
1 of 11

Distributed Policy Management for JDK 1.2

Pekka Nikander

pekka.nikander@ericsson.com
Ericsson Telecom Research1

Jonna Partanen

jonna.partanen@hut.fi
Helsinki University of Technology

Abstract1

In JDK 1.2, the security architecture supports fine grained
access control. In the default implementation, Java run-
time modules (classes) are signed, and permissions are
configured through a configuration file using the signer’s
identity and the loading location (URL) of the module. In a
large network, the number of applets and the frequency of
changes to the security policy will eventually grow very
large. In a large organization, changing the configuration
file in all Java enabled workstations and devices every
time a need arises may be very hard.

In this paper, we describe a better scaling solution. We
use authorization certificates to delegate permissions to
Java modules. In JDK 1.2, the permissions are attached to
the runtime modules through protection domains. In our
implementation, each protection domain may be decorated
with one or more SPKI certificates. These certificates di-
rectly describe the possible permissions of the domain.
The actual permissions depend on the currently valid cer-
tificate chains leading to these certificates.

In addition to the certificates distributed with the mod-
ules, certificates for the chains may be retrieved from a
distributed directory service. This approach makes it pos-
sible to fully distribute Java security policy management,
allowing, among other things, security policy to be
changed and new permissions types to be introduced with-
out any modifications to the local configuration. Further-
more, the permissions need not be statically assigned but
can be dynamically derived from the SPKI certificates as
needed.

Our approach also enables further extensions. In partic-
ular, we propose how permissions could be delegated from
a domain in one JVM to a domain in another JVM. This
could eventually lead to a fully distributed secure Java ex-
ecution environment.

1. Introduction

The Java runtime environment (JRE) seems to be the first
widely accepted architecture for mobile code. From the
very beginning, Java has addressed the security concerns
arising from executing code loaded from the untrusted net-
work on a local computer, mainly assuring that malicious
code cannot tamper with the local machine or network.

In the first two releases (1.0 and 1.1) the approach was
simple: any untrusted code was placed in a confined envi-
ronment, the sandbox, where its attempts to communicate
with the external world were monitored and restricted. In
JDK 1.0, all code loaded from the network was regarded
as untrusted, and prohibited from performing any opera-
tions considered dangerous. These included, for example,
accessing the local file system, opening network connec-
tions (to other machines but the one the code was loaded
from), and accessing environment variables or Java prop-
erties that might reveal information about the local system
or user. Java 1.1 enhanced this approach slightly by adding
the notion of signed applets. Basically, in the Java 1.1 en-
vironment the local user could configure whether signed
applets were considered trusted or untrusted. All untrusted
code was still executed in the sandbox, equally restricted
as before.

From an access control point of view, JDK 1.2 is a huge
improvement. As we describe in more detail in Section 2,
JDK 1.2 allows fine grained access control in the form of
permissions. Whenever a Java class is loaded, it is associ-
ated with a number of permissions that represent the ac-
cess rights the class has. Whenever a controlled resource is
accessed, the runtime verifies that all classes in the method
call stack have sufficient permissions for accessing that re-
source.

Unfortunately, the JDK 1.2 default implementation
does not address the administrative needs of distributed
systems. A configuration file is used to describe how per-
missions are granted to each class, based on the signa-
ture(s) the class file has and the location the class was
loaded from. In practical terms, this means that the admin-

1 Pekka Nikander was at Helsinki University of Technology
when most of this work was accomplished.

2 of 11

istrator of a local, distributed Java environment has to an-
ticipate beforehand all possibly needed permission
combinations, and to create corresponding signature keys
and security configurations for them. If need arises to
change these, the configuration files must be updated on
all affected machines.

If we think about the suggested idea of using Java in
various kinds of equipment, including embedded devices
such as cell phones, PDAs and network routers, the con-
cept of locally managing the Java security configuration in
all devices will clearly create an administrative nightmare.
Of course, it is possible, at least in theory, to remotely
manage the security configurations in the same way as
other configuration files are managed. In JDK 1.2, there is
the possibility of defining the location of the configuration
file as an URL, so the file could be fetched from a Web
server. Remote management, however, requires secure
management connections, which in a pure Java environ-
ment will probably be controlled by the local security con-
figuration files, i.e., the very files the manager wants to
modify.

The rest of this paper is organized as follows. In the re-
mainder of this section, we briefly introduce the concept of
authorization certificates in general, and SPKI in particu-
lar. In the next section, we describe the relevant details of
the basic JDK 1.2 security architecture in order to be able
to show where our modifications plug in. A more complete
description is available in [8]. In Section 3, we discuss
some weaknesses of the basic architecture and implemen-
tation, mainly from the management point of view, and
outline our modification and customizations in conceptual
terms. Section 4 describes our architecture in detail. Next,
in Section 5, we describe the prototype implementation,
and give initial performance measurements. In Section 6,
we suggest a way of extending JDK 1.2 security domains
across distributed Java Virtual Machine (JVM) environ-
ments with the help of SPKI certificates. Finally, in
Section 7, we present our conclusions from this research.

1.1. Authorization certificates

Authorization certificates, or signed credentials, are signed
statements of authorization, first independently described
in the SDSI [16] and PolicyMaker [4] prototype systems
and the SPKI initiative [5]. Some of the SDSI and Policy-
Maker ideas are being merged to SPKI, which in turn is
being standardized by the IETF as an alternative to the
rigid X.509 based identity certificate hierarchy.

The basic idea of an authorization certificate is simple.
In SPKI terms, a certificate is basically a signed five tuple
(I,S,D,A,V) where

• I is the Issuer’s (signers) public key, or a secure hash of
the public key,

• S is the Subject of the certificate, typically a public key,
a secure hash of a public key, or a secure hash of some
other object such as a Java class,

• D is a Delegation bit,
• A is the Authorization field, describing the permissions

or other information that the certificate’s Issuer grants to
or attests of the Subject,

• V is a Validation field, describing the conditions (such
as a time range) under which the certificate can be con-
sidered valid.

The meaning of an SPKI certificate can be stated as fol-
lows:

Based on the assumption that I has the control over the
rights or other information described in A, I grants S the
rights/property A whenever V is valid. Furthermore, if D is
true and S is a public key (or a hash of a public key), S
may further delegate the rights A or any subset of them.
[6]

Example. Let us consider a simple situation, where Alice
wants to allow all applets signed by Bob to be able to ac-
cess the local temporary directory, /tmp, on her local ma-
chine. Conceptually, this allowance could be represented
by an SPKI certificate (KAlice, KBob, Yes, (Java-Permis-
sion (File-Access “/tmp/*”)), Always). Basically, this cer-
tificate states that Alice delegates Bob the right to
authorize applets to access files in /tmp. To complete a
certificate loop, two other certificates are needed. First,
Bob must create a certificate for the applet in question:
(KBob, hash(applet), No, (Java-Permission (File-Access “/
tmp/*”)), Always). Second, the local machine must have a
local certificate that delegates a right to administer local
Java permissions to Alice: (Klocal-machine, KAlice, Yes,
(Java-Permission (All-Permission)), Always).

2. Basic security architecture in JDK 1.2

The JDK 1.2 security architecture contains two parts: an
access control architecture and a number of cryptography
related classes. Their integration is relatively loose. The
components of the access control architecture are enumer-
ated in Table 1 and discussed in more detail in
Sections 2.1–2.4. Section 2.5 describes the relevant cryp-
tographic classes.

2.1. Permissions

JDK 1.2 introduces a new type of classes, called Permis-
sions, that are used inside the Java runtime environment to
represent access rights to protected resources. Each pro-
tected resource in the system has a corresponding Permis-

3 of 11

sion object. The Permission object can be seen as a
capability or a “ticket” that grants access to the resource.
Typically, there are many instances of a given Permission,
possessed by and thus granting access to different classes.

Permissions are divided into several subtypes that ex-
tend the Permission class. Each resource type or cate-
gory, such as files or network connections, has its own
Permission subclass. Inside the category, different in-
stances of the class correspond to different instances of the
resource. In addition, the programmers may provide their
own Permission subclasses if they create protected re-
sources of their own.

Some permissions are more generic than others. For ex-
ample, a single permission object may grant access to
more than one instance of the controlled resource. Such a
more generic permission instance implies a number of
more restricted permissions. Thus, for example, the File–
Permission(“/tmp/*”, “read,write”) object implies the File-
Permission(“/tmp/foo.txt”, “read”) permission. Instances
of the class AllPermission imply all other permissions.

2.2. ProtectionDomains

Just as in any capability-based access control system, the
Java classes must be prevented from creating permissions
for themselves and thus gaining unauthorized access. This
is the task of ProtectionDomains.

Each class belongs to one and only one ProtectionDo-
main. Each ProtectionDomain has a PermissionCollection
object that holds the permissions of that domain (see
Figure 1). Only these permissions can be used to gain ac-
cess to resources. The classes cannot change their Protec-
tionDomain nor the PermissionCollection of the domain.
Thus, the classes are free to create any permission objects
they like, but they cannot affect the access control deci-
sions and gain unauthorized access.

In the current JDK 1.2 implementation the protection
domain of a class is uniquely identified by the Code–
Source of the class. A CodeSource consists of the code-
base or URL that the class was loaded from, and a set of

cryptographic certificates that indicate the signatures the
class has. The classes are placed in the protection domains
corresponding to their CodeSources. If a class is not
signed, or if the signature cannot be verified, the class is
placed in a protection domain that has an empty set of cer-
tificates.

All classes in the same protection domain get the same
permission objects. However, classes with identical per-
missions may belong to different protection domains, be-
cause many protection domains may happen to have been
granted a similar set of permissions by the current security
policy.

2.3. AccessController

The AccessController is the JDK 1.2 incarnation of the
reference monitor concept [1]. That is, when a thread re-
quests access to a protected resource such as a file, the Ac-
cessController object is asked whether the access is
granted or not. To determine this, the AccessController
checks the execution context to see if the caller has the
Permission object corresponding to the resource. For ex-
ample, if a class tries to read the file /home/jhp/myfile, its
protection domain must have the FilePermission(“/home/
jhp/myfile”, “read”), or some other permission that im-
plies this permission.

Asking for an access that requires a specific permission
may be made by a method that was called from another

Table 1: The parts of the JDK 1.2 access control Architecture

Class or classes The role of the class or classes

Permission and its subclasses Represent different “tickets” or access rights, i.e., permissions.

ProtectionDomain Connects the Permission objects to executing classes.

SecureClassLoader and its subclasses Load classes and create protection domains.

Policy and its subclasses Decide what Permission objects each class gets.

AccessController The reference monitor.

Figure 1: Classes, domains and permissions

Class 1

Class 2

Class 3

Class 4

Class 5

Domain A

Domain B

Permissions

Permissions

4 of 11

class. This class may belong to a different protection do-
main. Since it is important that a class does not bypass the
access control simply by calling another class with more
permissions, the AccessController also checks all the pre-
vious classes in the call chain. The general algorithm is
that if class A calls class B, which in turn calls class C and
so on, and finally class M tries to read a file, then the Ac-
cessController checks each class from M to A to see if they
all have the required permission. If some class in the call
chain does not have the permission, AccessController
throws an exception. Otherwise it returns quietly, implicat-
ing that the request has been accepted.

There is one irregularity to the general access control
algorithm. A class may ask the AccessController to mark it
as “privileged” while performing a task. This marking cre-
ates an artificial bottom to the call stack. When the Ac-
cessController reaches a class marked privileged, it checks
whether this class has the permission in question and then
stops. The preceding callers are not checked.

To further ensure that the access control cannot be by-
passed, any thread inherits its parent’s access control con-
text. The AccessControlContext object contains all
information relevant to making access control decisions.

2.4. Policy

A security policy defines the rules that mandate which ac-
tions the actors in the system are allowed or disallowed to
do [1]. Java security policy, implemented as a subclass of
the class Policy, defines what permissions each protection
domain gets. There is a clear separation of duties between
the AccessController and a Policy object: the Policy de-
fines the rules and the AccessController enforces them. In
other words, the Policy gives you the tickets and Access-
Controller checks them at the gate. This means that we can
change the policy according to which we distribute the
permissions, without having to touch the AccessControl-
ler.

A security policy can be static or dynamic. A static se-
curity policy is fixed: the permissions of a class cannot
change once it is loaded to the JRE. However, the permis-
sions can be different in the next time the class is loaded,
during another run of the JRE. Having a static security
policy has some performance advantages. On the other
hand, if the runtime session is long, the circumstances may
change so much that a change in the security policy is
needed. Further more, even if the sessions are short, a
change in the policy may be so important that it must take
effect immediately. Thus, dynamic security policy that can
be changed “on the fly” is the preferred solution because it
provides better security. However, a dynamic policy re-
quires some means for performing a set of actions in an
atomic manner in order to prevent the system from enter-

ing an inconsistent state in case the permissions of a class
change in mid-action and it is not able to complete the task
it has begun.

 The security policy in the current JDK 1.2 implementa-
tion is semi-static. That is, it does have a refresh()
method, but it must be called explicitly and it only affects
the permissions granted after the method was called. The
protection domains that have been granted their permis-
sions prior to the refresh still have the same permissions
after it.

The class Policy is an abstract class. The actual im-
plementation, which can be changed, defines how the se-
curity policy is managed. The default policy
implementation of JDK 1.2 uses a set of configuration files
to define the security policy.

There is one configuration file for defining a system-
wide security policy. Each user may additionally have
their own policy file. All the definitions are additive, so
permissions can only be granted, not taken away. If the
policy files do not exist or their format is incorrect, the
classes end up in the sandbox.

The policy configuration file is clearly a kind of an ac-
cess control list (ACL). As all ACLs, it has the disadvan-
tage that it must be maintained locally, i.e., the access right
management cannot be easily distributed while still pre-
serving security. If we want to make this management eas-
ier to distribute, changing the configuration files with a
capability-based policy definition looks like a promising
approach.

2.5. Keys, certificates and certificate
management

As mentioned above, the classes are placed in the protec-
tion domains according to where they have been loaded
from, and what keys they have been signed with. To be
able to sign classes and verify the resulting signatures,
Java includes a basic set of cryptographic functionality.
The concepts of cryptographic keys, digital signatures and
certificates are a central part of this functionality. The keys
are used as input to the signature functions, and the certifi-
cates are used for telling the verifier the key that can be
used to verify the signature, and whom the key belongs to.

The Certificate interface, which is the Java repre-
sentation of certificates, has the following methods:
equals, getEncoded, getPublicKey, getType, hashValue,
toString and verify. Although the interface was designed to
be a superclass for identity certificates, with little imagina-
tion it is generalizable to authorization certificates as well
[14].

JDK 1.2 has general interfaces for public key cryptog-
raphy, including Key, PublicKey, PrivateKey, KeyPair and
KeyPairGenerator. The KeyFactory takes care of convert-

5 of 11

ing keys to raw key material, called KeySpec, and vice
versa. There are also more specific interfaces for RSA and
DSA keys and their handling. The runtime can have sev-
eral providers of classes that implement the interfaces.
Key and certificate management in Java is handled by a
KeyStore class that stores keys and the corresponding cer-
tificates.

3. Shortcomings and remedies

While the JDK 1.2 access control system provides fine
granularity and flexible configuration facilities, its default
implementation has a number of weaknesses that diminish
its power in practical deployment in a distributed system.
First, the permissions associated with each domain must
be defined through a (usually local) configuration file prior
to loading the classes to the runtime environment. Second,
the way classes are divided in security domains is some-
what rigid and arbitrary. The former property is more sig-
nificant, as it prohibits, among other things, dynamic
creation of new permission types. Furthermore, when the
number of keys controlling domains grows large, the com-
plexity of the configuration file may become hard to man-
age. And finally, as mentioned in Section 2.4, the current
default implementation is static in the sense that the per-
missions of a domain do not necessarily reflect changes in
the policy file.

Fortunately, these problems are mainly due to the de-
fault, one-machine oriented implementation, not the ac-
cess control architecture itself. This has allowed us to
make our customizations with almost no changes to the
JDK 1.2 source code.

We will next discuss the above mentioned shortcom-
ings in detail, and show how they can be solved by using
authorization certificates.

3.1. Alternatives to local configuration

The basic idea behind JDK 1.2 access control can be sum-
marized as follows:
1. All executable code, i.e., classes, is divided into security

domains. Each class belongs to one, and only one do-
main.

2. Each security domain is assigned permissions.
3. The intersection of permissions present in the current

method call stack (down to and including the permis-
sions of the current thread with its inherited access con-
trol context, or the upmost privileged class) define the
operations this method is allowed to perform.

The problem of local configuration pertains mainly to
step 2 (and to some extent also to step 1; this issue is dis-
cussed in Section 3.2).

As already described in Sections 2.2 and 2.4, the de-
fault implementation of the Policy object in JDK 1.2 run-
time environment reads the permissions from a (usually
local) security configuration file. This means, among other
things, that whenever the user wants to create a new per-
mission, to create a new combination of existing permis-
sions, to assign permissions to a newly created domain, or
to remove permissions from a domain over which the local
organization has no direct control, the user has to edit the
security configuration file.

If we think about large scale Java deployment, such as
using large numbers of Java terminals within a multina-
tional enterprise, or using Java in embedded devices such
as cell phones or PDAs, changing the configuration sepa-
rately in each device is either impractical or too expensive
in practice. Clearly, alternative means are needed.

An obvious, but less-than-optimal solution is to place
the configuration file in a directory that is shared, e.g.,
through NFS, or to use some kind of distributed database
or a remote configuration mechanism such as Sun Micro-
systems Network Information Service (NIS). Optimally,
such a mechanism provides adequate protection for the se-
curity configuration data through, e.g., preassigned shared
keys and shared key cryptography. In such a case it is
enough to configure the administrative security keys to the
device when it is taken into use. Thereafter the security
configuration files of the device can be remotely adminis-
tered in a secure way, provided that the security of the ad-
ministration system persists.

The default implementation of JDK 1.2 proposes solv-
ing this problem by specifying the file location as an URL,
and thus fetching the file from a suitable Web server. As
HTTP and FTP protocols do not provide any security, TLS
or some other method for securing the connection between
the host and the server would be necessary to ensure the
integrity of the configuration information.

However, even this scheme has a number of problems:
• The security of the Java runtime inherently depends on

the security of another, external mechanism. Thus, ef-
fectively, the correctness of access permissions assigned
to a class depend on two cryptosystems: the signature
system used to sign the classes, and the remote adminis-
tration system used to manage the security files. If either
of these is broken, Java security breaks.

• Keeping the configuration files of all Java devices up to
date would be hard or impossible. If any of the devices
are off-line while a change is made, arrangements
would be needed to take care of the devices immedi-
ately when they come back on-line. This would be diffi-
cult or impossible in Ad-Hoc networks.

In our system, each collection of executable classes (i.e. a
jar file) is a self contained domain that carries its own (po-
tential) permissions. That is, each class is placed in a jar

6 of 11

file, and the jar file is decorated with one or more SPKI
certificates1. Each SPKI certificate denotes a number of
permissions that the issuer of the certificate wants to as-
sign to the domain. The local security system checks the
validity of these certificates, and based on the certificate
sequences leading to them, decides which of the permis-
sions are actually assigned to the domain (see Section 4
for details).

3.2. Protection domains

Currently, the main purpose of the protection domains is to
divide the classes into groups so that each group can be
given distinct permissions. From the access control point
of view, this is fine. However, as we will show in
Section 6, it would be nice if protection domains could be
used for other purposes as well.

In the current JDK 1.2 implementation, classes are di-
vided into protection domains somewhat arbitrarily based
on the URL they were loaded from and the X.509 certifi-
cates they carry. To us, using URLs seems like a bad
choice from a security point of view. An URL consists of a
DNS name and an arbitrary string. Until secure DNS is de-
ployed (if ever), DNS names cannot be trusted for security
purposes. Therefore, from a security point of view, the
URL must be regarded as an arbitrary string that has no se-
curity relevance. Nevertheless, from a practical point of
view, the usage of URLs may be a reasonable temporary
solution until widely deployed PKIs exist.

Signing the code, and using signatures as basis of do-
main creation, is definitely a better idea. However, the cur-
rently used X.509 certificates do not carry any explicit
information about why the class was signed, or what kind
of permissions the class would indeed need in order to per-
form its function. The local configurator must get this in-
formation through some external channel in order to be
able to set up the local policy correctly. That is, the current
system leaves two decisions to the local administrator:
• Guessing what permissions a class would need in order

to function correctly, and
• Deciding whether the signer is trustworthy enough so

that the class can indeed be given the alluded permis-
sions.

Again, as we shall see, using SPKI simplifies this situa-
tion. First, the certificate issued by the class writer clearly
denotes what permissions the class would desire. Second,
SPKI certificates can be used to represent trust and dele-
gate trust decisions, lifting most of the burden of making
trust decisions from the local administrator.

3.3. Scalability

Recent history has shown on many occasions that local
configuration scales badly to the global Internet. Instead, a
system that has been designed to be fully distributed, i.e.,
both deployed and managed in a distributed way, scales
extremely well. A prime example of this is the Domain
Name System (DNS): it was taken into use when the static
hosts file grew too large to manage, and technically it has
not needed any major modifications ever since.

From this point of view, the JDK 1.2 local security con-
figuration file resembles the static hosts file. It will proba-
bly serve well in a small network where there are only
relatively few trusted applets. However, as the need and
usage of somewhat trusted Java code grows, a system that
scales better is required.

According to our initial analysis, the suggested SPKI
based system of signed capabilities scales extremely well.
SPKI allows rights to be delegated, allowing administra-
tion to be distributed within organizations and between or-
ganizations. [10]

3.4. Pseudostatic vs. dynamic permissions

In the current JDK 1.2 implementation, the permissions
assigned to a class are not amended unless the Policy.re-
fresh() method is explicitly called. Furthermore, once as-
signed, permissions cannot be revoked from a domain in
any practical way. When Java is being used in servers, and
especially if the architecture is extended so that Java serv-
lets can be delegated more permissions by clients (see
Section 6), there arises a need to be able to revise the per-
missions dynamically.

Independently of the other modifications, we have also
made the permission evaluation more dynamic. This is ex-
plained in Section 5. As mentioned in Section 2.4, a dy-
namic policy may create problems if the permissions of a
class change while it is performing a set of actions that
should be considered as a whole, i.e., that should be per-
formed completely or not at all. For the sake of this study
we have assumed that a mechanism for allowing atomic
actions can be added to the AccessController in a rela-
tively straightforward manner, following the example set
by the doPrivileged-method. We have not, however, imple-
mented this functionality in our prototype.

4. Assigning Java permissions with SPKI
certificates

In JDK 1.2, the actual implementation of the access con-
trol mechanism is divided between the class loader, the
policy manager, and the reference monitor. The purpose of

1 At least in theory, we could use X.509v3 certificates or some
other form of authorization certificates instead of SPKI certif-
icates, but we have chosen to limit our research to the latter.

7 of 11

the class loader is to make sure the classes are integral, at
least in some sense, and to divide them into security do-
mains. The policy manager, in turn, assigns permissions to
the domains, while the reference monitor checks that an
attempt to access a resource is indeed authorized.

In our model, the tasks of the class loader are simple. It
loads classes from a jar file, and creates a domain from it.
If there are any SPKI certificates present in the jar file,
they are associated with the new domain. The policy man-
ager and the dynamic permission evaluation are more
complex.

4.1. Policy manager

The main task of the policy manager is to attempt to re-
duce a set of certificates to form a valid chain from its own
key, called the Self key, to the hash of the protection do-
main, and to interpret the authorization given by the chain
into Java Permission objects. This chain reduction in-
cludes checking the validity of the certificates, checking
that all but the last certificate have the delegation bit set,
and intersecting the authorization fields to get the final au-
thorization given by the chain. Furthermore, usually more
certificates must be fetched from a certificate store in order
to get complete chains [13]. If the certificates cannot be re-
duced or the authorizations reduce to null, no permissions
are granted to the class. [10]

The authorization field, or the tag, of an SPKI certifi-
cate can be described as an s-expression: [5]

auth:: (tag (*)) | (tag tag-expr)
tag-expr:: simple-tag | tag-set | tag-string
tag-set:: (* set tag-expr*)

The form (tag (*)) means unlimited authorization,
i.e., all permissions. When translated to Java permissions,
it becomes java.security.AllPermission.

We have extended the SPKI tag definition to express
Java permissions as follows: [15]

simple-tag:: java-tag
java-tag::

(java-permission type target? action?)
type:: (type bytes)
target:: (target bytes)
action:: (action bytes)

That is, the tag specifies that it consists of a Java Permis-
sion. The type gives the full class name of the permission
class in question. This may be a permission type included
in JDK or any other class, as long as it is a subclass of the

class java.security.Permission. If the constructor of the
permission specified by the type takes a target as an argu-
ment, that string is given in the target field of the tag. Like-
wise, if the constructor of the permission takes an action as
an argument, it is given in the action field of the tag. The
target and action strings are passed to the constructor as-is,
because we cannot expect the policy manager to be able to
parse the arguments of all kinds of permissions, as any
programmer can define her own types of permissions.

The tag-set can be used to pass several permissions in
one certificate. This possibility is important, as creating a
new certificate for each permission that one wants to dele-
gate would be all too tedious and rapidly explode the
number of certificates.

4.2. Dynamic policy

To make the security policy dynamic instead of static or
semi-static, our implementation of protection domains no
longer has a static set of permissions. When a class tries to
access a protected resource the reference monitor asks the
protection domain whether it implies the specific permis-
sion required, and the protection domain in turn asks the
Policy for the permission. The Policy tries to produce a
certificate chain reduction that would imply the permission
in question. If it fails, the access is not granted.

The SPKI drafts propose that the Prover (i.e. the class)
is responsible of presenting a valid certificate chain to the
Verifier (i.e. the Policy) at the time of access request or au-
thentication [5]. This approach effectively moves the bur-
den of certificate storage, retrieval and part of the chain
reduction from the server to the client software. The server
is only left to verify that the chain presented is a valid one.
This approach may be suitable to controlling user access,
since the user is likely to know which certificates it has
been issued and may even be able to store these certificates
on a smart card or in some other practical way.

However, mobile code downloaded from the Web can-
not know if it has been issued local certificates or not, and
it certainly cannot possess all these certificates from each
site that might want to use it. Thus, this approach is
doomed to fail in our architecture and we do not pursue it
any further. Instead, we think that the Policy needs to lo-
cate the relevant certificates as well as to reduce the certif-
icate chains.

Many different solutions have been proposed to the cer-
tificate storage. We have presented one possibility in [13],
suggesting storing the certificates in the DNS directory.
Furthermore, Aura has analysed several different algo-
rithms for chain reduction [3].

8 of 11

5. Implementation

A number of changes to the Java classes are required in or-
der to allow the administrator to define the Java security
policy using SPKI certificates instead of the configuration
file. More specifically, we need to change the way the Pol-
icy object and the protection domains behave. In addition,
we need to create a Java implementation of the SPKI cer-
tificates, and a way to store them so that they can be re-
trieved easily.

The way we implemented the SPKI certificates is de-
picted in Figure 2. The in-memory representation of the
certificate consists of the certificate data and the signature,
represented as Java objects. The data in turn includes the
issuer, subject and authorization (tag) objects, and may in-
clude delegation, validity and comment objects.

Our implementation of the Java Policy object is called
SPKIPolicy. It gives the protection domains exactly
those permissions that are delegated to the domains
through valid SPKI certificate chains. A valid chain must
start from the Self key. The authorizations given by the
certificates are transformed to Java permissions according
to the principles given in Section 4.1.

The prototype uses a simple depth first algorithm to
find valid certificate chains. Although not optimal for per-
formance, this algorithm is good enough for our prototype;

the number of certificates in our database is relatively
small. The chain reduction is simple: two certificates form
a valid piece of a chain if they are both valid, the first cer-
tificate has delegation set to true and the subject of the first
certificate is the same as the issuer of the second certifi-
cate. The authorization that results from such a chain is the
intersection of the two authorization fields. The authoriza-
tion fields are converted into Permission objects, and
imply() method is used to intersect the authorization
fields. The subset is found by checking if either one of the
permissions implies the other. This is sufficient for now,
but a more generic method is clearly needed. However,
this would require significant modifications to the JDK 1.2
library.

The SPKIPolicy uses the Java KeyStore to store its
public key, i.e., the Self key for the SPKI certificate chain
validation. A separate certificate repository is used to store
the certificates. In the prototype, the certificate repository
was implemented using a local file (see Figure 3). How-
ever, in the future we expect it to use DNS or some other
dynamic, distributed directory service.

To implement a dynamic security policy instead of a
static one we needed to change the way the protection do-
mains behave. In the default implementation the protection
domains get their permissions when they are initialized.
We created a subclass of the class PermissionCollection,
called DynamicPermissions, that does not have a static set
of permission objects at all. An instance of this class is
given to the domain instead of a regular PermissionCollec-
tion object (see Figure 4). Now, every time the Access-
Controller checks whether the protection domain’s
PermissionCollection implies a certain permission, the
collection asks the Policy object to give it the permission.
The check succeeds or fails depending on what the Policy
returns.

To make the Java Runtime read SPKI certificates from
the jar files and put them to the protection domains we had
to create a class of our own that handles the SPKI file veri-

Cert

Issuer

Subject

Deleg Tag

Comment

Valid

SPKICertificate

Certificate

{abstract}

Signature

11

1

1

0..1

0..1

1

0..1

Figure 2: SPKI certificate object structure

Certificate
Repository

{abstract}

SPKICertificate
Repository

{abstract}

LocalSPKI
Repository

Policy

{abstract}

SPKIPolicy

KeyStore

{abstract}

Figure 3: The Policy and certificate repositories

9 of 11

fication. In addition, we had to slightly modify the
java.util.jar.JarVerifier to make it invoke
our SPKI verifier.

The system security properties file lib/security/
java.security contains several configuration varia-
bles for the security architecture, including the policy con-
figuration file locations. A property called
policy.provider can be used to change the default
Policy implementation. This is done by specifying the
fully qualified class name of the new implementation in
the property:
policy.provider=fi.hut.tcm.\
 spki.policy.SPKIPolicy

5.1. Performance measurements

As noted in Section 4, a static security policy obviously
has some performance advantages when compared to dy-
namically resolving the permissions. We measured the
performance of our prototype and compared it to the per-
formance of the default JDK implementation to see if the
difference was unacceptable. Since the main performance
changes to the default JDK implementation occur in class
loading and permission checking, these two functions are
the ones we measured.

Originally, we expected the class loading to get slightly
slower or stay the same, as we would not need to figure out
what permissions new protection domains would get, but
would instead need to resolve the certificates from the jar
files. Since class loading is fairly well optimised in the
JDK, it was also possible that no change in the perform-
ance would be noticed. As to the permission checking, we
expected the access right check to be slower, since we not
only verify whether the class’ permissions imply the per-
mission needed, but also resolve what permissions the
class has at the moment.

The actual measurements were made with JDK 1.2 beta
4 in Solaris 2.6 running on Ultra 1 hardware. The results
are averages from 10 test runs. We expressed the same se-
curity policy in the form of a configuration file and SPKI
certificates. The average length of an SPKI certificate
chain was 3. The results are given in Table 2.

Our prototype is not optimised in any means; it does some
unnecessary work. At the moment it handles the SPKI cer-
tificates of the classes to be loaded in addition to the regu-
lar signatures and not instead of them, although the regular
signatures are not used for anything in our system. The re-
sults show that our system is about three times slower in
class loading and only slightly slower in access checking.

When analysing in more detail where the time is spent
during the class loading, about 80% of the JDK loading
time seems to be spent on checking the X.509 certificates.
In our prototype, the time used in checking SPKI certifi-
cates is roughly equal to the time spent in X.509 certificate
checking. Thus, this explains only 40% of the increased
loading time. Currently we cannot fully explain the other
part of the increase; it seems to be spent at the Sun pro-
vided JAR file handling routines. Unfortunately, the JDK
distribution does not include source code for these.

Thus, when the time spent on checking X.509 certifi-
cates is substracted from the total time, our prototype is
about 2.2 times slower than the default implementation in
class loading. Less than half of this time is spent checking
the SPKI certificates. Once we understand better the rea-
sons for the degradation, it should be possible to get per-
formance quite close to the default implementation.

6. Creating distributed protection domains

The dynamic and distributed nature of SPKI based Java
protection domains opens up new possibilities for their
use. In particular, we would like to be able to perform the
following functions:
• Dynamically delegate a permission from one domain,

executing in one Java virtual machine, to another do-
main, executing in another Java virtual machine. For ex-
ample, when a distributed application requests a service
from a server, it might want to allow a certain class, an
agent, in the server, to execute as if it were the user that
started the application in the first hand.

• Create a secure connection between domains executing
in distinct Java virtual machines. For example, a bank-
ing applet might want to create a secure connection
back to the bank, using a proprietary security protocol.

PermissionCollection

DynamicPermissions

Figure 4: The ProtectionDomain and
PermissionCollections

ProtectionDomain

SPKIPolicy

Table 2: Preliminary performance measurements

JDK
Our Proto-

type

Time to load 10 classes
(in 10 different domains)

1690 ms 4990 ms

Time to resolve 10000
access rights

38900 ms 39200 ms

10 of 11

In order to be able to perform these kinds of functions, the
domains involved must have local access to some private
keys, and a number of trust conditions must be met. The
requirement of access to a private key can be easily ac-
complished by creating a temporary pair of keys for each
policy domain. This is acceptable from a security point of
view, because the underlying JVM must be trusted any-
way, and so it can be trusted to provide temporary keys as
well. The temporary key can be signed by the local ma-
chine key, denoting it to as belonging the domain involved.

Delegation. Let us now consider the trust requirements of
the delegation. The situation here is that Alice has loaded
some Java code C to perform a function X that she wants
to be performed. However, X cannot be accomplished lo-
cally, but it must be performed on a server administered by
Bob using Java code S.

From Alice’ point of view the trust requirements are the
following:
• Alice must trust C and S to be able to perform X on her

behalf, independent on their execution location.
• Alice must trust Bob to execute S on her behalf.
• Finally, as a result, Alice must trust S, when run by Bob,

to perform X.
Using SPKI certificates, these can be expressed roughly as
follows:

CertC: (KAlice, hash(C), Yes, X, always)
CertS: (KAlice, hash(S), Yes, X, always)
CertBob: (KAlice, KBob, Yes, execute S, always)

Now, the fact that C has a local, temporary key KC and that
S has a local, temporary key KS can be expressed as

NameC: (KAlice, KC, Yes, hash(C) at KAlice, now)
NameS: (KBob, KS, Yes, hash(S) at KBob, now)

These certificates can be considered as name certificates,
effectively late binding the hashes of C and S, as names in
the local namespaces of Alice and Bob, respectively, to the
temporary keys KC and KS.

Given these, C can check CertBob and NameS, and thereaf-
ter authorize S to perform X

Auth: (KC, KS, Yes, X, now)
The fact that Alice authorizes S on Bob to perform X can
be depicted through the following sequence:

Similarly, the checks performed by C before creating
Auth can be described as the sequence:

From Bob’s point of view, on the other hand, the re-
quirements are the following:
• Bob must trust S to perform X on Alice’ (or every-

body’s) behalf.
Again, using SPKI certificates this can be expressed as

CertAlice: (KBob, KAlice, Yes, X, always)

Now, given the certificates created, Bob can check that S is
permitted to perform X:

Secure connection. In the case of a secure connection, Al-
ice wants to allow a class C to open a secure connection to
a class S, being run by Bob. Respectively, Bob wants to al-
low the class C, being run by Alice, to open a secure con-
nection to the class S, running locally.

From Alice’ point of view, the trust requirements can be
stated as follows:
• Alice must trust C to open secure connections to S.
• Alice must trust Bob to be trustworthy to run S.
Similarly, from Bob’s point of view,
• Bob must trust S to accept secure connections from C.
• Bob must trust Alice to be trustworthy to run C.
In a way analogous to the delegation case, temporary keys
can be created for the classes C and S, and using suitable
SPKI certificates these keys can be seen as proper keys to
be used in a key agreement protocol.

7. Conclusions

We have shown how JDK 1.2 access control management
can be effectively and securely distributed using SPKI cer-
tificates. The new systems allows new permission types to
be taken into use dynamically, allows the creator of an ap-
plication to control the division of Java classes into distinct
security domains in a natural way, provides worldwide in-
terorganizational scalability, and allows the permissions of
a domain to be dynamically extended.

In Section 3 we analysed the default implementation of
the JDK 1.2 access control architecture and suggested
some improvements. In Section 4 we described the func-
tional details and modifications needed to implement the
improvements. Only one change was needed in the actual
library in order to load SPKI certificates in addition to
X.509 certificates. The rest of the system consists of the
policy manager and a new type of PermissionCollection.
The result is a dynamic security policy defined with SPKI

K Alice

hash C()X
KC KS

X

K Alice

KBob
hash S()

KS

X

KBob

K Alice

KC
hash C()

KS
hash S()

11 of 11

certificates. A distributed directory service, such as the one
proposed in [13], is needed for storing the certificates.

The actual prototype implementation, described in
Section 5, consists of a generic SPKI certificate package
that extends the java.security.cert.Certif-
icate interface, the custom policy manager, and the mi-
nor modifications needed in the library proper. For the
purpose of this prototype we only implemented a local
certificate repository. Although the prototype is not opti-
mised in any way, its performance was clearly adequate,
especially in the permission checking.

Furthermore, we sketched how the new system can be
used to delegate permissions dynamically from one Java
virtual machine to another, and how SPKI certificates can
be used to control the creation of secure connections be-
tween classes in separate virtual machines. These can be
seen as initial steps towards a secure distributed Java envi-
ronment. Currently we are building an ISAKMP [11]
framework in Java. That will be used to implement the
sketched delegation systems. One further possibility
would be to design CORBA like security services for in-
teroperating Java virtual machines on the top of the result-
ing system.

References

[1] E. Amoroso, Fundamentals of Computer Security Technol-
ogy, Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[2] K. Arnold and J. Gosling, The Java Programming Lan-
guage, Addison-Wesley, 1996.

[3] T. Aura, “Comparison of Graph-Search Algorithms for Au-
thorization Verification in Delegation”, Proceedings of the
2nd Nordic Workshop on Secure Computer Systems, Hel-
sinki, 1997.

[4] M. Blaze, J. Feigmenbaum, and J. Lacy, “Decentralized
trust management”, Proceedings of the 1996 IEEE Compu-
ter Society Symposium on Research in Security and Privacy,
Oakland, CA, May 1996.

[5] C. M. Ellison, B. Frantz, B. Lampson, R.Rivest, B. M. Tho-
mas and T. Ylönen, Simple Public Key Certificate, Internet-
Draft draft-ietf-spki-cert-structure-05.txt,
work in progress, Internet Engineering Task Force, March
1998.

[6] C. M. Ellison, B. Frantz, B. Lampson, R.Rivest, B. M. Tho-
mas and T. Ylönen, SPKI Certificate Theory, Internet-Draft
draft-ietf-spki-cert-theory-02.txt, work in
progress, Internet Engineering Task Force, March 1998.

[7] C. M. Ellison, B. Frantz, B. Lampson, R.Rivest, B. M. Tho-
mas and T. Ylönen, SPKI Examples, Internet-Draft draft-
ietf-spki-cert-examples-01.txt, work in
progress, Internet Engineering Task Force, March 1998.

[8] Li Gong, Java™ Security Architecture (JDK 1.2), DRAFT
DOCUMENT (Revision 0.8), http://java.sun.com/
products/jdk/1.2/docs/guide/security/spec/
security-spec.doc.html, Sun Microsystems, March
1998.

[9] Li Gong and R. Schemers, “Implementing Protection Do-
mains in the Java Development Kit 1.2”, Proceedings of the
1998 Network and Distributed System Security Symposium,
San Diego, CA, March 11–13 1998, Internet Society, Res-
ton, VA, March 1998.

[10] I. Lehti and P. Nikander, “Certifying trust”, Proceedings of
the Practice and Theory in Public Key Cryptography (PKC)
’98, Yokohama, Japan, Springer-Verlag, February 1998.

[11] D. Maughan, M. Schertler, M. Schneider and J. Turner, In-
ternet Security Association and Key Management Protocol
(ISAKMP), Internet-Draft draft-ietf-ipsec-isakmp-
10.txt, work in progress, Internet Engineering Task Force,
July 1998.

[12] P. Nikander and A. Karila, “A Java Beans Component Ar-
chitecture for Cryptographic Protocols”, Proceedings of the
7th USENIX Security Symposium, San Antonio, Texas, Use-
nix Association, 26-29 January 1998.

[13] P. Nikander and L. Viljanen, “Storing and Retrieving Inter-
net Certificates” , Proceedings of the 3rd Nordic Workshop
on Secure Computer Systems, Trondheim, Norway, Novem-
ber 1998.

[14] J. Partanen and P. Nikander, “Adding SPKI certificates to
JDK 1.2", Proceedings of the 3rd Nordic Workshop on Se-
cure Computer Systems, Trondheim, Norway, November
1998.

[15] J. Partanen, Using SPKI certificates for Access Control in
Java 1.2, Master’s Thesis, Helsinki University of Technol-
ogy, August 1998.

[16] R. L. Rivest and B. Lampson, “SDSI — a simple distributed
security infrastructure”, Proceedings of the 1996 Usenix Se-
curity Symposium, 1996.

[17] ITU-T Recommendation X.509 (1997 E): Information Tech-
nology - Open Systems Interconnection - The Directory: Au-
thentication Framework, ITU-T, June 1997.

