
Certifying Trust

Ilari Lehti1, Pekka Nikander1

Helsinki University of Technology, Department of Computer Science,
FI-02015 TKK, Espoo, Finland

{ilari.lehti, pekka.nikander}@hut.fi

Abstract. A basic function of all signatures, digital or not, is to express trust and
authority, explicit or implied. This is especially the case with digital signatures
used in certificates. In this paper, we study the trust relationships expressed by
the certificates used in X.509, PGP and SPKI. Especially, we present and revise
the idea of a certificate loop, or a loop of certificates from the verifying party to
the communicating peer, requesting access or acceptance. We also show how
that kind of certificate loops can be used to explicitly express security policy de-
cisions. In the end of the paper, we briefly describe our own SPKI implementa-
tion that is specially tailored towards policy management. The implementation is
based on Java and build using Design Patterns. It functions as a separate process,
providing security services to the local kernel and applications.

1 Introduction

"Hallo!" said Pooh, in case there was anything outside.
"Hallo!" said Whatever-it-was.
"Oh!" said Pooh. "Hallo!"
"Hallo!"
"Oh, there you are!" said Pooh. "Hallo!"
"Hallo!" said the Strange Animal, wondering how long this was going on.
Pooh was just going to say "Hallo!" for the fourth time when he thought that he

wouldn't, so he said, "Who is it?" instead.
"Me," said a voice.
"Oh!" said Pooh.

In the above quote from [10], we have an access control situation. Pooh, who is in
control of the door, finds out that something wants to get in. An exchange of messages
follows. The participants seem to lack a proper communication protocol and the mes-
sages remain pretty meaningless. At the end, an attempt of identification is made, but
without proper credentials. Pooh, were he not a bear of no brain, should conclude that
the voice has no authority to enter.

We are going to illuminate the ideas of authority delegation and certificate loops.
We mainly focus on the IETF proposal called Simple Public Key Infrastructure (SPKI)
[14] and on our implementation of a Policy Manager based on that proposal. Our sys-
tem allows trust and authority to be explicitly represented in the form of certificates.

Suppose Pooh would use such a system. After deciding of a door-opening policy,
he could have issued credentials to trusted persons, perhaps even allowing them to fur-
ther delegate this authority. Then the Strange Animal could push a set of credentials



2 Ilari Lehti, Pekka Nikander

under the door and Pooh, after checking their authenticity, could have let the stranger
in. In the following subsections, we will explain these terms in the context of net-
worked entities.

1.1 Trust Models
Trust is a belief that an entity behaves in a certain way. Trust to a machinery is usu-

ally a belief that it works as specified. Trust to a person means that even if someone has
the possibility to harm us, we believe he/she chooses not to. The trust requirements of
a system form the system’s trust model. All computer systems, protocols and security
frameworks have trust requirements, i.e. they have trust relationships that the user
needs to share. We may need to have some kind of trust to the implementor of a soft-
ware which source code is not public, trust to the person with whom we communicate
on a network, trust to the computer hardware that it provides us with correct computa-
tion results, and so on. The trust relationships that we are interested in here are those
between us and some other networked entities. Those other entities may be fellow hu-
man beings or machines providing some service.

It is of equal importance to analyze the trust requirements of a protocol or a frame-
work as it is to analyze the soundness of the technical methods that it uses to achieve
security. Trust requirements may be analyzed in several ways. We may consider one
generic notion of trust and find the entities that we need to trust. The next alternative
would be to classify different types of trust and define the ways we need to trust each
entity [16]. Yet another refinement might be to define a degree of trust needed towards
the other entities [3]. The ways to categorize and analyze trust may be called trust
modeling, but with a trust model we mean the set of trust relationships of a system.

As an example for analyzing trust, a bank may tell me that the most appropriate
way to protect the data traffic between my workstation and their server is to use a cryp-
tosystem where they provide me a good-quality keypair. (This is among the most rea-
sonable security-related offers that banks seem to provide.) Not only need I trust this
bank’s capability to make good keys, I also need to trust the bank completely, because
they have the key that is supposed to be secret and identifies the service user as me.
Many people are willing to accept that, it is a bank after all. But the truth is that this
trust extends to every employee of the bank that has access to those keys. Why would I
want to take such a risk, if it is possible for me to create my own key, not known to an-
yone else? Of course, creating my own keys requires me to have enough trust in my
own key generation software and hardware.

1.2 Security Policies
Closely related to the concept of trust is the concept of policy. A security policy is a

manifestation of laws, rules and practices that regulate how sensitive information and
other resources are managed, protected and distributed. Every entity may be seen to
function under its own policy rules. In many cases today, these rules are very informal,
probably even unwritten. The policy of an entity or part of it is often derived according
to some hierarchy, e.g. next level in a corporate hierarchy.

Security policies can be meaningful not only as an internal code of function, but as
a published document which defines some security-related practices. This could be im-



Lecture Notes in Computer Science 3

portant information when some outsider is trying to decide whether an organization
can be trusted in some respect. This is one situation where it is of use to define the pol-
icy in a systematic manner, e.g. to have a formal policy model.

Another and a more important reason to have a formally specified policy is that a
lot of the policy information should be directly accessible by the workstations and their
software. Having a policy control enforced in software rather than relying on the users
to follow some memorized rules is essential if the policy is meant to be followed. A lot
of policy rules are already present in the operating systems, protocols, applications and
their configuration files. A central policy storage and a policy supervising software
would make these and other policy settings easier to maintain and analyze.

1.3 Digital Certificates
A certificate is a signed statement about the properties of some entity. In a digital

certificate the signature is a number computed from the certificate data and the key of
the issuer. If a certificate states something about the issuer, it is called a self-signed cer-
tificate or an auto-certificate.

Traditionally, the job of a certificate has been to bind a public key to the name of
the keyholder. This is called an identity certificate. It typically has at least the follow-
ing fields: the name of the issuer, the name of the subject, the associated key, the expi-
ration date, a serial number and a signature that authenticates the rest of the certificate.

Not all applications benefit much from a name binding. Therefore certificates can
also make a more specific statement, for example, that some entity is authorized to get
a certain service. This would be called an authorization certificate. In addition to the
fields in an identity certificate, more detailed validity fields are often needed. The "as-
sociated key" -field is replaced by the authorization definition field. The issuer and the
subject are typically not defined with names but with keys.

In all certificate systems, but especially in identity certificates, it is important to
choose a proper name space. The naming should be unique in the sense that no two
principals have the same name, though one principal may have several names. Names
should be permanent, if the principal so decides, so no enforced name changes should
occur. In the authorization certificate naming schemes, the name binding may be early
or late binding. Late means that when authority is bound to some name, the name need
not yet be bound to a key, but this can be done afterwards.

Certificates and trust relationships are very closely connected. The meaning of a
certificate is to make a reliable statement concerning some trust relationship. Certifi-
cates often form chains where the trust propagates transitively from an entity to an-
other. In the case of an identity certificate, this is trust to some name binding.
Authorization certificates often delegate some property or right of the issuer to the sub-
ject. It is also desirable that the system allows to limit the delegated authority in the
middle of a path.

1.4 Certificate Loops
The idea of certificate loops is a central one in analyzing trust. The source of trust is

almost always the checking party itself. For example, if a user wants to authenticate
that a networked server is, actually, providing the service the user wants to use, the cer-



4 Ilari Lehti, Pekka Nikander

tificates used for this check must be trusted by the user. Specifically, the first certificate
in a certificate chain must be trusted, implicitly or explicitly. Similarly, when the server
wants to check the user’s access rights, the certificates used to authenticate the user
must be trusted by the server. Again, the server must be configured to trust the certifi-
cates in the chain.

Thus, a chain of certificates, typically implicitly starting at the verifying party and
ending at the party claiming authority, forms an open arc. This arc is closed into loop
by the online authentication protocol where the claimant proves possession of its pri-
vate key to the verifying party. Such a loop is called a certificate loop. In Section 4.1,
we return to this issue in more detail.

1.5 Outline of This Paper
In the next section we will discuss the currently most popular certification systems

and compare the different certification approaches. In section 3 we are going to take a
closer look to the SPKI and some of the new ideas behind it. Section 4 shows our view
of certificate loops and presents parts of our implementation. In section 5, we will dis-
cuss the possible future directions of Internet security. The last section sums up our key
ideas.

2 Expressing Trust With Certificates

In this section we describe some concrete certificate infrastructure proposals and
compare them with respect to trust. These systems divide into two main categories:
those certifying identity and those certifying a specific authorization. In addition to
that, the systems have important distinctions in their initial trust requirements and trust
hierarchy.

2.1 Certifying Identity
We did briefly mention the name binding function of an identity certificate. More

generally, with a binding we mean some important relationship or connection between
two or more aspects of a system. In the case of certification, such aspects include the
person, the person’s name, the cryptographic key, or the remote operation about to be
performed. We would wish all the relevant connections to be strong bindings instead of
weak ones.

Fig. 1 shows the bindings of an identity certification system used for access con-
trol. The certificate chain does the binding of a key to a name. Name is authorized to
perform some operation according to an access control list (ACL), stored in the service
provider’s private storage. When the service is used, a key challenge between the par-
ticipants binds a key to the operation to be performed. These three bindings can be
made strong with appropriate cryptographic mechanisms.

The strength of a binding is here seen to come from the mathematics of cryptogra-
phy. In reality the strength depends on the trust relationships involved and is always
subjective. We could draw the private key and the public key separately. This would
bring one more step to the ’loop’. The binding between these two keys is the strongest
binding of all.



Lecture Notes in Computer Science 5

But, the person-name binding is subject to some vulnerability. It is rarely taken into
serious consideration at all, but usually assumed to be common knowledge. The larger
the name space, the less likely that anyone would know the name of a specific individ-
ual. Alice might suspect that her old friend Bob Smith has a name in the global direc-
tory service, but there are so many people named Bob Smith in the world that it is
unlikely Alice would know which of the thousands of Bob Smiths was in fact her old
friend [14]. In a few special cases where you know what to look for, this binding can
intuitively be considered strong, but it’s never strong in the sense of cryptographic
strength.

It can be argued that identity-based certificates create an artificial layer of indirec-
tion between the information that is certified (which answers the question "who is the
holder of this public key?") and the question that a secure application must answer
("can we trust this public key for this purpose?") [4]. Currently each application has to
re-implement the mapping of names to actions that they are trusted to perform.

Of the existing identity certifying systems around, two have been taken into quite a
common usage. PGP [11] has been a success since its introduction. X.509 [15], while
not taking an actual flying start, has lately gained some popularity despite the lack of
any working global scale X.500 directory service.

PGP. In the PGP system, a user generates a key pair that is associated with his or her
unique ID. Keys are stored in key records. A key record contains an ID, a public or a
private key, and a timestamp of when the key pair was created. Public keys are stored
on public key rings and private keys on secret key rings. Each user must store and man-
age a pair of key rings. [4]

If user A has a copy of user B’s public key record that she is confident of having not
been tampered with since B generated it, A can sign this copy and send it back to B,
who can give this ’certified’ key-record to other users, such as user C. A thus acts as an
introducer of B to C. Each user must tell the PGP system which individuals are trusted
as introducers. Moreover, a user may specify the degree of trust in each introducer. [4]

X.509. As in PGP, X.509 certificates are signed records that associate users’ IDs with
their cryptographic keys. Even if they also contain the names of the signature schemes
used to create them and the time interval in which they are valid, their basic purpose is
still the binding of users to keys.

Fig. 1. Identification certificate bindings

Person Name

Keys

Operation

certificates

ACL

challenge



6 Ilari Lehti, Pekka Nikander

However, X.509 differs sharply from PGP in its level of centralization of authority.
While anyone may sign public-key records and act as an introducer in PGP, the X.509
framework postulates that everyone will obtain certificates from an official CA. When
user A creates a key pair, she has it and the rest of the information certified by one of
more CAs and registers the resulting certificates with an official directory service.
When A later wants to communicate securely with B, the directory service must create
a certification path from A to B. The X.509 framework rests on the assumption that
CAs are organized into a global "certifying authority tree" and that all users within a
"community of interest" have keys that have been signed by CAs with a common an-
cestor in this global tree. [4]

The latest version, called X.509 v3, has a mechanism called certificate extensions.
Using these extensions it is technically possible, even if not convenient, to use X.509
certificates for authorization purposes. Neither the specifications [12] nor the current
usage of the system gives any support for such a practice, though.

Name spaces. As identity certification means binding a name to a key, the first con-
cern is the choice of a name space. PGP really has no name space, which means that
the name space is flat and any names can be used. It is common practice to use a name
of the form (Full Name, EmailAddress).

X.509 uses hierarchical naming based on the X.500 directory service, which is con-
sidered to be realized so that independent organizations and their subdepartments
would take care of naming their employees uniquely. X.500 has not come to pass and
given the speed with which the Internet adopts or rejects ideas, it is likely that X.500
will never be adopted [7]. Organization-based naming scheme also has the undesirable
property that if one changes a job, one’s name will change at the same occasion.

One of the main obstacles for a wide acceptance of a global distributed directory
service like X.509 is that most companies do not want to reveal the details of their in-
ternal organization, personnel etc. to their competitors. This would be the same as
making the company’s internal telephone directory public and, furthermore, distribut-
ing it in an electronic form ready for duplication and automatic processing [8]. A con-
trolled and secure directory service would be possible to create, but apparently there is
currently no large market demand for it. 

Trust models. The PGP users can trust anyone they want; all users are equal. This
kind of freedom will cause a “web of trust” to be created between the users. In addition
to trusting a certain key as valid, it is possible to define the degree of trust to a person
as an introducer. Each individual creates, certifies and distributes their own keys. PGP
rejects the concept of official certifying authorities being more trustworthy than the
guy/girl next door.

One of the problems in the X.509 trust hierarchy is that it has a centralized trusted
entity as a root that everyone with their differing needs should be able to trust. The sys-
tem also implies everyone’s trust to all the nodes of the certifying tree. In X.509, the
authorization decisions are separate from the certification of identity even though all
CAs must be trusted with respect to all authorizations.



Lecture Notes in Computer Science 7

The strong part of X.509 is that the protocol for finding someone’s public key is
well defined, as long as the assumed hierarchy exists. The non-hierarchical approaches
leave something to be desired in this respect.

An interesting effort to combine the hierarchical trust model and the web of trust
was made in the ICE-TEL project [5]. The ICE-TEL calls its trust model as a web of
hierarchies -model. It is based on security domains, which can be as small as single-
user domains. A security domain encapsulates a collection of objects that all abide by
the rules defined in the domain’s security policy. Then each domain can freely choose
what other domains to trust. This has the advantage that there is no single trusted root
of the hierarchy. ICE-TEL claims to handle authorizations as well, but is essentially an
identity-based system that relies quite strongly on the use of Certification Authorities.

2.2 Certifying Authorization
The bindings of an authorization certificate system are shown in Fig. 2. The certifi-

cate chain binds a key to an operation. A key challenge also operates between an oper-
ation and a key, thus closing the certification loop. These two bindings are based on
cryptography and can be made strong. Again, we have chosen to draw the two keys to-
gether for clarity. Drawing them separately would just lengthen the certificate loop by
one step.

The person-key binding is different from the person-name binding in the case of
identity certification. By definition, the keyholder of a key has sole possession of the
private key. Therefore, either this private key or the corresponding public key can be
used as an identifier (a name) of the keyholder. For any public key cryptosystem to
work, it is essential that a principal will keep its private key to itself. If the principal
does not keep the private key protected (if the private key gets out to others to use) then
it is not possible to know what entity is using that key and no certificates will be able to
restore the resulting broken security.

So, the person is the only one having access to the private key and the key has
enough entropy so that nobody has the same key. Common names are not automati-
cally unique even if we add company information or other such constructs. So, the
identifying key is bound tightly to the person that controls it and all bindings are
strong.

The problem with the person-key binding is that from the service provider’s point
of view it looks like an undefined binding. The provider does not know who has con-
trol over the key. However, neither is this question essential in the most usual applica-

Fig. 2. Authorization certificate bindings

Person Keys Operation
certificates

challenge



8 Ilari Lehti, Pekka Nikander

tions, nor can the traditional identity certification always answer this question. For the
cases where the real physical identity of a keyholder needs to be known, [6] discusses
different possibilities how to bind persons to keys without certification authorities. [14]
proposes so-called process server certificates, issued by commercial enterprises, to aid
in handling the extreme cases.

The feature of not having to bind keys to names is especially convenient in systems
that include anonymity as a security requirement [4], [7]. It is easy for a user to create
new keys for such applications, while creating an authorized false identity is (hope-
fully) not possible.

The most important authorization certification proposals are SDSI [13], SPKI and
PolicyMaker [4]. In section 3, we will have a more detailed discussion about SPKI.

Trust models. Authorization-based systems are very general and flexible. They have
no pre-defined trust hierarchy, but any user can define who to trust, which will lead to a
PGP-like web of trust. In authorization certificates, the type of trust is always defined
as well. The non-hierarchical approach contains fewer initial trust requirements to start
with. It allows for single organizations to build their own web of policies and certifi-
cate servers inside the organization. After this it is possible to extend the trust to related
organizations that you do your business with. It is immediately possible to start writing
certificates for others to have when using your resources or to request certificates
which allow the use of other services. Furthermore, you do not have to trust a particu-
lar CA if you do not want to, and you can choose to trust only some properties of a cer-
tain CA. Having the possibility to choose who to trust and in what respects allows for a
great flexibility. It is also important that delegated authority can be limited in the mid-
dle of an authorization path.

PolicyMaker is even more flexible than SPKI/SDSI. This can be seen either as a
positive or a negative thing. All the mechanisms and conventions that are present in an
SPKI-like system must be separately constructed in PolicyMaker filters every time
they are needed. Filter complexity may make the system vulnerable to denial of service
attacks.

A recommendation for certificates to bind keys to a certain task instead of certifi-
cates binding keys to a person can be seen in ’the explicitness principle’, stated in [1],
for example. It says that in order to make cryptography robust, everything (assump-
tions, goals, messages, etc.) should be stated as specifically as possible. It is more spe-
cific to define an operation for a key than to bind the key to a person.

3 Simple Public Key Certificate

The SPKI is intended to provide mechanisms to support security in a wide range of
Internet applications, including Internet security protocols, encrypted electronic mail
and WWW documents, payment protocols, and any other application which will re-
quire the use of public key certificates and the ability to access them. It is intended that
the Simple Public Key Infrastructure will support a range of trust models. [14]



Lecture Notes in Computer Science 9

3.1 Principals and Naming
The SPKI principals are keys. Delegations are made to a key, not to the keyholder.

However, long keys are inconvenient for a mere human to handle. Using names instead
of keys is necessary at least in the user interfaces. Names in the certificates also allow
late binding, which means that one can attach some properties to a name and later de-
fine or change the name-key binding. Names can also serve the purpose of a certain
role. Therefore it is useful to also have other names than keys. SDSI abandoned the
idea of a global name space and introduced linked local name spaces. SPKI uses this
same naming scheme, where everyone can attach names to keys and every name is rel-
ative to some principal. The names can be chained so that speaking about Alice’s
Mother consists of a name Alice in my name space and a name Mother in Alice’s name
space.

Names need not always refer to single users, but they can refer to a set of users as
well. If an issuer makes a name-key binding while another similar binding to the same
name is still valid, these two certificates do not conflict but define a group with at least
two members. It is, of course, possible to revoke the earlier one, if the intention is to
change the binding to a new. In fact, because SPKI certificates always increase the sub-
ject’s properties, we will never have to deal with a situation where two certificates
would conflict.

An SPKI certificate is closer to a "capability" as defined by [9] than to an identity
certificate. There is the difference that in a traditional capability system the capability
itself is a secret ticket, the possession of which grants some authority. An SPKI certifi-
cate identifies the specific key to which it grants authority. Therefore the mere ability
to read (or copy) the certificate grants no authority. The certificate itself does not need
to be as tightly controlled. [14]

From the certificate usage point of view, the involved principals are called the
prover and the verifier. It is the responsibility of the prover to present the needed certif-
icates. Based on these, the verifier determines whether access is granted.

3.2 Certificate Format
The current SPKI proposal uses S-expressions, a recursive syntax for representing

octet-strings and lists. An S-expression can be either an octet-string or a parenthesized
list of zero or more simpler S-expressions.

The core of the syntax is called a sequence. It is an ordered collection of certifi-
cates, signatures, public keys and opcodes taken together by the prover. A signature re-
fers to the immediately preceding non-signature object. Opcodes are operating
instructions, or hints, to the sequence verifier. They may, for example, say that the pre-
vious item is to be hashed and saved because there is known to be a hash-reference to it
in some subsequent object.

The fields of an SPKI certificate are: version, cert-display, issuer, issuer location,
subject, subject location, delegation, tag, validity, and comment. All of these, except is-
suer, subject and tag, are optional fields.

Version is the version number of the format. Cert-display is a display hint for the
entire certificate. Issuer is a normal SPKI principal, i.e. a key or a hash of key. The lo-
cation-fields define a place where to find additional information about that principal.



10 Ilari Lehti, Pekka Nikander

For example, the issuer location may help the prover to track down previous certifi-
cates in the chain. Delegation is a true/false -type field defining whether the authority
can be delegated further. Comment-field allows the issuer to attach human readable
comments. Validity defines the conditions which must be fulfilled for the certificate to
be valid. It is possible to define a time range of the validity and a detailed description
of the chosen validation method.

The most complex fields are the subject and the tag. The subject can be either a key,
a hash of key, a keyholder, an SDSI name, an object or a threshold subject. A keyholder
subject refers to the flesh and blood (or iron and silicon) holder of the referenced key
instead of to the principal (the key). A threshold subject defines N subjects, K of which
are needed to get the authority. The tag contains the exact definition of the delegated
authority.

3.3 5-tuple Reduction
Five of the certificate fields have relevance for security enforcement purposes: is-

suer, subject, delegation, authority (tag) and validity. These security-relevant fields can
be represented by a "5-tuple":

(I,S,D,A,V)

In the basic case, a pair of 5-tuples can be reduced as follows [14]:

(I1,S1,D1,A1,V1) + (I2,S2,D2,A2,V2)

becoming

(I1,S2,D2,A,V)

if S1=I2 (meaning that they are the same public key)
and (D1 = TRUE)
and A = intersection(A1,A2)
and V = intersection(V1,V2)

The validity intersections are trivial. The authority intersections are defined by the
tag algebra. The user does not have to specify an intersection algorithm for his tags, but
one does have to write the used tags in such a way that the standard intersection algo-
rithm gives the desired behavior [14].

By reduction, some chains of authorization statements will be reduced to the form:

(Self, X, D, A, V)

where "Self" represents the entity doing the verification. Any authorization chain
not reducing to a 5-tuple with Self as an issuer is not relevant to decisions by Self.



Lecture Notes in Computer Science 11

4 Implementation

We have created a prototype of an SPKI based policy manager. The prototype is
written in Java, using the Design Pattern structures [8] in order to promote software re-
use and build on best known practices. The purpose of the implementation is to facili-
tate real life tests with policy based certificates and management.

Before going to the details, we take a look at a typical certificate usage and then in-
troduce some of the architectural elements involved.

4.1 Typical Transaction
So far we have talked about certificates and certificate chains. When a service is

used, it must be known that the contacting user really is the entity that is authorized by
the given chain. At this point, if not before, the user proves the possession of the iden-
tifying key to the verifier. This action closes the authorization chain so that every use-
ful chain can be seen as a loop.

Fig. 3 shows a basic authorization loop implemented with SPKI certificates. The
three certificates are possibly created long before they are used. The server has dele-
gated the permission to access the service to its policy administrator. In this certificate,
the delegate-property is set to true so that the policy admin may make further delega-
tions. The permission propagates through the policy administrators and their certifi-
cates to the service user.

To be complete, this example needs also another loop. Fig. 4 shows the correspond-
ing service identification loop. This is used by the user to authenticate the identity of
the service provider, and it may even be completed before the service is used for the
first time. This loop does not have to travel the same path as the authorization loop.
The middle nodes need necessarily not be official Certification Authorities (CAs) as
perhaps suggested by the graph, but the assurance of the server identity and services
may sometimes be gained via less official paths.

Fig. 3. Basic authorization certificate loop

issuer

subject

(Self, PAS, may delegate, access
to “Server”, time constraint)

Server’s

PAS key

policy admin
User’s

PAU key

policy admin

Self key

Server
User key

User

(PAS,PAU, may delegate, lim-
ited access to “Server”, forever)

(PAU, User, no delegation, access
to “Server”, time constraint)

Proves possession of User key



12 Ilari Lehti, Pekka Nikander

When the actual service usage takes place, the user provides the authorization cer-
tificates to the server. Some systems have proposed a central repository from where the
server makes a search. SPKI could use such a storage. However, in the case of authori-
zation certificates, the central repository can be seen as a privacy threat unless it is
somehow protected against general searches.

In addition to the server and the user, there may be other participants in the certifi-
cate usage process. Some other entity may reduce part of the chain and issue a Certifi-
cate Reduction Certificate (CRC), which the server may use as part of the final
reduction. One reason for using CRCs may be that the full chain contains certificate
formats which the server does not understand. The server may also make its own CRCs
for performance reasons, so that it need not make the same reduction several times.

4.2 Design Patterns
Design patterns are simple and elegant solutions to specific problems in object-ori-

ented software design. [8] describes a set of such patterns to start with. These pattern
descriptions can widen our design vocabulary in an important way. Instead of describ-
ing the designs on the level of algorithms, data structures and classes, we can catch dif-
ferent aspects of the larger behavior with a single word. The benefits of using a pattern
are greatly amplified at the stage of documentation or when discussing the design with
another person who is familiar with patterns. [8] classifies patterns for three different
purposes: creational, structural and behavioral patterns.

4.3 Policy Manager Implementation
Our prototype consists of a main module and a number of protocol adapters. The

latter ones interface the policy manager to various security protocols such as IPSEC
and ISAKMP. We plan to add support for additional security protocols later on.

Fig. 4. Basic service identification loop

issuer

subject

(CAS, Server, no delegation,
identify "Server", forever)

CAS key CAU key

Server key
Server

Self key

User

(CAU, CAS, may delegate, iden-
tify Services, time constraint)

(Self, CAU, may delegate,
identify, time constraint)

Proves possession of Server key

CA trusted
by the user

Service
certifier



Lecture Notes in Computer Science 13

The basic structure of the Policy Manager is shown in Fig. 5. It has a control part,
which is the main thread waiting for some tasks to appear to the task queue. The inter-
face mechanisms are called adapters and each of them is implemented as a separate
thread. The primary task queue is filled by the three different adapters: the applications
adapter, the ISAKMP-adapter and the IPSEC-adapter. The exact usage and output of
the Policy Manager depends on the interface created by the specific adapter.

The certificate handling subsection of the main module reads in chains of SPKI
certificates, reduces them on demand, and participates on ISAKMP based authentica-
tion protocols. The result is a highly configurable ISAKMP security association policy
that allows the properties of the created associations to be set up according to the re-
strictions and limitations expressed with the certificates.

In addition to handling certificate data, the system makes access control decisions,
maintains secure network connections and stores policy information. It may also help
other protocols and applications in their security-related tasks.

The function of maintaining network connections consists of establishing secure
connections to other workstations, accepting connection requests and storing connec-
tion information. This may have to be done for the purposes of several different proto-
cols. A secure connection between the parties is usually a prerequisite for any other
communication, e.g. requesting a service. The protocols can also have other questions
or mappings for the Policy Manager to resolve.

The service provider may use another trusted policy server, which may assist it in
access control decisions. There may, for example, be one such a trusted server in an or-
ganization. Even if the service provider has all the needed information concerning the

Fig. 5. The structure and connections of Policy Manager

Security

Interface Mechanisms

Interface Mechanisms

Protocol
Mechanisms

Control Part

MechanismsCertificate
Cache

UDP

Applications

System
Management Other

Entities
Variables



14 Ilari Lehti, Pekka Nikander

requested resource, it may have to ask for help in understanding all components of the
request. Besides answering access control requests, the Policy Manager may need to
create such requests or to parse and store other credential information. One of the re-
sources to control is the policy database that it maintains: who can read or change what
policies?

4.4 SPKI Implementation
We have designed an internal format for certificates. This format can hold the cer-

tificate information from several different transfer formats, for example PGP, X.509
and SPKI. This generic format is largely based on the SPKI structure and can therefore
also contain and reduce certificate sequences. Certificate data can be stored to a certifi-
cate cache, which is a part of the trusted security variables of the system.

The data of a single certificate is stored in a tree-like class structure, part of which
is shown in Fig. 6. The structure is implemented according to the Composite pattern,
which is a way to represent part-whole hierarchies in a tree structure. It enables clients
to treat all objects in the composite tree uniformly. All of the classes in the structure are
either composites or byte strings. Composites contain other composites and byte
strings.

Arriving certificate data is first stored in an instance of a class specific to that for-
mat. The conversions between specific formats and generic format are done using the

Fig. 6. Fields of a certificate



Lecture Notes in Computer Science 15

Visitor pattern. Visitor travels through an object structure performing some operation
to the components. The operation is defined in the particular visitor and not in the com-
ponent classes. This way we can define new operations by making a new visitor and
without touching the complex object structure.

5 Future Directions

"Ah!" said Eeyore. "Lost your way?"
"We just came to see you," said Piglet. "And to see how your house was. Look,

Pooh, it's still standing!"
"I know," said Eeyore. "Very odd. Somebody ought to have come down and pushed

it over."
"We wondered whether the wind would blow it down," said Pooh.
"Ah, that's why nobody's bothered, I suppose. I thought perhaps they'd forgotten."

We do not want the Internet to look like Eeyore’s house and rely to the hope that
nobody bothers to push it down. We have to find out the possible security threats and
use all the available means to strengthen the construct. IPSEC [2] and IPv6 are going
to incorporate security to the network layer of the protocol stack instead of leaving it
purely as an application layer problem. This is not just a philosophical question about
where the peer-to-peer security functions should be implemented. The routing and
other functions of the whole stack need to be protected also. Nowadays it is all too easy
to spoof the routing or the name system and the consequences of this may be cata-
strophic.

We are going to have a cryptographic key infrastructure of some kind. In addition
to this, we will need means by which entities are authorized to do something. Whether
this functionality will be combined with the key infrastructure, like in the case of
SPKI, or primarily be done with separate private Access Control List -like constructs,
is still an open question. It is practically impossible to predict what the Internet Secu-
rity Infrastructure will be like in ten years.

6 Conclusions

Digital certificates can be interpreted as expressions of trust. From this viewpoint,
certifying user identity is pretty meaningless. Winnie the Pooh doesn’t benefit much
from the information that his new friend’s name is Tiger according to Piglet, however
true and trusted this piece of information was. In addition to that, Piglet must tell him
how trustworthy Tiger is (or, alternatively, how trustworthy tigers are in general).

Thus, in order to successfully express trust — and thereby security policy con-
straints — we have to add semantic meaning to the certificates. SPKI, and its cousins
SDSI and PolicyMaker are initial steps on this path. The idea behind SPKI is still very
immature. Its possibilities and restrictions have not been explored in depth. The current
drafts are very much in the state of development. In spite of these facts, the concept
looks very promising. We hope that the results of the IETF working group will get



16 Ilari Lehti, Pekka Nikander

enough publicity so that the critical mass of knowledge on these intricate subjects will
be reached.

The name of the person is an essential fact in access control only if we happen to
use a mechanism that binds the access rights to this name. This is almost never neces-
sary. By binding the rights straight to the key, we get a simpler, more tailor-made sys-
tem that has additional benefits, such as anonymity. Unless we want to hurry our
journey towards the Orwellian society of no protection of intimacy, this is very impor-
tant.

References

1. Anderson, R., Needham, R.: Robustness principles for public key protocols, In Pro-
ceeings of Crypto’95, 1995.

2. Atkinson, R.: Security Architecture for Internet Protocol, RFC 1825, Naval Re-
search Laboratory, 1995.

3. Beth, T., Borcherding, M., Klein, B.: Valuation of Trust in Open Networks, Univer-
sity of Karlsruhe, 1994.

4. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management, In Proceed-
ings of the IEEE Conference on Security and Privacy, 1996.

5. Chadwick, D., Young, A.: Merging and Extending the PGP and PEM Trust Models
- The ICE-TEL Trust Model, IEEE Network Magazine, May/June, 1997.

6. Ellison, C.: Establishing Identity Without Certification Authorities, In Proceedings
of the USENIX Security Symposium, 1996.

7. Ellison, C.: Generalized Certificates, http://www.clark.net/pub/cme/html/cert.html.
8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of Re-

usable Object-Oriented Software, Addison-Wesley, 1995.
9. Karila, A.: Open Systems Security - an Architectural Framework, dissertation, Hel-

sinki University of Technology, 1991.
10. Landau, C.: Security in a Secure Capability-Based System, Operating Systems Re-

view, pp. 2-4, October 1989.
11. Milne, A. A.: Winnie-the-Pooh, The House at Pooh Corner, Methuen Children's

Books, 1928.
12.Zimmermann, P.: The Official PGP Users Guide, MIT Press, 1995.
13. Housley, R., Ford, W., Polk, W., Solo, D.: Internet Public Key Infrastructure, Part I:

X.509 Certificate and CRL Profile, draft-ietf-pkix-ipki-part1-05.txt, 1997.
14. Rivest, R., Lampson, B.: SDSI - A Simple Distributed Security Infrastructure,

1996.
15. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: Simple

Public Key Certificate, Internet Draft, draft-ietf-spki-cert-structure-02.txt, 1997.
16. International Telegraph and Telephone Consultative Committee (CCITT): Recom-

mendation X.509, The Directory - Authentication Framework, CCITT Blue Book,
Vol VIII.8, pp. 48-81, 1988.

17. Yahalom, R., Klein, B., Beth, T.: Trust Relationships in Secure Systems - A Dis-
tributed Authentication Perspective, In Proceedings of the IEEE Conference on Re-
search in Security and Privacy, 1993.


