
Preserving Privacy 
in Distributed Delegation 

with Fast Certificates

Pekka Nikander†, Yki Kortesniemi‡, Jonna Partanen‡

† Ericsson Research
FIN-02420 Jorvas, Kirkkonummi, Finland

pekka.nikander@ericsson.com

‡ Helsinki University of Technology, Department of Computer Science,1

FIN-02015 TKK, Espoo, Finland
yki.kortesniemi@hut.fi, jonna.partanen@hut.fi

Abstract. In a distributed system, dynamically dividing execution between nodes is essen-
tial for service robustness. However, when all of the nodes cannot be equally trusted, and
when some users are more honest than others, controlling where code may be executed and
by whom resources may be consumed is a nontrivial problem. In this paper we describe a
generic authorisation certificate architecture that allows dynamic control of resource con-
sumption and code execution in an untrusted distributed network. That is, the architecture
allows the users to specify which network nodes are trusted to execute code on their behalf
and the servers to verify the users’ authority to consume resources, while still allowing the
execution to span dynamically from node to node, creating delegations on the fly as needed.
The architecture scales well, fully supports mobile code and execution migration, and al-
lows users to remain anonymous.

We are implementing a prototype of the architecture using SPKI certificates and ECDSA
signatures in Java 1.2. In the prototype, agents are represented as Java JAR packages.

1 Introduction

There are several proposals for distributed systems security architectures, including the Kerberos
[14], the CORBA security architecture [23], and the ICE-TEL project proposal [6], to mention
but a few. These, as well as others, differ greatly in the extent they support scalability, agent mo-
bility, and agent anonymity, among other things. Most of these differences are clearly visible in
the trust models of the systems, when analyzed.

In this paper we describe a Simple Public Key Infrastructure (SPKI) [7] [8] [9] based distrib-
uted systems security architecture that is scalable and supports agent mobility, migration and an-
onymity. Furthermore, all trust relationships in our architecture are explicitly visible and can be
easily analyzed. The architecture allows various security policies to be explicitly specified, and
in this way, e.g., to specify where an agent may securely execute [27].

Our main idea is to use dynamically created SPKI authorisation certificates to delegate per-
missions from an agent running on one host to another agent running on another host. With SPKI
certificates, we are able to delegate only the minimum rights the receiving agent needs to per-
form the operations that the sending agent wants it to carry out. The architecture allows permis-
sions to be further delegated as long as the generic trust relationships, also presented in the form
of SPKI certificates, are preserved.

A typical application could be a mobile host, such as a PDA. Characteristic to such devises
are limited computational power, memory constraints and an intermittent, low bandwidth access
to the network. These pose some limitations on the cryptographic system used. Favourable char-
acteristics would be short key length and fast operation with limited processing power.

In order to be able to distinguish running agents, and delegate rights to them, new crypto-
graphic key pairs need to be created, and new certificates need to be created and verified. To

1 This work was partially funded by the TeSSA research project at Helsinki University of Technology under a grant 
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make this happen with an acceptable speed, we have implemented the relevant public key func-
tions with Elliptic Curve based DSA (ECDSA), yielding reasonable performance.

In our architecture, cryptographic key pairs are created dynamically to represent running
agents. This also has a desirable side effect of making anonymous operations possible while still
preserving strong authorisation. In practical terms, some of the certificates that are used to verify
agent authority may be encrypted to protect privacy. This hinders third parties, and even the ver-
ifying host, from determining the identity of the principal that is responsible for originally initiat-
ing an operation. This allows users’ actions to remain in relative privacy, while still allowing
strong assurance on whether an attempted operation is authorised or not.

We are in the process of implementing a practical prototype of our architecture. The proto-
type is based on distributed Java Virtual Machines (JVM) running JDK 1.2, but the same princi-
ples could be applied to any distributed system. The main parts of the prototype architecture are
already implemented, as described in [15], [21], and [25], while others are under way.

The rest of this paper is organized as follows. In Sect. 2 we describe the idea of authorisation cer-
tificates, their relation to trust relationships and certificate loops, and the security relevant com-
ponents of the SPKI certificates. Sect. 3 summarizes the dynamic nature of the SPKI enhanced
JDK 1.2 security architecture. Next, in Sect. 4, we describe how our ECDSA implementation
complements the Java cryptography architecture. In Sect. 5, we define the main ideas of our ar-
chitecture, and show how SKPI certificates and dynamically generated key pairs can be used to
anonymously, but securely, delegate permissions from one JVM to another. Sect. 6 describes the
current implementation status, and Sect. 7 includes our conclusions from this research.

2 Authorisation and Delegation

The basic idea of authorisation, as opposed to simple (identity) authentication, is to attest that a
party, or an agent, is authorised to perform a certain action, rather than merely confirm that the
party has a claimed identity. If we consider a simple real life example, the driver’s licence, this
distinction becomes evident. The primary function of a driver’s licence is to certify that its
holder is entitled, or authorised, to operate vehicles belonging to certain classes. In this sense, it
is a device of authorisation. However, this aspect is often overseen, as it seems obvious, even
self-evident, for most people.

The secondary function of a driver’s licence, the possibility of using it as an evidence of
identity, is more apparent. Yet, when a police officer checks a driver’s licence, the identity
checking is only a necessary side step in assuring that the operator of a vehicle is on legal busi-
ness.

The same distinction can and should be applied to computer systems. Instead of using X.509
type identity certificates for authenticating a principal’s identity, one should use authorisation
certificates, or signed credentials, to gain assurance about a principal’s permission to execute ac-
tions. In addition to a direct authorisation, as depicted in the driver’s licence example, in a dis-
tributed computer system it is often necessary to delegate authority from a party to a next one.
The length of such delegation chains can be pretty long on occasions. [17]

2.1 Trust and Security Policy

Trust can be defined as a belief that an agent or a person behaves in a certain way. Trust to a ma-
chinery is usually a belief that it works as specified. Trust to a person means that even if that per-
son has the possibility to harm us, we believe that he or she chooses not to. The trust
requirements of a system form the system’s trust model. For example, we may need to have
some kind of trust to the implementor of a software whose source code is not public, or trust to
the person with whom we communicate over a network. 

Closely related to the concept of trust is the concept of policy. A security policy is a manifes-
tation of laws, rules and practices that regulate how sensitive information and other resources are
managed, protected and distributed. Its purpose is to ensure that the handled information remains
confidential, integral and available, as specified by the policy. Every agent may be seen to func-
tion under its own policy rules. 
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In many cases today, the policy rules are very informal, often left unwritten. However, secu-
rity policies can be meaningful not only as internal regulations and rules, but as a published doc-
ument which defines some security-related practices. This could be important information when
some outsider is trying to decide whether an organization can be trusted in some respect. In this
kind of situation it is useful to define the policy in a systematic manner, i.e., to have a formal pol-
icy model.

Another and a more important reason for having a formally specified policy is that most, or
maybe even all, of the policy information should be directly accessible by the computer systems.
Having a policy control enforced in software (or firmware) rather than relying on the users to
follow some memorized rules is essential if the policy is to be followed. A lot of policy rules are
already implicitly present in the operating systems, protocols, and applications, and explicitly in
their configuration files. Our mission includes the desire to make this policy information more
explicit, and make it possible to manage it in a distributed way. 

2.2 Certificates, Certificate Chains, and Certificate Loops

A certificate is a signed statement about the properties of some entity. A certificate has an issuer
and a subject. Typically, the issuer has attested, by signing the certificate, its belief that the infor-
mation stated in the certificate is true. If a certificate states something about the issuer him or
herself, it is called a self-signed certificate or an auto-certificate, in distinction from other certif-
icates whose subject is not the issuer.

 Certificates are usually divied in two categories: Identity certificates and authorisation certif-
icates. An identity certificate usually binds a cryptographic key to a name. An authorisation cer-
tificate, on the other hand, can make a more specific statement; for example, it can state that the
subject entity is authorised to have access to a specified service. Furthermore, an authorisation
certificate does not necessarily need to carry any explicit, human understandable information
about the identity of the subject. That is, the subject does not need to have a name. The subject
can prove its title to the certificate by proving that it possesses the private key corresponding to
the certified public key; indeed, that is the only way a subject can be trusted to be the (a) legiti-
mate owner of the certificate.

Certificates and trust relationships are very closely connected. The meaning of a certificate is
to make a reliable statement concerning some trust relationship. Certificates form chains, where
a subject of a certificate is the issuer of the next one. In a chain the trust propagates transitively
from an entity to another. These chains can be closed into loops, as described in [17]. 

The idea of certificate loops is a central one in analyzing trust. The source of trust is almost
always the checking party itself. A chain of certificates, typically starting at the verifying party
and ending at the party claiming authority, forms an open arc. This arc is closed into loop by the
online authentication protocol where the claimant proves possession of its private key to the ver-
ifying party.

2.3  Authorisation and Anonymity

In an access control context, an authorisation certificate chain binds a key to an operation, effec-
tively stating that the holder of the key is authorised to perform the operation. A run time chal-
lenge operates between the owner of operation (the reference monitor) and the key, thus closing
the certification loop. These two bindings, i.e., the certificate chain and the run time authentica-
tion protocol, are based on cryptography and can be made strong.

In an authorisation certificate, a person-key binding is different from the person-name bind-
ing used in the identity certificates. By definition, the keyholder of a key has sole possession of
the private key. Therefore, the corresponding public key can be used as an identifier (a name) of
the keyholder. For any public key cryptosystem to work, it is essential that a principal will keep
its private key to itself. So, the person is the only one having access to the private key and the
key has enough entropy so that nobody else has the same key. Thus, the identifying key is bound
tightly to the person that controls it and all bindings are strong. The same cannot be claimed
about human understandable names, which are relative and ambiguous [10].

However, having a strong binding between a key and a person does not directly help the pro-
vider of a controlled service much. The provider does not know if it can trust the holder of the
key. Such a trust can only be acquired through a valid certificate chain that starts at the provider
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itself. The whole idea of our architecture centres around the concept of creating such certificate
chains when needed, dynamically providing agents the permissions they need.

The feature of not having to bind keys to names is especially convenient in systems that in-
clude anonymity as a security requirement. It is easy for a user to create new keys for such appli-
cations, while creating an authorised false identity is (hopefully) not possible.

2.4 SPKI Certificates

The Simple Public Key Infrastructure (SPKI) is an authorisation certificate infrastructure being
standardized by the IETF. The intention is that it will support a range of trust models. [7] [8] [9]

In the SPKI world, principals are keys. Delegations are made to a key, not to a keyholder or a
global name. Thus, an SPKI certificate is closer to a “capability” as defined by [16] than to an
identity certificate. There is the difference that in a traditional capability system the capability it-
self is a secret ticket, the possession of which grants some authority. An SPKI certificate identi-
fies the specific key to which it grants authority. Therefore the mere ability to read (or copy) the
certificate grants no authority. The certificate itself does not need to be as tightly controlled.

In SPKI terms, a certificate is basically a signed five tuple (I,S,D,A,V) where 
• I is the Issuer’s (signers) public key, or a secure hash of the public key,
• S is the Subject of the certificate, typically a public key, a secure hash of a public key, a

SDSI name, or a secure hash of some other object such as a Java class,
• D is a Delegation bit,
• A is the Authorisation field, describing the permissions or other information that the cer-

tificate’s Issuer grants to or attests of the Subject,
• V is a Validation field, describing the conditions (such as a time range) under which the

certificate can be considered valid.

The meaning of an SPKI certificate can be stated as follows:
Based on the assumption that I has the control over the rights or other information described

in A, I grants S the rights/property A whenever V is valid. Furthermore, if D is true and S is a
public key (or hash of a public key), S may further delegate the rights A or any subset of them. 

2.5 Access control revisited

The traditional way of implementing access control in a distributed system has been based on au-
thentication and Access Control Lists (ACLs). In such a system, when execution is transferred
from one node to another, the originating node authenticates itself to the responding node. Based
on the identity information transferred during the authentication protocol, the responding node
attaches a local identifier, i.e., an user account, to the secured connection or passed execution re-
quest (e.g., an RPC call). The actual access control is performed locally by determining the
user’s rights based on the local identifier and local ACLs.

In an authorisation based system everything works differently. Instead of basing access con-
trol decisions on locally stored identity or ACL information, decisions are based on explicit ac-
cess control information, carried from node to node. The access rights are represented as
authorisation delegations, e.g., in the authorisation field of an SPKI certificate. Because the cer-
tificates form certificate loops, the interpreter of this access control information is always the
same party that has initially issued it. The rights may, though, have been restricted along the del-
egation path. 

In Sect. 5 we show how this kind of an infrastructure can be effectively extended to an envi-
ronment of mobile agents, represented as downloadable code, that is run on a network of trusted
and untrusted execution nodes.

3 An SPKI based Dynamic Security Architecture for JDK 1.2

As described in more detail in [25], we have extended the JDK 1.2 security architecture with
SPKI certificates. This makes it possible to dynamically modify the current security policy rules
applied at a specific Java Virtual Machine (JVM). This dynamic modification allows an agent
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running on one trusted JVM to delegate permissions to another agent running on another trusted
JVM. 

The components of the basic and SPKI extended access control architecture are enumerated in
Table 1 and discussed in more detail in Sections 3.1-3.2. The most relevant changes needed to
the basic architecture are described in Sect. 3.2. 

3.1 Access Control in JDK 1.2

The JDK 1.2 has a new, capability based access control architecture. Java capabilities are objects
called permissions. Each protected resource in the system has a corresponding permission object
that represents access to the resource. There are typically many instances of a given permission,
possessed by and thus granting access for different classes.

Permissions are divided into several subtypes that extend the Permission class. Each resource
type or category, such as files or network connections, has its own Permission subclass. Inside
the category, different instances of the Permission class correspond to different instances of the
resource. In addition, the programmers may provide their own Permission subclasses if they cre-
ate protected resources of their own.

Just as in any capability-based access control system, the Java classes must be prevented
from creating permissions for themselves and thus gaining unauthorised access. This is done by
assigning the classes to protection domains. Each class belongs to one and only one protection
domain. Each ProtectionDomain object has a PermissionCollection object that holds the permis-
sions of that domain. Only these permissions can be used to gain access to resources. The classes
cannot change their protection domain nor the PermissionCollection of the domain. Thus, the
classes are free to create any Permission objects they like, but they cannot affect the access con-
trol decisions and gain unauthorised access.

The actual access control is done by an object called AccessController. When a thread of ex-
ecution requests access to a protected resource such as a file, the AccessController object is
asked whether the access is granted or not. To determine this, the AccessController checks the
execution context to see if the caller and all the previous classes in the call chain have the Per-
mission object corresponding to the resource. The previous classes in the call chain are checked
to ensure that a class does not bypass the access control simply by calling another class with
more permissions.

Table 1: The parts of the JDK 1.2 access control Architecture

Class or classes The role of the class or classes

Permission and its subclasses Represent different “tickets” or access rights.

ProtectionDomain Connects the Permission objects to classes.

Policy and its subclasses Decide what permissions each class gets.

AccessController The reference monitor. [1]

Fig. 1. Classes, domains and permissions

Class 1

Class 2

Class 3

Class 4

Class 5

Domain A
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3.2 Policy Management 

A security policy defines the rules that mandate which actions the agents in the system are al-
lowed or disallowed to do [1]. Java security policy defines what permissions each protection do-
main gets. The objects implementing the security policy management in JDK are subclasses of
the Policy class. The implementation can be changed easily by just creating and installing a new
Policy subclass.

The default policy implementation of JDK 1.2 uses a set of configuration files to define the
security policy. This system has several small defects discussed in [21] and [25]. Furthermore,
this approach makes delegating permissions from a class in one JVM to another class in some
other JVM virtually impossible, as the delegating party should be able to edit the configuration
file of the other JVM. We have solved these problems by replacing the configuration files with a
capability-based policy definition that uses SPKI certificates to represent capabilities.

In our model, the policy manager and the dynamic permission evaluation are slightly more
complex than in the basic implementation. In the SPKI extended system, the main task of the
policy manager is to attempt to reduce a set of SPKI certificates to form a valid chain from its
own key, called the Self key, to the hash of the classes composing a protection domain, and to in-
terpret the authorisation given by the chain into Java Permission objects. This chain reduction in-
cludes checking the validity of the certificates, checking that all but the last certificate have the
delegation bit set, and intersecting the authorisation fields to get the final authorisation given by
the chain. 

In the default JDK implementation, the ProtectionDomains get the permissions when they
are initialized, and the permissions are not revised after that. We have made the policy evaluation
more dynamic. When a class tries to access a protected resource, the reference monitor asks the
protection domain whether it contains the specific permission required, and the protection do-
main in turn asks the Policy for the permission. The Policy will try to produce a certificate chain
reduction that would imply the permission in question. If it fails, the access is not granted. 

The SPKI drafts propose that the Prover (i.e. the class) is responsible of presenting a valid
certificate chain to the Verifier (i.e. the Policy) at the time of access request or authentication [7].
We argue that this approach does not work with mobile agents. Requiring that each mobile agent
includes the logic for locating all certificates needed to access resources is infeasible and coun-
terproductive. Instead, we think that the Policy will need to locate the relevant certificates as
well as to reduce the certificate chains.

4 Adding Elliptic Curve based Certificates to Java

Java defines and partially implements security related functionality as part of its core API. This
functionality is collected in the java.security package and its subpackages. To facilitate
and co-ordinate the use of cryptographic services, JDK 1.1 introduced the Java Cryptography
Architecture (JCA). It is a framework for both accessing and developing new cryptographic
functionality for the Java platform. JDK 1.1 itself included the necessary APIs for digital signa-
tures and message digests.[7]

In Java 1.2, JCA has been significantly extended. It now encompasses the cryptography re-
lated parts of the Java Security API, as well as a set of conventions and specifications. Further,
the basic API has been complemented with the Java Cryptography Extension (JCE), which in-
cludes further implementations of encryption and key exchange functionality. This extension,
however, is subject to the US export restrictions and is therefore not available to the rest of the
world. To fully utilise Java as a platform for secure applications, the necessary cryptographic
functionality has to be developed outside the US.

4.1 The Java Cryptography Architecture

One of the key concepts of the JCA is the provider architecture. The key idea is that all different
implementations of a particular cryptographic service conform to a common interface. This
makes these implementations interchangeable; the user of any cryptographic service can choose
whichever implementation is available and be assured that his application will still function.
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To achieve true interoperability, Java 1.2 defines cryptographic services in an abstract fash-
ion as engine classes. The following engine classes, among others, have been defined in Java
1.2:

• MessageDigest – used to calculate the message digest (hash) of given data
• Signature – used to sign data and verify digital signatures
• KeyPairGenerator – used to generate a pair of public and private keys suitable for a spe-

cific algorithm
• CertificateFactory – used to create public key certificates and Certificate Revocation Lists

(CRLs)
• AlgorithmParameterGenerator – used to generate a set of parameters to be used with a cer-

tain algorithm
A generator is used to create objects with brand-new contents, whereas a factory creates objects
from existing material.

To implement the functionality of an engine class, the developer has to create classes that in-
herit the corresponding abstract Service Provider Interface (SPI) class and implement the meth-
ods defined in it. This implementation then has to be installed in the Java Runtime Environment
(JRE), after which it is available for use.[7] [8]

4.2 Implementing an Elliptic Curve Cryptography Provider in Java 1.2

In our project we implemented the Elliptic Curve Digital Signature Algorithm (ECDSA). The
signature algorithm and all the necessary operations are defined in IEEE P1363 and ANSI X9.62
drafts. To facilitate the interoperability of different implementations, Java 1.2 includes standard
names for several algorithms in each engine class together with their definitions. ECDSA, how-
ever, is not among them. We therefore propose that ECDSA should be adopted in Java 1.2 as a
standard algorithm for signatures.

Similarrly with the DSA implementation in JDK 1.2, we have defined interfaces for the keys,
algorithm parameters (curves) and points. These are used to facilitate the use of different co-or-
dinate representations and arithmetics. Our implementation of ECDSA uses prime fields and aff-
ine co-ordinates. The mathematics have been implemented using the BigInteger-class. The
BigInteger class is easy to use and flexible as it implements several operations necessary for
modular arithmetic and provides arbitrary precision. The down side is that performance is not
optimal. If the key length could be kept small enough, the arithmetic could be based on the long
type. The necessary operations could be based on using a few long type variables for each
value. With regular elliptic curves, which require a key length of at least 160 bits, this approach
might be inconvenient, but if hyperelliptic curves were used, the approach could prove feasible.

Even further improvements in performance could be achieved by implementing the key
mathematic operation in the hardware, e.g., in a mobile host. With the small key size of (hy-
per)elliptic curves, this would not pose unreasonable demands on the processor design or mem-
ory.

5 Extending Java Protection Domains into Distributed Agents

The dynamic and distributed nature of the SPKI based Java protection domains, described in
Sect. 3, opens up new possibilities for their use. In particular, it is possible to dynamically dele-
gate a permission from one domain, executing on one Java virtual machine, to another domain,
executing on another Java virtual machine. For example, when a distributed application requests
a service from a server, it might want to allow a certain class, an agent, in the server to execute as
if it were the user that started the application in the first hand. This ability allows us to view the
protection domains not just as internal Java properties, but they can be considered to represent
active agents that are created and executed in the network.
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In order to be able to perform these
kinds of functions, the domains (or
agents) involved must have local access
to some private keys, and a number of
trust conditions must be met. The require-
ment of having access to a private key can
be easily accomplished by creating a tem-
porary key pair for each policy domain,
i.e., for each incarnation of an agent. This
is acceptable from a security point of
view, because the underlying JVM must
be trusted anyway, and so it can be trusted
to provide temporary keys as well. The
public temporary key can be signed by the
local machine key, denoting it as belong-
ing to the domain involved.

To analyze the trust conditions, let us
consider the situation depicted in Fig. 2.
The user  wants to use a protected re-
source , located on the server . However, we assume that it is not possible or feasible that the
user  would have a direct secured connection with . As an example application, the user may
be using a mobile terminal whose connectivity cannot be guaranteed. So, instead of a direct con-
nection the user’s actions are carried out by one or more intermediate nodes , each acting on
the user’s behalf.

The setting is still slightly more complicated by the assumption that the code that actually ex-
ecutes at the server  and the intermediate nodes  consist of independent agents, which are
dynamically loaded as needed. In practical terms, in our prototype these agents are Java class
packages (jar files), carrying SPKI certificates within themselves. The agents are named as 
for the agent eventually running at the server , and as  for the agents running at the interme-
diate nodes .

It is crucial to note that when the execution begins, the user  typically does not know the
identity of the server , the intermediate nodes , or the agents . Instead, she has ex-
pressed her confidence towards a number of administrators (described below), who in turn cer-
tify the trustworthiness of  and . Correspondingly, the server  has no idea about the user 
or the nodes . Again, it trusts a number of administrators to specify an explicit security policy
on its behalf.

5.1 Trust requirements

Since we assume that the nodes in the network do not necessarily nor implicitly trust each other
or the executable agents, a number of trust conditions must be met and explicitly expressed. 

First, from the user’s point of view, the following conditions must be met.
• The user  must trust the server  to provide the desired service  granting access to the

resource . This trust is expressed through a sequence of trust administrators , where
the last administrator  confirms that  indeed is a server that provides the service .

• The user  must trust the agent , and delegate the right of accessing the resource  to
it. However, the actual runtime identity (i.e, the temporary public key) of the particular ac-
tivation of , running on  on the behalf of  on this occasion, is not initially known but
created runtime. On the other hand,  must certify the code of  so that it may be loaded
on her behalf.

• The user  must consider each of the intermediate nodes  to be trustworthy enough to
execute code on and to participate in accessing the resource  on her behalf. For simplic-
ity, in this case we have assumed that the trustworthiness of the nodes is certified by a sin-
gle trust authority , directly trusted by the user .

• The user  must trust the intermediate agents , while running on the nodes , to exe-
cute on her behalf and to participate in the process. Again, the temporary public keys of the
actual incarnations of the agents are created only at runtime.

U S

R

Fig. 2. The user  requests for a service needing the re-
source  through intermediate nodes .
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From the server’s point of view, a number of similar conditions must be met.
• The user  must be authorised to access the resource . Since the resource  is control-

led by the server , the source of this authority must be  itself. Typically, this authorisa-
tion is achieved through a chain of independent security policy administrators .

• The server  must trust the intermediate nodes  to faithfully represent the user 1. This
means, among other things, that when an agent is running on any of these nodes,  trusts
that the node has faithfully created and certified the temporary key pair that represents the
agent. For simplicity, we have assumed that the server  assumes the user  to be compe-
tent enough to determine which nodes to trust. Thus, in practice, the certificate chain used
to delegate the right to access the resource  may be combined with the chain certifying

’s proficiency in determining node trustworthiness.

5.2 Expressing the Trust Requirements with SPKI Certificates

Using SPKI certificates, it is possible to explicitly express the static and dynamic trust and dele-
gation relationships. In the following, the appearance of the symbols  and 
as the issuer or the subject of the certificates denotes the (static) public key of the respective
principal. On the other hand, to explicitly communicate the dual nature of the agents as dynami-
cally loaded code and dynamically created key pairs that represent them,  denotes a hash
code calculated over the code of the agent , and  denotes a temporary key that the node 
has created for the agent . Furthermore, the symbol  is used to denote the permission to ac-
cess the resource . 

Normal SPKI certificates are represented as 4-tuples , where the validity field is
left out. Correspondingly, SPKI name certificates are represented as , denoting
that the issuer  has bound the  for the principal .

User trust requirements. First, ’s trust on  is represented through a certificate chain Cert. 1
... Cert. 3.

Cert. 1

… Cert. 2

Cert. 3

Second,  must further certify that the agents, when run, may use whatever rights  has
granted to the agents as code. Since  does not know where the agents will be run, SPKI certif-
icates containing indirect naming are used to denote this delegation.

Cert. 4

where  is an SPKI name denoting the running agent , running on an arbitrary
node , named by .

Next,  must certify that the nodes are trustworthy to execute code.  has delegated this
right to ; thus, a chain of two certificates is needed for each node. In practice, the right of
running code on the issuer’s behalf is represented by a number of SPKI naming certificates that
transfer the node name , used above, from ’s name space to the name space of the trust au-
thority . The trust authority , on it’s behalf, names a specific node  as a node ,
which, consecutively, has the authority to bind the agent hash  to a public key.

 Cert. 5

Cert. 6

Furthermore, the user  must certify the actual code of the agents . In a real situation, this
would happen through another certificate chain. However, for simplicity, we assume that the user
has written the agents herself, and therefore certifies their code directly.

Cert. 7

1 More generally, the server  must trust the intermediate nodes to faithfully represent any user, or at least any user 
that has the authority and a need to access the resource .
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Server trust requirements. Similar to the user, the server  must authorise the user  to access
the resource , represented as the chain Cert. 8 ... Cert. 10.

Cert. 8

… Cert. 9

Cert. 10

Since the user is allowed to directly denote which nodes she trusts, no other certificates are
needed on the server’s behalf.

Initial reductions. Reducing Certificates 1–3, one gets the certificate

Cert. 11

This is sufficient for the user, and to anybody acting on the user’s behalf, to verify that the
server  really provides the desired service , which allows one to access the resource .

Respectively, reducing the Certificates 4–6, the result is

Cert. 12

denoting that the user  has delegated to the agent , as named by the node , the right to
use the rights assigned to the agent’s code1.

5.3 Runtime Behaviour 

The run time permission delegation is advanced step by step, from the user through the interme-
diate nodes to the server. We next describe the initial step, a generic intermediate step, and the fi-
nal step at the server.

Initiation of action. As the user  initiates her access, she contacts the first intermediate node
. The node loads the agent , generates a temporary key  for the agent, and creates an

SPKI name certificate (Cert. 13) to name the agent.

Cert. 13

Reducing this with Cert. 12 gives the newly created key the acting right.

Cert. 14

Combining this, on the semantic level2, with Certificates 7–10, results in the creation of
Cert. 15 that finally denotes that the newly created key has the  delegated permission to access

, and to further delegate this permission.

Cert. 15

Intermediate delegation. Let us next consider the situation where the node  has gained the
access right.

Cert. 16

The node initiates action on the next node, , that launches and names the agent running
on it.

Cert. 17

Reducing this with the chain leading to Cert. 12 results in 

Cert. 18

Having this, together with the Cert. 12 chain,  can be sure that it is fine to delegate the
right expressed with Cert. 16 further to .

Cert. 19

Combining Cert. 19 with Cert. 16 results in

1 The reader should notice that this, naturally, allows  to delegate this right to itself. However, this is acceptable 
and inevitable, as the node  is trusted for creating and signing the agent’s public key.

2 With semantic level we mean here that mere syntactic SPKI reduction is not enough, but that the interpreter of the 
certificates must interpret the expression “ “.
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Cert. 20

which effectively states that , running on node , is permitted to access the resource
 and to further delegate this permission.

Final step. In the beginning of the final step, agent , executing on node , has gained the
right to access .

Cert. 21

Agent  now launches agent  to run on the server .  creates a temporary key  for
the agent, and publishes it as a certificate.

Cert. 22

Again, combining this with the Cert. 12 chain gives

Cert. 23

which allows the agent  to decide to delegate the right to access the resource .

Cert. 24

Reducing Cert. 24 with Cert. 21 results in Cert. 25.

Cert. 25

The final certificate, Cert. 25, can now be trivially closed into a certificate loop by , since 
itself has created the key , and therefore can trivially authenticate it. In other words, this can
be seen easily to reduce into a virtual self-certificate Cert. 26.

Cert. 26

Cert. 26, closed on the behalf of the agent , finally assures the server  that the agent 
does have the right to access the protected resource .

5.4 Preserving privacy

Using SPKI Certificate Reduction Certificates (CRC) provides the user  a simple way to stay
anonymous while still securely accessing the resource . If any of the policy administrators 
on the trust path leading from  to  is available online and willing to create CRCs, the user can
feed it the relevant items of Cert. 9, Cert. 10, and Certs 4–6 and Cert. 7. This allows the policy
administrator  to create CRCs Cert. 27 and Cert. 28, for Certs 4–6 and Cert. 7, respectively.

Cert. 27

Cert. 28

Then, in the rest of the algorithm, Cert. 27 is used instead of Cert. 12, and Cert. 28 is used in-
stead of Cert. 7. Using this technique, other nodes than  do not see ‘s key at all. The only
identity information they can infer is that the user who effectively owns the computation is some
user whom  has directly or indirectly delegated the permission to access the resource .

To further strengthen privacy,  may encrypt parts of the certificates that it issues. Since
these certificates will be used by  itself for creating CRCs only, nobody else but  itself
needs to be able to decrypt the encryption. This makes it virtually impossible to find out the iden-
tities of the users that  has issued rights in the first place.

6 Implementing the architecture

We are building a JDK 1.2 based prototype, where distinct JVM protection domains could dele-
gate Java Permission objects, in the form of SPKI certificates, between each other. At this writ-
ing (September 1998), we have completed the integration of SPKI certificates to the basic JVM
security policy system [25], implemented the basic functionality of ECDSA in pure Java [15],
and integrated these two together so that the SPKI certificates are signed with ECDSA signa-
tures, yielding improved performance in key generation.

Our next steps include facilities for transferring SPKI certificates between the Java Virtual
Machines, and extending the Java security policy objects to recognize and support dynamically
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created delegations. Initially, we plan to share certificates through the file system between a
number of JVMs running as separate processes under the UNIX operating system.

In addition, we are building a prototype of the ISAKMP [18] security protocol framework.
This will allow us to create secure connections between network separated JVMs. The ISAKMP
also allows us to easily transfer SPKI certificates and certificate chains between the virtual ma-
chines. 

In order to support dynamic search and resolving of distributedly created SPKI certificate
chains [3], we are integrating the Internet Domain Name System (DNS) certificate resource
record (RR) format into our framework. This will allow us to store and retrieve long living SPKI
certificates in the DNS system [22].

7 Conclusions

In this paper we have shown how authorisation certificates combined with relatively fast, elliptic
curve based public key cryptography can be used to dynamically delegate authority in a distrib-
uted system. We analyzed the trust requirements of such a system in a fairly generic setting
(Sect. 5.1), illustrated the details of how these trust requirements can be represented and verified
with SPKI certificates (Sect. 5.2), and explained how the agents delegate permissions at run time
by creating new key pairs and certificates. Finally, we outlined how the system can be utilized in
a way that the user’s identity is kept anonymous while still keeping all authorisations and con-
nections secure (Sect. 5.4).

We are in the process of implementing a prototype of the proposed system. At the moment,
we have completed the basic integration of SPKI certificates into the JDK 1.2 access control sys-
tem (Sect. 3) and our first pure Java implementation of the ECDSA algorithms (Sect. 4). The
next step is to integrate these with a fully distributed certificate management and retrieval sys-
tem. The resulting system will allow distributed management of distributed systems security pol-
icies in fairly generic settings. In our view, the system could be used, e.g., as an Internet wide,
organization borders crossing security policy management system. 
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