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Abstract  Traditionally, smart cards have been used as secure tokens in identity
based access control. That is, a smart card has been used as an intel-
ligent storage of protected cryptographic information, such as a shared
secret or a private key in a public key system. The cryptographic in-
formation is then used to prove the possession of the card in a secure
way either locally or remotely over telecommunication links. In this
paper we present a basis for another type of use for smart cards, where
smart cards are not used as identification tokens but as authorization
tokens. Our approach is based on SPKI-like authorization certificates
along with ECDSA based public key cryptography. The ECDSA algo-
rithms provide us the benefits of smaller key sizes, potentially better
running times in software-only implementations, and the possibility to
create new key pairs on the card in a reasonable time. The latter fea-
ture can be used, as we show, to provide additional protection to the
user in the form of enhanced privacy. Our current prototype implemen-
tation uses the Java Card specification, and we also compare our card
implementation with an earlier ECDSA implementation written for a
workstation environment.

Keywords: Java Card, Elliptic Curves, digital signatures, ECDSA, public key cryp-
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1. INTRODUCTION

Decentralized trust management and authorization, as promoted by
a number of approaches including the PolicyMaker [1], SPKI [2],[3], and
TeSSA [4], are based on public key cryptography and semantically rich
authorization certificates. All of these approaches are based on the as-
sumption that the acting principals have a secure way of storing any
private keys in their possession. However, the problem of the securing
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cryptographic private keys has been, and continues to be, a formidable
challenge in practical applications of public key cryptography. Fore, in
general, security is only as strong as the weakest link in the chain, and
keeping private keys truly private presents challenges that cryptography
alone cannot solve. In the end, there always seems to be a need for
secure storage, whether it’s a password in ones mind or a private key
locked in a safe. One established solution is to use smart cards as secure
storage media.

Elliptic curve cryptography (ECC) has some advantages over more
established public key techniques that makes it particularly interesting
for smart card software implementations. Mainly, the much shorter key
lengths in contrast to traditional methods help in squeezing the cryp-
tosystem to the limited environment of the current cards. Because smart
cards are not very fast, the shorter key length and resulting faster run-
ning times also favour ECC over finite field public key algorithms. As
an additional benefit, the operations required to create new key pairs
in ECC based public key systems are computationally cheap when com-
pared, e.g., to the effort needed to create new RSA key pairs. This
provides some additional benefits with respect to authorization certifi-
cate systems, since systems based on direct authorization tend to use
more keys and have shorter key lifespan than more traditional identity
based public key infrastructures.

Our aim in the presented work is to provide a smart card platform for
authorization architectures that use certificates. A smart card can be
used to securely store private keys needed by the authorization certifi-
cates. A smart card with an Elliptic Curve Digital Signature Algorithm
(ECDSA) implementation can also be used for secure creation of new
keys and certificates, and for checking the validity of previously created
certificates.

1.1. CRYPTOGRAPHY IN ACCESS
CONTROL

The traditional approach to access control is based on a two step pro-
cess, consisting of strong identification and access right check. A user is
first identified by checking that he or she possesses and controls the pri-
vate key corresponding to a certified public key. This can be done by a
challenge-response protocol or be part of a more sophisticated authenti-
cation of authorization management protocol. A successful identification
results in a name, which is supposed to represent the identity of the user.
After the identity authentication check an access control list (ACL) is
consulted to see if the operation is allowed for that name. These trust
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relationships, along with other bindings pertaining to a typical identity
certificate system, are illustrated in Fig. 1. In addition to those relation-
ships already mentioned, there is one more that we want to emphasise,
i.e., the link between a person and that person’s name. This link is not
cryptographic in nature, and is a bit problematic since different persons
can have exactly the same names, and it is not necessarily clear what
we mean with a name in a distributed setting (see, e.g., [2], [3], [5], [6])-

Hatme challenge

G

Person

=

Figure 1 Trust relationships when using identity certificates for access control [5].

1.1.1 Authorization certificates authorize without identifi-
cation. It is rarely necessary to identify a user in order to make
access-control decisions. In authorization certificates, names can be
avoided altogether. In Fig. 2, the relationships between entities in an
authorization certificate based access control setting are explained. The
authorizing party signs a document (certificate) that describes what the
possessor of a certain private key can do. Thus, authorization certificates
bind operations directly to keys.
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Figure 2 Bindings in the authorization certificate [5].

By employing authorization certificates, it is possible to make access-
control decisions that do not require any knowledge of the name or iden-
tity! of the user. By presenting a certificate and proving possession of

T.e, identity other than the public key, which may be considered as an identity (or name)
itself.
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the related private key, the user can convince the issuer of the certificate
that he or she has the requested right to access the indicated resource.
Because it is possible for the user to posses several key pairs, and even
create temporary key pairs on the fly, the use of one key cannot be easily
related to use of other keys. When desired, this property can be used to
build anonymity in the core functionality of the authorization.

1.1.2 Delegation of rights. For the rightful owner, it is usu-
ally possible to transfer the rights granted by a certain certificate to some
other party. This process is called delegation. In order to be control-
lable, delegation must be enabled by the authority granting the original
certificate, otherwise a certificate is not delegable. This means that an
authority can choose either to trust or not to trust the redistribution
of rights to a subject. This is, of course, a very different process than
copying rights, since the authority can, by checking the delegation chain,
make sure that the chain is valid. It might choose to perform additional
checks to make sure, for example, that no unwanted parties are involved.
It might also check that chain is not too long, and accept it only if it
is shorter than some safety length. These additional checks require us
trust to the reduction policies of our associates, however.

1.1.3 SPKI authorization certificates. One proposal that
uses authorization certificates is SPKI, which is under development in
the IETF [2], [3]. An SPKI certificate consists of fields. From the se-
curity point of view, five of the certificate fields are important: issuer,
subject, delegation, authority, and validity. Formally, an SPKI certifi-
cate can be represented as a five-tuple (I,S,D,A,V), where I is the
public key of the issuer and S is the public key of the subject for which
the rights are given. D is the delegation bit, which, if true, states that
the authorization can be further delegated. A describes the authority
granted; it is also called tag. Thus, the tag contains the description of
the delegated rights. V is the validity field, and may describe a network
location where the validity of the certificate can be checked or a period
of time during which the certificate is considered valid. Also other types
of validity conditions are possible.

1.1.4 Certificate Reduction Certificates. Whenever SPKI
certificates are used in any typical setting, they tend to form certificate
chains. Basically, a chain of SPKI certificates is an ordered collection of
certificates in such a way that the subject of a preceding certificate is
identical to the issuer of the following certificate. That is, the grantee
of one certificate further grants (some of) its rights by creating another
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certificate. If the security policy of the first issuer of such a chain allows,
the chain may be replaced with a single certificate, called Certificate
Reduction Certificate (CRC). For example, given two certificates (I,
Sl, D = true, Al, Vi) and (IQ,SQ,DQ,AQ,‘/Q), iff Sl equals with IQ,
then this certificate chain (of length two) can be reduced to a certificate
(Il, SQ,DQ,A, V) where A = n(Al,AQ) and V = n(‘/l, va) [3]

A Certificate Reduction Certificate server, or CRC-server for short, is
an on-line certificate issuer that is willing to return CRCs in response
to certificate chains sent to it. That is, when a CRC-server receives a
certificate chain whose first certificate is signed by itself, it verifies the
chain according to the SPKI chain verification rules, possibly augmented
with its own local policy, and if the verification passes it issues a corre-
sponding CRC and sends it back to the sender of the chain. CRC-servers
can be used to enhance privacy.

1.2, ELLIPTIC CURVE CRYPTOGRAPHY
ON A SMART CARD

Using elliptic curve cryptography (ECC) instead of more traditio-
nal approaches has some relevance when using standard low-cost smart
cards. ECC offers smaller key sizes, and the implementations are there-
fore potentially faster. Smaller keys take less storage, which is important
because smart cards have limited memory to be used. Also the faster
key generation offered by the ECC makes the secure on-the-fly key gen-
eration practical. This is important especially in architectures that offer
support for anonymity, which is based on the use of many key pairs.

On the other hand, using ECC has also some obvious drawbacks.
For example, ECDLP, the problem on which ECC security is based on,
has not been analysed as rigoriously as, e.g., the integer factorization
problem, and this may cause some problems in the future. ECC mathe-
matics are somewhat more advanced, and it has not been studied as long
or as widely as traditional arithmetics. This makes the implementation
harder and more error-prone. The implications of using elliptic curve
cryptography instead of traditional DLP or IFP based problems can be
summarized as presented in the Table 1.

1.3. PROJECT GOALS

In our project, we explore the possibility of implementing a digital sig-
nature algorithm, in software, to commercially available smart cards, and
use this implementation for decentralized authorization and trust man-
agement. The work is based on a previous implementation of ECDSA
that runs on Standard Java platform [8]. We have ported this imple-



ECC Benefits ECC Drawbacks

Shorter key length More complicated mathe-
matics

Faster running time of | Security of ECDLP has

the normal operations been analysed less than

e.g. integer factorization

Smaller storage require-
ments
Faster key generation

Table 1 ECC on a smart card

mentation to a smart card environment and provided the underlying
software functionality absent in the standard Java Card. The main goal
has been to demonstrate feasibility of the software implementation. A
secondary goal has been to research and evaluate a possibility of practi-
cal applications with respect to the speed of the routines.

1.4. ORGANIZATION OF THIS PAPER

The rest of this paper is organized as follows. In Sect. 2. we describe
the Java Card architecture in general, and its security differences from
standard Java. Sect. 3. describes the architecture of our implementa-
tion, and outlines the original implementation level goals we had when
starting this work. In Sect. 4. we provide the actual details of the imple-
mentation, while in Sect. 5. we summarize the lessions attained so far.
Sect. 6. outlines our current notions of future work. In the Appendix,
we briefly outline the algorithms used in Elliptic Curve Cryptography.

2. JAVA CARD ARCHITECTURE

The Java Card architecture is a limited subset of Java. It defines
its own APT and virtual machine. The limitations of the current cards
won’t allow a full-blown virtual machine or other Standard Java capa-
bilities. For that reason, the Java platform architecture was designed
with different virtual machines for different purposes.

Java Card API 2.0 consists of the three fundamental packages: java-
card.framework, javacardx.framwork and javacardx.crypto. The
javacard.framework package provides a framework of classes and in-
terfaces for the core functionality of a Java Card applet. The JCSystem
class acts as a central point of execution. The AID class encapsulates
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the ISO application identifier, which is used to uniquely match applets.
The AID class has methods to get to the Applet instance, which all ap-
plets on the card inherit. An APDU object encapsulates an Application
Protocol Data Unit (as defined by ISO), which is the communication
protocol between the card and off card entities. Applets can use the ser-
vices of the IS0 and Util classes. The IS0 class associates ISO-defined
constants to their actual values, while the Util class contains various
native utility functions such as arraycopy (). The OwnerPIN class can
be used by the applets to query the status of the PIN recognition, and
ask the user to authenticate. The javacardx.framework package pro-
vides classes and interfaces for ACLs, card operating systems, and other
vendor specific extensions. The javacardx.crypto extension package
contains the security classes and interfaces. It isn’t necessarily available
due to export restrictions.

2.1. JAVA CARD VS. STANDARD JAVA

Java, as it exists on the card, has many limitations that make the
development rather different from that practised in other Java environ-
ments. Particularly, the lack of garbage collection affects the develop-
ment process, since smart cards don’t have too much memory even to
begin with. The specification of Java Card won’t allow the use of de-
structors either, so freeing the memory is not supported. This means
that the memory that has been reserved stays that way until the given
applet is deactivated. It also means some of the high level nature of
Java is lost, since programmers must now constantly watch the usage of
memory.

2.2, JAVA CARD SECURITY

Java Card security has not yet been analysed deeply in the literature,
but some information is available [11]. Many of the changes from the
standard Java specification are done in order to fit Java to the limited
environment of the current cards, but these changes also have security
implications. Some changes increase security risks while others lessen
them. One thing that needs to be addressed is that much of the base
security model in Standard Java is totally absent from Java Card [18].

2.2.1 Java Card properties increasing security. The fol-
lowing properties make the Java Card environment more secure than the
standard Java environments are.

m  Lack of threads. The security analysis becomes much easier with-
out threads.



m  Absence of dynamic class loading. If VM can be confused about
the types of objects, the Java security model brakes.

2.2.2 Java Card properties decreasing security. The fol-
lowing properties make the Java Card environment less secure than the
standard Java environments are [18].

m  Lack of garbage collection. Memory leaks are a well known source
of numerous security problems.

m  Fxception propagation problems. Uncaught exceptions could lead
to a card becoming muted.

m  Multiple applications and applet firewalling. Attacks between dif-
ferent vendor’s applications is a risk.

m  Access to native code. Any available native methods must be con-
sidered to be parts of the TCB.

3. IMPLEMENTATION ARCHITECTURE
AND CRITERIA

As already mentioned, we used an existing Standard Java (worksta-
tion) ECDSA implementation as a basis for our present work. That
implementation uses the JDK1.2 class java.math.BigInteger to pro-
vide all integer operations. However, that class is an immutable class,
which means that every method call returns a new object that must later
be garbage collected. This is clearly unsuitable for the card environment,
so we implemented our own large integer class (MutableLargeInteger),
which can reuse the allocated objects.

The card platform we used is Schlumberger Access with 16kB EEP-
ROM. Its Java environment has software support for 16-bit type of Java
(short) at longest, 32-bit integers (int) or 64-bit ones (long) are not
available. For this reason that we could only use short integers in
our MutableLargeInteger class. This card has no hardware crypto-
acceleration, so all the operations are executed on the normal processor
of the card.

3.1. ARITHMETICS AND CHOICES FOR
THE FINITE FIELD

The implementation of ECC algorithms needs several levels of arith-
metic. It makes sense to model these levels as a stack (Fig. 3). The
target platform needs to be able to handle normal integer computations,
such as bit-wise xor, bit-wise and, and shifting of bit patterns. Since the
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register length is much smaller than the size of the bit patterns we oper-
ate with, we must be cautious on how the underlying hardware is used.
Also the speed of the hardware in integer operations, such as addition
and multiplication, is of importance in the making of implementation
choices.

The finite field arithmetic operations are at the very low level on the
call stack, as one can immediately see in Fig. 3. This means that the
processor will likely spend a significant amount of time doing finite field
arithmetic; thus, the efficiency of its implementation largely effects the
efficiency of the whole architecture [18].

ECDRA
Choice of Basis
“Elliptic Curve Modular Big Integer
Arithrmetic Arithmetic
Finite Field
Arithrmetic

Java Card APTIZ2.0/2.1

Java Card Hardware

Figure 8 Levels of the arithmetic architectures in a smart card ECDSA.

In order to implement ECDSA, we need both modular big integer
arithmetic and finite field arithmetic. While the pure elliptic curve
operations can be built on top of many kinds of finite fields [19], two
choices are most used: Fam or characteristic two fields, and F), called
the odd prime fields. Fom fields promise clear performance advantages
on processors that have small registers and relatively unoptimized inte-
ger instructions with no access to special big integer hardware. Much of
this promise of speed is based on the fact that operations can be imple-
mented only by using basic bit operations such as and-ing and xor-ing,
which are typically the fastest operations on any processor. It should be
noted that these promises aren’t necessarily realized when using cards
with Java because there is no direct access to hardware from the pure
Java code.

Finite field arithmetic can look quite different depending on what is
the choice of the underlying field. In practice, we were faced with the
following real alternatives for the purposes of our implementation.

= Odd prime field (Fp)
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» Characteristic two finite field with a polynomial base (Fam)

Of these we chose the odd prime field largely for practical reasons. We
had a possibility to use an existing debugged implementation, that was
based on the odd prime finite field arithmetic. That existing code base
and architecture would not have been of much use, had we implemented
ECDSA with a different underlying field. Otherwise the EC arithmetic
operations used in the elliptic curve layer would have had to be largely
rewritten. This is because they have direct interface connectivity with
the lower finite field layer and hence directly call its services.

3.2. PERFORMANCE SENSITIVITY OF THE
LAYERS

We assume that the performance of the whole architecture depends
on the arithmetics roughly in a level order: the lower the part is in
the stack in Fig. 3, the more performance specific it is. As we are
concentrating on software, the two lowest parts, namely Java Card HW
and its implementation of the Java Card API, are not a major concern
for us. Also there is little data of different Java Card manufacturers
environments and architectures, that would address their performance
differences. The performance comparison would need to develop some
test software and run it on different platforms to address the differences
in speed. In the future, we intend to use our software also for this
purpose.

3.3. THE WORKSTATION ECDSA

The ECDSAParams interface uniquely identifies the elliptic curve used
as well as the generator point. The ECPoint interface is used to rep-
resent a point on the elliptic curve. This interface defines a class that
contains all the needed operations for calculations with points. The
ECDSAPublicKey and the ECDSAPrivateKey are then used as an actual
key pair.

For each interface there is a corresponding implementation class. The
ECDSASignature and ECDSAKeyPairGenerator classes have been inher-
ited from the corresponding abstract classes of Java in the Security
package. The implementation classes like the ones mentioned above are
registered in Java and they perform the actual cryptographic operations.
Finally, there is the ECProvider that has been used to register the new
engines so that they can be called through the provider mechanism. As
can be seen, much of the structure in the workstation implementation
is actually devoted to the provider functionality, that is only an addi-
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tional layer for using the ECDSA. Unfortunately, the Java Card API
doesn’t offer same kind of support for cryptoservices as standard Java.
Most significantly, there is no support for providers. For this reason, we
stripped off this functionality in the card implementation.

3.4. PLANNING THE IMPLEMENTATION

We started with the assumption that the underlying code should be
used if possible, since it represented well debugged and finished code.
This would lead to code reuse, which could help in the implementation.

The goals of the implementation were defined as follows.

s The main goal is a working implementation of the ECDSA to
some of the current Java capable cards, which can support at least
160-bit but preferably higher key length.

m A secondary goal is to achieve a performance, that will result
in 5-10 second signature operations. And further, a 5-10 second
performance of the key generation when using a preset curve.

Commercial applications would require sub-second operations. How-
ever, since one of our primary concerns is to evaluate if the implemen-
tation is possible using Java, a five to ten fold increase is justifiable, as
native low level code can be substantially faster than Java Card code.
Thus, the implementation that achieves these goals could be viewed as a
proof of concept that commercial quality software cryptography is feasi-
ble with the current Java capable cards. It would also provide a case of
a successful use of Java Card programming environment in demanding
application development.

The motivation for our secondary goal is to be able to create new keys
in a time window which is not too wide for most applications. Achieving
this would make it possible to create new key pairs on the fly. This
would enable us to better support anonymity, an advantage provided
by SPKI-like authorization architectures. We can, for example, delegate
the authority given to us to another key pair, created inside the card.
That is, in doing so we are actually making a certificate chain longer
ourselves. We could then give this chain to a public CRC-server, which
reduces certificate chains, and the resulting certificate would only reveal
the last key in the chain; the one that was generated by us. Now, we
could use this certificate publicly and only the CRC-server would know
the original key pair that was issued to us.
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4. THE CARD IMPLEMENTATION

As described earlier, and depicted in Fig. 3 on page 9, the actual
implementation is built using a layer like architecture. At the very bot-
tom, we have the Java Card implementation and API provided by the
card manufacturer. On the top of that lie the basic classes providing
the needed big integer and other final field arithmetic operations. In our
case, as we are using the odd prime field F), the big integer and finite
field operations are almost identical, thereby allowing us to save space
on the card. The implementation issues involved with these low layer
operations are explored in detail in Sect. 4.1, while Sect. 4.1.2 and Sect.
4.2. concentrate on the upper layers.

4.1. MUTABLE CLASSES IN OBJECT
ORIENTED PROGRAMMING

In Java, the immutability of many classes makes it easier to achieve
information hiding principles, which are central ideas in object oriented
programming in general. On the other hand, because on the Java Card
we only have limited memory and no garbage collector, we have to ex-
plicitly handle the reuse of memory. While the mutability itself need not
be in direct contrast with the OOP principles, when combined with the
need to preserve memory some problems arise.

Now, when there is no way to explicitly reclaim used parts of memory
and no garbage collector to do this automatically, any allocated memory
must be manually reused by carefully designing the number and usage
of temporary objects. This leads to a situation were the code must use
the temporary objects in such a way that no side effects occur [18].

4.1.1 Implementation of big integer arithmetics. The
actual implementation of the big integer class MutableLargeInteger
uses half register arithmetic, ported from C to Java [20]. In the half
register arithmetic we usually use only half of the bits that fit to a
machine register. In our case, a register is a Java short -type integer.
On the other hand, we plan to experiment also with an implementation
that uses full registers instead of half ones.

As already mentioned, our MutableLargeInteger is a mutable class.
The mutability of the underlying big integer class is very important
because that is what makes it possible to reuse objects. This is important
to achieve savings in memory usage, which in turn is important because
no memory that has been allocated can be freed in Java Card. We have
tried to allocate all our temporary objects as static variables. This way,
when the program executes, the needed number of temporary objects are
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reserved only once for every class and not for every instance as would
otherwise be the case.

4.1.2 The ported part of the implementation. The next
layer of the ECDSA card implementation consists of the workstation
ECDSA implementation with the Java 2 API specific provider mech-
anism removed. The interfaces themselves are unchanged, but in the
card version we have only one implementation class corresponding each
of the interfaces. The implementation classes have been modified to use
as much static temporary MutableLargerInteger variables as possible.
The useage of these instances was optimized using the register allocation
like reuse algorithm.

4.2, USING CERTIFICATES WITH
ON-THE-CARD KEY CREATION

As was already mentioned in Sect. 3.4, it is beneficial to be able
create key pairs directly on the card. If all the authorization tokens in
the architecture support generation of new keys, it is easier to support
anonymity. The ability to create temporary keys fast enough makes it
possible to create key pairs on-the-fly basis. When the new key pairs are
created on the card, the public key needs to be exported from the card.
We might need to be able to send it securely to a public key server, for
example. If the computer and the reader we are using are trusted, the
task is easy, but usually the hardware the smart cards are connected to
are at least partially untrusted. In the case of untrusted hardware, we
can create certificates on the card. The public key is then placed in the
certificate, which is protected against modification by the cryptographic
signature.

According to our initial analysis, the size of the typical ECDSA signed
SPKI certificate is under 300 bytes in size. This consists roughly of the
two public keys of the issuer and subject (256 bits each), a signature
(160 bits), a hash of the signature (160 bits), and additional headers
(about 100 bytes). We must also include the size of the validity and
tag fields; the size is also a function of the those. The more complex
the authority, which is written in the tag field, the longer the certificate
becomes. In most cases, the validity field contains only the time limits
under which the certificate is valid (30 bytes). Correspondingly, even
a cleartext tag-field can be quite simple (e.g. 100 bytes). If RSA keys
offering the corresponding level of security were used, only the two keys
combined would take more than 500 bytes.
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5. EVALUATION AND LESSONS LEARNED

As we indicated in Sect. 1.3. on page 5, our goal was to evaluate
the feasibility of implementing ECDSA on commercially available Java
Card environments, to study to what extend the existing ECDSA imple-
mentation that was written for a workstation implementation could be
reused in this project, and to provide smart card support for decentral-
ized authorization systems. While our implementation is still progressing
towards its final stages, and the actual implementation is not yet fully
optimized, a number of interesting results and observations may readily
be stated.

5.1. PERFORMANCE DATA

Table 2 compares the performance of our MutableLargeInteger class
with the built in JDK 1.2 BigInteger in the workstation environment.
The benchmarked version of MutableLargeInteger uses only card com-
patible datatypes. No variables are defined in the local scope and the
number of temporary objects has been minimized using the register al-
location approach.

The figures in the Table 3 tell us that the performance of the current
MutableLargeInteger prototype on the card leaves room for improve-
ment. As multiplication and inversion are the basic steps of the ECDSA
algorithm, we can readily tell something about the performance of the

JDK1.2 BigInteger | MutableLargeInteger
1000 multiplications | < 0.1 sec. 0.3 sec.
1000 additions & 0.1 sec. < 0.1 sec.
1000 inversions 1 sec. 44 sec.

Table 2 Performance comparison of the different big integer implementations with
the number length of 192 bits.

50 bits | 100 bits | 192 bits
Multiplication | 15 sec. | 39 sec. 137 sec.
Addition 0.7 sec. | 2 sec. 6 sec.
Inversions 370 sec. | N/A N/A

Table 8 Performance comparison of the different big integer implementations with
the number length of 192 bits.
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whole ECDSA prototype. For example, 192-bit ECDSA needs about
30000 inversions during the signature operation and about half of that
for the key generation or checking of the signature.

Looking at figures in the Table 2, we can deduce that inversion opera-
tion of our current prototype is roughly 50 times as slow as with the JDK
1.2 implementation of BigInteger. The figures are not entirely compa-
rable as JDK implementation uses native methods. It is interesting to
note that multiplication is about 30 times slower on our implementation
than with JDK 1.2 implementation. We know that our implementation
of the inversion routine is not fully optimized, but we presume it is still
hard to make it orders of magnitude faster. Our multiplication routine
on the other hand is the simplest possible and far from optimal. Multi-
plication is also heavily used to implement inversion. This would suggest
that by better optimizing our multiplication routine, we could also get
a much faster inversion.

This optimization alone could give us a ten to fifty fold increase in
the speed of the basic finite field operations, which would elevate their
performance from hundreds of seconds to seconds or tens of seconds. Un-
fortunately, ECDSA uses these basic field operations very many times,
which suggests that we are still quite far from achieving total perfor-
mance figures in the tens of seconds class.

5.2. THE JAVA CARD ENVIRONMENT

When considering the Java Card environment, we were faced with
a number of dissimilarities that made it relatively hard to apply our
previous knowledge of standard Java to the card environment. First,
the lack of garbage collection, and any other facilities that would allow
direct memory reuse, makes a huge difference between the Java Card
environment and any of the other Java environments. With this dif-
ference, the whole nature of the software development process changes.
For example, instead of the design of UML class diagrams, and there-
fore the relationships and associations between classes, the focus should
be towards estimating the needed memory consumption, which means
runtime objects become much more important.

Second, security considerations are almost totally different. The lim-
ited execution environment with the much more limited Java Card applet
security approach, are behind the basic differences. However, the under-
lying trust assumptions may make a much bigger difference, depending
on the security requirements of the actual application. Basically, the
Java Card environment itself must be considered trusted.
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Also an interesting point to consider is the case of porting workstation
Java code to the card environment. Maybe the most important lession
here is that while we were able to preserve the structure of the interfaces,
most part of the code needed revisions due to the semantical differences
(mutability vs. immutablity). Thus, according to our experience so far,
it seems almost inevitable that the write-once-run-everywhere principle,
which Sun is touting for Java, definitely does not apply to the Java Card
environment. Code written for other Java environments is almost sure
not to run without changes, due to the limited nature of Java Card.

To summarize and to further illustrate our Java related experiences,
it is instructive to consider the design choices faced when developing
our MutableLargeInteger class. Basically, we faced the problem of
recycling and reusing instance objects; a case of designing object struc-
tures. Our current implementation is carefully hand crafted; each algo-
rithm is designed to run in isolation, and to use a minimum number of
MutableLargelInteger instances. The whole reuse issue is a well known
example of the so called register allocation problem usually associated
with compiler design. Compilers need to use the registers of the target
computer efficiently. Much the same way, we are forced to the reuse of al-
ready created objects to get around the memory limitations of Java Card
environment. We envisage that the Java compiler could be extended to
handle BigInteger instances in a same way the compiler already han-
dles String intances, and to perform register allocations as a compile
time process. In such a case, the underlying implementation might well
use mutable objects while the compiler would preserve the illustration
of immutable values.

An alternative to the compiler based register allocation approach
could be implemented with reference counting and primitive finaliza-
tion. While the current Java Card architecture supports no memory
management whatsoever, it would not be too hard to add primitive ref-
erence counting to the environment. This could resemble, for example,
the java.lang.ref.SoftReference approach. A reference counting ap-
proach would allow the finalize method to be called whenever there are
no more active references to an object. That method could then return
the object to a pool of reusable objects.

Thus, at first glance, it seems that mixing of Java and smart cards
may not be on a very solid foundation from the serious programming
point of view. Basically, Java is a great language to program with,
but if the programmer has very limited amount of available memory,
which will always be the case with smart cards, one is forced to reuse
objects much the same way that one saves registers in assembly language
programming. This is not very convenient, and we argue that some



Decentralized Authorization with ECDSA on a Java Smart Card 17

modifications would be beneficial if Java is to gain more popularity in
smart card programming. Enhancing the compilers or even providing
some partial form of garbage collection may ease the situation while not
requiring a full blown garbage collection mechanism.

5.3. ECC AND DECENTRALIZED
AUTHORIZATION

According to our initial evaluations, ECC based keys and certificates
seem to offer a number of benefits over more traditional approaches
when considering smart cards for decentralized authorization. Although
at this point the performance of the implementation leaves room for im-
provement, it seems that a pure Java software implementation, no matter
how optimized, is not yet sufficient on the current Java cards with no
special crypto hardware. However, the order-of-magnitude shorter key
length in ECDSA makes it possible to store a much larger number of
key pairs and certificates on a card than when using e.g. RSA. Further-
more, since the key generation is quite fast in comparision with RSA,
it is feasible to create new key pairs within the card, on the condition
that the performance of the more basic operations can be made accept-
able. Since the card itself must be assumed trusted, the security of the
key pairs created on the card may be considered quite good. With the
use of suitable Certificate-Reduction-Certificate servers, such keys can
be effectively used to provide controlled anonymity, thereby enhancing
privacy in the overall system.

6. FUTURE WORK

In the near future, we expect to complete a better optimized ver-
sion of our implementation. Also an empirical performance comparison
of the F, and Fom in the Java environment would be important as it
would clarify how directly traditional performance evaluations can be
generalized to Java environments. It has been hypothesized that an op-
timal normal basis version would be faster than the big integer based one
[21], [22], [23]; however, it is not clear weather the optimal normal ba-
sis would provide better performance in case of smart cards using Java,
since native processor instructions are not readily available in a pure
Java environment. Therefore, the argumentation in [17] is not neces-
sarily valid. Despite our continuous efforts to find empirically validated
comparisons between these architectures, we have been unable to find
any published work of such nature. It would be important to empirically
compare these two quite different implementation options, as they are
both equally included in at least two EC standards [13], [14].
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Appendix: ECDSA algorithms

ECDSA is the EC analogue of the more widely used DSA [12], [13].

Key generation

Signing a message

1 Select an elliptic curve E(Fp)
so that the number of points in
it is divisible by a large prime
n.

2 Select a point P € E(Fp) of
order n.

3 Select a cryptographically
strong random number (inte-
ger) d in the interval [1,n—1].

4 Compute QQ = dP.

5 The public key is (E, P,n,Q).
The corresponding private key
is d. Here E is the elliptic
curve used, P is the chosen
point on that curve, and @ is
the public key point.

To sign a message m, the following
algorithm applies.

1

Select a cryptographically
strong random number £ in
the interval [1,n — 1].

Compute kP = (z1,y1) and
r = 1 mod n.

Compute £~ mod n.

Compute s = k '(h(m) +
dr) mod n, where h is the Se-
cure Hash Algorithm (SHA-

1).

If s = 0 then go to step 1. (If
then does not exist.)

The Signature for m is (r, s).

Verification of signature

1 Obtain the signers public key
(E,P,n,Q) securely. Verify
that and are in r and s are in
the interval [1,n — 1].

2 Compute w = s; mod n and
h(m).

3 Compute u; = h(m)w mod n
and uo = rw mod n.

4 Compute u1 P+u2Q = (z0,Y0)
and v = zy mod n.

5 Accept the signature if v = 7.
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