
1

Lessons learned on implementing ECDSA
on a Java smart card

Tommi Elo
Department of Computer Science
Helsinki University of Technology

P.O. Box 9700
02150 HUT Finland
tommi.elo@hut.fi

Abstract

Many companies have designed and manufactured
smart cards, which vary greatly in both the hard-
ware they use and software development environ-
ments they provide. Java Card promises to make
smart card programming easier, by introducing a
common programming language and run–time en-
vironment. Also as a member of the Java family,
Java Card raises up hopes of easy software port-
ability from PCs to smart cards. Our work demon-
strates, that this promise is not fulfilled in the ma-
jority of the cases because of different memory
models. The portability of code from other JVMs to
Java Card is an important issue, which requires,
among other things, a systematic method of con-
serving memory on the card. In our work we de-
veloped such an approach by constructing variable
interference graphs and graph coloring them to
minimize the number of temporary variables. The
concrete method is a modified register allocation
approach, which has traditionally been used in
compiler design. This is followed by numerical
performance data of the actual prototype along
with the analysis of that data.

Keywords: ECDSA, ECC, cryptography, JVM, Java,
smart card, software engineering, porting

1 Introduction

Smart cards are often used as trusted storage and
data processing systems to store cryptographic pri-
vate keys and other valuable information. This
means that they are usually used as part of a larger
access control or authorization architecture, which
are becoming more commonplace. As a results of

this, both the usage of smart cards and the corre-
sponding development environments have greatly
expanded since their introduction. Java Card
promises to be a common well standardized plat-
form for smart cards from different manufacturers.
This is supposed to ease compatibility problems
between cards and, thorough the use Java, also
between other Java platforms and smart cards.

A great deal more software has been written for
workstations than for smart cards, therefore many
PC developers find themselves in a situation were
they would want to reuse existing code base in
smart card programming. Java programming lan-
guage is available for a wide range of platforms
including desktops and smart cards. Several differ-
ences between these environments complicate the
matters despite the use of Java, which promises to
ease portability between different platforms
through the use of a virtual machine architecture
and common syntax.

Programming smart cards is inherently harder than
programming in a desktop environment for several
reasons: 1) They lack natural input and output. 2)
Their processor and memory capacities are limited.
3) The standards are few and not very well fol-
lowed by the industry. 4) The development envi-
ronments and languages for the cards have been
archaic.

Lack of proper input and output means that other
systems such as PC’s are needed as essential parts
of the development. Having additional complicated
systems in the development process tends to make
things harder as there are more things that can go
wrong. Additionally, more skills and tools are re-
quired to get the actual job done.

Lessons learned on implementing ECDSA on a Java smart card

2

Today the typical smart card has an 8-bit processor
running 4 MHz clock-speed and less than 16 kB of
memory. Therefore the typical workstation PC is at
least 2 orders of magnitude faster and can natively
present and process integers that are 10 million
times larger. Perhaps most importantly, also the
memory capacities of a PC are three to four orders
of magnitude larger. Considering these differences
in performance and memory, it should be obvious
that programming smart cards is somewhat harder
than programming PC’s. The programmer has
many more limitations that have to be taken into
account because of the limited environment.

An fundamental standard for smart cards is
ISO7816, which standardizes the smart card and
the environment to some extent. It deals mainly
with standardizing the communication interface of
the card. Unfortunately, it is divided into several
parts of which the most sophisticated one is op-
tional (ISO7816-4). The mandatory parts do not set
tight requirements for internals of the card, and the
optional parts are not very well followed by the
manufacturers. Many of the cards claiming to be
compliant with ISO7816 actually implement only
some mandatory parts of it. Furthermore, while the
interface of the commands and the core commands
themselves are standardized, many identifying
bytes (called CLI-bytes) are vendor specific. These
bytes are still essential for calling and executing
the actual commands.

Java Card promises to solve many of the problems
associated with vendor specific smart card pro-
gramming environments by defining an API that
must be followed by all the complying cards. Like
other Sun’s Java environments it also specifies an
abstract layer on top of hardware, a virtual ma-
chine, and common language syntax.

This paper presents the lessons that were learned in
a project, whose goal was to implement an Elliptic
Curve Digital Signature Algorithm (ECDSA) to a
smart card running Java, and evaluate the results.
The rest of this paper is organized as follows: In
section 2 we present the relevant differences be-
tween Standard Java and Java Card environment.
In section 3 we describe the project background
and assumptions. Section 4 describes the imple-
mentation architecture, the memory allocation
problem and the solution adopted for it. Section 5
presents numerical performance data of the critical
part of the implementation and the analysis of that

data. Section 6 gives directions for future work and
research, while section 7 concludes the actual les-
sons of our project.

2 Smart card programming
with Java Card

While Java Card does not solve all the problems
associated with writing smart card software, it does
solve some of them and in that process introduces
problems of its own.

One of the main benefits of the Java is its syntax,
which is the same in all variations of Java. The
common syntax of Java makes it easier for a pro-
grammer to write code, as no energy is wasted in
the futile effort to learn yet another syntax, which
itself is mostly irrelevant in programming. The
familiar syntax raises up hopes of easy portability.
Unfortunately, here the issue is significantly more
complex than Sun would like us to believe. It is

Figure 1. Comparing Java Card and Standard Java as
whole development environments.

Lessons learned on implementing ECDSA on a Java smart card

3

easy to make a misconception in thinking that
Standard Java and Java Card are very similar. This
can happen because of the same syntax, similar
names and the large amount of marketing hype. In
fact, these two environments are relatively far from
each other in the programming point of view. The
next section presents the main differences and
elaborates further on their impact on the program-
ming process.

2.1 Differences of Java Card and Stan-
dard Java

Java, as it exists on the card, has many limitations
that make the development rather different from
that practiced in Standard Java environment. Main
differences and limitations are the following [1],
[2], [3].

1. No threads

2. No dynamic class loading

3. No garbage collection

4. Missing basic data types (i.e. long, int)

5. No security manager

6. No cloning

7. No finalization

The lack of threads as well as offering no garbage
collection are natural consequences of a more re-
stricted platform, as it would be difficult to fit ei-
ther of these to the hardware of even the most
modern cards. Big differences lie underneath the
hood of the computing platform. These differences
affect the programming process sometimes rather
drastically, as the missing garbage collection and
some data types hint.

While in theory it is possible to write a piece of
code for the Java Card virtual machine and run the
same bytecode on a more sophisticated one, say
Standard Java VM, several problems are evident.

1. Current Java Card environments require an ad-
ditional bytecode compilation phase

After the compilation of the Java source code
to a running bytecode with a Standard Java
compiler, an additional compilation phase is
needed to make the applet executable on a
given card [4]. This compilation (and verifica-
tion phase) is vendor specific i.e. different

vendor’s converters produce different bytecode
representations from the same source[26].

2. The compatible code is on many cases of little
value

Much of the API of Java Card deals with card
specific functions that don’t directly have a
meaning on the PC side. For example, PINEx-
ception would not mean anything on the PC.
Neither would any of the perfectly good secu-
rity specific Standard Java API calls, when run
on the card environment.

Figure 1 illustrates the huge differences Standard
Java and Java Card environments have. In fact, as
seen from the picture, it is much easier to state the
similarities between the two environments: com-
mon features are much more rare than unique fea-
tures of each environment. This means that if the
program is to be portable, it must be carefully pro-
grammed according to the least common nomina-
tor (in this case the most limited JVM i.e. the
JCVM.)

2.2 Physical memory architecture of the
Java Card

Smart Cards have a type of memory that is usually
not found in workstations at all, EEPROM (Elec-
trically Erasable Programmable Read-Only Mem-
ory). This memory type is non-volatile, that is its
contents are not erased by power loss as is the case
with RAM. Volatile types of memory are some-
times also called transient memory and objects al-
located in this type of memory, for example RAM,
are correspondingly called transient objects.

One can easily understand the need for non-
volatile memory on the card. As smart cards are
externally powered and clocked power loss can
happen very easily. A smart card should still be
able to continue consistent operation in such a case
after the power is restored.

Most of the memory of current Java Cards is
EEPROM and manufacturer’s documentation often
doesn’t even mention the amount of RAM that a
specific Java Card has integrated on the chip. Cur-
rent Java Card specifications state that object are
by default allocated in EEPROM. For performance
specific implementations such as cryptography this
quite an unfortunate choice as write operations to

Lessons learned on implementing ECDSA on a Java smart card

4

EEPROM are about 30 times slower than equiva-
lent operations in RAM[27]. Furthermore, there is
also a maximum number of writes that EEPROM
memory can sustain before becoming non-
functional. In the current Java Card memory model
compiler and the card environment internally han-
dle the placement of objects between RAM and
EEPROM. As Java Cards have different amounts
of memory this also means that objects that end up
in RAM on some cards will end up in EEPROM on
the others. Also a great deal of performance of the
actual run time program depends on how well the
cards additional compiler and environment are de-
signed.

2.3 “Write once run everywhere” does
not work

From the many differences stated above it is clear
that “write once run everywhere”-principle that
Sun has touted with Java does not work well in
practice. This inevitably brings out an important
question: What would it mean for it to work as ad-
vertised? At least the PC and smart cards environ-
ments have little common functionality. Even the
two virtual machines have differences let alone
language libraries, which are inherently different
because of differences in hardware’s capabilities
such as input and output. Of course, other VMs
may have more in common than these two ex-
tremes but skepticism seems justified, when judg-
ing their usefulness from point of view of code re-
use and portability.

Some of the problems of porting software from
platform to another, like ubiquitous syntax’s, are
eased by the introduction of Java. Java, however,
produces problems of its own, which can be hard
to tackle on many circumstances. In a sense, the
easiest parts of the porting are made automatic, as
trivial code is most likely to run unmodified on
both virtual machines.

Two new problems are introduced to the porting
process by the use of Java. First, inclusion of JVM
on the card degrades performance, which is already
a bottleneck in the smart card environment. Second
even worse problem is a lack of any kind of mem-
ory control in the card environment where memory
is a scarce resource.

Lack of GC makes porting harder
As the philosophy of Java does not allow explicit
memory management and the limitations of the
hardware of the cards, in turn, does not allow a
decent garbage collector, Java Card designers de-
cided to drop memory management, which is in-
deed a very drastic solution. This means that mem-
ory which is once reserved, stays reserved. Unfor-
tunately, it does make porting of applications that
use memory carelessly quite hard. As one of the
most important features in Standard Java is the
garbage collection, one can be almost sure that all
applications use memory “carelessly” in the Java
Card sense.

In the OS field, operating systems with primitive
memory management are considered weak. On the
other hand, nowhere is the memory as scarce as on
the card. One can justifiably question the design
choice of Java Card in this matter. The only good
explanation seems to be that including a garbage
collector on the card may succeed in the future
with reasonable certainty. Hardware support for
garbage collectors is an active area of research [5].

3 Project background

In this section we present the temporal order of the
porting phase. We begin with a project’s back-
ground, which is followed by an orderly descrip-
tion of its progression.

3.1 Background

The project of implementing digital signatures on a
smart card is part of TeSSA project, which is cur-
rently running its third year. TeSSA has been pri-
marily focussing on authorization certificate tech-
nologies, such as SPKI, and has concerned itself
mainly with privacy aspects of the certification
technologies, as well as including the certificates
into practical architectures [6], [7].

Since the first year of the TeSSA project, elliptic
curve cryptography was one of the points of inter-
est. There were several reasons for this, one of the
main ones being the possibility to create smaller
certificates which would enable a better support for
DNS retrieval of the certificates [8]. Of course, this
very same property is quite important when con-

Lessons learned on implementing ECDSA on a Java smart card

5

sidering a useful smart card involvement in the
certificate infrastructure.

In 1998, a Standard Java implementation of
ECDSA was produced [9]. The second phase of
the ECC subproject began in May 1999 as a Mas-
ter’s Thesis project of the author. By this time, it
had become clear that supporting smart cards in the
architecture would offer some key benefits, and on
the other hand, it seemed possible that the project
had necessary know-how and expertise to build
such an implementation.

First, the debugged and finished ECDSA research
prototype was ready and working on a workstation
Java environment; Sun introduced the Java Card
platform and actual cards started to become avail-
able. This, in combination with recommendations
that elliptic curve cryptography was well suited
for smart cards [10], [11] was seen as promising,
and it favored the idea of introducing smart card
support.

Second, combining authorization certificates with
exactly ECC based digital signature algorithm
would have an important architectural benefit.
Namely, in the elliptic curve based public key al-
gorithms the creation of the key is cheap compared
to, for example, RSA based cryptosystems. The
creation of the key takes roughly the same time as
one encryption operation [12], [13]. In SPKI based
certification systems, the ability to locally create
keys on the fly is very appealing as spare keys can
be used to achieve anonymity. By creating and
holding several temporary private keys, users’
identities can be protected while still maintaining
the ability to give credentials to them [14]. In de-
centralized authorization systems, users and agents
can easily authorize each other without strictly
having to use special CAs.

3.2 The prerequisites

The project started with the following prerequi-
sites.

• Implement ECDSA on a commercially avail-
able smart card

• The card to be used should be Java Card

• Research the role smart cards have in authori-
zation certificate infrastructures

These prerequisites were not requirements that we
actively set but more like implicit assumptions that
characterized the project from the beginning. In
this paper I concentrate more on the implementa-
tion and porting to the Java Card environment and
especially the memory allocation on the card.

4 Porting Standard Java
ECDSA implementation to a
smart card

In this section we present both the problems we
faced while porting the existing architecture and
the solutions we developed. The architecture of our
prototype is described. We also developed a sys-
tematic method for memory re-use and describe
how it was applied in this project.

4.1 The architecture of the card imple-
mentation

In order to implement ECDSA, we need both
modular big integer arithmetic and finite field
arithmetic as can be seen from Figure 2. While the
pure elliptic curve operations can be built on top of
many kinds of finite fields[15], there are two basic
choices[16]: m2

F or characteristic two fields, and

Fp, the odd prime fields. m2
F fields promise clear

performance advantages on processors that have
small registers and relatively unoptimized integer
instructions with no access to special big integer

ECDSA

Choice of Basis

Elliptic Curve Arith-
metic

Modular Big Integer
Arithmetic

Finite Field Arithme-
tic

Java Card API 2.0/2.1

Java Card Hardware

Figure 2. Layer structure of the smart card
ECDSA architecture.

Lessons learned on implementing ECDSA on a Java smart card

6

hardware. Much of this promise of speed is based
on the fact that operations can be implemented
only by using basic bit operations, such as and-ing
and xor-ing, which are the fastest operations on
any processor. It should be noted that these prom-
ises do not necessarily realize when using cards
with Java because there is no direct access to
hardware.

There are many variations of both of the afore-
mentioned fields; many properties can be carefully
chosen to affect either performance or ease of im-
plementation. (See e.g. [19], [21]).

Of these we chose the odd prime field largely for
practical reasons. As mentioned before, we had a
possibility to use an existing debugged implemen-
tation. This implementation was based on the finite
field arithmetic being an odd prime field. That ex-
isting code base and architecture would not have
been of much use, had we implemented ECDSA
with a different underlying field. Using the same
finite field gave as an opportunity to study the
portability issues between PC and smart card envi-
ronments.

4.2 The main design problem: re-using
memory

Our main concern raised naturally from the techni-
cal situation of the current Java cards. Our main
problem was how to fit the functioning code to
only little over 12 kB of memory, and still leave
enough space for keys and at least one certificate.

Here we concentrated on finding methods, which
could be used in porting the existing ECDSA im-
plementation to Java Card platform. As the exist-
ing implementation was a Standard Java applica-
tion, there was primarily a need for systematic
method or formalism that could be applied to
translating the memory allocation and usage of the
original program from the typically careless re-
serve-and-forget (workstations) paradigm to a
more economical reserve-and-reuse (smart cards)
one.

In the layered architecture the lowest layers are
usually most performance sensitive. For this reason
we started the porting process from the bottom up:

Directly above Java Card API is the finite field
layer. In the workstation ECDSA it is based on the
Standard Java BigInteger, which is problem-
atic because it is based on immutable semantics.
This fits nicely for GC capable Standard Java but
is totally unsuitable for Java Card. So at the very
least we had to face the problem of making a mu-
table version of the BigInteger.

A more detailed look at the JDK 1.2 version of
BigInteger revealed that it called underlying
native C library for its operations. We now had two
distinct problems stemming from the main design
problem of getting the memory to suffice. First,
what general method should be used to allocate
memory? Second, how do we get the long number
arithmetic functionality to the card, which uses
mutable semantics? The solutions to these prob-
lems are discussed in section 4.3.

Mutable vs. immutable semantics
In Java, the immutability of many classes makes it
easier to achieve information hiding principles,
which are central ideas in object oriented pro-
gramming in general. On the other hand, because
on the Java Card we have only limited memory
and no garbage collector, we have to explicitly
handle the reuse of memory.

Basically, in immutable semantics the value of the
object itself can never be modified. Each call to an
objects’ method allocates and returns a new tempo-
rary object, whose reference is assigned to user
defined variable. In mutable semantics, exactly the
opposite is true. Calls to objects method always
modify the object itself; new memory is not neces-
sarily allocated at all and, likewise, no references
need to be returned.

It is crucial to understand that the interface syntax
is not able to distinguish between mutability and
immutability. Memory allocation is a side effect
and cannot be revealed by the interface alone.
Software engineering community has been focused
on the design of interfaces for a long time. The
porting problem we encountered is good example
of a portability problem, which cannot be solved
by solely focussing on the interface design.

Lessons learned on implementing ECDSA on a Java smart card

7

Figure 3. A directed data flow analysis graph of the MutableLargeInteger class. Dashed
lines point to temporary MutableLargeInteger objects before optimization. Solid lines point to
other methods, which are needed by the method at the beginning of the arrow.

Lessons learned on implementing ECDSA on a Java smart card

8

4.3 Solutions for the memory allocation

As to the first problem of needing a systematic
method for porting Standard Java application to
Java Card, we used a modification of a so called
register allocation approach. In our case, we used
variable interference graphs with graph coloring to
minimize number of temporary variables. We built
variable interference graphs manually by hand and
colored a graph of local scopes with a minimal set
of temporary variables. That is, the code was first
programmed normally and all the variables were
named and allocated in local scope. These different
local scopes are easily interpreted as basic blocks,
which are the nodes of the variable interference
graphs. The register allocation problem and its so-
lution methods are well known but traditionally
used in compiler design[17]. To our knowledge it
has never been applied to minimizing the number
of temporary variable allocations in a Java Card
implementation.

In our case we took each method of Mutable-
LargeInteger as our basic block and analyzed
which methods call each other. Based on this high
level data flow analysis graph described in Figure
3, we constructed a variable interference graph,
which we “colored” using a minimal set of tempo-
rary variables. Graph coloring is an NP-complete
problem in a general case, but small cases are solv-

able by hand, and there are good heuristics for
solving larger cases with computers. A variable
interference graph for one of our prototype’s
classes is presented in Figure 4.

Using the above method lets us use 15 temporary
variables in the case of example in Figure 4, in-
stead of the 34 variables, which would be needed
without any optimizations. We get the result of 34
variables by straightforwardly replacing each local
scope variable with a global one. (i.e. By just add-
ing the numbers in parenthesis displayed in each
node.) This optimization is quite high-level as
methods are not the smallest imaginable basic
blocks and even larger savings are likely if a more
detailed data flow analysis was executed. How-
ever, this would require handling graphs that are
much larger than the aforementioned example and
in practice tool support would be needed to make
the optimization.

As for the solution of the second problem, we de-
cided to code a purely Java based long integer
package on our own (which is the actually
the example class MutableLargeInteger
presented above). Its design was based on C code
by Michael Rosing [18].

mod() (2)

sub() (1)

div() (3) modInv() (9)modExp() (5)

mul() (3)

toByteArray() (4)

fromByteArray() (3)

testBit() (1)

gcd() (3)

Figure 4. The interference graph of the methods of the MutableLargeInteger
class. After the name of the method, the number of MutableLargeInteger in-
stances is shown in parenthesis. As a method is the basic block in this case, all the tem-
porary variables inside one method are presumed to interfere with each other.

Lessons learned on implementing ECDSA on a Java smart card

9

4.4 Performance challenge of the im-
plementation

From the very beginning, we also had another
major concern, which was speed. As the imple-
mentation was done in Java, which is not actually
famous of its speed, we decided that an order of
magnitude lower performance, acceptable for
commercial products, would be sufficient for us.
Commercial smart card products employing cryp-
tography try to achieve subsecond performance of
operation. This is because a waiting period of one
second feels pretty much instantaneous.

As our research objective was mainly to gather
experience of programming the cards and study the
feasibility of a cryptographic software implemen-
tation in such a setting, we decided to first concen-
trate on producing at least one prototype and on
optimizing its performance afterwards. We how-
ever planned our approach so that it could be easily
modified and optimized in later stages. Most im-
portantly, we created a layered architecture and
assumed that concentrating in optimizing the low-
est layers would be beneficial.

5 Performance of the proto-
type

We only measured the performance of the most
critical part of the implementation, that is the low-
est software layer of our MutableLarge-
Integer. While these figures do not directly
measure the performance the end user of the sys-
tem will see, they are nevertheless important in
estimating how fast the whole system can or can-
not be made.

We measured the performance of the lowest soft-
ware layer, because its functionality is heavily
called by the ECDSA layer and therefore it is es-
sential from the performance point of view.

As can be seen from the figures in Table 2, the per-
formance of the prototype leaves much room for
improvement considering practical purposes. The
execution times grow nearly linearly with field
addition and faster in the case of multiplication.

5.1 Performance comparison on work-
station environment

Next, we analyze, what are the bottlenecks of the
implementation and what can be made to improve
it. Lastly, we estimate of how much it can be im-
proved. The conclusions made from the current
performance are summarized in the conclusions
part.

We ran a series of tests in which we compared the
performance of the created MutableLarge-
Integer class with the JDK 1.2 BigInteger
class. Each of the test was run 1000 times in a tight
loop in workstation environment. As can be seen
from Table 1, there is no significant difference in
performance of addition operation between differ-
ent implementations. MutableLarge-
Integer multiplication routine is quite much
slower than the BigInteger one. The limita-
tions of the test setup and timer mechanism do not
reveal the exact performance ratio. It is likely that
the low performance of the multiplication routine
also explains some of the low performance of the
inversion routine. The reason for this is that the

JDK 1.2
BigIn-
teger

MutableLar-
geInteger

1000 multipli-
cations

<0.1 sec. 0.3 sec.

1000 additions <0.1 sec. <0.1 sec.

1000 inversions 1 sec. 44 sec.

Table 1. Performance comparison of the different
big integer implementations with the number length
of 192 bits.

50 bits 100 bits 192 bits

Multiplication 15 sec. 39 sec. 137 sec.

Addition 0.7 sec. 2 sec. 6 sec.

Inversions 370 sec. N/A N/A

Table 2. Performance of MutableLargeInteger
on the card as a function of the integer bit size.

Lessons learned on implementing ECDSA on a Java smart card

10

inversion routine is already near the optimal and
major improvements are unlikely. Inversion rou-
tine also quite heavily uses division which spends a
significant amount of time calling multiplication.
Our division and multiplication routines are not
optimal and could be improved [18], [19].

6 Future Work

Many things still remain undone if one considers
implementing cryptographic operations for a smart
card in software. Here we would like to take the
opportunity to suggest directions for future re-
search.

To produce a more widely usable implementation
than our prototype, speed of the routines must be
optimized. There are several paths to a better per-
forming application. First, there is the most
straightforward and least demanding way, which is
to select and implement better routines for Fp
arithmetic, such as the ones mentioned in [19].

A well performing software cryptography for smart
cards requires more radical changes to the ap-
proach. Second possibility is to use optimal exten-
sion fields to make calculations faster [20]. Fur-
ther, the use of hyperelliptic curves and public key
cryptography based on them has been suggested by
some mathematicians [22]. Hyperelliptic curves
are, however, mathematically even more chal-
lenging than elliptic curves. Some of the details,
which are essential from the implementation point
of view, like the representation of the point enti-
ties, have not yet been standardized [23].

Yet another approach is to use entirely different
kinds of public key cryptosystems. One such sys-
tem is NTRU which was recently patented by
Hoffstein et. al. This system seems ideal for smart
card implementations as its code takes up only a
very small space of 1500 bytes, and it is suggested
to perform much faster than EC based systems
[24], [25].

As the Java environment on the card poses a major
limit to what optimizations can be done in practice
we plan to implement our next ECDSA prototype,
together with algorithmic optimizations, on a palm
sized computer.

7 Conclusions

While using Java is usually considered to enhance
the quality of the code, especially the limitations of
memory on the cards are made worse by the use of
Java as a programming language. In current ver-
sions of Java Card the once reserved memory stays
reserved until the given applet is deactivated. On
many Java Card platforms, including the Schlum-
berger Access platform we used, there is no ex-
plicit way to allocate objects in RAM. This makes
the porting of working Standard Java applications
a considerable challenge. Memory must be reused,
and every allocation of variables and objects must
be carefully considered. The inability to allocate
objects in transient memory results in a situation
where most objects end up in EEPROM which
slows down the execution speed of the applet.

In practice, a systematic method for reusing the
variables is required. In our approach we success-
fully used our own modification of register alloca-
tion method and register interfere graphs with
graph coloring. Variable interface graphs seem to
easily grow so large that they cannot in practice be
used without automated tool support. This is also a
problem in the case of register allocation: the very
nature of the problem, the complexity of it makes it
intractable in a general case. Efficient heuristic
methods are available and can be successfully used
in practice as the research in compiler design has
demonstrated. Theory for creating the required
tools for solving Java Card memory allocation
problems exists. Even following the current stan-
dard is possible by incorporating such methods in
external tools.

All in all, if we were to begin the same project with
our current understanding and knowledge today,
we most likely would not select smart cards as our
secure tokens. Instead, a more capable device such
as a PDA would be chosen. PDAs have an order of
magnitude more memory so the memory allocation
doesn’t pose as inhibiting limits as with smart
cards. This is also the direction where we plan to
continue our implementation efforts.

While our experiences with smart cards is consid-
ered valuable, if faced with a similar design prob-
lem today we would more seriously consider using
other than Java based cards. Of course, we would
still need to keep in mind that we had a fully func-
tional cryptographic module in Java. From a point

Lessons learned on implementing ECDSA on a Java smart card

11

of view of commercial implementation, which has
to conform to strict performance requirements, the
choice would clearly be something else than a Java
based platform. As far as research is concerned,
implementing performance sensitive algorithms
with high level languages is very important as this
kind of activity will probably increase in the fu-
ture.

Software based cryptography for smart cards re-
quires considerable engineering effort even when
using elliptic curve methods. For completely Java
based cards elliptic curve methods are insufficient
in providing speed that could be used in practical
applications. New types of public key cryptosys-
tems promise better performance, but empirical
research results are still missing.

References

[1] Gary McGraw, Edward W. Felten, Securing
Java, Wiley Computers Publishing, John
Wiley & Sons, Inc.

[2] Java Card Virtual Machine specification, Sun
Microsystems.

[3] Java Card 2.1 Application Programming In-
terface, Sun Microsystems, Inc., February
1999.

[4] Cyberflex Access Programmer’s Guide,
Schlumberger, 1998.

[5] J. Morris Chang, Witawas Srisa-an and Chia-
Tien Dan Lo, An Introduction to DMMX (Dy-
namic Memory Management Extension),
ICCD Workshop on Hardware Support for
Objects and Microarchitectures for Java,
Austin, TX. October 10, 1999.

[6] Pekka Nikander, An Architecture for Authori-
zation and Delegation in Distributed Object-
Oriented Agent Systems, Helsinki University
of Technology, Doctoral Dissertation, 1999.

[7] Jonna Partanen, Pekka Nikander, Adding
SPKI Certificates to JDK 1.2, Proceedings of
the Nordsec'98, the Third Nordic Workshop
on Secure IT Systems, November 1998.

[8] Tero Hasu, Yki Kortesniemi, Implementing
an SPKI Certificate Repository within the
DNS, Poster Paper Collection of the Theory

and Practice in Public Key Cryptography
(PKC 2000), January 2000.

[9] Yki Kortesniemi, Implementing Elliptic
Curve Cryptosystems in Java 1.2, NordSec
1998.

[10] The Elliptic Curve Cryptosystem for Smart
Cards, ECC Whitepapers, May 1998.

[11] Don B. Johnson, Alfred J. Menezes, Elliptic
Curve DSA (ECDSA): An Enhanced DSA.

[12] IEEE unapproved standards Draft, IEEE
P1363 / D10 (Draft Version 10) Standard
specifications for Public Key Cryptography,
July 16, 1999.

[13] American National Standards Institute (X9
Committee), American Bankers Association,
Working Draft, AMERICAN NATIONAL
STANDARD X9.62.1998, Public Key Cryp-
tography For The Financial Services Indus-
try: The Elliptic Curve Digital Signature Al-
gorithm (ECDSA), September 20, 1998.

[14] Tommi Elo, Pekka Nikander, Decentralized
Authorization on Java Smart – A Software
Implementation, to appear in Cardis 2000,
September 2000.

[15] Lasse Leskelä, Implementing Arithmetic for
Elliptic Curve Cryptosystems, Master’s The-
sis, Helsinki University of Technology, Janu-
ary 1999.

[16] Thomas W. Hungerford, Algebra, Graduate
Texts in Mathematics, Springer-Verlag, New
York, Inc, 1974

[17] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman,
Compilers Principles, Techniques and Tools,
Addison-Wesley series in Computer Science,
1986.

[18] Michael Rosing, Implementing Elliptic Curve
Cryptography, Manning Publications Co.,
1998.

[19] Ian F. Blake, G. Seroussi, Nigel P. Smart,
Elliptic Curves in Cryptography, London
Mathematical Society Lecture Note Series
165, 1999.

[20] D. Bailey, C. Paar, Optimal Extension Fields
for Fast Arithmetic in Public-Key Algorithms,
CRYPTO '98, August 1998.

Lessons learned on implementing ECDSA on a Java smart card

12

[21] Toshio Hasegawa, Junko Nakajima and Mi-
tsuru Matsui, A Practical Implementation of
Elliptic Curve Cryptosystems over GF(p) on
a16- bit Microcomputer, First International
Workshop on Practice and Theory in Public
Key Cryptography, PKC’98, February 1998.

[22] A. Menezes, Y. Wu and R. Zuccherato, An
Elementary Introduction to Hyperelliptic
Curves, In: N. Koblitz: Algebraic Aspects of
Cryptography. Springer-Verlag, Berlin Hei-
delberg New York (1998).

[23] Maarit Hietalahti, A Literature Survey of The
Hyperelliptic Curves and Their Use in Cryp-
tosystems, Technical Report, Helsinki Univer-
sity of Technology, January 2000.

[24] Jeff Hoffstein, Daniel Lieman, Jill Pipher,
Joseph H. Silverman, NTRU: A Public Key
Cryptosystem, IEEE P1363: Protocols from
other families of public-key algorithms,
Technical Report, October 1999.

[25] The NTRU Public Key Cryptosystem – Oper-
ating Characteristics and Comparison With
RSA, ElGamal, and ECC Cryptoystems,
NTRU Communications & Content Security
Learning Center, available from
http://www.ntru.com/technology/tutorials/ope
ratingchar.htm

[26] Jordi Castellà-Roca, Josep Domingo-Ferrer,
Jordi Herrera-Joancomartí and Jordi Planes, A
Performance comparison of Java Cards for
micropayment implementation, Smart card re-
search and advanced applications, Fourth
Working Conference on Smart Card Research
and Advanced Applications, Kluwer Aca-
demic Publishers, IFIP Cardis 2000, Septem-
ber 2000.

[27] Marcus Oestericher, Kseerabdhi Krishna,
Object Lifetimes in Java Card, Proceedings of
Usenix Workshop on Smartcard Technology,
May 1999.

