
Securing ad hoc Jini services

Abstract

In this paper, we look into the concept of trust in ad hoc
wireless networks, and the role of PKIs in creating trust.
By allowing some simplifying assumptions, we propose
a solution for creating temporary trust relationships
without central authorities. Our low complexity solution
for ad hoc communication security can be elegantly im-
plemented in an environment which supports download-
able code. We also give an overview of our prototype
implementation, which uses Java and Jini.

1. Introduction

Short range radio technologies, such as Bluetooth [11],
open up the possibility to offer cheap, fast, and conve-
nient local communication services to people on the
move. In order to be attractive for all kinds of applica-
tions, the ad hoc the connections used by these services
must be authenticated and possibly encrypted. In this
paper we show some solutions of how to secure ad hoc
services.

Security in distributed systems is a large field with sev-
eral different problems and aspects. The problem area
spans from access control to key distribution and key
management [23]. The importance of security functions
in a service network depends on where the service net-
work resides and how the users attach to the services in
the network.

From a pure cryptographic point of view, ad hoc ser-
vices do not imply many “new” problems. The require-
ments regarding authentication, confidentiality, and
integrity or non-repudiation [17] are the same as for
many other public communication networks. However,
it is not always obvious how the well known crypto-
graphic primitives should be used to create secure ser-
vices in ad hoc networks. The lack of well pre-defined
relations between the communication parties demand

flexible mechanisms for setting up trust relations, dis-
tributing keys, providing access control, and creating
security sessions.

To realize ad hoc services, some type of service discov-
ery technique must be used. Examples of techniques
dealing with these kinds of issues are the Bluetooth ser-
vice discovery protocol [2], Jini [1], Salutation [22],
Universal Plug and Play [18], and Service Location Pro-
tocol [10]. Some of these different techniques are used
in some specific settings while others are rather generic
technologies. Regarding security, as described above,
they all have very similar problems to face.

In this paper we mainly discuss the role of trust in secur-
ing ad hoc services, and show how to secure Java Jini
connections in a concrete way. Different from most of
the other mentioned service discovery methods, Jini
uses a distributed model that is built on allowing code to
be moved between entities in the ad hoc network.
Downloaded code is a security problem by it own.
Hence, security is an important part of the system design
of Jini ad hoc services, and we show how to address it
by relying on decentralized authorization. We base our
solution on the ready to use components of the Java 2
security architecture [9].

The rest of this paper is organized as follows. First, in
the rest of this section, we briefly introduce Jini. Then,
in Section 2, we discuss the role of trust in ad hoc net-
works and describe a trust distribution protocol.
Section 3 explains our basic approach to securing Jini
services, and Section 4 contains the details of the
changes made to the Jini operation model. In Section 5
we compare our research to related work, and finally,
Section 6 contains our conclusions from this research.

1.1 Introduction to Jini

The Jini [1] technology allows devices to easily form
network communities without previous planning or ad-

Pasi Eronen1

pasi.eronen@hut.fi
Christian Gehrmann2

christian.gehrmann@ecs.ericsson.se
Pekka Nikander1,2

pekka.nikander@hut.fi

1 Helsinki University of Technology
2 Ericsson Research

ministration efforts. Jini devices can just be plugged in
the network and they will automatically locate and join
the network community, thus making their services
available to anyone in the same community. No configu-
rations need to be made and no drivers need to be in-
stalled to use such services.

The members of the Jini communities are called ser-
vices. Each service offers some functionality that can be
accessed through an interface defined by the service.
When a service is plugged in the network, it uses a dis-
covery protocol to locate a lookup service that manages
the community. The service then joins the community
by uploading its interfaces to the lookup service. The
service interfaces are implemented by proxy objects that
can be moved over the network to the lookup service
and to any clients that want to access the service.

When a client wants to access a service, it first asks the
lookup service for a proxy object for the service it
wants. If such a service is available in the community,
then the lookup service replies with the proxy object it
received when he service joined the community. The cli-
ent may then use the service through the interface
implemented by the proxy.

The Jini technology also defines mechanisms for leasing
and transactions that help creating resilient and reliable
distributed systems [21, 27]. Leasing is used extensively
by the Jini itself to recover from network failures and
service crashes. A Jini community is very tolerant of
partial failures and network partition. An important fea-
ture is that devices can easily be taken off the network
for maintenance or upgrading and returned back without
disrupting the community. Thus, Jini is especially suit-
able for a service layer in ad hoc networks.

2. Trust in an Ad Hoc Setting

In any security setting, trust is a fundamental property.
Some of the components of the systemmustbe trusted,
or the system security would collapse, while some other
componentsmaybe trusted, thereby simplifying the sit-
uation. In general, trust is one of the basic assumptions
that allow us humans to behave reasonably efficiently in
our everyday lives. The concept seems to imply lack of
sufficient amount of knowledge [4], meaning that there
is at least some amount of uncertainty involved [14, 15
19]. On the other hand, trusting reduces the complexity
of a situation. When we decide to trust rather than sus-
pect—this is what it means when we talk of a leap of
trust—the number of issues we have to consider is re-
duced, thereby simplifying the process of making deci-

sions. Trusting also describes an attitude towards future
expectations, as well as introduces the presence of im-
plied risk in a given situation [19].

In a wireless ad hoc network, trust is one of the central
problems. Since we cannot trust the communication
medium, our only choice is to use cryptography. That,
however, forces us to rely on the cryptographic keys
used. Thus, our basic problem to solve is the creation of
initial trust relationships between keys. Using those ini-
tial trust relationships, others can be easily formed with
standard cryptographic protocols.

2.1 The Role of PKIs in Creating Trust

In general, the goal with a PKI is to distribute public
keys and determine whether these public keys can be
trusted for certain usage or not. A piece of digitally
signed information is often called a certificate; certifi-
cates are the basis upon which PKIs are built.

The most commonly used certificate format is the X.509
certificate format [13], which is an identity oriented cer-
tificate format. Basically, an X.509 certificate says that
certain name, denoting a person or an organization, has
a specific public key. From our point of view, that is nec-
essarily not much, since names are inherently bound to
some namespace. In the case of ad hoc networks, the
parties do not necessarily share any such namespace.
Another form of certification are presented by authori-
zation certificates, including the SPKI certificates [7].
Different from identity certificates, in the SPKI frame-
work rights are given to keys, not to specific users or
organizations.

As still another example of certificates, we mention the
Pretty Good Privacy (PGP) system [3]. PGP provides a
way to encrypt, decrypt, and sign data and exchange
keys. Thus, by providing actual services, it is more than
just a PKI. However, the main idea with PGP is that no
strict, central authority based PKI is needed. Instead, the
PGP user themselves create and extend the PKI they
need. This is done by certifying other users public keys,
i.e., signing trusted public keys with their own secret
key. In this way a “web of trust” is created.

One possibility to utilize decentralized authorization
certificate, such as SPKI certificates, is to use them on
the grass root level just as PGP certificates are used. The
users can authorize other users to access services they
“own”. For example, the user of a PDA can authorize
other users within a group to read non-private entries of
his or her calendar. Such authorizations can be bound
with various validity conditions, e.g., by limiting the

access for the duration of the current meeting only. Fur-
thermore, the users can even delegate access rights, if
the original authorizer has permitted delegation. Thus,
for example, if you have received from your bank a cer-
tificate that authorizes you to sign electronic cheques
that will be cashed on your savings account, you can
delegate that right to your legal proxy. It is also possible
to make limitations while making delegation, i.e., when
you sign a certificate delegating the cheque signing right
to your proxy, you can also make conditions on when
the cheques may be signed, and what is the maximum
amount of a single cheque.

In addition to the different usage, as illustrated above,
there are also big differences in the way different certifi-
cates, needed for different kind of purposes, are
obtained. In the case of ordinary X.509 type of PKI with
hierarchical Certificate Authority (CA) structures, find-
ing the right certificate is done using some central on-
line server or by direct transmission of the certificate at
connection set up. When using PGP, the desired public
key either is stored locally on a machine or the device
has to make a connection to a central PGP server to be
able to find the desired pubic key. Currently, SPKI does
not define any definite means of obtaining certificates,
but leaves it to the specific application.

Since ad hoc networks are created on the fly between
entities that happen to be at the same physical location,
there is no guarantee that all nodes hold trusted public
keys of the other nodes or that they can present certifi-
cates that will be trusted by the other parties. However,
if we allow delegation of trust between the nodes, it is
possible for nodes that already has trust relations to
extend this to other members in the group. This will
make it possible to reduce the number of manually inter-
actions needed to set up security connections.

2.2 Trust distribution protocol

Now, if we further consider the ad hoc settings, and con-
sider trust solely from the point of view of creating ini-
tial security contexts between the involved nodes, the
following observations may be made. First, we may re-
duce the number of trust types by assuming that if Alice
trusts Bob in our ad hoc networking sense, it means that
Alice trusts Bob in all of the following senses.

• Alice trusts that it is safe to create secure connec-
tions with Bob, i.e., that Bob will take care of the
keys agreed to create such a connection, and that
Bob will not unnecessarily leak any confidential
information received over such a connection.

• Alice trusts that it is safe to believe in Bob’s recom-
mendation, i.e., Alice trusts that if Bob says that he
trusts Carol, then it is also safe for Alice to trust
Carol.

• Alice trusts that Bob is able to successfully act in
the roles required by the trust creation protocol
(described below), and will act according to the
protocol whenever requested.

We make the assumption that trust is always symmetric.
That is, if Alice trusts Bob, then Bob necessarily trusts
Alice.

The simplifications allow us to reduce the initial step of
creating mutual trust within an ad hoc collection of
nodes into a simple trust distribution algorithm and a
corresponding distributed protocol.

Whenever a number of ad hoc nodes meet, an ad hoc
network is created. Depending on the underlying link
medium and routing protocol, the nodes sooner or later
become aware of each other. However, initially the
nodes are only aware of their direct, pre-configured trust
relationships. Due to our simplifying assumptions, our
trust relationships are essentially equivalence relations.
Thus, in this setting creation of trust is a basic two step
process.

• Given an arbitrary group of ad hoc nodes, first
determine the equivalence classes created by exist-
ing trust relationships. Each of these sets are fully
connected, i.e., all nodes within the set trust all oth-
ers nodes (in that particular set).

• If there are more than one trust groups, manually
create a new trust connection between arbitrary
nodes in distinct groups. Each time such a new
manual trust relationship is created, the groups
merge due to our assumptions about the nature of
trust relationships.

In many circumstances, the actual protocol can use mul-
ticast, but is still quite straightforward.

We acknowledge that these simplifying assumptions
about the nature of trust involved are not valid in many
circumstances. For example, symmetry is more believ-
able in peer-to-peer communications (e.g., a network of
wireless PDAs) than in a strictly client-server case.
However, in an ad hoc setting, no better information
may be available, and if we want to communicate, we
will have to settle for something less than “trusted
beyond all doubt”. The user should, of course, be made
aware of the level of security which is used, so he or she
can make an informed decision wheter to use a service
or not.

3. Securing ad hoc services

In order to illustrate how initial trust relationships to-
gether with the associated public keys can be used to se-
cure ad hoc services in practise, we next describe a
possible practical solution for securing Jini based ad hoc
services. Even though we use Jini in our example, we do
not restrict our description to any specific programming
environment; however, we do assume that all the ad hoc
nodes support a common computing platform, i.e., all
nodes can download and execute programs written in a
common language. In the example case, the code is Java
code and the download mechanism is the standard Jini
download mechanism, but it could as well be something
else.

In general, whenever downloading code for execution,
care must be taken. That is, the downloaded code must
have restricted access rights the resources of the local
machine. Similarly, if the code is downloaded on the
demand of some other party but its executor, the
requester must be able to trust that the executor faith-
fully executes the code. In the case of Java and Jini, the
basic mechanisms for running the downloaded code
inside a “sandbox” are already in place.

We next proceed to describe how trust relationships can
be managed using downloaded code in a common com-
puting platform. We first describe the basic arrange-
ments, and then show how a key agreement protocol can
be implemented with proxies. Section 4 describes our
implementation in Jini.

3.1 Basic arrangements

Our security model is based on the use of public keys.
We separate the problem of trusting public keys from
the usage of trusted public keys. Typically, the user’s
machine has a file or a database where trusted certifi-
cates (or secure one way hashes of certificates) are
stored. It is noteworthy that here we use certificates in-
stead of plain public keys. The reason for this, as we
later explain, is that we associate usage semantics with
each public key.

The user can manage the database. Common access
security techniques, e.g., passwords and local access
control, can be used to protect the access to the data-
base. New trusted certificates are added to the database
either manually or after they are otherwise determined
trustworthy.

The certificates in the database represent initial trust
relationships. Any manually added certificates can
include any semantics whatever. Certificates added as a
result of running a trust distribution protocol depend on
the exact nature of the keys distributed in the protocol. If
plain keys are used, as we suggested for simplicity, the
keys are considered to be implicitly certified good for
creating secure connections within the current ad hoc
network. That is, the keys may be used to secure com-
munications within the ad hoc network with the provi-
sion that it is possible for some other node within the ad
hoc group to eavesdrop and even modify the communi-
cations. On the other hand, the keys should not be kept
good for any other purposes, due to the possibility of
cheating nodes within the ad hoc network.

If the initial trust relationships do not suffice for a task
in hand, any standard delegation mechanism can be
used. For concrete approaches, see e.g. [7], [20] or [8].
However, care should be taken not to delegate permis-
sions to any of the temporarily trusted keys, unless that
is what is explicitly wanted. Even in such a case the time
frame of the delegation should probably be quite short,
or the delegation bound to the existence of the current ad
hoc setting. On the other hand, if the user has already
received other evidence on the validity of the desired
subject key, the delegation may be more permanent.

3.2 Securing connections

Given that all of the nodes in the ad hoc network have
public key pairs, and that all of the nodes consider the
public keys of others’ good for creating secure connec-
tions within the ad hoc network, any of public key based
authentication protocols can be used. For example, it
would be possible to use standard Internet key exchange
[12] and TLS or IPSEC protection protocols [5, 16] to
secure the actual service. However, we seek for a more
flexible solution adapted to the ad hoc scenario. The ex-
tra freedom given in a Jini like environment facilitates
this.

Unlike most standard approaches, we do not assume that
the client and server necessarily share a large set of dif-
ferent symmetric key encryption or MAC algorithms.
Instead, we assume that the client only has the following
two pre-defined cryptographic capabilities.

1. By using a public key algorithm together with a one
way hash function the client machine can digitally
sign arbitrary data. The software program or hard-
ware used for the signing is physically located in the
client such that it can not be changed or manipulated
by any hostile person. Any software used for the sign-

ing does not necessarily need to use the common
computing platform.

2. The client can verify the correctness of a public key
signature of arbitrary data. The algorithms used to
sign the data are chosen among a quite small amount
of possible algorithms. The software program or
hardware used for verifying a signature is physically
located in the client such that it can not be changed or
manipulated by any hostile person. Any software used
for the verification does not necessarily need to use
the common computing platform.

Using these cryptographic facilities, a client can se-
curely download a Jini proxy, and use the Jini proxy to
execute an authentication and key management protocol
on its behalf. This gives us complete freedom to utilize
service dependent network security solutions.

3.3 Distributed key management

As an example, let us consider using the Diffie-Hellman
key agreement protocol [6]. In our architecture, the key
exchange code itself is signed by the server and down-
loaded by the client in the form of a Jini proxy. The sig-
nature of the key exchange code is checked prior to the
real key exchange. Hence, authenticated information
about the server’s public key value is available to the cli-
ent. This means that we can reduce the number of mes-
sages needed between the client and the server.

To illustrate, the following sequence of steps can be
used to create a secure connection between a Jini based
client and a service.

Preliminary steps by the Server.Before any commu-
nications are started, the server prepares a secure proxy

that the clients can download. The server also signs the
proxy, thereby allowing the clients verify the integrity
and origin of the proxy before the proxy is started. The
proxy code typically includes a public key correspond-
ing to a private key held by the server. The integrity and
authenticity of the public key are implicitly checked by
the client as it authenticates the proxy code.

• A server that wants to offer a secure communication
service has a computer program written in the com-
puter language of the common platform, i.e., Java.
In Jini terms, the server has a service proxy. The
proxy contains the necessary algorithms and meth-
ods needed for doing authenticated key exchange
with the server. Furthermore, the proxy contains the
necessary algorithms needed to encrypt and protect
all data sent between a client and a server in a
secure service session. However, the proxy does not
necessarily need to contain all code needed to per-
form cryptographic computation. Instead, it might
use APIs defined in the common platform, if feasi-
ble.

• The server digitally signs the proxy using its private
key. The signature is calculated using the pre-
defined algorithms and formats described in
Section 3.2 above. This ensures that the client will
be able to verify the signature.

• The server packs the signed code together with the
signature, and optionally includes also one or more
certificates that certify the public key of the server.

Looking up, Downloading and Starting a Service
Proxy. In Jini, and similar environments, communica-
tion is started by a client looking for a service. Once the
service is found, the client downloads the service proxy
for execution. In our case, the service proxy is verified
before starting its execution.

Figure 1: A basic proxy distribution protocol, with the
proxy using Diffie-Hellman key agreement.

Client

(contains g, p, g mod p)y

(3.1) Generate x, g mod px

y) x mod p(3.7) k = (g

x(3.5) label, g mod p, signature, public key

signature=sign(label + g mod p)x

x(3.7) k = (g) y mod p

(3.2) g mod px

proxy
Service

(1) Signed key exchange code

(2) Check signature

(3.4) label, signature

(3.6) Check signature

Service

(3.3.) label=‘‘2000−10−12 Bob’s printing service’’

�
�
�
�

�
�
�
�

• A client searches for a service. The exact nature of
search is of no importance here, but one possibility
is to use the Jini lookup service.

• When the client finds the service and wants to use
it, it downloads a proxy corresponding to the ser-
vice, together with the signature and optional certif-
icates.

• The client checks the signature of the downloaded
package. If the client holds a trusted public key that
corresponds to the signature, or the client trusts
some of the public keys contained in the certificates
included, then the client treats the downloaded code
as a trusted code.

• If the verification is successful, the client runs the
downloaded code using the common computing
platform. Any runtime restrictions may be placed as
appropriate; especially, the downloaded code does-
not need to be able to communicate with anybody
else but the designated server.

Since the service proxy is used here only for creating a
secure connection with the server, and actually access-
ing the service, the trusted key used may be one of the
keys that the client temporarily trusts. In such a case, the
service must be considered an anonymous service avail-
able in the current ad hoc setting. For practical purposes,
such as securely accessing a nearby printer, this is prob-
ably perfectly adequate. On the other hand, if the client
needs to access a permanently trusted service, the ser-
vice key must be properly certified.

Authentication and Key Agreement. The downloaded
code can ask the client to create a signed ticket. The cli-
ent may refuse to perform any other cryptographic func-
tions. The ticket creation function takes as its input
some arbitrary data and outputs a ticket, which basically
is a digital signature of the data plus a specific label
added by the client. The label is needed in order to make
sure that the resulting item is always recognized as a
ticket. The client might also return a certificate contain-
ing a public key that can be used to verify signatures
made by the client.

The ticket label typically designates the service the cli-
ent has requested the proxy for, and a time stamp. In the
case when the client device is a personal device and the
signature key can be used for non-repudiation services,
the label should be displayed to the user before signing
(or otherwise verified to be acceptable).

Thus, the proxy and the server can authenticate each
other as follows.

• The proxy performs authenticated key exchange
with its origin server. The actual protocol used can
basically be any standard authentication and key
exchange protocol. When performing the key
exchange, the service code can request tickets to be
signed by the client. If the authentication succeeds,
the proxy sets up a secure communication link with
the server.

• The service provider writes the security code that is
used to create a secure connection, so it can imple-
ment the authenticated key exchange and communi-
cation protection as it wishes, but should follow
good cryptographic principles.

In the actual authentication protocol, the protocol can be
somewhat simplified by the fact that the downloaded
proxy code may already contain authenticated informa-
tion. For example, if Diffie-Hellman key agreement is
used, the public key exchange value of the server can be
contained in the service code. Hence, the key exchange
can be performed with one single transmission from the
client to the server and we save one transmission. This is
illustrated in Figure 1.

4. Authorization in Jini

One of our goals was to study how to add authorization
and delegation to Jini. Therefore, we implemented a se-
curity framework providing authorization to Jini based
services and applications.

The users can receive authorization to use some Jini ser-
vice (for example, a printer) from the administrator of
the service. The authorization is issued as a SPKI certif-
icate [7] written to the user’s key. The certificates and
the user’s private keys are stored in her computer.

The Jini security library provides a way for applications
to use these authorizations with a service in Jini environ-
ment. One of the problems to be solved is how to prove
these authorizations through the Jini proxy which is
loaded from the network and can not be fully trusted by
the user. The user’s secret key is required to prove the
user’s authorizations but it must not be given to the
proxy.

4.1 Changes to the Jini operation model
The default behavior of a Jini application and a Jini ser-
vice is shown in Figure 2, on next page, where an appli-
cation prints a document using Jini. Before the
invocation is possible, a number of activities must take
place.

1. The service initializes its proxy object and registers it
with the lookup service.

2. The application, wishing to use the service, queries
the lookup service for services providing the desired
functionality.

3. The serialized proxy object is returned to the client,
and the corresponding Java byte code is downloaded.

4. The application calls some method on the proxy ob-
ject, requesting it to do whatever the service does.

5. The proxy sends the request to the service.

With our authorization mechanisms, the picture is a lit-
tle bit different (Figure 3, below). Note that in this case,
the security features are completely transparent to the
client application.

When accessing the service, the four first steps are
almost identical with the default Jini behavior.

1. Before sending the proxy to the lookup service, the
service signs the proxy code and state. The proxy now
also contains the key exchange code, and perhaps
some key exchange parameters as well.

2. The applications contacts the lookup service, and per-
forms an appropriate search, as before.

3. The proxy object is downloaded, and the signature of
its code and state are checked. The service’s public

key and any additional certificates are stored for fu-
ture use.

4. Application calls a method on the proxy object, as be-
fore.

5. When the proxy receives a request, it needs to open a
secure channel to the service. It asks the Jini security
library to sign a ticket for it.

6. The Jini security library first checks if the client ap-
plication is allowed to access this kind of service, and
if it is, writes a ticket (in this case represented as a
SPKI certificate) and signs it using the user’s private
key. The proxy can also ask the security library to
search for any additional authorization certificates
which should be presented to the server.

7. The proxy contacts the service and runs the authenti-
cation and key agreement protocol. It then sends the
client request (in this case, the document to be
printed) and any relevant certificates.

The service gives the user’s public key, certificates,
and the requested action to a “trust management en-
gine”, which checks the certificate chains. If the au-
thorization is ok, the service performs the requested
action.

Since our initial application is a personal calendar, we
also wanted to authenticate the server using some hu-
man-recognizable identity (i.e., a name). Therefore, the
proxy can also contain additional certificates, which are
checked by the application before performing step 4. We
argue that this is best left to the application, since the
trust models are very application specific (cf. [24]).

5. Related work

The Jini architecture doesn’t include any security in ad-
dition to the normal Java 2 security facilities (for pro-
tecting the JVM from malicious proxy code). The
solution proposed by Sun is the RMI security extension
[26], currently in specification phase. A concrete imple-
mentation is expected to be included in JDK 1.4 (“Mer-
lin”), which will probably be released last quarter 2001
(public betas earlier).

In the RMI security extension, a trusted component (not
downloaded from the network) is responsible for actu-
ally opening the network connections and performing
the authentication protocol, so this might limit the proto-
col independence offered by Jini. Furthermore, the ad
hoc trust establishment problems remain the same.

Service proxy Service

Service proxy

Jini lookup service
Application

Client JVM

(1) Register

(5) Print document

(3) Download

(2) Lookup

(4) Print document

Application

Figure 2: Default behaviour in Jini service lookup.

Figure 3: Jini service access with authorization.

Service proxy

Jini lookup service
Application

Service proxy

Service

Client JVM

(2) Lookup

(5) Ask ticket

(6) Ticket, public key, certs

Jini security module

Application

(4) Print document

(3) Download

(7) Print document (+ticket, key, certs)

(1) Sign and register

6. Conclusions

One of the main security problems in ad hoc networks is
obtaining the necessary trust relationships. In this paper,
we have used a simple trust model, and shown how it
can be applied to secure ad hoc services. We suggested a
trust distribution protocol that minimizes the number of
manual interaction needed when setting up the neces-
sary trust relations. Furthermore, we have shown a
“minimal” pre-configuration solution for securing the
communication of an ad hoc service. The technique
allows establishment of authenticated connections with-
out allowing undue access to the client’s private key. We
have suggested changes to the Jini operational model
that makes it possible to add authorization to Jini. Our
example implementation uses Java and Jini, but the
same principles can be used with other service discovery
techniques.

Our trust distribution protocol can be combined with
other trust establishment procedures. For example, some
ad hoc networking devices have communication chan-
nels which are inherently reasonably secure (such as
short-range infrared or physical contact). Stajano and
Anderson discuss such situations in [24] and [25]. These
could of course also be combined with our Jini solu-
tions.

Another interesting topic is the human interface aspect
of ad hoc security. Since the level of security provided
can vary a lot, a lower level might be acceptable for
some use but not for other cases. The user should be
aware of the level of security provided, so he or she can
make an informed choice based on the requirements of
the task in question.

Acknowledgements
We would like to thank Jonna Särs and the anonymous
reviewers for their valuable comments and suggestions.

References
[1] Ken Arnold, Bryan O’Sullivan, Robert W.

Scheifler, Jim Waldo, and Ann Wollrath.The Jini
Specification. Addison-Wesley, June 1999.

[2] Bluetooth SIG. Specification of the Bluetooth
System, version 1.0 B, part E: Service Discovery
Protocol (SDP).December 1999. Available from
http://www.bluetooth.com/developer/
specification/specification.asp.

[3] Jon Callas, Lutz Donnerhacke, Hal Finney, and
Rodney Thayer. OpenPGP Message Format.
RFC 2440, IETF, November 1998.

[4] Lucas Cardholm. Building Trust in an Electronic
Environment. InProceedings of the 4th Nordic
Workshop on Secure IT Systems (Nordsec '99),
pages 5–19, Kista, Sweden, November 1999.

[5] Tim Dierks and Christopher Allen. The TLS Pro-
tocol, version 1.0. RFC 2246, IETF, January
1999.

[6] Whitfield Diffie and Martin E. Hellman. New di-
rections in cryptography.IEEE Transactions on
Information Theory,IT-22(6):644–654, Novem-
ber 1976.

[7] Carl Ellison, Bill Frantz, Butler Lampson, Ron
Rivest, Brian Thomas and Tatu Ylönen. SPKI
Certificate Theory. RFC 2693, IETF, September
1999.

[8] Pasi Eronen, Johannes Lehtinen, Jukka Zitting,
and Pekka Nikander. Extending Jini with Decen-
tralized Trust Management. InShort paper pro-
ceedings of the 3rd IEEE Conference on Open
Architectures and Network Programming
(OPENARCH 2000), pages 25–29, Tel Aviv, Is-
rael, March 2000.

[9] Li Gong. Inside Java 2 Platform Security: Archi-
tecture, API design, and implementation.Addi-
son-Wesley, June 1999.

[10] Erik Guttman, Charles Perkins, John Veizades,
and Michael Day. Service Location Protocol,
Version 2. RFC 2608, IETF, June 1999.

[11] Jaap Haartsen, Mahmoud Nagshineh, Jon In-
ouye, Olaf J. Joeressen, and Warren Allen. Blue-
tooth: Visions, goals, and architecture.Mobile
Computing and Communications Review,
2(4):38–45, October 1998.

[12] Dan Harkins and Dave Carrel. The Internet Key
Exchange (IKE). RFC 2409, IETF, November
1998.

[13] ITU-T Recommendation X.509 (1997 E): Infor-
mation Technology – Open Systems Interconnec-
tion – The Directory Authentication Framework.
June 1997.

[14] Audun Jøsang.Modelling Trust in Information
Society. PhD Thesis, Department of Telematics,
Norwegian University of Science and Technol-
ogy, Trondheim, Norway, 1998.

[15] Audun Jøsang. Trust-based decision making for
electronic transactions. InProceedings of the 4th
Nordic Workshop on Secure IT Systems (Nordsec
'99), pages 246–268, Kista, Sweden, November
1999.

[16] Stephen Kent and Randall Atkinson. Security
Architecture for the Internet Protocol. RFC 2401,
IETF, November 1998.

[17] Alfred J. Menezes, Paul C. van Oorschot, and
Scott A. Vanstone.Handbook of applied cryptog-
raphy. CRC Press, October 1996.

[18] Microsoft Corporation. Universal Plug and Play
Device Architecture, version 1.0. June 2000.
Available from http://www.upnp.org/.

[19] M. Mühlfelder, U. Klein, S. Simon, and H. Luc-
zak. Teams without Trust? Investigations in the
Influence of Video-Mediated Communication on
the Origin of Trust among Cooperating Persons.
Behaviour and Information Technology,
18(5):349–360, September 1999.

[20] Pekka Nikander.An architecture for Authoriza-
tion and Delegation in Distributed Object-Ori-
ented Agent Systems. PhD Thesis, Helsinki
University of Technology, March 1999.

[21] Pekka Nikander. Fault tolerance in decentralized
and loosely coupled systems. To appear inPro-
ceedings of Ericsson Conference on Software En-
gineering, Stockholm, Sweden, September 2000.

[22] Salutation Consortium. Salutation home page.
http://www.salutation.org/, 2000.

[23] Gustavus J. Simmons and Catherine A. Mead-
ows. The role of trust in information integrity
protocols. Journal of Computer Security,
3(1):71–84, 1995.

[24] Frank Stajano and Ross Andersson. The resur-
recting duckling: Security issues in ad-hoc wire-
less networks. In Bruce Christianson et al.,
editors, Security Protocols, 7th International
Workshop Proceedings, Cambridge, UK. Lecture
Notes in Computer Science, volume 1796,
Springer, April 1999.

[25] Frank Stajano. The resurrecting ducking — what
next? In Bruce Christianson et al., editors,Secu-
rity Protocols, 8th International Workshop Pro-
ceedings,Cambridge, UK. To appear in Lecture
Notes in Computer Science, Springer, April
2000.

[26] Sun Microsystems. Java remote method invoca-
tion security extension. Early look draft 3, http://
java.sun.com/products/jdk/rmi/, April 2000.

[27] Jim Waldo, Geoff Wyant, Ann Wollrath, and
Sam Kendall.A note on distributed computing.
Technical Report SMLI TR-94-29, Sun Micro-
systems Laboratories, November 1994.

