
Submission for NordSec-98 1

Storing and Retrieving Internet Certificates

Abstract

Effective storing, retrieval and interpretation of
certificate chains is a difficult problem. The origi-
nal X.500 and X.509 proposals, with their rigid
global naming scheme and complex access proto-
cols have proved to be less than optimal, leading to
various short-cuts. For example, the de facto X.509
retrieval protocol appears to be TCP/IP based
LDAP instead of the original OSI based Directory
Access Protocol, DAP.

In this paper we present a completely new architec-
ture for administration, storing and retrieval of
digital certificates. Instead of X.509 certificates we
base our architecture on SPKI, a more flexible cer-
tificate format proposed by the IETF. The new ar-
chitecture allows complex certificate chains to be
effectively and easily administered, using the Inter-
net Domain Name Service, or DNS, as the certifi-
cate storage, replication and retrieval mechanism.
The interpretation of the certificates is based on
our Internet Security Policy Daemon architecture.

1 Introduction

A digital certificate is a signed statement that
represents knowledge or belief expressed by its is-
suer. Traditionally, certificates have been used to
express the issuer’s knowledge (or belief) that the
holder of the certified key has a certain name, e.g.,
a Distinguished Name, in some predefined domain.
This naming information may also, implicitly, de-
note some kind of authorization or trust expressed
by the issuer.

More recently, a number of independently devel-
oped alternatives to the identity certificate schemes
manifested in X.509 [10] and PGP [11] have been

presented. The PolicyMaker prototype [3] by
Blaze, Feigenbaum and Lucy introduced the idea
of certifying some kind of policy authority, or au-
thorization, instead of a name. In a way, the Policy-
Maker certificates represent capabilities.
Simultaneously, the SDSI proposal by Rivest et al
[9] brought forth the idea of linked, private name-
spaces instead of a single, global namespace. Orig-
inally developed independently by Ellison and
others, the SPKI proposal [6] by an Internet Engi-
neering Task Force (IETF) SPKI working group,
took ideas from both of these developments, and
along with some original ideas it is being devel-
oped into a comprehensive, flexible certificate sys-
tem.

The Internet Domain Name System (DNS) [8] is
a distributed, fault tolerant directory system origi-
nally developed for storing and retrieving informa-
tion about Internet hosts. The main usage of the
DNS was, and is, the conversion of Internet host
names into addresses, and vice versa. However,
from its very beginning, it has been possible to
store all kinds of other information within the DNS
infrastructure as well. Recently there are proposals
that allow digital signatures and certificates to be
stored in the DNS.

In this paper we show how the DNS certificate
records [4] can be used to effectively store and re-
trieve SPKI certificates. Furthermore, we show
how the certificates should be organized within the
distributed DNS tree so that both their administra-
tion (i.e. addition and removal) and retrieval is
practical and effective. Extending ideas presented
by Aura [1][2], we also describe a retrieval algo-
rithm with a number of heuristical improvements.

The rest of this paper is organized as follows. In
Section 2 we describe the SPKI proposal in suffi-
cient detail to base our future discussion on it. In

Pekka Nikander

pekka.nikander@hut.fi
Helsinki University of Technology

Lea Viljanen

lea.viljanen@cs.helsinki.fi
University of Helsinki

Submission for NordSec-98 2

Section 3 we describe the Internet Domain Name
System (DNS), the proposed certificate resource
record format, and a method to store information
about individual users (instead of host computers)
within a DNS domain. Next, in Section 4, we show
how the DNS may be used as a repository to effec-
tively store and retrieve SPKI certificates.
Section 5 outlines an example, where SPKI certifi-
cates are used to control access to a company ex-
tranet. Finally, in Section 6, we draw some
conclusions.

2 SPKI

The Simple Public Key Format and Infrastructure
(SPKI), is an Internet proposal (Internet draft),
work in progress produced by an IETF working
group. The ideas behind the SPKI proposal were
partly originally developed by Carl Ellison, its pri-
mal promoter, partly drawn influence from the
SPKI and PolicyMaker papers [6][3], and partly
developed through the discussions and arguments
by the working group.

So far, the SPKI has been developed into three
separate draft documents, one describing the basic
ideas behind the proposal, the second describing
the certificate format and the third containing ex-
amples. In Section 2.1, we briefly describe the for-
mat. In Section 2.2, we discuss four different types
of certificates that are typically needed to resolve
security policy decisions. These types are used to
express identity, permissions, delegation, and trust.
In Section 2.3, we show how these four different
types can be used to create so called certificate
loops that are needed in resolving trust problems.

2.1 Certificate Format and Semantics

Conceptually, a SPKI certificate consists of five
fields that have security relevance, and a signature.
The five fields are used to denote the Issuer, the
Subject, the Delegability, the Authority, and the Va-
lidity of the certificate. The Issuer and Subject are
usually expressed as public keys, not as names as in
e.g. X.509. This allows the Issuer and Subject to be
relatively anonymous, if desired. The Delegability
is a binary field that denotes whether the Subject
may further delegate the Authority or not. The Au-
thority field identifies some Authority granted by

the Issuer to the Subject. The interpretation of this
field is solely defined by the Issuer; we return back
to this point later. Finally, the Validity field con-
tains information about when the certificate is
valid, how to retrieve a corresponding Certificate
Revocation List (CRL), or how to otherwise check
the certificate’s validity on-line.

More formally, a SPKI certificate may be ex-
pressed as a five tuple (I,S,D,A,V), where I is the
public key of the Issuer, or an one way hash of the
public key, and S is the public key of the Subject, a
hash of the public key, or a local name of the Sub-
ject in the Issuer’s local name space. D is the Dele-
gation bit, and either true, denoting that the
Authority may be further delegated, or false, effec-
tively forbidding delegation. A is the Authoriza-
tion. V is the Validity; according to the SPKI
proposal, it is an URI that provides information
how to check the certificates validity. The on-line
validation can be performed using DNS queries,
too.

From a semantic point of view, the Authority is
the most important and most versatile field in the
certificate. Basically, the meaning of the Authority
field is always primarily defined by the Issuer, i.e.,
the signer, of the certificate. That is, since the Is-
suer has signed the certificate, it must be assumed
that it knows, exactly, what the certificate is sup-
posed to express. However, for all practical pur-
poses, we must assume some kind of standard
format for the Authority so that delegated certifi-
cates may be effectively handled and reduced. The
current SPKI proposal has resolved this problem
by defining an abstract, solely syntactic tag alge-
bra. This algebra, along with its so called star
forms allows sets of named authorities to formed.
The algebra allows the sets to be manipulated by
forming unions, intersections and ordered sets.

Given two SPKI certificates, (I1, S1, true, A1,
V1) and (I2, S2, D, A2, V2), where S1 = I2, i.e.,
where the subject of the first is the issuer of the
second, one may create a new SPKI certificate (I1,
S2, D, A, V). This certificate is the result of the re-
solving of the delegation present in the original
certificate pair. In the resulting certificate, the is-
suer is that of the first certificate, the subject that of
the second one. Delegation is directly inherited
from the second certificate.

The authority and validation fields are more in-
teresting. By definition, the result authority is the

Submission for NordSec-98 3

intersection of the authorities, i.e., A = intersec-
tion(A1, A2). Similarly, the validity is an intersec-
tion, V = intersection(V1, V2). In the original
proposal, the authority intersection is defined by
the tag algebra.

Local names and the SPKI group concept. As
mentioned earlier, the Subject of an SPKI certifi-
cate may be a local name instead of a public key or
a key hash. This feature allows late binding of keys
by the certificate’s issuer. It also allows the forma-
tion of SPKI groups.

Let us consider a simple example. Alice, the Is-
suer, wants to give Carol, a colleague of hers intro-
duced to her by her very trusted fried Bob, the
Authority A. If she knew Carols public key, KCarol,
she could create a certificate (KAlice, KCarol, false,
A, some validity). However, if she only knew Carol
through Bob, and doesn’t yet know Carol’s public
key, she can resort to trust Bob. A certificate (KA-

lice, KBob’s Carol, false, A, some validity) effec-
tively expresses the same authority by identifying
Carol through a local name in Bob’s name space.
That is, Alice refer’s to Carol by saying that Carol
is someone in the name space maintained by Bob,
i.e., the entity that possesses the ability to create
certificates signed by KBob.

In the same way, Alice can create a group of peo-
ple by creating a certificate of the format (KAlice,
KAlice’s Group, D, A, V), and a number of identity
certificates of the format (KAlice, KGroupMember,
false, belongs_to_Group, V’).

As a further refinement, SPKI allows the subject
to be a treshold. Instead of being a key, a key hash,
or a name, the Subject field may denote a group of
N keys, K of which are needed simultaneously in
order to allow the authority of the certificate to be
executed. For example, if any two of the three top
executives of a company are needed to approve
purchases exceeding $100,000, this may be ex-
pressed with an SPKI certificate as (KCompany, 2-
of-3 KManager1 KManager2 KManager3, D,
may_approve_purhcase_exceeding_$100000, V).

2.2 Certificate Types

Based on our initial analysis, the practical usage of
SPKI certificates in networked access control deci-
sions seems to require at least four different kinds
of certificates. These certificate functions express

Identity, Permissions, Delegation, and Trust. The
differences between these categories are more se-
mantical than formal. We describe each of these
categories in turn.

Identity. Basically, an Identity certificate denotes
that the Subject has a certain name in the Issuer’s
name space. However, they can also be used to ex-
press more complex identities. For example, the Is-
suer may express its belief that a certain service,
identified by a name in some foreign name space,
is provided by the Subject. Naturally, such a certif-
icate may not be blindly trusted, but its trustworthi-
ness must first be resolved.

In this paper, we denote a simple identity certifi-
cate as (KIssuer, KSubject, false, KIssuer’s Name, V).
Similarly, a name claim can be expressed as (KIs-

suer, KSubject, false, Kother’s Name, V).

Permissions. A certificate may be used to express
that the Subject has a certain right. If we consider
an access control function performed by a network
entity, this right may represent permission to ac-
cess a facility. On the other hand, depending on ap-
plication, such a right may express almost
anything, e.g., permission to drive a vehicle*.

A statement, expressed by the Issuer, that the
Subject has a certain access permission, may be ex-
pressed as (KIssuer, KSubject, false, Perm, V). Here,
the Authority Perm is understood by the eventual
verifier to give permission to access the controlled
facility.

Delegation. A delegation is a certificate that au-
thorizes the Subject to issue certificates on the be-
half of the Issuer. We distinguish it from the next
type of certificates, or trust certificates, since the
authority to issue certificates is usually somehow
restricted. For example, the security administrator
of a company A may issue a certificate that allows
the security administrator of another company, B,
to issue certificates that authorizes access to one of
the computers owned by A, but only to employees
of the company B, and only for a limited time.

Trust. The final form of certificates that we con-
sider expresses trust. In this context we want to de-
note full or absolute trust by the Issuer on the
Subject. That is, the Issuer trusts the Subject to be
capable of creating any certificates on its behalf.

* Such an certificate would be the digital counterpart of a
physical driver’s license.

Submission for NordSec-98 4

Such a trust certificate may be issued for a limited
time only, however. In other words, the real distinc-
tion between a trust and a delegation certificate is
in the authority field. While a delegation certificate
allows the Subject to issue certificates for a specific
authority, a trust certificate allows the Subject to is-
sue certificates for any purpose.

2.3 Certificate Loops

According to the idea of the SPKI proposal, certifi-
cates are chained together into sequences. Typi-
cally, the last certificate within a sequence is an
identity or permission certificate, giving some
identity or application specific authority to the final
Subject. The final certificate is preceded by zero or
more delegation certificates, passing the naming or
permission authorization. The first certificate
within the sequence must be issued by the verifier
of the sequence. It is typically a trust or a delega-
tion certificate.

When a certificate sequence is used in order to
prove identity or permission to access, the final
Subject of the sequence proves the possession of its
private key using a conventional public key authen-
tication protocol. In a way, the execution of the au-
thentication protocol can be viewed as an on-line

creation of a virtual certificate. The virtual certifi-
cate states, in a way, that the final Subject wants to
use the authorization granted to it by the certificate
sequence.

From a topological point of view, the execution
of the authentication protocol closes a certificate
sequence into a loop. That is, the first certificate in
the sequence is issued by the verifier, who is also
the subject of the virtual certificate created by the
authentication protocol.

A certificate loop to verify service identity. Let
us first consider the use of SPKI certificates for a
more traditional certificate function, namely veri-
fying the identity of a network service. This is a
well known application domain, and even X.509
certificates have been successfully used to imple-
ment this function. The main benefit of the SPKI
system is to make all trust relationships explicit
[7].

In this example, a user U wants to gain assurance
that a networked server S indeed provides the serv-
ice that the user wants to access. Instead of a usual
Certificate Authority (CA) hierarchy, we envision a
mesh, or loosely coupled network of trust or iden-
tity authorities, or TAs. Basically, the user explic-
itly decides which of the TAs to trust, and how
much. For example, the user may trust one author-

(TAU, TAS, may dele-
gate, identify Services,
time constraint)

Figure 1: Basic service identification loop

issuer

subject

(TAS, S, no delega-
tion, identify "Server",
forever)

Key: TAS Key: TAU

Key: S
Server

Key: Self

User

(Self, TAU, may del-
egate, identify, time
constraint)

Proves possession of the key S

TAU, trusted
by the user

TAS, service
certifier

Submission for NordSec-98 5

ity to identify banking services and another author-
ity to identify on-line stores that should be trusted
to accept electronic money. The user may also con-
trol how much transitive trust to place on each of
the trusted TAs. On the other hand, the identity of
the service must be certified by one of the TAs that
the user either directly or transitively trusts.

This situation is displayed in Figure 1. All of the
parties, the user U, the Server S, the trust authority
TAU that the user directly trusts, and the trust au-
thority TAS certifying the service’s identity, each
have their corresponding key pair. The user has ex-
pressed its trust on TAU by creating an appropriate
trust certificate. TAU has then delegated some of
the trusted identity authority to TAS, either directly
or through some path that is acceptable to the user.
Finally, TAS certifies that the server S really pro-
vides the desired service.

A certificate loop to verify the user’s access
rights. Now, let us consider a slightly more com-
plicated case. In this case the server S wants to ver-
ify that the user U really has right to access the
service. Traditionally this has been accomplished
by using an identity scheme similar to the one
above, and a separate access control list (ACL)
stored into the server. However, when using SPKI

certificates the ACL is unnecessary. In fact, with
SPKI certificates we can verify the client’s access
rights even when the client desires to stay anony-
mous.

In this example, the server S is administered by a
policy administrator PAS. Typically, the PA may be
the security officer of the organization owning the
server S. This relationship is represented digitally
as a trust certificate signed with KS, denoting that
the server S (unconditionally) trusts on the policy
administrator PAS. This policy administrator, on its
behalf, delegates a right to grant access to the
server to the policy administrator of the user’s or-
ganization, PAU. PAU in turn grants the user U a
right to access the server S. This situation is dis-
played in Figure 2.

3 The Domain Name System

The Domain Name System (DNS) [8] is a global
distributed database. It was originally created to
map Internet host names to IP addresses and vice
versa, distributing the namespace and control to in-
dividual organizations. It has proven to be very ef-
ficient and versatile, and has become a critical part
of the Internet infrastructure.

Figure 2: Basic authorization certificate loop

issuer

subject

(Self, PAS, may dele-
gate, access to “Server”,
time constraint)

Server’s

Key: PAS

policy admin
User’s

Key: PAU

policy admin

Key: Self

Server
Key: U

User U

(PAS,PAU, may delegate,
limited access to “Server”,
forever)

(PAU, U, no delegation,
access to “Server”, time
constraint)

Proves possession of the key U

Submission for NordSec-98 6

In Section 3.1 we have a brief look into the basic
DNS naming structure, the following section ex-
plores ways to name services and users.
Section 3.3 introduces work in progress to define a
certificate resource record type.

3.1 Overview
The DNS naming space is a classical tree struc-

ture consisting of arcs and nodes. Nodes have a la-
bel, which can be considered as a text string for our
purposes. The null label is reserved for the root
node. Sibling nodes cannot have the same label.
The domain name of a node is the list of the labels
on the path from the node to the root of the tree. In
the textual notation a dot “.” is used as the separa-
tor between node labels (or can be thought as an
arc label).

Nodes contain data, which is arranged as typed
resource records (RR). Resource record types de-
fine what kind of data can be stored in the DNS, for
example, IP-addresses, free text etc. Creating new
resource record types requires IETF standardiza-
tion action.

By the realization of DNS being a critical com-
ponent of the Internet and it lacking any form of
data origin authentication, DNS security exten-
sions were created by the IETF DNSSEC working
group. The DNS security (DNSSEC) standard [5]
specifies three new security related resource record
types, of which the public key (KEY) record type
is relevant to this paper.

The KEY is a general purpose public key re-
source record type. In our schema it is used to at-
tach public keys to keyholders, i.e entities who
need keys in the Internet (hosts, services and us-
ers).

3.2 Naming Non-Host Entities

Services. The DNS system is focused on naming
physical hosts and storing their attributes (IP-ad-
dress, mail exchange information etc.). Hosts in
turn implement services. To be able to store public
key information for a service, we need to name it in
the DNS. Fortunately, this is standard practice to-
day; most well managed domains use service ali-
ases like www.acme.com or mail.acme.com
to point to the real host or hosts implementing the
service. This indirection enables managers to

change the actual host without reconfiguring a
score of client programs.

Users. Representing users is a more difficult prob-
lem. There is no user naming per se in the domain
naming scheme. Users do not translate easily into
hosts. However, there is a way to specify a user by
way of his or hers mailbox address by replacing the
@-separator with a dot, for example
user@acme.org would be user.acme.com
in the DNS mailbox name syntax [8]. This type of
user naming is used by the DNSSEC standard if
mapping users to DNS is needed.

However, a major consideration with users is the
privacy issue. The storage system should not reveal
any more information on the user than is required
by the authentication or authorization process.
Since SPKI certificate based authorization does not
need to reveal the user name to the service, neither
should the DNS. Thus the mailbox type of naming
is not a good solution for SPKI certificates. For
X.509 certificates it may suffice.

To store public keys and SPKI certificates we
need the user to DNS name mapping to be one way
only. Therefore we could use an one way hash
function (for example MD5) to create a hash string
from the user name and/or other account informa-
tion to be used as a DNS name component instead
of the mailbox. For example the MD5 algorithm
hashes “Some User” to “12e472e68a416-
9fb904d41ac30dbd1f4”. The corresponding do-
main name would be 12e472e-
68a4169fb904d41ac30dd1f4.acme.com.

The hash algorithm should be selected keeping
in mind that the maximum length of a single DNS
label is 63 bytes, i.e 252 bits using hexadecimal en-
coding. If more bits are needed, a more effective
encoding can be chosen, e.g., BASE64. The DNS
standard itself allows almost all byte values to be
used in the labels.

To prevent this technique being subject to input
guessing attack, we can use keyed hash. The proba-
bility of a duplicate hash is algorithm dependent
but generally sufficiently small.

3.3 The Certificate Resource Record Type

To store certificates in the DNS structure we need a
new resource record type defined. This work is cur-
rently in progress [4]. The aim is to create a single

Submission for NordSec-98 7

certificate record type which is able to contain any
kind of certificate (e.g X.509, SPKI, PGP or some
other yet undefined).

The CERT record format currently consists of
four elements: type, key tag, algorithm number and
the certificate or certificate revocation list itself.
The type element specifies the certificate type. The
key tag is a 16 bit hash of the subject’s key. The tag
is used to quickly determine which KEY and
CERT records belong together. The algorithm
numbers are assigned by IANA, currently only one
number (1 for MD5/RSA) has been assigned. The
certificate or CRL itself is stored in a BASE64 en-
coded string or strings. Thus the internal structure
of the certificate is not visible in the DNS.

4 DNS as the SPKI Certificate Storage

Given the SPKI certificate semantics and the DNS
certificate resource record, we now propose an ef-
fective and simple way to store and retrieve SPKI
certificates using the DNS. Basically, we store cop-
ies of the relevant SPKI certificates at suitable lo-
cations within the DNS hierarchy so that on-line
creation and verification of SPKI certificate se-
quences and loops becomes relatively straightfor-
ward. Currently we are implementing a prototype

of the certificate and trust management system
based on this proposal.

In Section 4.1, we describe the general idea of
storing SPKI certificates in DNS resource records.
In addition to that, we show how to organize the
certificates in a meaningful way. In the next part,
Section 4.2, we show how this organization can be
used to effectively build certificate sequences. The
sequences, in turn, may be used to check authoriza-
tion as outlined in Section 2.3. Finally, we discuss
the issues pertaining to adding and removing certif-
icate resource records.

4.1 Storing SPKI Certificates into the
DNS Nodes

To simplify the representation we will consider an
example of a partial DNS hierarchy that consists of
two organizations. One organization has a server to
be accessed, and the organization’s trust and policy
administrators. The other organization has a user
that wishes to access the server, and corresponding
trust and policy administrators. This example is
shown in Figure 3. The structure may be easily
generalized into a more complex situation involv-
ing several organizations and multiple delegations.

. (root)

com org

acme.org un.org

department.acme.org service.un.org

servicepa

security.un.org

tauser pa ta

Figure 3: Example DNS tree

Submission for NordSec-98 8

The basic idea of our schema is to have DNS
nodes that carry resource records pertaining to a
specific SPKI principal, i.e. a SPKI key. The bind-
ing between a DNS domain node and a SPKI key
need not be secure; DNS is just a convenient place
to search for certificates that have that particular
key as their issuer or subject. Technically, the do-
main name of this node is given as the optional is-
suer-location and/or subject-location fields of each
certificate.

Where to store a given certificate, at its issuer
DNS node, subject DNS node, or both, depends on
the certificate type. Trust certificates are stored
only at the issuer node. Delegation certificates are
stored both at the issuer and at the subject. Permis-
sion and identity certificates are stored only at the
subject node.

Let us first consider the trust certificates (T).
Trust certificates are basically only needed by their
issuer, when verifying the validity of a certificate
sequence. Each verifier naturally knows its own
DNS name. Storing the trust certificates under this
DNS name allows the verifier to fetch trust certifi-
cates on demand, allowing them to be used even in
networked devices with very little memory. Fur-
thermore, if the issuer of the next certificate in the
chain is known, it is easy to filter out the only trust
certificate needed for this particular verification*.

What comes to permission certificates (P), it is
natural to associate them with their subject. First,

each active subject knows its domain name. This
allows it to fetch all its own permission certificates
from the DNS. Second, the certificates can be con-
sidered as properties of the subject; hence, it is nat-
ural to store them under the subject’s name.

With respect to storage location, identity certifi-
cates (I) are similar to permission certificates. They
should be stored in the DNS node corresponding to
their subject. Behind this is the assumption that the
DNS name of a service is known beforehand, i.e.,
before any security checks are made. This allows
the verifying party to fetch any identity certificates
that apply to the target directly from the DNS di-
rectory.

Delegation certificates (D) seem to be most prob-
lematic. In one respect, delegation expresses trust
on the delegator’s behalf. Conversely, they can be
considered as properties of the delegate, expressing
trust placed on them. Furthermore, as we will
shortly show, the search algorithm sometimes
needs to traverse delegation paths in either direc-
tion. Therefore we propose that the delegation cer-
tificates are stored both on the delegating party and
at the delegate.

The proposed organization of various certificates
and their storage points is depicted in Figure 4.

* Due to the possibility of having Certificate Reduction Cer-
tificates (CRC certificates), this is quite an important possi-
bility from performance point of view.

department.acme.org service.un.org

servicepa

security.un.org

tauser pa ta

T
D D

I
T

DD
P

Figure 4: Storage and location of certificates

Submission for NordSec-98 9

4.2 Search algorithm

Our search algorithm extends the one presented by
Aura [1]. In his paper Aura describes and analyses
three algorithms: forward search, backward search,
and two-way search. Our algorithm is based on the
two-way search variant, adding a number of heuris-
tics to cut back average search cost.

Basically, all the certificates (stored in the DNS
tree) form a directed delegation network. The
nodes of the network are the issuers and subjects of
the certificates (i.e., the keys). The nodes are physi-
cally represented as DNS nodes. The arcs of the
network represented by the certificates themselves,
each certificate representing an arc from the issuer
to the subject. The search problem to solve is to
find a path from the verifier to the final subject,
thereby creating a certificate chain. Furthermore,
the path must be such that the permission or iden-
tity being checked is transferred on each arc be-
longing to the path. If there are any delegation
restrictions or other details breaking the transitivity
of the trust, they must be considered in the arc se-
lection phase of the algorithm.

Definition of a delegation network. Formally, a
delegation network is a set of keys ,
forming the nodes of the network, and a set of arcs
(certificates) , ,
where is the delegation bit,

 is the set of authorizations, represented as
sets of permissions , and is the set of verifi-
cations (ignored), and is the set of DNS names,
denoting the issuer and subject locations.

Search problem. Given the formal definition
above, the search problem can be formulated.
Given a verifier with a corresponding DNS
name , a final subject with a corre-
sponding DNS name , and a permission

, the problem is to find a sequence of certifi-
cates such that the issuer of is

, the subject of is ,
,

, and all the
certificates are also otherwise relevant.

Relevant certificates. Before describing the algo-
rithm itself, we define the concept of a relevant
certificate. A certificate is relevant with respect
to a search problem iff

1. The authorization field of the certificate denotes
, i.e.,

2. Either the delegation bit of the certificate is true,
or the certificate is the last one in the chain, i.e.,

3. The certificate is not otherwise unsuitable to be
included in the chain. For example, some earlier
certificate may have limited the maximum length
of the chain, or there may be restrictions ex-
pressed in the authorization field that mark the
certificate bad with respect to the chain being
formed. In general, these and other such details
are beyond the scope of this paper, and assumed
to be taken care of in the actual implementation.

Algorithm. Now we are ready to present the actual
algorithm. The algorithm consists of two main
steps. First, a forward search is performed. The for-
ward search is terminated as soon as the forming
search tree starts to branch. Second, a backward
search is done. The algorithm is terminated when a
satisfying certificate sequence is found, or the
search is deemed failed by the heuristics.

Forward search
1. Set the current DNS name ,the current key ,

and an empty chain.
2. Fetch all certificates using the current DNS

name.
3. Filter out all certificates that are not issued by the

current key.
4. Filter out all certificates that are not relevant to

the current search problem.
5. Filter out all certificates whose subject is already

present in the chain.
6. For all certificates whose subject is the final sub-

ject , check the signature. If the check suc-
ceeds, add the certificate to the end of the chain,
terminate,and indicate success. Otherwise, filter
out the certificate (and issue a warning).

7. If there are no more certificates left, terminate
and indicate failure.

8. If there is only one certificate left, check that it is
correctly signed by the issuer, add it to the chain,
set its subject location and subject as the current
DNS name and key, and continue from step 2.

9. The search tree branches. Set up backward
search target as all the certificates in the chain,
and the remaining certificates in the current fetch
set. Mark those taken from the sequence as
checked and rest as unchecked.

DN K C,()= K

C C K K D A V N N××××××⊆
D false true,{ }=

A 2P⊆
p P∈ V

N

kv K∈
nv N∈ ks K∈

ns N∈
p P∈

CS c0 … cn, ,〈 〉= c0

kv cn ks

c CS p authorization c()∈,∈∀
c c0 … cn 1–, ,{ } delegation c(),∈∀ true=

c

kv nv k,
s

ns p, , ,()

p p authorization c()∈

delegation c() true= subject c()∨ ks=

nv kv

ks

Submission for NordSec-98 10

Backward search
1. Start with the target set formed by the forward

search. Set the current DNS name as and the
corresponding key as , and an empty backward
tree.

2. Fetch all certificates using the current DNS
name.

3. Filter out all certificates whose subject is not the
current key.

4. Filter out all certificates that are not relevant to
the current search problem.

5. Filter out all certificates whose issuer is already
present in the backward tree.

6. For all certificates whose issuer is present in the
backward search target, check the signature. If
the check succeeds, check the signature of the
found target if marked unchecked. If both checks
succeed, terminate and indicate success. If either
of the checks fails, filter out the certificate (and
issue a warning).

7. If there are no more certificates left, terminate
and indicate failure.

8. Add the remaining certificates as leaves to the
backward tree.

9. Using the heuristics (see below), either terminate
indicating probable failure, or select one of the
leaves of the backward tree, and continue from
step 2.

Heuristics. Basically, we have added two different
sets of heuristics: termination heuristics and back-
ward tree selection heuristics. However, these are
somewhat mixed, as we shall shortly see.

According to Aura’s analysis, a typical success-
ful search terminates in relatively few steps, while
an unsuccessful search may require several magni-
tudes more steps. Thus, from a practical point of
view it is useful to terminate the search relatively
fast in the face of a probable unsuccessful termina-
tion instead of performing an exhaustive search.
Our heuristics fullfill this requirement.

The second background issue behind our new
heuristics lies in the structure of the DNS tree. In
typical cases the certificate chains will flow either
directly from the verifiers DNS domain to the sub-
jects DNS domain, or through at most one interme-
diate domain trusted by the verifier. Saying this, we
consider the DNS domains to consists of the actual
subdomain plus any superdomains up to one or two
levels below the top level domain. That is, the do-

main of the node some.department.acme.
org is considered to cover the node itself, de-
partment.acme.org and acme.org.

Given these preliminaries, we can now describe
the heuristics.

Leaf selection and termination heuristics.
1. Consider the verifier’s domain (with its superdo-

mains as discussed above), the subject’s domain
(with superdomains) and any other domains
present in the backward target set as relevant do-
mains.

2. When selecting a leaf certificate to follow, con-
sider the certificate’s issuer location. The close
the issuer location is to the verifier’s domain,
other relevant domain, or the subject’s domain,
the better the leaf is. For example, if the verifier’s
domain is service.un.org and leaf’s issuer
location is pa.security.un.org, the leaf is
quite good because it belongs to an immediate
subdomain of the verifier’s superdomain
un.org.

3. In addition to the leaf’s issuer location’s close-
ness to the relevant domains, the leaf’s depth
from the root of the backward tree (i.e. the final
subject) is also important. We believe that in
most practical settings the certificate paths will
be short, i.e. probably 3–6 certificates long, and
certainly shorter than 10 certificates long. (If this
is not the case, the situation can be administra-
tively fixed by creating suitable CRC certifi-
cates.) Therefore, we suggest that an upper limit
is set to the check depth.

4. The termination can be based on both leaf rele-
vance and depth. When all remaining leaves ex-
ceed some combined irrelevance and depth level,
the search should terminate.

4.3 Administering certificates

From an administrative point of view, certificates
are created, stored into DNS for retrieval, and re-
moved from DNS once they have become obsolete
(revocation is not covered by this paper). Depend-
ing on the certificate, certificate creation can hap-
pen in several possible ways, including both off-
line and on-line creation. However, once they have
been created, they have to be stored in the DNS
tree at appropriate locations.

ns

ks

Submission for NordSec-98 11

Adding or removing certificates is not very dif-
ferent from other DNS administration. Adding and
removing hosts and services is a routine operation.
Thus, the only relevant problem seems to be to
make sure that any changes needed are appropriate
from the DNS administrator’s point of view.

Trust and identity on the server side. Servers
tend to be relative stable. Services are probably
changed more often, but still not too frequently.
Similarly, the service identity and the administra-
tive keys a server is programmed to trust are proba-
bly rather stable. The service identities and initial
trust relations are typically administered within an
organization. Thus, the host and service adminis-
tration patterns seem to correspond well with the
security administration requirements.

Trust and permissions on the user side. Eventu-
ally, the users should be allowed to decide by
themselves whom to trust. Therefore, it would be
beneficial if the user’s could administer their own
trust certificates. However, these certificates are
only needed when the verifier is the user itself.
Therefore, in many cases these certificates need not
actually be stored in the DNS, but they can be per-
manently cached in the user’s workstation or smart
card. Thus, their final storage seems to depend
heavily on the actual application and terminal
equipment used.

Permissions are clearly a different issue. Typi-
cally, a user is granted permissions by a security
administrator. This administrator may belong to the
user’s organization or not. In the case of an admin-
istrator within the same organization, he or she is
probably closely connected with the user’s DNS
administrator (they may even be one and single
person), and there does not seem to be any conflicts
of interest. However, if some security administrator
from some other organization wants to grant per-
missions just to a certain person, these permissions
are not necessarily relevant at all from the user’s
DNS organizations point of view. However, in such
a case the permission certificates can be perma-
nently cached just like the trust certificates.

Thus, if the user, for a reason or another, does
want to store the trust and cross-organizational per-
missions within the DNS database, the user proba-
bly should have his or her own zone. In this case
the user may have two DNS names, one within the
organizational domain, and one personal name. In

this case, the personal name is the one that belongs
to the user specific zone. If, on the other hand, per-
manent certificate caching is enough, no such a
zone is needed.

Delegations. Delegations seem to be the most
problematic. The nature of the two-way search al-
gorithm requires that they are stored on both at the
issuer and at the subject locations. Typically, these
locations belong to different organizations. How-
ever, the issuer of the certificate has usually a close
connection with the issuer location’s DNS domain;
therefore, storing the delegation at the issuer end
should pose no administrative problems. Luckily,
the subject of the delegation typically really needs
the delegation; at least when delegating further, if
not earlier. Thus, it seems plausible to assume that
given good enough tools, the administrator in the
subject end of a delegation certificate is motivated
enough to fetch and store the certificate also at the
subject location.

Removing expired certificates. Removal of ex-
pired certificates should probably be done by some
automatic means. It is quite easy to write a pro-
gram that traverses the DNS tree, looks for expired
certificates, and removes them. Removal is not rel-
evant from a security point of view, and need not
be necessarily performed on the case of revocation.
However, integrating removal with revocation is
probably a good idea since it may improve overall
performance.

5 Example

As an example, let’s consider the Acme Inc. ex-
tranet WWW pages, to which access is granted to
employees of “friendly” organizations according to
the company security policy. Now, in our first
phase, Some User from the United Nations, being
naturally a friendly party, wants to gain access to
the extranet pages. At the latter stage in Section 5.2
we see the user accessing the pages.

5.1 Granting Access

The system or WWW administrator of the extranet
service has two choices, either to directly grant ac-
cess to Some User, or move the decisions to a

Submission for NordSec-98 12

higher level in the organization, for example the se-
curity policy administrator.

If the extranet administrator grants certificates
himself and the certificates are stored with the
service or server data, the situation is similar to the
normal ACL usage, only differing in the storage
system (DNS) and the ACL entry format (certifi-
cate). Therefore we do not peruse this direction
further.

Delegating control. If the extranet service admin-
istrator has trusted the local policy authority for ac-
cess permissions and created a trust certificate
(Kextranet.acme.com, Kpa.acme.com, true, everything,
V), the Some User’s request for access may be han-
dled by the policy authority.

If the user access request is according to the
company policy, the policy authority either creates
the access certificate directly to the user
(Kpa.acme.com, Kuserhash.un.org, false, read_http://ex-
tranet.acme.org/, V) , or creates a delegation certif-
icate for the user’s organization’s policy authority
(Kpa.acme.com, Kpa.un.org, true, read_http://ex-
tranet.acme.org/, V). This policy authority in turn
can create an access certificate for the extranet
(Kpa.un.org, Kuserhash.un.org, false, read_http://ex-
tranet.acme.org/, V) , which it is able to store in the
DNS with the other Some User’s certificates.

5.2 Accessing the Service

Now, Some User wants to access the Acme Inc ex-
tranet for information on a thingamanjig they man-
ufacture. When the User clicks the Acme Inc
extranet link in the WWW browser, he or she must
prove the possession of the private key to the re-
mote service using a conventional public key au-
thentication protocol.

When the service has been convinced that behind
the HTTP connection is someone knowing the pri-
vate key for Kuserhash.un.org it can start executing
the algorithm presented in Section 4.2.

In the forward search phase the service searches
all certificates created by its access granting key
Kextranet.acme.com. In our example, the service has
created a trust certificate for Kpa.acme.com with that
key.

The search jumps to the DNS node
pa.acme.com and continues. The forward phase

usually terminates there, since policy authorities
generally have created several delegation certifi-
cates. Target set contains the nodes ex-
tranet.acme.com, pa.acme.com and all
nodes for which Kpa.acme.com has created a delega-
tion certificate for the current operation, including
in our example pa.un.org.

The backward search phase starts with the user
DNS node. If the certificate records for user-
hash.un.org include a certificate issued by any
of the target set keys Kextranet.acme.com, Kpa.acme.com
or Kpa.un.org and the authority and signature
matches, the certificate loop is thus closed and
WWW pages opened.

This certificate loop can be resolved by the cli-
ent, too. In that case the client executes the algo-
rithm and passes all certificates in the chain for the
service to verify.

6 Conclusions

The recent proliferation of non-hierarchical certifi-
cate systems such as PGP and SPKI create new
needs for certificate disrtibution and retrieval. The
X.500 directory structure, on which the X.509 cer-
tificate storage and retrieval is based on, seems less
than ideal for other certificate formats and seman-
tics. The Internet Domain Name System (DNS)
provides a hierarchical, distributed, fault-tolerant
and flexible name space, where certificates with
differing semantics can be easily stored.

In this paper we have defined a way to store
SPKI certificates within the DNS name space. We
have shown that using this organization the certifi-
cates can be effectively retrieved and managed.

We have also given an algorithm that allows cer-
tificate sequences and loops to be looked up on de-
mand. To reduce the average certificate sequence
lookup time we have added a number of improve-
ment heuristics. Finally, we have analyzed the ad-
minstrative implications of our suggested scheme
showing that it addresses the basic administrative
requirements particularly well.

All in all, we have shown that it is feasible to cre-
ate a technically sound infrastructure for policy
based certificates in the Internet.

Submission for NordSec-98 13

References

[1] Aura, T. “Comparison of Graph-Search Al-
gorithms for Authorization Verification in
Delegation Networks”, In Proceedings of
2nd Nordic Workshop on Secure Computer
Systems, 1997.

[2] Aura, T. “On the Structure of Delegation
Networks“, Licenciate’s thesis, Helsinki
University of Technology, 1997.

[3] Blaze, M., Feigenbaum, J., Lacy, J., “Decen-
tralized Trust Management”, In Proceedings
of the IEEE Symposium on Security and Pri-
vacy, 1996

[4] Eastlake 3rd, D., Gudmundsson, O. “Storing
Certificates in the Domain Name System”,
Internet Draft, draft-ietf-dnssec-certs-01.txt,
1997.

[5] Eastlake 3rd, D., Kaufman, C., “Domain
Name System Security Extensions”, Request
For Comments 2065, 1997.

[6] Ellison, C., Frantz, B., Lampson, B., Rivest,
R., Thomas, B., Ylonen, T., “Simple Public
Key Certificate”, Internet Draft, draft-ietf-
spki-cert-structure-04.txt, 1997.

[7] Lehti, I., Nikander, P. , “Certifying Trust”, to
appear in Proceedings of the Practice and
Theory in Public Key Cryptography, 1998.

[8] Mockapetris, P. V., “Domain names -- con-
cepts and facilities”, Request For Comments
1034, 1987.

[9] Rivest, R., Lampson, B., “SDSI - A Simple
Distributed Security Infrastructure”, Techni-
cal Report, 1996.

[10] International Telegraph and Telephone Con-
sultative Committee (CCITT), “Recommen-
dation X.509, The Directory -
Authentication Framework”, CCITT Blue
Book, Vol VIII.8, pp. 48-81, 1988.

[11] Zimmermann, P., “The Official PGP Users
Guide”, MIT Press, 1995.

