A Java Beans Component Architecture for Cryptographic Protocols

Pekka Nikander Arto Karila
pekka.nikander@hut.fi arto.karila@hut.fi
Helsinki Univesity of Technolagy Helsinki Univesity of Technolagy
Abstract to apply these results to real design and implementation

has receied considerably less attentifitv]. Recent re-
Global networking has bught with it both ne oppor sults in the area of formalizing architectureelesoft-
tunities and ne security theats on a worldwide scale Wware composition and ingeating it with object oriented
Since the Internet is inhemtly insecu, secue crypto- modelling and design seem to bridge one section of the
graphic potocols and a publicdy infrastructue ae gap between the formal theory aneeyday practic¢?]
needed. In this paper we inttuce a potocol compo- [16] [31].
nent achitecture that is well suited for the implementa- In this paper we present a practical architecture and
tion of telecommunications qnoco|s in @nea] and an implementation frameork for tulldlng secure com-
cryptagraphic potocols in particularOur implementa- munications protocols that v the follaving proper
tion framavork is based on theada pogramming lan- ties:
guage and the Conduits+ ptocol famework. It ¢ The architecture is made to the needs of tcdlappli-

complies with the Beans chitectue and securityAPI cations based on the global infrastructure that is al-
of JDK 1.1, allowing its ussrtoimplementpplication ready forming (InterneWWwWw, Java).

specifc secue potocols with elative ease Further ¢ The implementation frameork allovs us to construct
more, these potocols can be safely downloadedatingh systems out of ourven trusted protocol components
the Internet and run on virtually any workstation —and others tan from the netark. These systems can
equipped with aava capable wser. The famavork be securely>xecuted in a “protocol sand box”, where
has been implemented and tested acfice with a vari- they, for example, cannot leak encryptioreys or
ety of cryptgraphic potocols.The famavork is ela- other secret information.

tively independent of the actual cryptosystems used artd Together the allow us to relatrely easily implement
relies on the d@va 1.1 public & securityAPI. Futue application specifi secure protocols, securelyvee
work will includeJava 1.2 support, andtilization of a load the protocol softare wer the Internet and use it
graphical Beans editor to further ease the work of the Without ary prior arrangements or soféne installa-
protocol composer tion.

We hare implemented the main parts of the architecture
as an object oriented protocol component fraork
1 Introduction called Jaa Conduits. It ws huilt using JDK 1.1 and is
currently being tested on the Solaris operating system.
Designing and implementing telecommunications pro-The framevork itself is pure Ja and runs on gnjava
tocols has preen to be aery demanding task. Building 1.1 compatible virtual machine.
secure cryptographic protocols igea harderbecause Our goal is to praide a sound practical basis for pro-
in this case we va to be prepared for not just random tocol derelopment, with the desire to create higheele
errors in the neterk and end-systemaibalso premedi- design patterns and architectural styles that could be for
tated attackrs trying to tak adantage of ay weak- mally combined with protocol modelling and analysis.
nesses in the design or implementa{i®in[29]. During The current focus lies in utilizing the&gg of four” ob-
the last ten years or so, much attention has been focusiggt level design patternd0] to create a highly stylistic
on the formal modelling andevification of crypto- way of huiilding both cryptographic and non-crypto-
graphic protocol$21] [27]. However, the question he graphic communications protocols. Our implementation
" In order to achiee real sandbox securitgither JDK 1.2 or experience h_as shor that _thls approach leads to a
a specially tailored SecurityManager is needét]. number of higher leel design patterns, i,eprotocol

patterns that describe hw protocols should be com-
posed from laver level components in general.
The rest of this paper is ganized as follws. In

Java as being ingtable.We are basingur work on Jaa
and the signed applets security feature v Jal.
In order to communicate securglye alvays needo

Section2 we introduce our architecture and its relation-start withan initial security contd. In our architecture,

ship to &isting work. In Section3 we present the com-
ponent frameork developed. Sectiond dwells into

implementational details andkmerience gined while

building prototypes of real protocolé&t the end we

present a summanseéctions) and outline some future
work (Section6).

2 The architecture

In our viaw, the world to whichwe are hilding applica-
tions consists of the foleing main components: the-

ternet the World Wde Web (WWW), the Java
programming languge and &ecution emironmentand
an initial security contgt (based on predefed trusted

the minimal initial security conge containsthe trusted
keys of our web bravser which we can use to check the
signatures of the dmloaded applets and othervda
Beans.

2.2 Theoptional components

While our architecture does not depend on ttistence
of the follaving three components, there “nice to
have’, as thg will make the architecture morefiefient
and scalable.

A public key infrastructure (PKI) allws us to associ-
ate a public & with a person, compgnservice, auther
ization, or such with a reasonable assurangs.|& also
allows us toprove the authenticity of a digital signature

keys). Our architecture is based on these four comep 3 court of lav. A global PKI is a prerequisite for man
stones. Inaddition, there are three more components,gy applicationareasfor the Internet. Until recently

that are not indispensablatb‘nice-to-hae”: a Public
Key Infrastructue (PKI), thelnternet SecurityAssocia-
tion and Ky Management Potocol (ISAKMP) and the
Internet Potocol SecurityArchitectue (IPSEC).

2.1 Theessential components

most of the wark in this area has focused on X.509 type
certificates and a hierarchical tree adrtification au-
thorities CAS). While this approach erks for some ap-
plication areas, e.gin relations between gernments,

it is not suitable for othersjncetrustis inherently in-
transitve. The Simple Public By Infrastructure (SPKI)
[9] appears to us as a more widely applicable PKI.

The world-wide Internet has established itself as the The Internet Securitissociation and By Manage-

dominating netwrk architecture thatven the public
switched telephone nebrk has to adapt td.he nev In-
ternet Protocol IPv6 will solvthe main problem of ad-
dress space, and together witlwrtechniques, such as
resource reseation and IP switching, pvide support

ment Protocol (ISAKMP)19] provides us with a stand-
ard way of securely generatinges and setting up
security contets. We epect a number of application
specift security protocols to beulit on top of
ISAKMP. The authentication information needed for se-

for new types of applications, such as multimedia on acuring a connection can easily be augmented with capa-

global scaleAs we see it, the only signifant threats to
the Internet are political, not technical or econoniée
regard the Internet, as well as the less opdraaet and
intranet, as an inherently untrusted etk

The World Wide Web (WWW) has been theabtest

bilities such as authorization informatiohhis allovs
future access control policies to be based on signed au-
thority in addition to rplicit identity.

The Internet Protocol Securifyrchitecture (IPSEC)
[6] [30] is an atension to IPv4 and an essential part of

growing and most widely used application of the Inter |Pv6. It provides us with authenticated, igtal and con-

net. In fct, theWWW is an application platform which
is increasingly being used asuser interice to a multi-
tude of applications. Hypefext Markup Language
(HTML) forms and the Common Gatay Interbce

fidential channels for transparemchange of informa-
tion between antwo hosts, users or programs on the
Internet.Designed to be usedarywhere, it will be im-
plemented on most host anankstation operating sys-

(CGIl) male it possible to create simple applicationstems in the near futureThe flexible authentication

with theWWW as the user inteate. More recentjywe
have seen the proliferation okecutable content.

The Jaa programming languaga&tends the capabili-
ties of theWWW by alloving us to danload eecuta-
ble programs, da applets, withWVWW pagesA Java

schemes praded by ISAKMP mak it possible to indi-
vidually secure singl@ CP connections and UDP patk
streams.

IPSEC is not yet ubiquitouslyailable, so, for na,
its functionality can be substituted with an transport

virtual machine has already become an essential part @fyer protocol such as SSThe current JDK architec-
a modern web brweser and we see the proliferation of ture does not alle IPSEC to be implemented invda

without resorting to nate interbices that alle accessto 2.4 Related work
the underlying protocol stack or media.

Our implementation franveork is heaily based on the
2.3 Implementational requirements ideas fist presented with theKernel [15] [18] [22]

and the Conduit§32] and Conduits414] frameavorks.
Future protocols will be drastically éfent from what Some of the ideas, especially the microprotocol ap-
most of us beliged only a fev years agoThe role of se- proach, hae also been used in other framuoeks, in-
curity cannot be weremphasized. Unfortunatelynost cluding Isis[8], Horus/Ensemblg24], and Basf11].
of the tools and franmveorks deeloped sodr either tend However, Isis and Horugoncentrate moren huilding
to ignore security or do noadilitate intgrating proto- efficient and reliable multiparty protocols, while Bast
col security with that of the underlying operating systemobjects ardarger than ours, yielding a white box ori-
or the supported application3his is unacceptable, ented frameork instead of a black box one.

since security should be designed auiit in to the pro- Compared toxKernel, Isis and Horus, our mainvao
tocols and the system as a whole from tee/\ba@in- elty is in the use and recognition of design patterns at
ning. various leels. Furthermore, our object model is more

The earlier protocol frameorks were typically based fine-grained These properties come hamdhand —
on a virtual operating @ironment that \as clearly sep- using design patterns tends to lead to collections of
arated from the underlying operating system. From themaller highly regular objects.
modularization point of vig this was good. Hwever, The Horus/Ensemble security architecture is based on
this made it hard touild application leel programs that Kerberos andéttezza Insteadwe base our architecture
were able to use the protocols running within the frameen the Internet IPSEC architectureereros does not
work. Jara Conduits is clearly dirent in this respect. scale well and requires a lot of trusted functionality
For example, under the ¥aOS, the protocols and the Fortezza is desloped mainly for U.S. G@rnment use,
applications all run within a single virtualvdronment, and not gpected to be generallyailable. On the other
making seamless irgeation straightfonard. hand, we gpect the IPSEC architecture to be ubiqui-

The use of an object oriented implementation lantously aailable in the same ay as the Domain Name
guage allavs us to gtensiely use objectevel design System (DNS) is today
patternsThis males the frameork itself more generic Most important, our franveork is seamlessly inte-
and etensible, and creates a highly stylistiaywvfor grated into the da security model. It utilizes both the
writing actual protocol implementatiordlith a suitable language leel security features (packages, visibility)
object oriented design tool, the outline for the classeand the ne Java 1.1 security functionalityA further
needed to implement aweprotocol can be created in difference isdcilitated by the da run time model. Ja
minutes.The actual implementation code for the proto-supports code and object mobilifyhis allovs applica-
col actions typically tags a little longerdepending on tion specift protocols to be loaded osedon demand.
the compleity of the protocol. Another neelty lies in the vy we usethe Jaa Beans

Performance will avays be an issue with communi- architectureThis allovs modern component based soft-
cations protocols. EBn though processing wer is con- ware tools to be used to compose protocbie intro-
stantly increasing, the we applications needver duction of the Protocol class, or the metaconduit (see
increasing bandwidth and reasonable transfer del®y Section3.2), which allws composed subgraphs to be
new protocols require lge transfer capacitghort and used as components within dar protocols, isespe-
fixed delay and lots of cryptograph among other cially important.The approach also alls the resulting
things. protocol stacks to be combined with applications.

There are tw facets to performance. First, the
processing poer available should be used adieiently])
as possibleThe importance of this will gradually de- 3~ Theimplementation framework
crease as processingwer increases. Second, and more
important, there should not beyadesign limitations Java Conduits preides a fne grained object oriented
which set a theoretical limit to the performance of theprotocol component framerk. The supported ay of
protocols, no matter ko much processing peer we building protocols is gry patterned, on sgeral lesels.
have.We want to allov as much parallelism as possible The framevork itself utilizes healy the “gang of four”
and build the protocolimplementatios such that the object design patternd0]. A number of higher leel
can be dfciently divided between a number of proces- patterns for constructing inddual protocols are emgr
sors. Jea, with its hiilt-in threads and synchronization, ing.At the highest teel, we erision a number of archi-
allows parallelism to be utilized with relaé ease. tectural patterns to sade as users will be able to

construct protocol stacks that are matched to applicatiovery lean, allaing basically ap object to act as avent
needs. source, eent listeneror even the gent itself. Most of
Our goal is to aller applicationspecift secure proto- this is achiged through class and method naming con-

cols to be hilt from componentsThe protocols them- ventions, with somextra support through manifesta-
selves can be constructed fronwler level components, tional interbces.

called conduitsThe protocol components, in turn, can Compared to other established component swéw
be combined into complete protocol stacks.achi#e architectures, i.e. OLE/COM, CORB\ and OpenDaoc,
this, we hae to sole a number of generic problems the Jaa Beans architecture is relagly light-weight.

faced by component based safte. Under Jaa 1.1, nearly anobject can be turned into a

Java Bean. If an object class supports serialization

3.1 Component based software and the object does not contairyaaferences to its en-
engineering vironment, the object can be considered to gean

without ary changes at alWhen Bean properties are
i_provided by naming access functions appropriately
event support added with avelines of code, and gn
references to the enclosingveonment markd tran-
sient, almost anclass can be easily turned intBean.

Recently attention has shifted from basic object or
ented(OO) paradigms and object oriented framoeks
towards combining the bentfiof OO design and pro-
gramming with the broad scale architecturalwgeints | -
[2] [20]. Component based sofive architectures and On the other handhe Jasa Beans architecture, as it is
programming evironments play a crucial role in this currently defined, does not address some of the biggest
trend. problems of component based safter architectures
For a long time, it s assumed that object oriented @ Petter than its competitorshese includette mix-
programming alone euld lead to softare reusability "9 @nd matchingroblem that dcesaryone trying to
However, experience has sham this assumption build larger units from the components. Basicadgch

false[20]. On the other hand, non object oriented soft-CoMPONeNt supports a number of indeds. Haever,
ware architectures, such as Microsoft OLE/COM and"€ semantics of these inteces are often not immedi-
IBM/Apple OpenDoc, hee shovn modest success in ately apparent, nor can thbe formally speciéd within

creating real makts for reusable sofave components. (he component frameork. When the components are

Early industry response seems to indicate that the JaSPecifCally designed to co-operate, this is not a prob-
Beans architecture may peomore successful. lem. Havever, if the user tries to combine components

The Jaa Beans component model we are using defrom different sources, the intedes must be adapted.

fines the basicatets of component based safte to be This may in turn, yield constructs that cannot stamdl b
componentscontaines andscripting That is, compo- collapse due to semantic mismatches. _

nent based sofve consists of component objects that N the protocol wrld, the mixing and matching prob-
can be combined into lger components using contain- lem is refected in tw distinct ways. First, the data

ers. The interaction between the components can b#ansfer semantics dgr. Second, and more importantly

controlled by scripts that should be easy to produce afhe information content needed to address the intended

lowing less sophisticated programmers and users to cr&€CiPient(s) of a message greatlyfelif In our frame-

ate them.This is achieed throughruntime interface WOrk, the recipient information is \ays implicitly

discovery event handlingobject pesistenceandappli- ~ @ailable in the topology of the conduit grafitus, the

cation luilder support[33] protocols h_ae no nee_d toxglicitly address peers once
Java as a language prdes natural support for run— an appropriate conduit stream has been creat_ed.

time interice discuery. A binary Jaa class fe con- It has been stwn that secure cryptographic proto-

tains eplicit information about the names, visibility and €°!S, When combined, may result in insecure protocols
signatures of the class and itldis and method@rigi- [13]. This problem cannot be easily addressed within the

nally provided to enable late loading and to ease th&Urrent Jaa Beans architecturé/e hope that future re-
fragile superclass problem, the runtimeviesnment search, paying more attention to the formal semantics,

also ofers this information for other purposes, etg. Will alleviate this problem.
application liilders. Jsa 1.1 preides a refictionAPI
as a standardaé€ility, alloving ary authorized class to - — o
dynamically fad out and access the class information. %Jp?é?n‘:ﬁf;izﬁp(ﬂotﬁ;;S;'lall'z;;'gnSbe)'rrrzr'ifiigllge

The Jaa Beans architecture introduced avrevent interface. Most Jea classes can do this. Wever, there are
model for Jaa 1.1.The model consists avent listen- classes that are inherently impossible to be serialized as
ers, event objectsandevent souces The mechanism is such, e.gj ava. | ang. Thread.

Protoco

Protocol

|—, Sessmrlx Sessmrlu
o ®° 99 Mux == To) 2
o 2= iC ry H
0" * Mux
o Factory \ nr/
I (1]

o Session
(1]

mg/

Adapfor

Figure 1:The five types of conduits Figure 2:Aa example of a simple partial protocol graph

3.2 Basic Conduitsarchitecture riving from these conduits are multipésl to the sidé
conduit, and viceersa.
The basic architecture ofvlaConduits is based on that If the Mux determines during demultiplging, that
of Conduits+ by Hueni, Johnson and Enffed]. The there is no suitable side BJ[i] condtitwhicha message
basic kinds of objects used arenduitsandmessges may be routd, the Mux routes the message to the Con-
Messages represent information thatv8 through a duitFactory attached to side B[OThe ConduitGctory
protocol stackA conduit, on the other hand, is a soft- creates a e Session (or Protocol) that will be able to
ware component representing some aspect of protocplindle the message, installs theviyecreated Session
functionality To kuild an actual protocol, a number of to the graph, and routes the message back to the Mux.
conduits are connected into a graph. Protocols, moreo- Adaptors are used to connect the conduit graph to the
ver, are conduits themsels, and may be combined with outside verld. In conduit terms, adaptersvieeonly side
other protocols and basic conduits intog&ar protocol A. The other side, side B, or the communication with the
graphs, representing protocol stacks. outside vorld, is bgond the scope of the framerk,
There are fie kinds of conduitsSession, Mux, Con- and can be implemented in whatemeans feasible oF
duitFactory, Adaptor and Protocol Each conduit has example, a conduit prading the TCP service may im-
two sides: sidé and side BA given conduit can con- plement the Ja soclet abstraction.
nect to either sidA or side B of another conduit. A protocol is a kind of metaconduit that encapsulates
Sessions are the basic functional units of the frameseseral other conduitsA protocol has side# and B.
work. A session implements thaniie state machine of a However, typically these are conduit connections that
protocol, or some aspects of Tihe session remembers are mainly used for the dediry of various kinds of in-
the state of the communication and obtains timers antérprotocol control messageBypically the actual data
storage for partial messages from the fraom. The connections directly stretch between the conduits that
session itself does not implement the e of the are located inside some protocols. In practice, a protocol
protocol lut delgyates this to a number of State objects,is little more than a conduit that happens to ghlke its
using the State design pattern. sides, i.e.sideA and side B independentlyp other con-
The Mux conduits are used to multipland demulti- duits. The only compleity lies in the liilding of the ini-
plex protocol messages. In practical terms, a Mux contial conduit graph for the protocol. Once the graph is
duit has one sidA that may be connected toyaather huilt, it is easy to frame it within a protocol objethe
conduit.The side B[0] of the Mux is typically connected protocol object can then be used as a component in
to a Conduitkctory In addition, the Mux has a number building other more comple protocols or protocol
of additional side B[i] conduits. Protocol messages arstacks.

3.3 Using Javato build protocol
components java.util. EventObject

Java 1.1 preides a number of features thacilitate Z%
component based sofane deelopment.These include
inner classesBeanproperties serializationand Bean
events These all play an important role in makingele
opment of protocols easier

A basic protocol component, i.ea conduit, has (at

M message
essagé | carrier

least) tw sidesWheneer a message aves at the pro- Buffer Messenger irrqteesrs?gtee |
tocol component, it is important to kmavhere the mes- message P
sage came from, in order to be able to act on the data
message. On the other hand, it is desirable tv g&ch Legend:
conduit as a separate unitvh@y its avn identity Java ——refers to
inner classeandthe way the Jaa Beans architecture ——{= extends
uses them, prades a neat solution for this problem.

Each conduit is considered a singlealB8ean. Inter
nally the component is constructed from a number of Class

objects: the conduit itself, siddsand B, and typically
also some other objects depending on tteciesort of
the conduit.The Conduit class itself is a nhormakda

class, specialized as a Session, Mux, Conélattiy or In Java Conduits, a protocol message is composed of
such. On the other hand, the side objestand B, are tnree objects: aessge carrier, amessge bodyand a
implemented as inner classes of the Conduit class. Ihessge interpeter The message carriextends the
most respects, these objects andsible to the rest of java. util.Event Obj ect class, thereby declaring
the object wrld. They implement the Conduit intetée, jtself as a Beanvent. The carrier includes references to
delegating most of the methods back to the conduit itpe message body that holds the actual message data,
self. Havever, their being separate objects reakhe ang a message interpreter thatjites protocol specifi
source of a message &mg at a conduit immediately interpretation of the message datBhe message
apparent interpreters are called Messengers, ang #et in the
Sincethe conduits are attached to each otéren gle of a command according to the Command pattern
constructing the conduit graph, the internal side objectFlo]_
are actually passed to the neighbour conduitsy,No Messages are passed fromeconduit to the ne one
when the neighbouring conduit passes a message, it wuging the Jea event delvery mechanisniThe nat con-
arrive at the recging conduit through some side object. q;t registers its internal side object as aermt listener
This side object uniquely idengf the source of the tnhat will receve erents generated by the pieus con-
message, thereby alling the receiing conduit to act §yit.
appropriately The actual message dalry is synchronous. In prac-
The Jaa Bean properties play a fdifent role. Using tjce, the sending conduit indirectlyviskes the receing
the properties, the inddual conduits may publish run conguits accept method, passing the message carrier as
time attriutes that a protocol designer may use throughy parameterThe receiing conduit, depending on its
a visual design tool.d¥ example, the Session conduits type and purpose, may apply the Messenger to the cur
allow the designer to set the initial state as well as the segnt protocol state, yielding an action in the protocol
of allowed states using the properties. SimilaifieAc- state machine, replace the Messenger with another one,
cessor object connected to a Mux may be set up usingying nav interpretation to the message, or act on the
the Beans property mechanism. message independent on the Messerygically, the

Java 1.1 preides a genericvent fcility that allws same gent object is used to pass the message from con-
Beans and other objects to broadcast andveaeent it to conduit until the message is delayed or con-

notifications. In addition to the iepredefhed notifta- g med.

Figure 3: Structure of conduits messages

tion types, the Beans are assumed tondefisv ones. Java Conduits use the prider / engine mechanism
Given this, it is natural to map conduit messages Ont@ffered by the JDK 1.1 securiyPl. Since neither the
Java events. encryption / decryption functionality nor its intace

speciftation vas not gailable outside the United States,

we created a neengine clasgava. security. G -
pher along the model gfava. security. Si gna-
ture and java.security.MessageD gest

aConduitSide aConduit aVisitor
1 1 1

classes. accept(avsitor) I I I
The protocols use the cryptographic algorithms di- acc\tﬂep_tFrom(| I
rectly through the securit%Pl. The data carried in the Conduitside) |

message body is typically encrypted or decrypted in
situ. When the data is encrypted or decrypted, the asso-
ciated Messenger is typically replaced to yield nie-

I I
I
terpretation for the data. |
I
I
|

at(aSpecitCorjduit)

3.4 Usage of language level security

[
[
[
features I

Figure 4:A visitor arrives at a Conduit

Java offers a number of languagevéd security features All this malkes it possible to createusted potocols
that allav a class library or a fram@rk to be secure and to combine them with untrusted, application sgecifi
and open at the same timEhe basic dcility behind ones.This is especially important with cryptographic
these features is the ability to control accesstddiand protocols.The cryptographic protocols need access to
methods. In Ja, classes are ganized in package# the users cryptographic é&s. Even though the actual
well designed package has a carefully crafte@real encryption and other crymeaphic functions are per
interface that controls access to both black box anformed by a separate cryptoengine, the currera dal
white box classes. Certain befar may be enforced securityAPI does not enforceey privacy. However, it is
by making classes or methodadi and by restricting easy to createe.g, an encryption / decryption micropro-
access to the internal features used to implement the b@col that encrypts or decrypts after, but does not al-
haviour. Furthermore, modern virtual machinesidé low access to theggs themseles.
classes into security domains based on their classloader
There are numerous@mples of these approaches inthe3 5 QObject level design patternsused in
JDK itself. For example, thej ava. net. Socket the resulting architecture
class uses a separate implementation object, belonging
to a subclass of theava. net. Socket | npl class,
to provide network services.The internal Soaktimpl
object is not wailable to the users or subclassekthe
soclet classThej ava. net . Socket | npl class, on
the other hand, implements all functionality as protecte
methods, thereby alldng it to be used as a white box.
The Jaa Conduits framgork adheres to these con-
ventions.The fram&vork itself is constructed as a single
packageThe classes that are meant to be used as bla
boxes are madéi nal . White box classes are usually o
abstract. Their behaiour is carefully diided into
user atensible features andéd functionality
The combination of black box classexefi behwa-
iour, and internal, ivisible classes all@s us to gie the
protocol implementor just the right amount of freedom
New protocols can be createdjtithe frameork con-
ventions cannot be brek.Nonethelesdliberal usage of
explicit interfaces mags it possible textendthe frame-
work, kut agin without the possibility of breaking the
cornventions used by the classesvided by the frame-
work itself.

The Conduits architecturedégntredaround the idea of a
conduit graph that is tvarsed by protocol messages.
The graph is the local representation of a protocol stack.
he messages represent the protocol messages e
hanged by the peer protocol implementatidigs as-
pect of a graph and graphveasal is abstracted into a
Visitor pattern[10]. The pattern is generalized in order
to allow also other kinds of visitors to be introduced on
mandThese may be needeglg, to pass interproto-
| control messages or to visualize protocol biha
In this pattern, a protocol message or other visitor ar
rives as a Ja event at an internal side object of a con-
duit. The side object passes the message to the conduit
itself. The conduit imokes the appropriateverloaded
‘at(Conduitpe) method of the message carridtow-
ing the message decidevihto act, according to théis-
itor pattern.
As a more compleexample of the usage of thamg
of four patterns, let us consider the situation when a pro-
tocol message aveés at a Session that performs crypto-
graphic functions (seeFigure5). The eecution
proceeds in steps, utilizing a number of design patterns.

* Actually, other classes within the same package can access
the Socletimpl object. Classes outside the packagetcan’

aSessionSide aSession

acceptFrom(

aVisitor,
aConduitSide)I

at(aSession

aMessage

apply(aMessage, aMessenger)

aMessenger

e — — — — — — — — — -

aState

encrypt(.) |

aCipher

Figure 5:A Message arvies at a cryptographic Session

1. The messge arrives at the Session acdorg to the

\isitor pattern.

The message is passed to the Sessimoérnal side
as a Jea Beans visitorwent. The e/ent is passed to
the session, which viokes the messageat(Session)

back the Session'apply(Message) method.

. The Sessioneags the mesge, and applies it accak
ing to the command pattern.
The Session uses the Messenger command objedbwing are vorth mentioning:
and asks it to be applied on itself, using the current The actual encoding/decoding aspect of the d4us

state and message.
3. The Messergy command object acts on the session, egy pattern.
state and mesga (second half of the Command pat-+ The State objects are designed to be shared between
the Sessions of the same protocol. In order to encour

tern).

This behaiour is internal to the protocolypically
all states of the protocol implement an irged that
contains a number of command methotise Mes-
senger calls one of these, dependinghenmessags’

type. In the gample situation where a message ar

method.

sage.

This, agin, depends on the protocdhe State may
replace the current state at the Session with another actual processing to the conduits encapsulated into
State (according to the State pattern), modify the ac- the protocol.

tual data carried by the message, or replace its inter
pretation by changing the Messenger associated with
the Message. In ouxample, the State encrypts the
message dat# reference to a Cipher has been ob-
tained during the State initialization through theala
method. Since the visitor in hand is a message, it calls 1.1 securityAPl. The lkey objects are stored at the

Session conduit.

As examples of other kinds of usage of patterns, the fol-

delegated to separatkccessor objects using the Strat-

age thisbehaiour, the base State class implements
the basic details needed for the Singleton pattern.

* The ConduitBctories are used as black bsn the
framewvork. Each Conduitictory has a reference to a
Conduit that acts as its prototype, faliag the Pro-

rives and should be sent encrypted, the Messenger in-totype pattern.

vokes the protocol state’encrypt(Session, Message) « Olviously, the Adaptor conduits act according the

Adapter pattermith respect to the wrld outside the

. The curent State object acts on the Session and Mes- conduits frameork.

» With respect to th¥/isitor pattern, the Protocol con-
duits act according to the Proxy pattern, datig

4 Implementation experiences

Crypto Our current prototype is the third one anseriesThe
Protocol first working prototype \as successfully implemented in
FSM December 1996The second one a8 a complete re-
] write, based on thexperiences with thert one.The
main diference between the second and third prototypes
Code is Java Beans supporfhe onlymajor change needed
was to the message deéry mechanism, due to the
f_ added Jea erent support. Other than that, compliance
Cipher with the Beans architecture required method naming
[changes and other minor changes needed to properly
support serializationThe protocols themsedg were
transferred from the second framak prototype to the
third with almost no change®ur next stepis to further
Figure 6:Cryptographic protocol pattern enhance Ja Beans suppotb facilitate visual protocol
composition.
3.6 Protocol design patterns 4.1 Theframework

Our &perience with the frammeork has shan that pro- The elementsused to hild protocols are relately
tocol independent implementation patterns do arisesmall. This leads to aery piecemeal protocol delop-
That is, there seems to be certain commagssaev the ment.According to our gperience, onceneis familiar
different conduits are connected to each other whewith the modelthe actual implementation of protocols
building protocols. Here we stwohow the use of en- is usually ery straightforvard and &st.
cryption tends to be reftted as a conduit topology pat- The small component approach seems todng well
tern. suited for liilding microprotocols. & example, it is

A cryptographic protocol handles pieces of informa-easy to represent the imilual IPv6 header handlers as
tion that are binary encoded and cryptographically proseparate protocols, and create runtime structures to mix
tected. Usually the whole message is signedcrypted, —and match them appropriately
or both.This yields a highly rgular conduits structure
Where_ three sessions are sttlon Fop of each oth.er Event delivery and scheduling. The basic Jam event
(seeFigure6). The uppermost session (FS.M) rees a‘eli\/ery mechanism is synchronoughe eent source
messages from upper protocols. or .applllcanons, an vokes, directly or indirectlyan appropriate method at
maln_talns the protocol state machine, y._amrectly be? every ragistered listeneHowever, nothing in the archi-
low lies a session that tak care of the binary encoding

: tecture mandates this approa8iinceevents are repre-
and decocyng O.f t_he message data (Codér. laver- sented as objects, their deliy may well be queued and
most session within the protocol &kcare of the actual

I o he li h il -
cryptographic functions (Cipher) delayed. Inéct, the listeners themselrmay easily cre

! . . ate an eent queue if desired.

Accordmg. to the conduits grchltecture, the aqtual Our current goal is to achie better performance on a
cryptographic kys are stored into the CryptOSESSIon'uniprocessor implementation. Earlieqperience with a
Thus, the information about whaykto use is implicitly UNix STREAMS based IPSEC prototyfid has shan
a’?"?b'etf;j’vm tr:,e cpbr;dun graph topologtowever, that scheduling should beaded on a uniprocessor en-

IIS lshno ay?ﬁglegﬁ' | th vironment. Therefore we haze tried to minimize the

n the case o protocol we resortetb stor number of threads and synchronized methods in the cur

ing thg Ieying_information as a<_:iditiona|, out of band in- rent prototypeThis may changéater when multiproc-
formation within the outgoing protocol message.essing is taén care of.

Similarly, the incoming messages are decorated with in- The framevork has one main thread thateaicare of
formation about the security associations that ?Ctua”\éarrying a message through the conduit graph. It handles
were used to decrypt or the checl_< the messaggrityte one message a time, passing it from conduit to conduit.
These are then chemdk further up in the protocol stack If a conduit cannot pass the messagg, becausét is a

to ensure security polc partial message and the other fragments are needed, the
message stops at the conddihe carrier thread then

* Signed or otherwise ingeity protected

handles the n¢ message in queue, orits if there are
no messages currently ating in a message/ent
queue.

A separate thread tek care of timerslimer events

are delered to the conduits by the same thread as the
message and other visitoremts. A conduit may rgister
a timer @ent to be scheduled at a particular time, after
some delayor periodicallyWheneer the timer gpires,
a timer @ent is added to the messagefet queueAfter
the carrier thread has handled a message, éstéhe
next message or timewent from the queue, and deli
ers it.

The adapters protect the conduits framek from
other threadsThe adapter methods are fully synchro-
nized, and may be called by whate threadsWhen a
message anes at an adapter from outside, the adapter
wraps the message data into a conduit message carrier
attaches some interpretation to it, and places the mes-
sage into the messagezat queueThe carrier thread
will selectit atfirst appropriat®@pportunity

Since Jaa 1/0O is inherently synchronous, the adapters
communicating with the wrld external to the virtual
machine typically contain theirwm internal threads.
This allovs the conduit processing continue inde-
pendent on delays omxternal 1/O.

Memory management. The framevork discouragesxe
plicit object creation andagbage collectionTypically,

the constructors are eitheryate (for black box classes)
or protected (for white box classes). Most classes pro-
vide a public static instantiation methddhis allavs ob-
jects to be remled by the class rather than being
created andaybage collected fowery occasion.

Footprint. The current frameork prototype consists of
43 public classes, or about 3800 lines ofalaource
code (including comments). Only about 760 lines were
written by hand; the rest were generated using an UML
based case tool.

Of the 43 public classes, 23 are actual user visible
classesThe rest arearious &ceptions (5), houselep-
ing classes (10) or other classes e relationships of
the user visible classes are displayed as an UML class
diagram inAppendixA.

4.2 |PSEC

only the packts that are addressed to the current host.
IPSEC receies complete paéits from IPThe exkample
configuration initially accepts paeks that hee either

no protection, or are protected wih, or withAH and
ESP It does not accept pagls that are protected with
ESP only or with e.g. doubkeH. This is one gpression

of policy. Furthermore, the conduit graphfestively
prevents denial of serviceattacks with multiply en-

Our IPSEC prototype is designed tmnw with both
IPv4 and IPv6So far, it has been tested only with IRv6
It is designed to be policneutral, allwing different
kinds of security policies to be enforced.

A basic IP protocol stack, including IPSEC, iswho
in Figure?. In this confyuration, the IPSEC is located
as a separate protocol aeolP IP functions as usual,

IPSEC

Policy

Policyl\m

ProtoM})(

. ProtoM}X

IP
o Fragmen
[11]
Options
_é Forward
Media
_é Chkzlﬂ _é Chksun
2— |
. =
Etherne] =

Figure 7:Host IPSEC conduit graph (simpéi)

forwarding packts and fragments and passing ap¢ crypted packts.

) the Fragment session, which ¢alcare of fragmentation
IP and reassemhly
ptiong Once a paalt has treelled through IPSEC, passing

the poliy decisionsis applies it is routed normally
Packets destined to the local host are passed to the upper
% TForward layers. lerwarded packts are run agn through IPSEC,
and a separate outgoing pglis applied to them. In this
case, it is easier to base the outgoing gatinc paclet
inspectiorratherthanon separate tagging.
Media Our current IPSEC prototype runs on top of our IPv6
implementation, alsouilt with Javra Conduits, on Sola-
ris. We use a separate Ethernet adaptbich is imple-
IPSE IPSE mented as a nag class on top of the Solaris DLPI
interface.We have not yet applied JIT compiler technol-
ogy, and therefore the current performance results are

_i modest.

® Fragmen Fragmen
-'TJ % 4.3 |ISAKMP

Options Optlﬂ(')n The structure of our ISAKMP implementation is &imo
_i in Figure9. The implementation is attached to theala
o Chksun

Routin

o]

UDP implementation through a UDP adapfdterna-
Chksun tively, it could be attached directly on top of owrp
— — UDP implementation. On top of the ISAKMP imple-
mentation lies a security pojiananagerwhich forms
¥ B the “political layer” of our protocol stack.
° ISAKMP paclets recaied through the UDP adaptor
Etherne] are directed either to an ISAKMBdtory or to some es-
Figure 8:Security GW IPSEC conduit graph (simplfi) tablished ISAKMP session, depending on the ISAKMP
cookies. If the pact initiates a n& ISAKMP associa-
During inputprocessingthe AH and ESP protocols tion (i.e, is the fist main mode paei), the ISAKMP
decorate the paek with information about performed factory consults the upper layer to determine whether
decryptions and checks. Latat the polig session, this the association should be establishEte same applies
information is cheokd to ensure that the patkwas for proposals for ne AH or ESP associations. If awe
protected according to the desired pplid/e have also AH or ESP association is accepted by the ppline
experimented with an alternaé confguration, where AH/ESP fctory creates a meAH or ESP protocol in-
the polig is checled immediately aftervery successful stance The protocol instance tak care of running the
decryption orAH check.This seems to be morefief ISAKMP quick mode to create thewessociation.
cient, since dulty paclets are typically dropped earlier =~ When a ne AH or ESP association has been estab-
However, the resulting conduits graph is considerablylished, the ngotiated parameters are passed to the pol-
more complg. icy layer The poliy manager tads care of creating the
During outputprocessingthe poliy session and the new association to the IP stack, either through PF_KEY
policy mux together select the rightvéd of protection interface (if a non-conduits IPSEC is used), or by modi-
for the outgoing paek. This information may be de- fying the IP/IPSEC conduit graph appropriately
rived from theTCP/UDP port information or from tags ~ The main neelty in our approach is the separation of
attached to the message earlier in the protocol stack. the ISAKMP daemon and the pgtimanagerCurrently
A different IPSEC congjuration, suitable for a secu- the poliy manager is implemented as a separate con-
rity gatevay, is shavn in Figure8. In this case, instead duits protocol. Hwever, it would be possible to imple-
of being on top of IPIPSEC is intgrated as a module ment the polig manager outside the conduits
within the IP protocol. Since the desired functionality isframavork as well, and use k& events to communicate
that of a security @evay, we want to run all paagkds between the conduitavld and the polig manager
through IPSEC and Ifer them appropriatelySince The current implementation is slightly out of date,
IPSEC is alays applied to complete patk, all incom- due to changes recently made to the ISAKMP and Oak-
ing paclets must be reassemblddhis is performed by ey Internet draft$19].

-

making it easy to use andtensible at the same time.
Furthermore, the use of objectvéd design patterns
leadsto a highly stylistic vay of implementing proto-

. Polim\ tc(;)(lzso,I ?a(at:s?rﬁllowmg creation ohew, higher leel pro-
L

The implementation frameork was developed with
JDK 1.1 using the Ja Beans and the securiéyl of

AH] ES Jaa 1.1. In the frameork, protocols are uilt from
lower level component called conduit¥he protocols
;_ﬁl are conduits themsedg, allaving incremental bilding

g@ Eley of higher leel protocols from lever level ones.

The Jaa eecution emironment allevs the resulting
protocols to be seamlessly igtated into the operating
system and applications aiKThis is especially imper
tant for security protocols, since this althe security
systems atarious leels to be intgrated We have talen
COOk'eM)’(adwantage of the Ja language kel security features
(packages, visibility classloaders)The fram&vork is
implemented as a singlevdapackage. Special attention
has been paitb dividing the functionality into fed and
user customizable feature sets.

So far we hae implemented functional prototypes of
IPv4, IPv6, ARP, ICMP, UDR TCR IPSEC and
Figure 9:ISAKMP conduit graph (simpliéid) ISAKMP protocolsWe epect to implement prototypes
of further protocols ithe near future.

ISAKMP

4.4 Non-cryptographic protocols

6 Future work
In addition to the cryptographic protocols, wevdnam-
plemented partial it functional prototypes of the IPv4, There are a number of future projects that we are plan-
IPv6, ARP, ICMP (IPv4 \ersion only), UDP and@CP ning to start. Due to our limited resources weehaot
protocols. Intgration of these, along with the IPSEC been able to ark on all the fronts simultaneously
implementation, into a comple®CP/IP protocol stack Even though a PKI is not an absolute prerequisite for

is under vay. using our architecture, it is in practice essential for most
wide-spread real-life applicationd/e are currently im-
45 Availability plementing SPKI type certifates that will be intgrated
into our framevork.
The current frameork prototype is ‘ailable at The use of security services and features is usually

http://ww. tcm hut.fi/~pnr/jacob/. The mandated by security policieShe management of se-
actual protocol prototypes and the protocol sandboxurity policies in global netarks has become a major
prototype are\ailable directly from the authordn in- challengeWe have recently started a project to design
tegrated, JDK 1.2 based releasexpexted to be pub- and implement an Internet Security PglManagement
lished in late May or early June. Architecture (ISPMA) based on trusted Security Bolic
Managers (SPM)When a user contacts a serviceythe
need to be authorizeduthorization may be based on
5 Summary the identity or credentials of the uselaving obtained
the necessary information from the ysbe serer asks
We defne an architecture and an object oriented implethe SPM if the user can be granted the kind of access
mentation frameork for cryptographic protocols’he that thg have requested. Naturally all communications
architecture is based on the InterM@WW, Java and an between the parties need to be secured.
initial security contet, and optionally augmented with a A graphical Jea Beans editor could makhe vork of
PKI and the ISAKMP and IPSEC protocol$ie imple- the implementor much morefigient than it currently is.
mentation framwork is based on a fully object oriented This would also mak it easier to train e on the ger
language, so it bentdi greatly from design patterns, age only serage, programmers tovadop secure appli-

cations. In a graphical editadhe luilding blocks of our
architecture wuld shav as graphical objects that can be
freely combined into a multitude of applicatiorfhe
amount of programmingevk in dereloping such an ed-
itor is quite lage and there certainly are lots of ongoing[11]
projects in the area of graphickl/a Beans editors. Our

plan is to tak an eisting editor and intgrate it into our
ernvironment.

So far our work has been focused on the design and
implementation of secure application specifiotocols.
Our long term goal is to create an oyiated deelop-
ment erironment for entire secure applicatiorghis
ernvironment wuld also include tools for creating the
user interéce and database parts of the applications.

(10]

(12]

References

[1] Timo R Aalto and Pekka NikandetA Modular,
STREAMS Based IPSEC for Solaris 2.x Sys-
tems”, InProceedings of Nalic Workshop on Se-
cure Computer System§oethenhrg, Sweden,
November 1996.

[2] RobertAllen and Daid Garlan, A Formal Basis
for Architectural Connection”,ACM Transac-
tions on Softwar Engineering and Methoddg
6(3), July 1997.

[3] Ross JAnderson,“Programming Satan's Com-
puter”, In Computer Scienc8oday — Recent
Trends and DeelopmentsLNCS 1000, pp. 426—
440, Springeierlag, 1995.

[4] Ross J. Anderson ad Roger Needham,
“Rolustness principles for publiek protocols”,
Advances in Cryptoly—CR/PTO’'95 Proceed-
ings SpringefVerlag, 1995.

[5] Ken Arnold and James Goslinghe &va Po-
gramming Languge,Addison-Wesley, 1996.

[6] Randal Atkinson, Security Architectuie for the
Internet Ppotocol, RFC1825, Internet Engineer
ing Task Force,August 1995.

[7] Kent Beck and Ralph Johnsonatierns Gener
ate Architectures”, InProceedings of Ewpean
Confeence on Object-Oriented &gramming
(ECOOP'94) Bologna, Italy pp. 139-149
SpringefVerlag, 1994.

[8] Kenneth Birman and Robert Coopé&fhe ISIS
Project: Real Experience with aat Tolerant
Programming System™Opeiating Systems Re-
view, pp.103-107 April 1991.

[9] Carl M. Ellison, Bill Frantz, Butler Lampson,
Ron Riest, Brian M.Thomas andatuYltnen,
Simple Public Ky Certificate Internet-Draft
draft-ietf-spki-cert-structure- [20]
02. t xt, work in progress, Internet Engineering
Task force, July 1997.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Erich Gamma, Richard Helm, Ralph Johnson,
JohnVilissides, Design Rtterns — Elements of
Reusable Object-Oriented SoftwarAddison-
Wesley, 1995.

Benoit Garbinato, Rachid Guerraoui, “Using the
Stratgly Design Rttern to Compose Reliable
Distributed Protocols”The Third Confeence on
Object-Oriented Tedhnolagies and Systems
(COOTS) Poceedings Portland, Orgon, June
16-20, 1997, pp. 221-232.

Li Gong, Java SecurityArchitectue (JDK1.2)
DRAFT DOCUMENT (¥&fsion 0.7) Sun Micro-
systems, October 1, 1997,

http://java. sun. com products/

j dk/ 1. 2/ docs/ gui de/ security/

spec/ security-spec. doc. htm

Nevin Heintze and J. DIygar, “A model for se-
cure protocols and their compositions”, Pno-
ceedings of the 1994 IEEE Computer Society
Symposium on Resehrin Security and Privagy
pp. 2-13, IEEE Computer Society Press, May
1994.

Herman Hueni, Ralph Johnson, Rngel, ‘A
frameawork for network protocol software”, Ob-
ject Oriented Pogramming Systems, Langies
and Applications Confeance Poceedings
(OOPSLAO5), ACM Press 1995.

N. C. Hutchinson and L. L. Peterson, “The x
Kernel: An architecture for implementing net-
work protocols. IEEE Transactions on Softwar
Engineering 17(1):64—76, January 1991.

Darrell Kindred, Jaennette Mving, “Fast,Auto-
matic Checking of Cryptographic Protocols”, In
Proceedings of the Second USENWtkshop on
Electonic Commare November 18-21, 1996,
Oakland, California

WenboMao and ColimA. Boyd, “Development
of authentication protocols: some misconcep-
tions and a ne approach”Proceedings of IEEE
Computer Security dundationsWorkshop VI,
IEEE Computer Society Press, 1994, pp. 178-
186.

S. W. O'Malley, L. L. Peterson, A Dynamic
Network Architecture”, ACM Transactions on
Computer Systeni€)(2):110-143, May 1992.
Douglas Maughan, Mark Schertlevlark Sch-
neider and JéfTurner Internet SecurityAssocia-
tion and Ky Manaiement Potocol (ISAKMP),
Internet-Draft draft-ietf-ipsec-

i saknmp- 08. t xt, work in progress, Internet
Engineeringrask Force, July 1997.

Bertrand Mger, “The Next Software Break-
through”, Computer 30(7): 113-114, IEEE
Computer Societyduly 1997.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Pekka Nikander Modelling of Cryptgraphic
Protocols,Licenciates Thesis, Helsinki Unier-
sity of TechnologyDecembed997.

H. Orman, S. O'Malley, R. Schroeppel, and D.
Schwartz. “Paving the road to netark security
or the \alue of small cobblestones”. Rroceed-
ings of the 1994 Internet Society Symposium ofi29]
Network and Distribted System Securityebru-
ary 1994.

Michael K. Reiter Kenneth PBirman and Rob-
bert Van RenesseA Security Architecture for
Fault-Tolerant SystemsCornell Unversity Tech-
nical Report,TR93-1354, June, 1993.

Robbert &n Renesse, ¢aneth P Birman and
Silvano Mafeis, “Horus, a fixible Group Com-
munication Systerh, Communications of the
ACM, April 1996.

Robbert an Renesse, ¢aneth PBirman, Ry
Friedman, Mark Hayden, and {id A. Karr, “A
Framavork for Protocol Composition in Horus”,
In Proceedings of Principles of Distated Com-
puting August, 1995.

Jorma RinkinenJava DES Speetkst
http://ww.tcmhut.fi/~jrin/des/
July 1997

Aviel D. Rubin and Peter Hopman, Formal
methods for the analysis of authenticationtpr
cols Technical Report 93-7, Center for Informa-
tion Technology Intgration, Department of

(28]

(30]

(31]

(32]

(33]

Electrical Engineering and Computer Science,
University of Michigan, 8. Neember 1993.
Douglas C. Schmidt, “Using Desigrateerns to
Develop Reusable Object-Oriented Communica-
tion Software”, Communications of théCM,
38(10):65-74, October 1995.

Gustaus J. Simmons, “Cryptanalysis and proto-
col failures”, Communications of t ACM,
37(11):56-65, Neember 1994.

R. Thayer N. Dorasvamy and R. Glenn, IP Se-
curity Document Roadmap, Internet-Draft
draft-ietf-ipsec-doc-roadmap-

01. t xt, work in progress, Internet Engineering
Task Force, July 1997.

Amy Moormann Zremski and Jeannette M.
Wing, “Speciftcation Matching of Softare
Components”, ACM Transactions on Softwar
Engineering and Methoddly, 6(4), October
1997.

Jonathan M. Zweig and Ralph E. Johnson, “The
Conduit:A CommunicatiorAbstraction in C++”,

In Usenix C++ Confeence Poceedings,San
Francisco, CAApril 9-11, 1990, pp. 191-204.
The UseniAssociation 1990.

JoannéNu (Editor), Component-Based Softvear
with Java Beans andctiveX White paper Sun
Microsystems, http://ww. sun. cont

j avast ati on/ whi t epaper s/ java-

beans/j avabean_chl. ht m , August 1997.

Appendix A UML classdiagram

prototype

Attachment

Inside B

Conduit

*

ConduitFactory

strategy
1

Accessor

OutOfBand

0.1

Oob

Adaptor

Visitor

i

Transporter

i

Inside A&
0.1 0..

Protocol

MessageTransporter

{o.1

Transports

Contains

1
MessageBuffer

nterprets

interprets
«friend»

Session

State

applies

Messenger

