
$EVWUDFW

(OOLSWLF� FXUYHV� KDYH� EHHQ� VWXGLHG� IRU� D
ORQJ� WLPH�� EXW� RQO\� IRU� D� OLWWOH� RYHU� WHQ
\HDUV� KDYH� WKH\� EHHQ� XVHG� IRU� FU\SWR�
JUDSKLF� DSSOLFDWLRQV�� &RPSDUHG� WR� RWKHU
DYDLODEOH� SXEOLF� NH\� FU\SWRJUDSKLF� V\V�
WHPV�� WKH\� SURYLGH� VKRUWHU� NH\� OHQJWKV�
ZKLFK� DUH� EHOLHYHG� WR� WUDQVODWH� WR� LQ�
FUHDVHG� VSHHG�� 2Q� SODWIRUPV� OLNH� -DYD�
ZKLFK�DW�WKH�PRPHQW�LV�VORZHU�WKDQ�&��WKLV
VSHHG�GLIIHUHQFH�LV�RI�LPSRUWDQFH�

7KH� -DYD� 'HYHORSPHQW� .LW� �-'.�� ���� LQ�
FOXGHV�WKH�GHILQLWLRQV�IRU�GLIIHUHQW�W\SHV�RI
FU\SWRJUDSKLF�VHUYLFHV��EXW�RQO\�D� IHZ�DO�
JRULWKPV�DQG� LPSOHPHQWDWLRQV�� ,Q� WKLV�SD�
SHU�� ZH� SURSRVH� D� ZD\� RI� LPSOHPHQWLQJ
HOOLSWLF� FXUYH� FU\SWRJUDSKLF� VHUYLFHV� LQ
-'.� ���� DQG� GLVFXVV� RXU� LPSOHPHQWDWLRQ
RI�D�VLJQDWXUH�VHUYLFH�

��� ,QWURGXFWLRQ

The increasing importance of Internet and
the multiple client platforms therein have
made Java an alluring platform for various
applications. Many of them require some
form of security and access control, which
– along the rest of the application – has to
be implemented in Java. However, Java is
slower to execute than C – the fastest Just
In Time compilers produce code that ap-
proaches 40% of the speed of C++ [1].
Therefore, some careful consideration is
required in choosing the cryptographic
technology to be used.

Elliptic curves have been studied for a
long time as a branch of mathematics, but
only for a little over ten years have they
been considered for cryptographic appli-
cations. Their security relies on a modified
Discrete Logarithm (DL) problem, which
means that many existing algorithms for
Discrete Logarithms can be used with mi-
nor modifications. The problem is also
somewhat harder than regular DL or fac-
torising, so shorter keys can be used. As a
result, compared to RSA, elliptic curves
can be made faster on platforms with lim-
ited computational power.

This speed difference can prove to be very
important in many applications. One ap-
plication we have been studying in our
project is to use SPKI certificates for ac-
cess control [2]. The service provider
would provide his resellers with access
certificates to the service. These access
rights could then be delegated by issuing
new certificates. The end user would then
present his own certificate whenever he
wishes to use the service. To verify that
the user is authorised to access the service,
the certificate chain has to be dynamically
resolved. Resolving the certificate entails
verifying the signature on each certificate.
In practice, this can lead to several con-
secutive signature verifications with public
key operations – so, a saving in each veri-
fication is going to be multiplied.

Another consequence of using elliptic
curves could be that faster key generation

,PSOHPHQWLQJ�(OOLSWLF�&XUYH�&U\SWRV\VWHPV�LQ�-DYD����

Yki Kortesniemi

yki.kortesniemi@hut.fi
Helsinki University of Technology

can also lead to completely new applica-
tion areas. If temporary public keys be-
come computationally cheap, they can be
more generously used to provide, for in-
stance, anonymity in different operations
and thereby to improve privacy.

Our goal has been to hide the implementa-
tion details behind an API so that more
optimised implementations can later be
developed. Possible improvements could
be based on using different algorithms,
different representations for arithmetics,
native implementations of the key parts of
the algorithm (with the loss of portability,
though), or even switching to hyperelliptic
curves.

The rest of this paper is organised as fol-
lows: Section 2 introduces elliptic curves,
talks about their application for cryptogra-
phy, and finally discusses their security.
Section 3 discusses JDK 1.2 security in
general and the cryptography related func-
tionality in more detail. In Section 4, we
elaborate on the problems and possibilities
of implementing elliptic curves on JDK.
Section 5, then, describes our implemen-
tation of signatures based on elliptic
curves. Finally, Section 6 discusses some
ideas for further development and Section
7 presents a conclusion.

���(OOLSWLF�&XUYH
&U\SWRV\VWHPV

Public key cryptosystems are based on
mathematical one-way functions that have
a trapdoor. One-way functions are easy to
evaluate in one direction, but very difficult
in the other direction – just like it is easy
to make guacamole from an avocado, but
it is very difficult the other way. If a trap-
door is introduced, however, the process
can be reversed via the trapdoor – and the
guacamole can become an avocado again.
In a public key cryptosystem the function
itself constitutes the public key and the
trapdoor information functions as the pri-
vate key.

Many one-way functions with a trapdoor,
can be used in the other direction as well:

the information can be encrypted via the
trap door and decrypted with the function
itself. This makes it possible to use the
same system for both encrypting and
signing data.

One example of a suitable family of
mathematical functions with a trapdoor is
the discrete logarithm in a finite field. A
finite field)�T� has T elements, where T is
a prime number. Typically, these elements
are represented as the integers from � to
T��. In such a field, it is fairly easy to cal-
culate E from the formula

E� �D[�PRG�T�

but if [is kept secret, it is very difficult to
calculate [from D, E and T. This problem
has been used in several cryptosystems,
among others in the DSA.

����(OOLSWLF�FXUYHV

Elliptic curves are simple equations of the
form)�[��\�� ��, where) is a polynomial
of degree 3. Using the XY-plane, they can
be plotted as a gently looping curve. They
have been studied for a long time as a
means of calculating the circumference of
an ellipse (whence the name Elliptic
Curve).

In cryptographic applications, elliptic
curves are not based on the real numbers,
but on a finite field, like discrete loga-
rithms. Again, one possibility is the prime
field)�T�.

There are several equations to define el-
liptic curves, but the most common are
based on the Weierstrass equations [3]. In
the prime finite field F(q) the equation can
be stated as

\�� �[����D[���E

where D and E are integers modulo T. In
addition, D and E have to satisfy the equa-
tion

�D������E��≠����PRG�T��

Now, the elliptic curve consists of all the
integer solutions �[�� \) to the defining
equation, along with an additional point at
infinity.

The number of points (including the point
at infinity) on the elliptic curve (is called
the order of (and it is denoted by �(.

����2SHUDWLRQV�RQ�WKH�(OOLSWLF
&XUYH

The discrete logarithm problem in a finite
field is based on exponentiating a point to
a scalar H (repeatedly multiplying by itself
H times). In elliptic curves, the corre-
sponding problem is based on multiplying
a point on the curve with a scalar N (adding
the point to itself N times). To appreciate
the difficulty of reversing the scalar multi-
plication, let us first look at the operation
of adding points on a curve.

Geometrically, the operation of adding two
points on the curve can be defined as fol-
lows:

• Draw a straight line through points X
and Y to find a third intersecting point
Z, then

• Draw a vertical line through Z to find
the final intersecting point].

Then, X���Y� �]�

As an example, in figure 1, points D and E
are being added together. First, a line is
drawn from D to E. As the line is a tangent
to the curve at point E, the point E actually
contains two points and therefore the third
intersecting point on this line is also found
at E. The vertical line through E intersects
the curve at F, which is the answer to D��
E. Now, if we were to repeatedly add point
D to itself, we would visit all the five
points on the curve in the following order
(see figure 2): E, F, G, �, D.

In this case, all the points on the curve are
visited, but depending on the curve and the
starting point, typically only a subgroup of
the points on the curve are visited. We call
the number of points in the subgroup U. We
can state this more formally by saying that
the order of a point 3 on an elliptic curve
is the smallest positive integer U such that
U3� ��. The order of the point always ex-
ists and it divides the order of the curve
(�(). The result of the division �(�U is de-
noted by K and is called the cofactor. The
cofactor is used to validate the curve pa-
rameters. The point 3 is normally chosen
so that K remains small. For security rea-
sons, the order of the point should be
prime, even though the order of the curve
does not have to be prime.

If we were to choose a starting point * of
a sufficiently high prime order and then

)LJXUH����$Q�HOOLSWLF�FXUYH�GHILQHG�E\�WKH
HTXDWLRQ�\����\� �[��±�[���>�@

)LJXUH����7KH�UHVXOW�RI�UHSHDWHGO\�DGG�
LQJ�SRLQW�D�WR�LWVHOI��>�@

find point 4 by choosing a random integer
G and calculating

4� �G*,

it would be difficult deduce G from * and
4. This problem forms the elliptic curve
analogue of the discrete logarithm.

We can now publish the curve and the
starting point *, which can be used for
several secure transactions (with some
limitations discussed later). Then, for each
key pair we choose a random scalar G,
which is the private key, and calculate 4,
which is the public key.

����&U\SWRJUDSKLF�FRQVLGHUD�
WLRQV

The security of elliptic curve cryptosys-
tems relies on the difficulty of resolving G
from the equation 4� �G*, if 4 and * are
known. This is most difficult, when the
order of * (that is, r) is prime. The best
method known today, the Pollard-λ
method, finds G in 2�¥U� operations [5].
Therefore, to equal 1024 bit RSA in secu-
rity, U should be 160 bits in length.

In practice, it is not trivial to assure that U
is prime. However, there exist methods
that can be used to minimise the probabil-
ity of U not being prime. From the security
point of view, it should suffice, if the
probability of U not being prime is smaller
than the probability of an attacker finding
G anyway using 3ROODUG� �

Further, there exist some special curves
that can be reduced to more easily solvable
forms thereby reducing the security. Me-
nezes, Okamoto and Vanstone (MOV) [6]
proved that an elliptic curve over)�T� can
be reduced to the discrete logarithm in the
finite field)�T%� for some�%≥�. This attack
is practical only if B is small, so to prevent
this, the curve has to satisfy the MOV
condition; that is: % has to be high enough.
Another group of unacceptable curves are
the anomalous curves, whose order �(
equals the order of the underlying field

(that is, T). Again, this can be easily veri-
fied when the curve is created.

If the same curve and starting point * are
used repeatedly, the security is reduced: if
the same parameters are used Q times, it
only takes ¥Q times longer to find all the
private keys than to find a single key.
Therefore, Q should not be exceedingly
large. On the other hand, if the curve is
chosen so that it is impossible to break
even the first key, the other keys can not
be broken either.

Finally, it should be noted that the security
of elliptic curves in general has not been
proven. It is merely assumed that they
should be secure, as nobody has yet pro-
vided any proof to the contrary. So far,
elliptic curves have not been studied as
extensively as RSA, for instance, so they
could prove to be vulnerable to some new
attack. To balance things, it should be
noted that even the security of RSA relies
on assumptions; it has not been proven
either.

���&U\SWRJUDSK\�LQ�-'.����

JDK defines and partially implements se-
curity related functionality as part of its
core API. This functionality is collected in
the java.security package and its sub-
packages. To facilitate and co-ordinate the
use of cryptographic services, JDK 1.1
introduced the Java Cryptography Archi-
tecture (JCA). It is a framework for both
accessing and developing new crypto-
graphic functionality for the Java platform.
JDK 1.1 itself included the necessary APIs
for digital signatures and message di-
gests.[7]

In JDK 1.2, JCA has been significantly
extended. It now encompasses the cryptog-
raphy related parts of the Java Security
API, as well as a set of conventions and
specifications. Further, the basic API has
been complemented with the Java Cryp-
tography Extension (JCE), which includes
further implementations of encryption and
key exchange functionality. This exten-
sion, however, is subject to the US export

restrictions and is therefore not available
to the rest of the world. To fully utilise
Java as a platform for secure applications,
the necessary cryptographic functionality
has to be developed outside US.

����7KH�-DYD�&U\SWRJUDSK\
$UFKLWHFWXUH

One of the key concepts of the JCA is the
provider architecture. The key idea is that
all different implementations of a particu-
lar cryptographic service conform to a
common interface. This makes these im-
plementations interchangeable; the user of
any cryptographic service can choose
whichever implementation is available and
be assured that his application will still
function.

To achieve true interoperability, JDK 1.2
defines cryptographic services in an ab-
stract fashion as engine classes. The fol-
lowing engine classes, among others, have
been defined in JDK 1.2:

• MessageDigest – used to calculate the
message digest (hash) of given data

• Signature – used to sign data and ver-
ify digital signatures

• KeyPairGenerator – used to generate a
pair of public and private keys suitable
for a specific algorithm

• KeyFactory – used to convert opaque
cryptographic keys into key specifica-
tions (underlying representation of the
underlying key material)

• CertificateFactory – used to create
public key certificates and Certificate
Revocation Lists (CRLs)

• AlgorithmParameters – used to man-
age the parameters for a particular al-
gorithm

• AlgorithmParameterGenerator – used
to generate a set of parameters to be
used with a certain algorithm

A generator is used to create objects with
brand-new contents, whereas a factory
creates objects from existing material.

To implement the functionality of an en-
gine class, the developer has to create
classes that inherit the corresponding ab-
stract Service Provider Interface (SPI)
class and implement the methods defined
in it. This implementation then has to be
installed in the Java Runtime Environment
(JRE), after which it is available for
use.[7], [8]

���$GGLQJ�DQ�(OOLSWLF�&XUYH
FU\SWRV\VWHP�WR�-'.����

The JDK 1.2 incorporates the concept of
cryptographic engine classes, that imple-
ment a particular cryptographic function
using a certain standard algorithm. These
algorithms have been mentioned in JDK
1.2. The users are then expected to use
these standard names when accessing
cryptographic services.

����$GGLQJ�(&'6$�WR�-'.����

One of the first problems in implementing
ECDSA is that it is not one of the standard
algorithms in JDK 1.2. Consequently,
there are no interface definitions for it. In
fact, there are no definitions for any ellip-
tic curve cryptosystems in JDK 1.2. This is
an omission, as clearly defined interfaces
facilitate the inclusion of alternative im-
plementations later.

To solve this problem, we have designed a
set of interfaces, which are shown in figure
3. These interfaces have been modelled
after the DSA interfaces provided with
JDK 1.2. They define the functionality of
elliptic curve parameters that are used with
the related implementations of crypto-
graphic engines. We propose that they
could be included in JDK 1.2.

The ECDSAParams interface uniquely
identifies the elliptic curve used as well as
the generator point.

The ECPoint interface is used to represent
a point on the elliptic curve. This interface
defines an immutable class that contains
all the necessary operations for calcula-
tions with points.

The ECDSAKey class is used only for
type checking. The ECDSAPublicKey and
the ECDSAPrivateKey are then used for
the actual key pair.

No definitions for the engine classes of
ECDSA (key pair generator and signature)
are required, as they have already been
defined by the JDK 1.2 Cryptography Ar-
chitecture. There is an abstract class with
all required method definitions for each
engine class. All that is left is to inherit the
engine class and implement the function-
ality.

On top of all these engine classes, a master
class is required to register these services

to the runtime environment. This master
class has to be inherited from the Provider
class in the Security package.

���,PSOHPHQWLQJ�DQ�(OOLSWLF
&XUYH�&U\SWRJUDSK\�3UR�
YLGHU�LQ�-'.����

In our project we implemented the Elliptic
Curve Digital Signature Algorithm
(ECDSA). The signature algorithm and all
necessary operations were defined in IEEE
P1363 and ANSI X9.62 –standards.

����,PSOHPHQWDWLRQ�FKRLFHV

One implementation choice is the one re-
garding field on which the curve is to be
implemented. The most common options
are F(q) and F(2m). Of these two, the prime
field is considered to be slightly more suit-
able for software implementation, whereas
the field F(2m) should be more suitable for
hardware implementations[3]. Therefore,
our implementation has been based on the
prime field. The field, as well as all the
parameters for the curve and generator

)LJXUH����7KH�(&'6$�LQWHUIDFHV

(&'6$.H\

«interface»

+getParams() : ECDSAParams

(&'6$3DUDPV

«interface»

+getP() : BigInteger
+getG() : ECPoint
+getN() : BigInteger
+getH() : BigInteger
+getA() : BigInteger
+getB() : BigInteger

(&'6$3ULYDWH.H\

«interface»

+getD() : BigInteger
+getParams() : ECDSAParams

(&'6$3XEOLF.H\

«interface»

+getQ() : ECPoint
+getParams() : ECDSAParams

(&3RLQW

«interface»

+getX() : BigInteger
+getY() : BigInteger
+isInfinity() : boolean
+getParams() : ECDSAParams
+add(P: ECPoint) : ECPoint
+subtract(P: ECPoint) : ECPoint
+multiply(k: BigInteger) : ECPoint
+clone() : Object

point have been taken from the ANSI
standard[5]. We are using the 192-bit, 239-
bit and 256-bit prime fields. These should
result in signatures more secure than the
minimum security level mandated by the
ECDSA draft, which is a 160-bit prime.
Further, they have been used to estimate
the performance of a 160-but field.

Another implementation choice is the
presentation of point coordinates. It is pos-
sible to use either affine or projective co-
ordinates. Projective coordinates can be
more effective in very long key lengths,
but the effectiveness naturally depends on
the implementation. We are using affine
coordinates, as our keys are not exces-
sively long.

The mathematics have been implemented
using the BigInteger class, which provides
arbitrary precision arithmetics. Also, there
are some modulo arithmetic related opera-
tions as well as primality checking. All

these characteristics make BigInteger a
good choice for a straight forward imple-
mentation like ours, but leave room for
performance optimisation. BigInteger is an
immutable class, so using it for calcula-
tions results in continuous creation of new
objects, which can have a significant
negative impact on the performance.

����7KH�FODVV�VWUXFWXUH

Figure 4 shows all the classes used in this
implementation. There is one implementa-
tion class for each of the interface classes
(except for the ECDSAKey class, which is
used only for type checking). These pro-
vide the functionality defined in the inter-
faces as well as some methods used for
validating the parameters.

Further, there are the ECDSASignature
and ECDSAKeyPairGenerator classes that
have been inherited from the correspond-
ing abstract classes (SignatureSPI and

(&'6$&XUYH

(&'6$.H\3DLU*HQHUDWRU

(&'6$3ULYDWH.H\,PSO (&'6$3XEOLF.H\,PSO

(&'6$6LJQDWXUH

(&3RLQW,PSO

(&'6$.H\

«interface»

(&'6$3DUDPV

«interface»

(&'6$3ULYDWH.H\

«interface»

(&'6$3XEOLF.H\

«interface»

(&3RLQW

«interface»

(&3URYLGHU

)LJXUH����7KH�FRPSOHWH�FODVV�VWUXFWXUH

KeyPairGeneratorSPI in the Security
package). The signature class can be used
to sign and to verify signatures, and the
key pair generator class can be used to
create the key pairs used for signing and
verifying. Before the signature class can
be used, it has to be initialised by passing
it the relevant key. At this stage, the key is
verified to make sure it is valid. This is
particularly important with the public
keys, which could arrive from anywhere in
the network.

Finally, there is the ECProvider that has
been used to register the new engines. It
has been modelled after the Provider ex-
ample in JDK 1.2.

The complete implementation consists of
roughly 750 lines of code (empty and
comment lines have been excluded from
this number).

����3HUIRUPDQFH

The performance of the ECDSA imple-
mentation was compared to the DSA im-
plementation provided by Sun. This im-
plementation comes standard with the JDK
1.2. The results have been summarised in
table 1. The numbers were obtained by
calculating the averages of 100 iterations
of each operation at three different field
sizes, extrapolating to a field size match-
ing DSA security and then normalising the
running time results to the DSA figures.

7DEOH�����&RPSDULVRQ�RI�WKH�UHODWLYH�SHU�
IRUPDQFHV�RI�'6$�DQG�(&'6$�LPSOHPHQWD�
WLRQV

Operation DSA ECDSA

Key pair
generation

1 6

Signing 1 6

Verifying 2 12

As can be seen from the data, our non-
optimised implementation is roughly 6
times slower than the Sun DSA imple-
mentation. It should be possible to im-
prove the performance significantly by

using more optimised algorithms for ellip-
tic curve operations. Another possibility
would be to implement the mathematics
using long-type variables instead of
BigInteger-type. As BigInteger is an im-
mutable class, each operation (key pair
generation, signing and verifying) requires
the creation of thousands of objects, which
can cause a severe performance penalty.
Long, however is a basic type and could
be reused thus avoiding most of the object
creations.

A useful characteristics of ECDSA can be
seen from table 2, which contains the
original measurement data (again, nor-
malised to DSA figures). The performance
of ECDSA scales linearly with the key
length, even up to key lengths not pro-
vided by DSA. These key lengths can pro-
vide security, which in the current under-
standing is unbreakable in the foreseeable
future. A field size of 256 bits is security
wise comparable to a symmetric key of
128 bits or an RSA/DSA key of 2304 bits
[5, 10].

7DEOH�����7KH�UXQQLQJ�WLPHV�RI�(&'6$�DW
GLIIHUHQW�ILHOG�OHQJWKV��LQ�ELWV��FRPSDUHG�WR
WKH�SHUIRUPDQFH�RI������ELW�'6$

Field length

Operation 192 239 256

Key pair
generation 7,2 11,9 13,6

Signing 7,2 11,9 13,7

Verifying 7,4 11,9 13,7

Another convenient characteristic of our
implementation of ECDSA is that it uses a
predefined curve for all its operation.
Therefore, even the first key generation is
as fast as the subsequent ones. The Sun
DSA implementation, however, has to cre-
ate the primes required for the keys during
the first key generation. The execution
time of prime generation varies considera-
bly, but it is not uncommon to experience
a prime generation hundreds of times
slower than the actual key generation.
Therefore, if the total number of keys cre-

ated is very small, it is possible that the
total time for creating key pairs and sign-
ing documents is already shorter with the
current ECDSA implementation than with
DSA.

���)XUWKHU�LGHDV

One of the reasons for implementing el-
liptic curve cryptographic systems was the
possibility of increased speed compared to
other cryptographic systems. Our imple-
mentation is based on BigInteger-class,
which is flexible and provides some of the
required functionality. However, this
flexibility comes at the cost of speed.

Similar functionality could be achieved by
implementing a specifically designed class
in C. This would improve performance,
but would sacrifice portability.

Still another possibility would be to im-
plement the mathematics in Java using
enough many variables of the type long for
each number. This approach is suitable
only if the keys used are sufficiently short,
but could result in faster implementation,
particularly on platform with native sup-
port for 64-bit integers.

Even shorter key lengths could be
achieved by switching to hyperelliptic
curves. They are more complex in nature,
and thus provide the same security with
shorter key lengths.[9] The downside is
that even less is known about their security
than about the security of regular elliptic
curves. Hence, they could become suscep-
tible to a new attack.

The use of short keys opens up completely
new application areas for cryptography. It
would be feasible to implement a smart
card capable of generating key pairs and
signing and verifying signatures in a rea-
sonable time by implementing the relevant
mathematics in hardware. This smart card
could then be used for many applications,
like electronic money: nano payments
would be feasible while still maintaining
anonymity – something worth cherishing
in this time of electronic surveillance.

���&RQFOXVLRQV

In this paper, we have discussed the need
for a new encryption system for JDK 1.2.
Java, as a platform, is not as fast as C, so
the choice of cryptographic algorithm is of
importance.

Elliptic curves have been used for cryptog-
raphy since the mid of 1980’s, but are yet
to gain mass success. However, they have
several tempting features: they provide
shorter key lengths than competing public
key systems, the shorter keys can result in
faster implementation and, finally, they are
based on a separate mathematical problem
from RSA, which could prove valuable
should RSA become more vulnerable to
attacks in the future.

We are proposing that the Java Cryptogra-
phy Architecture should be extended to
include ECDSA as a standard algorithm
and propose a possible set of interfaces to
be included in JDK 1.2 to facilitate its im-
plementation.

Further, we have discussed our imple-
mentation of a signature service in JDK
1.2 based on the ECDSA standards. This
system has successfully been used as a
part of our access control system based on
authorisation certificates.

Finally, we have presented ideas for fur-
ther research in this field.

5HIHUHQFHV
[1] T. Halfhill, +RZ� WR� 6RXS� 8S� -DYD�

3DUW��, Byte, May 1998.

[2] P. Nikander and J. Partanen, 'LV�
WULEXWHG� 3ROLF\� 0DQDJHPHQW� IRU
-DYD� ���, Proceeding of the 1999
Network and Distributed System
Security Symposium, San Diego,
CA, Internet Society, Reston, VA,
February 1999.

 [3] IEEE Draft version 5 of P1363:
Standard Specifications For Public
Key Cryptography, July 1998.

[4] Elliptic Curve Cryptography,
http://world.std.com/~dp
j/elliptic.html.

[5] ANSI Working Draft of X9.62-
1998, Public Key Cryptography For
The Financial Services Industry:
The Elliptic Curve Digital Signature
Algorithm (ECDSA)©, April 1998.

[6] A. Menezes, T. Okamoto and S.
Vanstone, 5HGXFLQJ� HOOLSWLF� FXUYH
ORJDULWKPV� WR� ORJDULWKPV� LQ� D� ILQLWH
ILHOG, IEEE Transactions on Infor-
mation Theory, 39 (1993), 1639-
1646.

[7] -DYD� &U\SWRJUDSK\� $UFKLWHFWXUH
$3,� 6SHFLILFDWLRQ� 	� 5HIHUHQFH,
http://java.sun.com/prod
ucts/jdk/1.2/docs/guide/
security/CryptoSpec.html,
Sun Microsystems, March 1998.

[8] The Java API documentation, Sun
Microsystems, July 1998.

[9] Y. Sakai, K. Sakurai and H. Ishi-
zuka, 6HFXUH� +\SHUHOOLSWLF� FU\SWR�
V\VWHPV�DQG�WKHLU�SHUIRUPDQFH, Pro-
ceedings of the 1998 International
Workshop on Practice and Theory in
Public Key Cryptography
(PKC’98).

[10] B. Schneier, $SSOLHG�&U\SWRJUDSK\�
�QG� HGLWLRQ, John Wiley & Sons,
1996.

