley is based on the Photuris protocol, originally devel-
oped by Phil Karn, and is modified to work within the ISAKMP framework.

As a cryptographic protocol, the ISAKMP + Oakley is relatively complex; however,
some of the other real world protocols, e.g. Kerberos, are even more complex. How-
ever, both the ISAKMP framework and the Oakley protocol are still under develop-
ment, and the current specifications lack in detail, contain some mistakes and will
most probably change considerably before their final release.

The discussion below is based on the situation in spring 1997. The ISAKMP frame-
work itself begins to be relatively mature, but the adaptation of Oakley to work within
the framework requires considerably more work.

B.1 ISAKMP framework

ISAKMP provides a framework for combined authentication, key exchange, and
management of security association. ISAKMP itself tries to be free of security policy
decisions, cryptographic algorithms, and authentication protocols. In theory, it should
be able to include any public or private key authentication and/or key exchange proto-
col within the framework. In practice, Oakley is currently the only protocol publicly
specified to function within the framework.

ISAKMP is intended to function in two phases. Initially the communicating hosts (or
other communication entities) representing one or more communicating parties
establish an ISAKMP security association. The actual daemon process or other pro-
gramme actually responsible for the negotiation is called the

negotiation server.

The
ISAKMP security association is, in turn, used to protect negotiation of other, protocol
specific, security associations. Initially, the only protocol specific security associa-

128

Modelling and Verification of Cryptographic Protocols

tions are Internet IPSEC AH (Authentication Header) and ESP (Encapsulated Secu-
rity Payload) security associations.

The kind of operation performed by the ISAKMP server requires, of course, that the
actual communication protocols can trust in the local negotiation server, and that they
have a trusted path to communicate with the negotiation server.

To alleviate denial of service (DOS) attacks, ISAKMP uses anti-clogging tokens, or

cookies

, to identify security associations. When a party initiates a negotiation of a
security association, it generates a random number, called cookie, and associates it
with the association being negotiated. Whenever response packets are received, they
are checked to contain a valid cookie. This prevents anyone not able to eavesdrop to
send valid-looking packets, thereby alluding a party to reserve resources or perform
lengthy cryptographic operations.

All ISAKMP operations appear within an

domain of interpretation

 (DOI). The
domain of interpretation defines exact packet formats, exchange types, naming con-
ventions and other such details. Initially there are only one public DOIs: the Internet
Domain of Interpretation, which is designed for generic Internet traffic between any
organizations.

Within a DOI, a situation contains all of the security-relevant information a party
needs to make a network level access control decision and to determine the required
security services and functions used to protect a session being negotiated. For exam-
ple, in the Internet DOI, the situation defines a subnet, an individual IP address, a
Domain Name Service domain, or an individual user on behalf of which the security
association is being established for.

The actual ISAKMP packets consists of a fixed ISAKMP header, followed by one or
more explicitly identified payloads. The actual number and type of payloads depends
on the exchange being performed, the authentication and key exchange protocol
used, and possibly also on the DOI. In any case, the DOI defines the format of some
fields within the payloads. Currently there are 12 payloads defined, see Table 16 on
page 129.

B.2 Establishing the initial association: base
exchange

Typically the initial ISAKMP security association is created using the

base exchange

.
It is also possible to use the

identity protection exchange

. The other types of
exchanges currently defined include the authentication only exchange, and the Oak-
ley proposal suggest a couple of more. We will only consider the base exchange here.

In the base exchange, the key exchange and authentication of the identity of the par-
ties are combined. However, it transmits the identity of the negotiating parties in
clear, as opposed to the identity protection exchange, where the identity of the negoti-
ating party is only released to the peer. The protocol requires four messages: the first
two are used to convey the cookies and to negotiate the parameters for the security
associations; the second pair is used to establish keying material for the association,
and to authenticate the identity of the parties and the contents of the newly estab-
lished association.

Modelling and Verification of Cryptographic Protocols

129

The message flow in the base exchange can be illustrated as follows:

In the diagram, the initiator (Alice) first sends the responder (Bob) an ISAKMP
packet containing the header, an security association payload and a nonce. The secu-
rity association payload defines a situation and one or more proposals for the parame-
ters of the security association. The responder (Bob) replies to this packet with one
that selects the proposal of the ones suggested by Alice that Bob considers best from
his point of view, and another nonce.

In the third message, Alice sends her identification information, key exchange data
and a signature that authenticates this message and the security association parame-
ters. As a reply, Bob sends his identity, his part of key exchange data, and a signature.
With this information, both parties can calculate common key material, and authenti-
cate the identity of the peer. The nonces are used to ensure the freshness of the signa-
ture and association parameters.

TABLE 16.

ISAKMP payload types

ID Abbr. Name Purpose

1 SA Security Association Proposes or selects security association parame-
ters

2 P Proposal A single proposed set of parameters, used within a
SA

3 T Transform Parameters for a specific transformation, used
with an P

4 KE Key Exchange Carries key exchange information, e.g. a DH pub-
lic component

5 ID Identification Identifies a user an association is established for

6 CERT Certificate Conveys a certificate associating a user identity to
a key.
This payload is for convenience only, to alleviate
need to communicate with a public key infrastruc-
ture.

7 CR Certificate Request A request for certificates.

8 HASH Hash Contains result of a hash function. Usage of this
field is determined by the ISAKMP protocol
exchange. Typically used to ensure integrity of a
ISAKMP message or association data

9 SIG Signature Contains result of a digital signature function. The
usage is similar to the hash field, but may be used
for non-repudiation purposes also.

10 NONCE Nonce Contains random data generated by the sender.
Used to ensure freshness of protocol messages.

11 N Notification Used to convey error messages and other informa-
tional data.

12 D Delete Informs the recipient that the sender has removed
a security association. Care must be taken to alle-
viate DOS attacks.

A B

HDR SA NONCE

, ,

:

B A

HDR SA NONCE

, ,

:

A B

HDR KE ID SIG

, , ,

:

B A

HDR KE ID SIG

, , ,

:

130

Modelling and Verification of Cryptographic Protocols

B.3 Using Oakley to establish the initial association

Since the current ISAKMP and Oakley documents do not contain enough of informa-
tion to unambiguously describe their combined operation, Harkins and Carrel of
Cisco systems have given their proposal for resolution. The proposal does not imple-
ment the entire Oakley protocol nor the complete ISAKMP framework, but only
three Oakley specific exchanges: Oakley

Main Mode

, Oakley

Aggressive Mode

, and
Oakley

Quick Mode

. The Oakley main mode exchange roughly corresponds to the
ISAKMP identity protection exchange; the aggressive and quick modes are distinct
from ISAKMP exchanges. We will only consider the main mode in the this section;
the next section will consider Oakley quick mode.

The message flow can be illustrated as follows:

The first two messages carry the same purpose as in the case of the ISAKMP base
exchange: negotiate the security association parameters. In the next two messages,
the parties exchange keying material and explicit nonces; including the nonces as
explicit information may allow the parties to use the same keying material to commu-
nicate with several peers, thereby saving one exponentiation per ISAKMP associa-
tion. However, the security implications of such a practice are dubious.

With the third pair of messages, the parties authenticate the identity of each other and
all the material previously negotiated. The identity information is protected with the
keying material negotiated earlier, protecting the identify from passive eavesdrop-
pers.

B.4 Defining an Internet AH/ESP association:
 Oakley Quick Mode

Establishing the initial ISAKMP association alone does not accomplish anything
from the user’s point of view. For the user, the forthcoming associations are impor-
tant. These are negotiated in the protection of the ISAKMP association, allowing a
lighter protocol.

When using Oakley, the quick mode may be used to establish a protocol specific
security association. In the quick mode, the identities of the client protocol peers are
authenticated by the negotiation servers, and the negotiation servers generate new
keying material from nonces and their own keying material. This may or may not be
acceptable, depending on the level of trust the client protocol parties can place upon
the negotiation server.

Schematically, the messages flow as follows:

A B

HDR SA

,

:

B A

HDR SA

,

:

A B

HDR KE NONCE

, ,

:

B A

HDR KE NONCE

, ,

:

A B

HDR ID SIG

,{ },

:

B A

HDR ID SIG

,{ },

:

A B

HDR HASH SA NONCE

, ,{ },

:

B A

HDR HASH SA NONCE

, ,{ },

:

A B

HDR HASH

{ },

:

Modelling and Verification of Cryptographic Protocols

131

In the first message, Alice sends Bob proposals for the new association, a fresh ran-
dom number, a hash value protecting the nonce from cut & paste attacks, and option-
ally identities of the client protocol peers. Bob replies with the selected proposal,
another random number, a hash calculated over the ISAKMP SA keying material and
the new nonces, and the and possibly the same or restricted identities. The third mes-
sage carries a new hash value calculated over the ISAKMP SA keying material and
the nonces, but calculated differently from the previous hash value. This ensures Bob
that the exchange is fresh.

The integrity and confidentiality of the messages are protected by the ISAKMP secu-
rity association. This effectively means that the client protocol parties must consider
the negotiation parties to function as trustworthy proxies for their peers. As already
noted, this may or may not be appropriate depending on the situation.

132

Modelling and Verification of Cryptographic Protocols

Modelling and Verification of Cryptographic Protocols

133

APPENDIX C

Rules in the modal
approaches

C.1 BAN-logic (Burrows, Abadi, Needham)

C.1.1 Beliefs

C.1.2 Saying (writing, sending)

C.1.3 Seeing (receiving, reading)

a

 believes a believes
a

() believes

--

a

() believes
a

 believes

--

a b

() believes () believes
a b

 believes () believes

--

a b

() haswritten () believes
a b

 haswritten () believes

a

() reads
a

 reads

a
k

a b

 believes a { } k reads
a

 reads

a
k

a

 believes a { } k reads
a

 reads

--

a
k

b

 believes a { }
k

 1– reads

a

 reads

134

Modelling and Verification of Cryptographic Protocols

C.1.4 Message authentication

C.1.5 Freshness

C.1.6 Jurisidiction

C.1.7 Key derivation and generation

C.2 GNY logic(Gong, Needham, Yahalom)

C.2.1 Reasoning rules

M If then (given differently)

C.2.2 Seeing (reading, receiving) axioms

T1

T2

T3, T4, T6 (given separately for symmetric

and public keys)

T5

a
k

a b

 believes a { } k reads
a b

 haswritten () believes

a
k

b

 believes a { }
k

 1– reads

a b

 haswritten () believes

a

fresh believes
a

()

fresh believes

--

a

fresh believes a b haswritten () believes
a b

 believes () believes

a b

 controls () believes a b believes () believes
a

 believes

a
k

b c

 believes

a
k

c b

 believes

d a
k

b c

 believes believes

d a
k

c b

 believes believes

--

|–

|–

a

 believes

a x

 reads
a x reads

a x y

, reads
a x reads

a x

{ }

k reads a k ˜ has
a x reads

--

a f x y

,

() reads a x has
a y reads

--

Modelling and Verification of Cryptographic Protocols

135

C.2.3 Possession axioms

P1

P2.1

P2.2

P3

P4

P5

P6.1, P7

P6.2, P8

C.2.4 Freshness axioms

F1.1

F1.2

F2.1, F3

F2.2, F4

F5, F6

F7.1, F8

F7.2, F9

F10

F11

C.2.5 Recognition axioms

R1.1

R1.2

a x reads
a x has

a x has a y has
a x y

, has

--

a x has a y has
a f x y

,

() has

--

a x y

, has
a x has

a x has
a h x

() has

a f x y

,

() has a x has
a y has

a k has a x has
a x

{ }

k has
--

a k

˜ has P x { } k has
a x has

a x

i

fresh believes

a x

1

…

x

i

…

x

n

, , , ,

fresh believes

a x

fresh believes
a f x

()

fresh believes

a x

fresh believes a k has
a x

{ }

k

fresh believes

--

a x

{ }

k

fresh believes a k ˜ has
a x

fresh believes

a k

fresh believes
a k

˜

fresh believes

a a x recognizes () believes () a k fresh believes () a k has ()
a x

{ }

k

fresh believes

--

a a x

{ }

k recognizes () believes () a k fresh believes () a k ˜ has ()

a x

fresh believes

a x

fresh believes a x has
a h x

()

fresh believes

--

a h x

()

fresh believes a h x () has
a x

fresh believes

--

a a x

i believes believes

a a x

1

…

x

n

, , believes believes

--

a a x believes believes
a a f x

() believes believes

--

136

Modelling and Verification of Cryptographic Protocols

R2.1, R3

R2.2, R4

R5

R6

C.2.6 Interpretation axioms

I1.1

I1.2

I1.3

I2 Skipped (concerns shared secrets)

I3.1

I3.2

I4.1

I4.2

I5

I6

I7

a a x believes () believes a k has
a a x

k believes believes
--

a a x

k believes believes a k ˜ has
a a x believes believes

a a x believes believes a x has
a a h x

() believes believes

a h x

() has
a a x recognizes () believes

a a x recognizes () believes a x fresh believes a k fresh believes ()

a b x haswritten () believes

a x

{ }

k

 reads a k has a
k

a b believes

a x

{ }

k

 reads a k has a
k

a b believes

a a x recognizes () believes a x fresh believes a k fresh believes ()

a b x

{ }

k haswritten () believes

a x

{ }

k

 reads a k has a
k

a b believes

a a x recognizes () believes a x fresh believes a k fresh believes ()

a b k has () believes

a h x k

,

()

 reads a x k , has a
k

a b believes

a x

fresh believes a k fresh believes ()

a b x k

, haswritten () believes

a h x k

,

()

 reads a x k , has a
k

a b believes

a x

fresh believes a k fresh believes ()

a b h x k

,

() haswritten () believes

a x

{ }

k

1– reads a k has a
k

 b believes a a x recognizes () believes

a b x haswritten () believes

a x

{ }

k

1– reads a k has a
k

 b believes a a x recognizes () believes

a b x

{ }

k

1– haswritten () believes

a x

{ }

k

1– reads a k has a
k

 b believes a a x recognizes () believes

a x

fresh believes a k fresh believes ()

a b k

1–

x

, has () believes

a b x haswritten () believes a x fresh believes
a b x has () believes

a b x

1

…

x

n

, , haswritten () believes

a b x

i haswritten () believes

Modelling and Verification of Cryptographic Protocols

137

C.2.7 Jurisdiction axioms

J1

J2

J3

C.3 AT-logic (Abadi and Tutle)

C.3.1 Reasoning rules

R1 If and then

R2 If then

C.3.2 Belief axioms (modalities)

A1

A2

A3

A4

C.3.3 Message authentication axioms

A5 (excluded as sender)

A6 Skipped (concerns shared secrets).

C.3.4 Seeing (reading, receiving)

A7

A8

A9-A10 Skipped (concerns shared secrets and message forwarding).

A11 (cf. R2 above)

C.3.5 Saying (writing, sending, meaning)

A12.1

A12.2

A13 Skipped (concerns shared secrets).

A14

C.3.6 Jurisdiction

A15

a b

 controls () believes a b believes () believes
a

 believes

a honest b

() believes a b x haswritten () believes
a conveys x

,

() believes a x fresh believes

a b

 believes () believes

a honest b

() believes a b b believes () believes () believes
a b

 believes () believes

--

|–

|–

()

|–

|–

|–

a

 believes

a

 believes a () believes a believes

a

 believes a a believes () believes

a

 believes () a a believes () believes

a

 believes a believes a () believes

k
a b

c x

{ }

k reads b x haswritten a

a x

1

…

x

n

, , reads a x i reads

a x

{ }

k reads a k has a x reads

a x

{ }

k reads a k has a a x { } k reads () believes

a x

1

…

x

n

, , haswritten a x i haswritten

a x

1

…

x

n

, , writes a x i writes

a x haswritten a x reads a x haswritten

a

 controls a writes ()

138

Modelling and Verification of Cryptographic Protocols

C.3.7 Freshness

A16

A17

A18-A19 Skipped (concers shared secret and message orwarding).

A20

C.3.8 Key derivation and generation

A21

C.4 SvO-logic (Syverson and van Oorshot)

C.4.1 Reasoning rules

MP If and then

N If then

C.4.2 Believing

1

2

C.4.3 Message authentication

3

4

C.4.4 Key agreement

5

C.4.5 Receiving (seeing, reading)

6

7

C.4.6 Seeing

8

9

10

x

i

fresh x 1 … x n , , fresh

x

fresh x { } K fresh

a x haswritten x fresh a x writes

k
a b

k
b a

|–

|–

a

 believes

a

 believes a () believes a believes

a

 believes a a believes () believes

k
a b

a x

{ }

k reads b x haswritten

k

b

a x

{ }

k

1– reads b x haswritten

x

a

y

b

g

xy

a b

a x

1

…

x

n

, , reads a x i reads

a x

{ }

k reads a k ˜ has a x reads

a x reads P x sees

a x

1

…

x

n

, , sees a x i sees

a x

1 sees … a x n sees a f x 1 … x n , , () sees

Modelling and Verification of Cryptographic Protocols

139

C.4.7 Comprehending

11

12

C.4.8 Saying (writing, sending, meaning)

13

14

C.4.9 Jurisdiction

15

C.4.10 Freshness

16

17

C.4.11 Nonce verification

18

C.4.12 Goodness of keys

19

C.4.13 Having

20 (must be a key)

C.5 Wedel-Kessler logic (AUTLOG)

C.5.1 Reasoning rules

MP If and then

M If then

C.5.2 Modalities

K

4

5

 C.5.3 Jurisdiction axioms

J

a a f x

() sees () believes a a x sees () believes

a f x

() reads a a x sees () believes a a f x () reads () believes

a x

1

…

x

n

, ,

a x

i haswritten a x i reads haswritten

a x

1

…

x

n

, , writes a x 1 … x n , , haswritten a x i writes

a

 controls a writes ()

x

i

fresh x 1 … x n , , fresh

x

1

…

x

n

, ,

fresh f x 1 … x n , , () fresh

x

fresh a x haswritten a x writes

k
a b

k
b a

a x has a x sees x

|–

|–

a

 believes

a

 believes a () believes a believes

a

 believes a a believes () believes

a

 believes () a a believes () believes

a

 controls a believes

140

Modelling and Verification of Cryptographic Protocols

C.5.4 Posession axioms

H1

H2

H3

H4

C.5.5 Recognition axioms

R1

R2

R3

R4

R5

C.5.6 Freshness axioms

F1

F2

F3

C.5.7 Seeing (receiving, reading)

SE1

SE2

C.5.8 Nonce verification

NV

C.5.9 Saying (sending, writing, meaning)

SA1

SA2

SA3

SA4

C.5.10 Authentication and key confirmation axioms

A1

A2

a x reads a x has

a x

1 has … a x n has a x 1 … x n , , has

a x has a f x () has

a g

x has a y has a g xy has

a x

i recognizes a x 1 … x n , , recognizes

a x recognizes a k ˜ has a x { } k recognizes

a x has a h x () recognizes

a k has a x has a x { }
k

 1– recognizes

a x has a g y has a g xy recognizes

x

i

fresh x 1 … x n , , fresh

x

fresh f x () fresh

x

fresh g xy fresh

a x

1

…

x

n

, , reads a x i reads

a x

{ }

k reads a k ˜ has a x reads

a x haswritten x fresh a x writes

a x

1

…

x

n

, , haswritten a x i haswritten

a x

1

…

x

n

, , writes a x i writes

a h x

() haswritten a h x () reads () a x haswritten

a h x

() writes a h x () reads () a x writes

c f k x

,

() reads
k

a b a f k x , () haswritten b f k x , () haswritten

c f k

1–

x

,

() reads k
 b b f k 1– x , () haswritten

Modelling and Verification of Cryptographic Protocols

141

C.5.11 Comprehension axioms and localization equivalences

C

C1

C2

C3

C4

C5

C.5.12 Localization equivalence axioms

E1

E2

E3

E4

C.5.13 Key derivation and generation axioms

S

KD

KA

a x reads x a y a a y reads () believes

a x

i recognizes x 1 … x i … x n , , , ,
a

 x 1 ()
a

 … x i ()
a

 … x n ()
a

 , , , ,()

a x recognizes a k 1– has f k x , () () a f k x a , ()

a x has h x () a h x a ()

a x has a g y has g xy
a g xy

a k has a x has k 1– x , () a k 1– x a , ()

x x

x y

y x

x z

x y

f x

()

f y

()

x

1

y

1

x

n

y

n

x

1

…

x

n

, ,

y

1

…

y

n

, ,

k
a b

k
b a

k
a b

good

f

x

()

f k x

,

()

a b

x

a

y

b

g

xy

a b

142

Modelling and Verification of Cryptographic Protocols

Modelling and Verification of Cryptographic Protocols

143

APPENDIX D

References

[1] M. Abadi, R. Needham,

Prudent engineering practice for cryptographic pro-
tocols

, Technical Report N:o 125, Digital Equipment Corporation, Systems
Research Center, June 1994.

[2] M. Abadi, M. R. Tuttle, “A Semantics for a logic of authentication”,

Proceed-
ings of the 10th ACM Symposium on Principles of Distributed Computing

,
ACM Press, August 1991, pp. 201-216.

[3] O. Amyay, G. Juanole, S. Zwecker, “An epistemic logic based synthesis of
communication services and protocols”,

Proceedings of the 12th International
Conference on Distributed Computing Systems

, Yokohama, Japan, IEEE Com-
puter Society Press, June 1992, pp. 674-681.

[4] R. J. Anderson, “Why cryptosystems fail”,

Proceedings of the 1st ACM Con-
ference on Computer and Communications Security

, ACM Press, 1993, pp.
215-227.

[5] R. J. Anderson, “Liability and computer security: nine principles”,

Computer
Security--ESORICS’94

, Springer-Verlag, 1994, pp. 231-245.

[6] R. Atkinson,

Security architecture for the internet protocol

, RFC1825, Inter-
net Engineering Task Force, 1995.

[7] T. Aura,

Modelling the Needham-Schroder authentication protocol with high
level Petri nets

, Technical Report B14, Digital Systems Laboratory, Helsinki
University of Technology, Septemper 1995.

[8] J. C. M. Baeten, W. Weijland,

Process Algebra

, Cambridge Tracts in Theoreti-
cal Computer Science 18. , Cambridge, UK, 1990.

[9] M. Barr, C. Wells,

Category theory of computing science, 2nd edition

, Pren-
tice Hall International, 1995.

[10] D. E. Bell, L. J. LaPadula,

Secure computer system: unified exposition and
multics interpretation

, Technical Report N:o MTR-2997ESD-TR-75-306,
MITRE Corp, Bedford, Ma, March 1976.

[11] S. M. Bellowin, “Security problem in the TCP/IP protocol suite”,

ACM Com-
puter Communication Review

, 19(2), April 1989, pp. 32-48.

[12] J. van Benthem, J. van Eijck, V. Stebletsova, “Modal Logic, Transition Sys-
tems and Processes”,

Journal of Computational Logic

, 4(5), Oxford Univer-
sity Press, 1994, pp. 1-50.

144

Modelling and Verification of Cryptographic Protocols

[13] J. A. Bergstra, J. W. Klop, “Process Algebra for Synchronous Communica-
tion”,

Information and Control

, 1984, pp. 109-137.

[14] P. Bieber, “A logic of communication in a hostile environment”,

Proceedings
of IEEE Computer Security Foundations Workshop III

, Los Alamitos, CA,
IEEE Computer Society Press, 12-14 June 1990, pp. 14-22.

[15] M. Blaze, J. Feigmenbaum, J. Lacy, “Decentralized trust management”,

Pro-
ceedings of the 1996 IEEE Computer Society Symposium on Research in
Security and Privacy

, Oakland, CA, May 1996.

[16] C. A. Boyd, “A formal framework for authentication”,

Computer Security--
ESORICS’92

, Springer-Verlag, 1992, pp. 273-292.

[17] C. A. Boyd, “Security architectures using formal methods”,

IEEE Journal on
Selected Areas in Communications

, 11(5), June 1993, pp. 694-701.

[18] C. A. Boyd, W. Mao, “On a limitation of BAN logic”,

Advances in Cryptol-
ogy--EUROCRYPT’93 Proceedings

, Springer-Verlag, 24-26 May 1993, pp.
240-247.

[19] C. A. Boyd, W. Mao, “Designing secure key exchange protocols”,

Computer
Security--ESORICS’94

, Springer-Verlag, 1994, pp. 93-106.

[20] M. Burrows, M. Abadi, R. Needham,

A logic of authentication

, Technical
Report N:o 39, Digital Equipment Corporation, Systems Research Center, 130
Lytton Avenue, Palo Alto, CA 94301, 22 February 1989.

[21] M. Burrows, M. Abadi, R. Needham, “Rejoinder to Nessett”,

Operating Sys-
tems Review

, 24(2), April 1990, pp. 39-40.

[22] M. Burrows, M. Abadi, R. Needham,

The scope of a logic of Authentication

,
Technical Report N:o 39-appendix, DEC Systems Research Center, 1994.

[23] U. Carlsen, “Cryptographic protocol flaws”,

Proceedings of IEEE Computer
Security Foundations Workshop VII

, Franconia, New Hampshire, IEEE Com-
puter Society Press, 14-16 June 1994, pp. 192-200.

[24] Chellas,

Modal logic: an introduction

, Cambridge University Press, Cam-
bridge, UK, 1980.

[25] D. Clark, D. Wilson, “A comparison of commercial and military security poli-
cies”,

Proceedings of the 1987 IEEE Symposium on Security and Privacy

,
IEEE Computer Society Press, April 1987, pp. 184-194.

[26] J. Clark, J. Jacob,

Security protocols: an annotated bibliography

, Department
of Computer Science, University of York, YORK, YO1 5DD, England.

[27] E. M. Clarke, E. A. Emerson, A. P. Sistla, “Automatic verification of finite-
state concurrent systems using temporal logic specifications”,

ACM Transac-
tions on Programming Languages and Systems

, 8(2), April 1986, pp. 244-263.

[28] D. E. Denning, G. M. Sacco, “Timestamps in key distribution protocols”,

Communications of the ACM

, 24(8), August 1981, pp. 533-536.

[29] D. E. Denning,

Cryptography and data security

, Addison-Wesley, Reading,
MA, 1982.

[30] W. Diffie, M. E. Hellman, “New directions in cryptography”,

IEEE Transac-
tions on Information Theory

, November 1976, pp. 644-654.

[31] W. Diffie, M. E. Hellman, “Privacy and authentication: an introduction to
cryptography”,

Proceedings of IEEE

, 67(3), 1979.

[32] W. Diffie, “The first ten years in public key cryptography”,

Proceedings of
IEEE

, 76(5), May 1988, pp. 560-577.

[33] W. Diffie, P. C. van Oorschot, M. J. Wiener, “Authentication and authenticated
key exchanges”,

Design, Codes, and Cryptography

, Kluwer Academic Pub-
lisher, 1992, pp. 107-125.

Modelling and Verification of Cryptographic Protocols

145

[34] D. Dolev, A. C. Yao, “On the security of public key protocols (Extended
Abstract)”,

Proceedings of the 22nd IEEE Symposium on Foundations in
Computer Science

, Nashville, Tennessee, 28--30 October 1993, pp. 350-357.

[35] D. Dolev, A. Yao, “On the security of public-key protocols”,

IEEE Transac-
tions on Information Theory

, IT-29(2), March 1983, pp. 198-208.

[36] C. Ellison, B. Frantz, B. M. Thomas,

Simple Public Key Certificate

, Internet
Draft draft-ietf-spki-cert-structure-01.txt (Work in progress), 25 March 1997.

[37] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi,

Reasoning about knowledge

,
MIT Press, Cambirdge, MA, 1995, 477 p..

[38] Formal Systems Design, Failures divergence refinement: A verification tool
for finite state systems

, Formal Systems Design and Development Inc,

Auburn, AL, pp. 2.

[39] R. van Glabbeek,

What is branching time and why to use it?

, Technical Report
N:o STAN-CS-93-1486, Stanford University, .

[40] R. J. van Glabbeek,

History Preserving Process Graphs

, Unpublished manu-
script, Stanford University, 1995.

[41] R. J. van Glabbeek,

Comparative concurrencey semantics and refinement of
actions

, Centrum voor Wiskunde en Informatica, 1996.

[42] I. Goldberg, D. Wagner, “Randomness and the Netscape Browser”,

Dr.
Dobb’s Journal

, Miller Freeman Inc., January 1996.

[43] R. Goldblatt,

Logics of time and computation

, CSLI Publications, Stanford,
1992.

[44] L. Gong, “Using one-way function for authentication”,

Computer Communi-
cation Review

, 19(5), July 1989, pp. 8-11.

[45] L. Gong,

Cryptographic protocols for distributed systems

, Ph.D. Thesis, Uni-
versity of Cambridge, April 1990.

[46] L. Gong, R. Needham, R. Yahalom, “Reasoning about belief in cryptographic
protocols”,

Proceedings of the 1990 IEEE Computer Society Symposium on
Research in Security and Privacy

, Oakland, CA, IEEE Computer Society
Press, 7-9 May 1990, pp. 234-248.

[47] L. Gong, “Handling infeasible specifications of cryptographic protocols”,

Proceedings of IEEE Computer Security Foundations Workshop IV

, IEEE
Computer Society Press, June 1991, pp. 99-102.

[48] L. Gong, “A security risk of depending on synchronized clocks”,

ACM Oper-
ating System Review

, 26(1), January 1992, pp. 49-53.

[49] V. Gupta, “Concurrent Kripke structures”,

Proceedings of North American
Process Algebra Workshop

, Cornell University, August 1993.

[50] V. Gupta,

Chu Spaces: A Model of Concurrency

, Ph.D. Thesis, Stanford Uni-
versity, Septemper 1994.

[51] J. Y. Halpern,

Reasoning about knowledge

, Kaufmann, 1986.

[52] N. Heintze, J. D. Tygar, “A model for secure protocols and their composi-
tions”,

Proceedings of the 1994 IEEE Computer Society Symposium on
Research in Security and Privacy

, IEEE Computer Society Press, May 1994,
pp. 2-13.

[53] J. Hintikka,

Knowledge and belief

, Cornell University Press, 1962.

[54] C. A. R. Hoare, “Communicating sequential processes”,

Communications of
the ACM

, 21(8), August 1978, pp. 666-672.

[55] C. A. R. Hoare,

A model for communicating sequential processes

, Campridge
University Press, 1980, pp. 229-243.

146

Modelling and Verification of Cryptographic Protocols

[56] C. A. R. Hoare,

Communicating sequential processes

, Prentice-Hall, 1985,
256 p..

[57] R. Housley, W. Ford, W. Polk, D. Solo,

Internet Public Key Infrastructure:
Part I: X.509 Certificat and CRL Profile

, Internet Draft draft-ietf-pkix-ipki-
part1-04.txt (Work in progress), 26 March 1996, 75 p..

[58] ISO 7498-2:1989,

OSI Basic Reference Model -- Part 2: Security Architec-
ture

, International Organization for Standardization, 1989.

[59] J. Jacob, “Security specifications”,

Proceedings of the 1988 IEEE Symposium
on Security and Privacy

, Oakland, CA, IEEE Computer Society Press, April
18-21 1988, pp. 14-23.

[60] R. Kailar, V. D. Gilgor, “On belief evolution in authentication protocols”,

Pro-
ceedings of the 1991 IEEE Computer Society Symposium on Research in
Security and Privacy

, IEEE Computer Society Press, June 1991, pp. 103-116.

[61] A. T. Karila,

Open Systems Security -- an Architectural Framework

, Ph.D.
Thesis, Helsinki University of Technology, 1991.

[62] R. A. Kemmerer, C. A. Meadows, J. K. Millen, “Three systems for crypto-
graphic protocol analysis”,

Journal of Cryptology

, 7(2), 1994, pp. 79-130.

[63] V. Kessler, G. Wedel, “AUTLOG--an advanced logic of authentication”,

Pro-
ceedings of IEEE Computer Security Foundations Workshop VII

, IEEE Com-
puter Society Press, 1994, pp. 90-99.

[64] P. Kijser, T. Parker, D. Pinkas, “SESAME: the solution to security for open
distributed systems”,

Journal of Computer Communications

, 17(4), July 1994,
pp. 501-518.

[65] B. Lampson, M. Abadi, M. Burrows, E. Wobber, “Authentication in distrib-
uted systems: theory and practice”,

Proceedings of the 13th ACM Symposium
on Operating System Principles

, ACM Press, October 1991.

[66] A. Liebl, “Authentication in distributed systems: a bibliography”,

Operating
Systems Review

, 27(4), October 1993, pp. 122-136.

[67] G. Lowe, “An attack on the Needham-Schroeder public key authentication
protocol”,

Information Processing Letters

, 56(3), November 1995, pp. 131-
136.

[68] G. Lowe, “Breaking and fixing the Needham-Schroeder public-key protocol
using CSP and FDR”,

Proceedings of the 2nd International Workshop on
Tools and Algorithms for the Construction and Analysis of Systems

, Passau,
Germany, 27-29 March 1996.

[69] W. Mao, C. A. Boyd, “Towards formal analysis of security protocols”,

Pro-
ceedings of IEEE Computer Security Foundations Workshop VI

, IEEE Com-
puter Society Press, June 1993, pp. 147-158.

[70] W. Mao, C. A. Boyd, “On the use of encryption in cryptographic protocols”,

Codes and Cyphers

, 1993, pp. 251-262.

[71] W. Mao, C. A. Boyd, “Development of authentication protocols: some mis-
conceptions and a new approach”,

Proceedings of IEEE Computer Security
Foundations Workshop VII

, IEEE Computer Society Press, 1994, pp. 178-186.

[72] D. Maughan, M. Schertler, M. Schneider, J. Turner,

Internet security associa-
tion and key management protocol (ISAKMP)

, Internet Draft draft-ietf-ipsec-
isakmp-07.txt, .ps (Work in progress), Internet Engineering Task Force, 21
February 1997, 79 p..

[73] P. McMahon, “SESAME V2 public key and authorization extensions to Ker-
beros”,

Proceedings of the 1995 Network and Distributed Systems Security

,
SNDSS’95, IEEE Computer Society Press, 1995, pp. 114-131.

Modelling and Verification of Cryptographic Protocols

147

[74] C. A. Meadows, “A system for the specification and analysis of key manage-
ment protocols”,

Proceedings of the 1991 IEEE Computer Society Symposium
on Research in Security and Privacy

, Los Alamitos, CA, IEEE Computer
Society Press, 1991, pp. 182-195.

[75] C. A. Meadows, “The NRL protocol analyzer: an overview”,

2nd Conference
on the Practical Applications of Logic Programming

, 1994.

[76] C. A. Meadows, “A model of computation for the NRL protocol analyzer”,

Proceedings of IEEE Computer Security Foundations Workshop VII

, Franco-
nia, New Hampshire, IEEE Computer Society Press, 14-16 June 1994.

[77] C. A. Meadows, “Formal verification of cryptographic protocols: a survey”,
Advances in Cryptology--ASIACRYPT’94 Proceedings

, Springer-Verlag,

1995, pp. 133-150.

[78] J. K. Millen, S. C. Clark, S. B. Freedman, “The Interrogator: protocol security
analysis”,

IEEE Transactions on Software Engineering

, SE-13(2), February
1987, pp. 274-288.

[79] R. Milner,

A Calculus of Communicating Systems

, Springer-Verlag, 1980.

[80] R. Milner,

Communication and Concurrency

, Prentice-Hall, 1989.

[81] R. Molva, G. Tsudik, E. van Herreweghen, S. Zatti, “KryptoKnight authenti-
cation and key distribution system”,

Computer Security--ESORICS’92

, ESO-
RICS’92, 1993.

[82] R. Needham, M. D. Schroeder, “Using encryption for authentication in large
networks of computers”,

Communications of the ACM

, 21(12), December
1978, pp. 993-999.

[83] R. Needham, M. D. Schroeder, “Authentication revisited”,

Operating Systems
Review

, 21(7), January 1987.

[84] D. M. Nessett, “A critique of the Burrows, Abadi and Needham logic”,

Oper-
ating Systems Review

, 24(2), April 1990, pp. 35-38.

[85] B. C. Neuman, “Proxy-based authorization and accounting for distributed sys-
tems”,

Proceedings of the 13th International Conference on Distributed Com-
puting Systems

, May 1993, pp. 283-291.

[86] Object Management Group,

CORBAservices: Common Object Services Speci-
fication, Revised Edition

, Object Management Group, Farmingham, MA,
March 1997.

[87] P. C. van Oorschot, “Extending cryptographic logics of belief to key agree-
ment protocols”,

Proceedings of the 1st ACM Conference on Computer and
Communications Security

, Fairfax, Virginia, 3-5 November 1993, pp. 232-
243.

[88] H. K. Orman,

The Oakley key determination protocol

, Internet Draft draft-ietf-
ipsec-oakley-01.txt (Work in progress), Internet Engineering Task Force,
1996.

[89] D. Otway, O. Rees, “Efficient and timely mutual authentication”,

Operating
Systems Review

, 21(1), 1987, pp. 8-10.

[90] C. A. Petri, “Fundamentals of a theory of asynchronous information flow”,

Proceedings of IFIP Congress 62

, Munich, North-Holland, Amsterdam, 1962,
pp. 386-390.

[91] B. Pfitzmann,

Digital Signature Schemes: General Framework and Fail-Stop
Signatures

, Springer-Verlag, Heidelberg, 1996.

[92] V. R. Pratt, “Time and Information in Sequential and Concurrent Computa-
tion”,

Proceedings of Theory and Practice of Parallel Programming
(TPPP’94)

, Sendai, Japan, November 1994, pp. 1-24.

148

Modelling and Verification of Cryptographic Protocols

[93] V. R. Pratt,

Chu Spaces and their Interpretation as Concurrent Objects

,
Springer-Verlag, 1995, pp. 392-405.

[94] R. L. Rivest, A. Shamir, L. M. Adleman, “A method for obtaining digital sig-
natures and public key cryptosystems”,

Communications of the ACM

, 1978,
pp. 120-126.

[95] R. L. Rivest, B. Lampson, “SDSI -- a simple distributed security infrastruc-
ture”,

Proceedings of the 1996 Usenix Security Symposium

, 1996.

[96] A. W. Roscoe, “Modelling and verifying key-exchange protocols using CSP
and FDR”,

Proceedings of the 8th IEEE Computer Security Foundations
Workshop

, Ireland, 13-15 June 1995.

[97] A. D. Rubin, P. Honeyman,

Formal methods for the analysis of authentication
protocols

, Technical Report N:o 93-7, Center for Information Technology
Integration, Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI, 8 November 1993.

[98] S. A. Schneider, “Security properties and CSP”,

Proceedings of the 1996
IEEE Computer Society Symposium on Research in Security and Privacy

,
Oakland, CA, May 1996.

[99] B. Schneier,

Applied cryptography -- protocols, algorithms and source code in
C

, John Wiley & Sons, Inc., 1996, 758 p..

[100] M. Setala, A. Valmari, “Validation and verification with weak process seman-
tics”,

Proceedings of Nordic Seminar on Dependable Computing Systems
1994

, Lyngby, Denmark, August 1994, pp. 15-26.

[101] C. E. Shannon, “Communication theory of secrecy systems”,

Bell Systems
Technical Journal

, 1949, pp. 656-715.

[102] G. J. Simmons, “Cryptanalysis and protocol failures”,

Communications of the
ACM

, 37(11), November 1994, pp. 56-65.

[103] E. Snekkenes, “Exploring the BAN approach to protocol analysis”,

Proceed-
ings of the 1991 IEEE Computer Society Symposium on Research in Security
and Privacy

, 1991, pp. 171-181.

[104] E. Snekkenes, “Roles in cryptographic protocols”,

Proceedings of the 1992
IEEE Computer Society Symposium on Research in Security and Privacy

, Los
Alamitos, CA, IEEE Computer Society Press, May 1992, pp. 105-119.

[105] J. G. Steiner, B. C. Neuman, J. I. Schiller, “Kerberos: an authentication serv-
ice for open network systems”,

Proceedings of Winter 1988 USENIX Confer-
ence

, Dallas, Texas, USENIX Association, February 1988, pp. 191-202.

[106] P. Syverson, “Adding time to a logic authentication”,

Proceedings of the 1st
ACM Conference on Computer and Communications Security

, Fairvax, VA,
ACM Press, 3-5 November 1993, pp. 97-101.

[107] P. Syverson, C. A. Meadows, “Formal requirements for key distribution proto-
cols”,

Advances in Cryptology--EUROCRYPT’94 Proceedings

, Springer-Ver-
lag, 1995.

[108] P. Syverson, P. C. van Oorschot, “On unifying some cryptographic protocol
logics”,

Proceedings of the 1994 IEEE Computer Society Symposium on
Research in Security and Privacy

, May 1994, pp. 14-28.

[109] M. Tienari,

Formal Specification of Computer Communication Protocols

,
Technical Report N:o D363, Department of Computer Science, University of
Helsinki, 21 August 1995.

[110] A. Valmari, M. Tienari, “An Improved Failures Equivalence for Finite-State
Systems with a Reduction Algorithm”,

Proceedings of Protocol Specification,
Testing and Verification XI

, North-Holland, 1991, pp. 3-18.

Modelling and Verification of Cryptographic Protocols

149

[111] A. Valmari, “Failure-based equivalences are faster than many believe”,

Pro-
ceedings of Structures in Concurrency Theory (STRICT) 95

, 1995.

[112] A. Valmari, M. Setala,

Visual verification of safety and liveness

, Software Sys-
tems Laboratory Report, Tampere University of Technology, 1995, 20 p..

[113] G. Wedel, V. Kessler, “Formal semantics for authentication logics”,

Computer
Security -- ESORICS’96

, Rome, Italy, Springer-Verlag, Septemper 1996, pp.
219-241.

[114] T. Y. C. Woo, S. S. Lam, “A semantic model for authentication protocols”,

Proceedings of the 1993 IEEE Computer Society Symposium on Research in
Security and Privacy , May 1993, pp. 178-194.

150

Modelling and Verification of Cryptographic Protocols

	Modelling of cryptographic protocols A concurrency perspective
	FINAL DRAFT
	Abstract
	Foreword and Acknowledgements
	Table of contents

	Part I
	CHAPTER 1 Motivation
	1.1� Organization of the material
	1.2� Notation
	Note on the use of the gender referring pronouns

	CHAPTER 2 Background
	2.1� Distributed system security
	2.1.1� Distributed systems — a definition
	2.1.2� Security functions
	Availability, confidentiality and integrity
	Identification, authorization and delegation
	Authentication and non-repudiation

	2.1.3� OSI security services
	2.1.4� CORBA security architecture
	2.1.5� Security contexts and associations
	2.1.6� Discussion

	2.2� Cryptology
	Terminology
	2.2.1� Symmetric cryptosystems
	2.2.2� Public key cryptosystems
	2.2.3� One-way hash functions and digital signatures
	2.2.4� Random number generation
	2.2.5� Security of cryptosystems

	2.3� Cryptographic protocols
	An example

	2.4� Modelling of communication protocols
	Notation
	Terminology
	An example
	2.4.1� Expressing protocol goals
	Safety properties
	Liveness properties
	Benefits gained

	2.4.2� Models, states and actions
	2.4.3� Logical formulae

	2.5� A protocol example
	2.5.1� The protocol
	Actions

	2.5.2� Run based protocol specification
	2.5.3� Protocol model
	2.5.4� LTS, ACP and CSP specifications
	Global protocol states

	2.5.5� Knowledge and beliefs

	2.6� Cryptanalysis and protocol failures
	2.7� Flaws in protocols
	2.7.1� Elementary flaws
	2.7.2� Password-guessing flaws
	2.7.3� Freshless flaws
	2.7.4� Oracle flaws
	2.7.5� Type flaws
	2.7.6� Internal flaws
	2.7.7� Cryptosystem-related flaws
	2.7.8� Lessons learned

	2.8� Summary

	CHAPTER 3 The purpose of cryptographic protocols
	3.1� Introduction
	3.2� High level protocol goals
	3.2.1� System integrity and data confidentiality
	3.2.2� Authorization, audit trail and intrusion detection
	3.2.3� Peer identification
	The question of anonymity

	3.2.4� Authentication and non-repudiation

	3.3� Intermediate level protocol goals
	3.3.1� Key agreement, confirmation, freshness and secrecy
	3.3.2� Correspondence and secrecy

	3.4� Message and data item level goals
	3.4.1� Message integrity and identification of the originator
	Example

	3.4.2� Confidentiality
	3.4.3� Freshness, timeliness, nonces and replay prevention
	3.4.4� Redundancy at message level

	3.5� Summary

	Part II
	CHAPTER 4 Modal logic
	4.1� Syntax and semantics
	Example
	4.1.1� Frames and models
	Example

	4.1.2� Truth value of formulae
	Example

	4.1.3� Truth and validity

	4.2� Logics, proofs and consistency
	4.2.1� Logics
	4.2.2� Theorems, axioms and provability
	4.2.3� Soundness and completeness
	4.2.4� Consistency

	4.3� Some standard logics
	4.3.1� Well-known axioms
	Example
	Understanding the axioms

	4.3.2� The logic S5
	4.3.3� The logics KT4 and KD45

	4.4� Logics of knowledge and belief
	4.4.1� Possible-worlds interpretation of protocol models
	Example

	4.4.2� Knowledge of different agents
	4.4.3� Knowledge, common knowledge and distributed knowledge
	Example
	Common knowledge
	Distributed knowledge
	Example

	4.4.4� Belief as conditional knowledge

	4.5� Temporal logic
	4.5.1� Linear time temporal logic
	Syntax and semantics

	4.5.2� Branching time temporal logic
	Example
	Syntax and semantics

	4.6� Combining knowledge and time
	A protocol example
	A variation

	4.7� Summary

	CHAPTER 5 Model checking and Process Algebra
	5.1� Introduction to models of concurrency
	5.1.1� States, actions and events
	5.1.2� Communication
	5.1.3� Deadlocks and divergencies
	5.1.4� Abstraction and hiding
	5.1.5� Traces and equivalencies

	5.2� Process graphs and Labelled Transition Systems
	5.2.1� Process graphs
	5.2.2� Examples
	5.2.3� Labelled transition systems

	5.3� Algebraic approaches
	5.3.1� ACP — Asynchronous Communicating Processes
	Basic process algebra
	Communication function
	Encapsulation
	Parallel composition
	Abstraction
	Example
	Discussion

	5.3.2� CCS — Calculus of Communicating Systems
	5.3.3� CSP — Communicating Sequential Processes
	Notation
	Example

	5.4� Semantics
	Pictorial presentation
	5.4.1� Graph isomorphism
	5.4.2� Traces
	5.4.3� Strong and weak bisimulation
	5.4.4� Observational congruence, or rooted t-bisimilarity
	5.4.5� Branching bisimulation
	5.4.6� Handling divergencies
	5.4.7� Failures-divergencies semantics

	5.5� Model checking
	5.5.1� Tackling state space explosion
	5.5.2� Comparing process models
	5.5.3� Visualisation approaches
	5.5.4� Checking validity of formulae

	5.6� Summary

	Part III
	CHAPTER 6 Comparison of some BAN-based approaches
	6.1� Introduction to the selected papers
	6.1.1� The original BAN logic by Burrows, Abadi and Needham
	6.1.2� CKT5 by Bieber
	Comprehension of messages
	Secrecy, integrity, and authenticity
	Proving security

	6.1.3� The GNY logic of Gong, Needham and Yahalom
	6.1.4� The Abadi-Tuttle (AT) logic
	6.1.5� Towards unified semantics: SvO
	6.1.6� Adding time by Paul Syverson
	6.1.7� Yet another approach: AUTLOG by Wedel and Kessler

	6.2� Comparison of syntactic approaches
	6.3� Differences in the semantic approaches
	6.3.1� Models of computation
	Kripke-structure based semantics
	Towards unification: SvO
	Minor differences: WK

	6.3.2� Adding time
	6.3.3� A set of beliefs vs.�beliefs based on possible worlds relations
	6.3.4� Idealization vs.�explicit recognition of messages

	6.4� Summary

	CHAPTER 7 Future directions
	7.1� Process algebras and protocol models
	7.1.1� Action vs event based models

	7.2� Temporal and modal interpretation
	Temporal interpretation
	Epistemic interpretation

	7.3� Summary

	CHAPTER 8 Conclusions
	APPENDIX A A protocol example
	A.1� The protocol
	A.1.1� Actions

	A.2� Run based protocol specification
	A.3� Protocol model
	A.4� LTS, ACP and CSP specifications
	Global protocol states

	A.5� Knowledge and beliefs

	APPENDIX B ISAKMP / Oakley — A real world example
	B.1� ISAKMP framework
	B.2� Establishing the initial association: base exchange
	B.3� Using Oakley to establish the initial association
	B.4� Defining an Internet AH/ESP association: ������Oakley Quick Mode

	APPENDIX C Rules in the modal approaches
	C.1� BAN-logic (Burrows, Abadi, Needham)
	C.1.1� Beliefs
	C.1.2� Saying (writing, sending)
	C.1.3� Seeing (receiving, reading)
	C.1.4� Message authentication
	C.1.5� Freshness
	C.1.6� Jurisidiction
	C.1.7� Key derivation and generation

	C.2� GNY logic(Gong, Needham, Yahalom)
	C.2.1� Reasoning rules
	C.2.2� Seeing (reading, receiving) axioms
	C.2.3� Possession axioms
	C.2.4� Freshness axioms
	C.2.5� Recognition axioms
	C.2.6� Interpretation axioms
	C.2.7� Jurisdiction axioms

	C.3� AT-logic (Abadi and Tutle)
	C.3.1� Reasoning rules
	C.3.2� Belief axioms (modalities)
	C.3.3� Message authentication axioms
	C.3.4� Seeing (reading, receiving)
	C.3.5� Saying (writing, sending, meaning)
	C.3.6� Jurisdiction
	C.3.7� Freshness
	C.3.8� Key derivation and generation

	C.4� SvO-logic (Syverson and van Oorshot)
	C.4.1� Reasoning rules
	C.4.2� Believing
	C.4.3� Message authentication
	C.4.4� Key agreement
	C.4.5� Receiving (seeing, reading)
	C.4.6� Seeing
	C.4.7� Comprehending
	C.4.8� Saying (writing, sending, meaning)
	C.4.9� Jurisdiction
	C.4.10� Freshness
	C.4.11� Nonce verification
	C.4.12� Goodness of keys
	C.4.13� Having

	C.5� Wedel-Kessler logic (AUTLOG)
	C.5.1� Reasoning rules
	C.5.2� Modalities
	C.5.3� Jurisdiction axioms
	C.5.4� Posession axioms
	C.5.5� Recognition axioms
	C.5.6� Freshness axioms
	C.5.7� Seeing (receiving, reading)
	C.5.8� Nonce verification
	C.5.9� Saying (sending, writing, meaning)
	C.5.10� Authentication and key confirmation axioms
	C.5.11� Comprehension axioms and localization equivalences
	C.5.12� Localization equivalence axioms
	C.5.13� Key derivation and generation axioms

	APPENDIX D References

