
Y K I K O R T E S N I E M I

MANAGING
THE USAGE OF

AUTHORISATION
CERTIFICATES

LICENTIATE’S THESIS

May 30, 2003

Helsinki University of Technology

Department of Computer Science and Engineering

Telecommunications Software and Multimedia Laboratory

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF THE
Deparment on Computer Science and Engineering LICENTIATE’S THESIS

Date 30.5.2003 Author
Yki Kortesniemi Pages 41+42
Title of the Thesis
Managing the Usage of Authorisation Certificates

Language
Englanti

Chair
Formaalit menetelmät tietojenkäsittelytekniikassa

Chair code
T-79

Supervisor
Professori Hannu Kari
Instructor
Professori Hannu Kari

Limited valuable resources need protection from unintended users and excessive

usage. This problem can be solved using access control of some form. Many good

technologies exist for centralised systems, but distributed systems present interest-

ing challenges as the technologies are not ideally suited for situations like multiple

alternative resources, distributed management or anonymous users.

A proposed solution, SPKI authorisation certificates, naturally provide many of the

required characteristics, but they are inadequate to protect limited resources against

exploitation. They cannot support use cases where the right can be used e.g. only a

certain number of times or up to a specified amount. Instead, they always grant

unlimited access.

In this thesis, the author analyses the SPKI certificate model, identifies the missing

elements and provides the necessary additions. The resulting model enables numer-

ous new application areas. The model is then analysed from points of view of us-

ability, security and scalability. The author concludes that good usability is achiev-

able with careful design, that the new model has no new substantial security weak-

nesses, but that the issue of scalability still merits further work.

Keywords: authorisation certificate, SPKI, validity management, revocation

I

TEKNILLINEN KORKEAKOULU LISENSIAATINTUTKIMUKSEN
Tietotekniikan osasto TIIVISTELMÄ

Päiväys 30.5.2003 Tekijä
Yki Kortesniemi Sivumäärä 41+42
Työn nimi
Managing the Usage of Authorisation Certificates

Kieli
Englanti

Professuuri
Formaalit menetelmät tietojenkäsittelytekniikassa

Professuurin koodi
T-79

Työn valvoja
Professori Hannu Kari
Työn ohjaaja
Professori Hannu Kari

Rajallisia arvokkaita resursseja tulee suojata asiattomilta käyttäjiltä ja liialliselta käy-

töltä. Tämä ongelma voidaan ratkaista sopivalla pääsynhallintajärjestelmällä. Keskite-

tyille järjestelmille on olemassa monia hyviä ratkaisuja, mutta hajautetut järjestelmät

tuottavat haasteita koska ratkaisut eivät luontevasti sovellu sellaisiin tilanteisiin, jois-

sa on lukuisia vaihtoehtoisia resursseja, joissa tarvitaan hajautettua hallintaa tai joissa

käyttäjien anonymiteetti halutaan turvata.

Eräs ratkaisuehdotus, SPKI-valtuussertifikaatit, luonnostaan mahdollistaa monet

tavoitellut ominaisuudet, mutta ne ovat riittämättömiä suojaamaan rajallisia resursse-

ja liikakäytöltä. Ne eivät sovellu käyttötapauksiin joissa oikeutta voi käyttää esimer-

kiksi vain tietyn määrän kertoja tai vain määriteltyyn summaan asti, koska ne antavat

aina rajattoman käyttöoikeuden.

Tässä työssä kirjoittaja analysoi SPKI-sertifikaattimallia, tunnistaa siitä puuttuvat

osat ja tarjoaa tarvittavat täydennykset. Laajennettu malli mahdollistaa lukuisia uusia

sovellusalueita. Seuraavaksi mallia analysoidaan käytettävyyden, turvallisuuden ja

skaalautuvuuden näkökulmasta. Malli mahdollistaa hyvän käytettävyyden, jos suun-

nittelu tehdään huolella, ei sisällä isoja uusia turvaonglmia, mutta skaalautuvuus vaa-

tii vielä lisätyötä.

Avainsanat: valtuussertifikaatit, SPKI, voimassaolon hallinta, revokaatio

II

Summary of Contents

Acknowledgements.. vii

List of Publications... viii

1. Introduction.. 1

2. Background .. 3

3. Problem Statement and Criteria .. 17

4. Solution ... 19

5. Analysis ... 25

6. Future Work... 37

7. Conclusions... 39

References .. 41

Publications.. 43

III

Table of Contents

Acknowledgements ..vii

List of Publications ...viii

1. Introduction .. 1

2. Background... 3

2.1. Phases of Access Control.. 3

2.2. Digital Access Control.. 5

2.3. Digital Signatures and PKI... 6

2.4. Different Certificate Types.. 8

2.5. Using Certificate for Access Control.. 9

2.6. Managing Certificate Validity .. 11

2.7. The SPKI Certificates ... 14

3. Problem Statement and Criteria... 17

4. Solution.. 19

4.1. New Methods... 19

4.2. Certificate Validation Protocol .. 21

4.3. Validity Management Protocol ... 23

5. Analysis ... 25

5.1. Solving the Cases .. 25

5.2. Choosing the Right Validity Method... 28

5.3. Criterion: Usability... 30

5.4. Criterion: Security .. 31

5.5. Criterion: Scalability .. 33

IV

5.6. Implementing these Technologies .. 36

5.7. A Summary ... 36

6. Future Work... 37

7. Conclusions... 39

References .. 41

Publications.. 43

V

VI

ACKNOWLEDGEMENTS

First, I would like to thank Dr. Pekka Nikander and Dr. Arto Karila for getting me

started in the field of security and setting some high goals. The numerous discussions

I have had with Pekka during these years have further helped me advance my think-

ing.

This thesis is the result of working in the TeSSA research project at Helsinki Univer-

sity of Technology and at the STAMI research project at Helsinki Institute for In-

formation Technology. I am grateful to all my co-workers in these projects for their

contributions to my thinking. I am especially indebted to my co-authors Tero Hasu,

Jonna Särs, Kristiina Karvonen and Antti Latva-Koivisto for their participation in

two of the publications that form part of this thesis.

I am particularly grateful to my instructor and supervisor Prof. Hannu Kari for the

guidance and encouragement he has given me over these years.

I would also like to thank the people who helped in the writing of the introductory

part of thesis: Dr. Martti Mäntylä for his helpful advice on structuring and focusing

the work, Ms. Katja Kuusikumpu for the numerous suggestions that helped clarify

the presentation, and Mr. Benjamin Vary who once again helped me polish the lan-

guage.

Finally, I would like to thank Antti for his understanding during this process.

Espoo, May 30th 2003

VII

LIST OF PUBLICATIONS

This thesis consists of two parts. The first part provides a concise introduction to the

problem area, describes the main results, analyses their significance and provides

pointers for future work.

The second part is a collection of articles related to the theme of the thesis published

during the years 2000-2002. The publications are:

[Publication I] Yki Kortesniemi, Tero Hasu, Jonna Särs: A Revocation, Valida-

tion and Authentication Protocol for SPKI Based Delegation Systems, Pro-

ceedings of Network and Distributed System Security Symposium (NDSS

2000), 2-4 February 2000, San Diego, California.

This paper discusses the requirements for authorisation certificate revocation, intro-

duces two new revocation methods for SPKI and defines a protocol for verifying

SPKI certificate validity at the time of usage. The author was responsible for the ini-

tial idea behind this paper, but the final result was the product of tight co-operation

with the participating writers, each providing roughly equal input.

[Publication II] Kristiina Karvonen, Yki Kortesniemi, Antti Latva-Koivisto:

Evaluating Revocation Management in SPKI from a User's Point of View, Pro-

ceedings of Human Factors in Telecommunication 2001, Bergen, Norway,

2001.

This paper looks at the SPKI revocation methods from the user’s point of view and

gives system designers advice on how to implement usable systems. The author is

responsible for the initial idea behind the paper and its technical content.

VIII

[Publication III] Yki Kortesniemi: Validity Management in SPKI. Proceedings

of the 1st Annual PKI Research Workshop, Dartmouth College, Hanover,

New Hampshire, USA, April 2002.

This paper presents a protocol for managing the validity of SPKI certificates.

[Publication IV] Yki Kortesniemi: SPKI Performance and Certificate Chain

Reduction. Informatik 2002, Workshop "Credential-basierte Zugriffskontrolle

in offenen, interoperablen IT-Systemen", Dortmund, 30.9.- 3.10.2002.

This paper discusses the problems resulting from the need to evaluate long certificate

chains.

IX

X

1. INTRODUCTION

Valuable resources, such as our home or credit account, require protection so that

only the intended people can indeed access them. To achieve this, various access

control solutions are used. For instance, the lock on our front door prevents un-

wanted guests from entering our home and thus, provides us with privacy. Also

when shopping, our credit account can be used only with the corresponding credit

card. But the need for control is not limited to private property - one example is the

public transport system: without control, a number of passengers would probably

forgo buying a ticket. To avoid the freeloaders, all valuable resources need some

form access control.

Physical solutions, like a key for instance, unfortunately have some significant short-

comings: if we lose our front door key, our only recourse is to have the lock changed

and to issue new keys to all family members, because we cannot just revoke the lost

key. If instead we are talking about the door to a large company, the cost of replacing

all the locks and keys obviously becomes a much bigger problem. The solution to

this kind of situation has been to use digital technology for keys. It then becomes

possible to revoke individual keys without having access to the physical token con-

taining the key.

Digital solutions also have the capability to operate over networks. Paper bills cannot

be used to pay purchases on the Internet, but a credit card is up to the task. Alas,

credit cards are not secure enough. A credit card was a good choice for on-the-place

purchases, but the situation is completely different when shopping over the Internet,

where it is impossible to verify the possession of the card. Then, the right to pur-

1

chase is granted solely based on the knowledge of the contents of the card, which

makes it too easy to just copy this information and misuse it.

There already exist good digital access control solutions for centralised systems,

which also work on the network. However when we start to talk about larger, dis-

tributed systems we discover that the centralised access control solution is holding us

back. We need a solution that works effectively in systems with large user-bases, mul-

tiple resources and distributed management.

In this thesis, I examine this problem in detail and identify a more promising ap-

proach, which I then extend so that it can be used to solve many everyday usage sce-

narios that it previously could not solve. The resulting solution has advantages over

previous solutions, particularly in large distributed systems.

The rest of the thesis is organised as follows: Chapter 2 gives the necessary back-

ground on access control. Then, Chapter 3 defines the problem and criteria for

evaluating the solution and introduces the example cases that the solution must be

able to solve. Chapter 4 describes the solution developed and Chapter 5 analyses and

evaluates the results. Chapter 6 proposes ideas for future work and finally, Chapter 7

presents my conclusions.

2

2. BACKGROUND

In this chapter, we shall first glance at the concept of access control, then we shall

look at the main approaches of digital access control technologies and finally, focus

on one of them, capability and certificate based access control, with special regard to

the Simple Public Key Infrastructure (SPKI) authorisation certificates.

2.1. PHASES OF ACCESS CONTROL

The access control process can be said to consist of the following phases (depicted in

Figure 1)[Publication I]:

3. Changing or
revoking the decision

1. Expressing
the decision
(just once)

2. Enforcing the
decision
(repeatedly)

0. Making the
decision

Figure 1: Phases of access control.

In Phase 0, someone either owning the resource or having the right to control access

to it, known as the issuer, makes the decision to grant a user, known as the subject, the

permission, known as the right, to utilise the resource within set limitations. This de-

cision could be based on things like the issuer knowing the subject (a friend), the

subject holding some position in the issuer’s organisation or the subject being a pay-

3

ing customer to the issuer’s service. In our example, the issuer might be the sales of-

fice of a transport service and the subject is a passenger who, wants a ticket, is willing

to pay for it and in fact, has initiated the whole phase by entering the sales office.

Hence, we notice that Phase 0 can be initiated by either the issuer or the subject.

Next, in Phase 1, the issuer must somehow express the decision in a form that can

later be used to verify the subject’s right to use the resource. For instance, the pas-

senger could be issued a ticket, which the passenger then shows whenever she wants

to use the resource, i.e. travel. Naturally, this ticket has to be such that the passenger

is unable to manufacture tickets herself or modify a valid ticket to grant her addi-

tional rights, for instance, extend the validity of the ticket.

In Phase 2, whenever the subject tries to use the resource, the verifier (also known as

the validator) enforcing the access control at the resource makes sure that the right

still exists. In our example, this could be the driver who inspects the passenger’s

ticket when she steps into the bus. This validation process entails checking the sub-

ject’s right to the operation she attempts to perform, i.e. that the ticket is valid for the

intended trip and not, for instance, for a trip in another zone. The process also veri-

fies that the subject is indeed the correct user of the right, i.e. that the passenger is

not using someone else’s ticket. In practice, having a human verifier is feasible only

in a very limited set of cases and most often an automated solution is preferable, be-

cause it is less prone to errors and tends to be more economical, particularly in appli-

cations with a large user-base. Naturally, for the validation process to be automated,

the rights created in Phase 1 have to be expressed in a machine-readable format.

Compared to Phase 1, which only takes place once, Phase 2 can be repeated numer-

ous times. Therefore, it makes sense to design the access control solution so that

Phase 2 is as simple to perform as possible, even at the expense of Phase 1.

Should the passenger lose the ticket, the issuer might be able to revoke the ticket

(Phase 3) and issue a replacement. And if the certificate does not wind up revoked, it

will eventually expire when the subject exhausts the right or its validity period simply

runs out (Phase 4). Therefore, both Phases 3 and 4 bring the access control life cycle

to an end.

4

2.2. DIGITAL ACCESS CONTROL

Access control can be implemented in many ways, for instance a physical key can be

used to control access through our front door as we previously discussed. Physical

solutions, unfortunately, cannot be used over the network, a realm reserved expressly

for digital solutions. As the focus of this thesis is to find a solution that works also

over the network, we shall concentrate solely on digital access control.

Historically speaking, digital access control (hereafter referred to as: access control)

started in the form of an access matrix, which listed all authorized entities and their

rights in a table. As the number of users and the possible rights they could have

grew, the table ended up growing very large – and yet, it was mostly empty, as each

user only had a small subset of all possible rights. The solution was to split the table

giving us two very different options: access control lists and capabilities.[1]

Traditionally the popular choice has been to base access control solutions on the

concept of Access Control List (ACL), where every resource is bundled with a list of

authorised users. Typically, the list is located next to the resource, with all the rele-

vant information in one place. An example could be the VIP list at the door of a

club. In this solution, when the issuer wants to create a new right or change an exist-

ing one, she merely has to change the list. Furthermore, because the list is in the is-

suer’s control, it is relatively easy to protect the integrity of the list, i.e. to make sure

that the subject or any other outsider cannot change the contents of the list once it

has been created and delivered to the door, and thus create new or extended rights.

Moreover, because only the issuer is able to modify and issue lists, we can be sure

that all information is authentic, i.e. it comes from the correct, stated source.

The downside of this solution is that the issuer cannot make any changes if she can-

not access the list. So, if the club manager is enjoying her vacation on a long hike

without any means of communication, she is offline and cannot make any changes to

the list until she becomes online again. In addition, if there are several doors to the

club, we need a connection from all the doors to a central list, but guaranteeing an

always-available connection is not easy. Alternatively, we could have several copies

of the list, but keeping them up to date requires extra work. Moreover, what if we

5

have several clubs around the country all accepting the same VIPs and several club

directors granting the VIP status to new people – all the managers have to be able to

connect to the list.

Capabilities reverse the concept, turning the centralised system into a distributed one.

In a capability-based system, the users of the resource are given a ticket that proves

they have the right to use the system. The right no longer resides with the resource

but with the user (all the VIPs have a special card they show at the door) and the

right automatically follows the users to whichever copy of the resource they go.

Therefore, if the club has several entrances or there are several clubs around the

globe, the VIP can use any one of them. Also, new capabilities can be created and

given to the subject without any connection to the resources. Hence, if the manager

meets a new VIP while hiking, she can create a new VIP card with which the VIP

can then go clubbing while the manager continues her hike. So, we notice that in

large distributed systems, the capability-based approach has some inherent advan-

tages. Therefore, with our network focus, we shall concentrate on the capability-

based approach for the purposes of this study.

2.3. DIGITAL SIGNATURES AND PKI

With regard to capabilities, two big problems are their authenticity and integrity: how

do we know that they come from the stated source (e.g. the club manager) and how

do we know that they have not been tampered with? Luckily, both of these problems

can be solved with digital signatures.

Digital signatures are a product of Public Key Cryptography (PKC). PKC is based on

the idea of using two keys: one private, which is known only to its owner, and one

6

public, which can and should be known by the rest of the world. With the private

key, the owner can sign any digital document thereby creating a digital signature.1

A digital signature has the following interesting properties:

• It cannot be created without using the private key, thus preventing anybody

else from creating fake signatures.

• It is unique to that document: it is not possible to create or find any other

document to which that signature would apply.

• It can be verified with the corresponding public key: as long as we know the

owner of the public key, we also know who created the signature.

By making sure that the intended recipients know the owner of a public/private key

pair, the owner can create signatures and convince the recipients of their authenticity

as well as the integrity of the document. Therefore, to protect the VIP capability, the

club owner merely has to sign them (a signed capability is also called a credential).

The verifiers at club doors have to have the club owner’s public key to verify the sig-

natures. Moreover, it has to be the correct key: if a malicious outsider manages to

introduce his own public key as the club owner’s key, the outsider can then pretend

to be the owner and create new VIP credentials.

The problem of securely distributing the correct public keys has been solved with

Public Key Infrastructures (PKIs), where trusted parties make statements about who

owns each public key. Later, the term PKI has been expanded to mean systems

where, in addition to names, other attributes such as rights can be bound to public

keys, as we shall see in the next section. The tool used to carry the statements in a

PKI is known as a digital certificate.

1 Actually, the signature is created by using the private key on the secure hash (hereafter re-
ferred to as: hash) of the document. A hash is a short, fixed length number identifying that
document – all documents regardless of their length have unique hash values (theoretically,
there is only a limited number of hashes and hence, only a limited number of documents can
have a unique hash, but as this number is very large, in practice we can say that all docu-
ments have a unique hash).

7

2.4. DIFFERENT CERTIFICATE TYPES

A digital certificate (hereafter referred to as: certificate) is a fixed form document,

where a signature is used to guarantee the integrity of the information within. In

practice, a certificate is used to bind two out of three possible things together and to

tell something additional about that relationship. Hence there exist three major types

of certificates: identity certificates (e.g. X.509[10] and PGP[2]), authorisation certifi-

cates (e.g. SPKI[8]) and attribute certificates (e.g. extension in X.509) as shown in

Figure 2 [Publication III].

Public Key Right

Name/Username

Authorization
certificate

Identity
certificate

Attribute
certificate

Subject
(person/computer
/software agent)

Through password

Through
private

key

Figure 2. Three major types of certificates.

In an identity certificate, a trusted third party testifies his belief that a particular key (a

public key - certificates only contain public keys as the private key has to be kept se-

cret) belongs to the subject indicated by name (this can be e.g. the person’s real name

or a username). Of course, to be usable, this entails that the issuer and thus, the

signer of this identity certificate (typically an organization called Certification Author-

ity, CA) actually makes sure that the key is controlled by the said entity. Also, as the

CAs are the only parties issuing certificates, and as all access decisions are based on

these, all users of the system will have to trust the CAs.

8

An authorisation certificate, on the other hand, binds a right (a right is sometimes called

an authorisation) to the subject’s public key (sometimes also to the hash of an object).

Furthermore, because it is bound to the public key of the subject, the possession of

this certificate alone will not grant any rights; anyone wishing to use the certificate

also has to prove the possession of the corresponding private key. Authorisation cer-

tificates can be issued by anyone owning a resource or having the right to grant ac-

cess to someone else’s resource. This means that potentially every human, computer,

or even a software agent could issue certificates. This difference in the number and

resources of issuers between the two certificate types has significant implications on

the revocation systems used, as we shall later discuss.

The third and less common type, the attribute certificate, is used to bind an authorisa-

tion to a name – the same binding that an ACL does. For the purposes of this thesis,

we will not discuss attribute certificates any further, but shall instead concentrate on

the first two types, authorisation certificates in particular.

An important feature of authorisation certificates is that they can be used to delegate

the rights they carry unless it is expressly forbidden in the certificate. The subject can

delegate the right or part of it to someone else without any help from the issuer - a

feature, which makes distributed management easier to organise than in centralised

solutions. For instance, we can implement a scheme, where a parent can issue a copy

of her credit card to a child while still keeping her own credit card [2].

2.5. USING CERTIFICATE FOR ACCESS CONTROL

To better appreciate the differences between identity and authorisation certificates,

let us briefly look at how they are utilised [Publication III]. In Phase 0 of the access

control process as shown in Figure 1, certificates play no role, so we shall next look

at Phases 1 and 2 (Enforcing the decision).

For the right to be usable to the subject, we need to establish in Phase 1 a binding

between the subject requesting access and the required right. As we can see from

, there are several ways of doing this. In all of these, the binding between the Figure 2

9

subject and the key is assumed much tighter than the binding between subject and

username. The latter binding is protected with a password, which in practice has

been proven much less secure, so from here on, we shall use the binding to the key.

This tight binding with keys however, does not always hold, as the subject can either

lose the control or just give the required private key away. In both these situations,

revocation of that key and the associated rights is normally required.

We start by acquiring the subject’s public key, which can be accomplished e.g. either

with an identity certificate (if we know the subject’s name) or from the subject di-

rectly in a face-to-face meeting, in which case it is not always necessary to even know

the subject’s name.

Once we have the key, we have essentially two routes to reach the right: we can use

an identity certificate to bind the key to a name and then create either an ACL entry

or an attribute certificate binding that name to the right, or we can bind the key di-

rectly to the right with an authorisation certificate.

This first approach nicely extends existing solutions, which usually are based on

ACLs, but it also has its problems:

• By design, it makes anonymous usage impossible. In some systems, it is a re-

quirement to prevent anonymous usage, but in other cases it merely pro-

motes unnecessary monitoring of users.

• Making a tight binding through the name is not easy, as it requires names that

are unique within the application domain – otherwise namesakes can share

their rights. If we have a small organisation this might be quite feasible, but if

we aim for global consumer applications, we need globally unique names

which are difficult for humans and impractical for computers.

The final problem affects Phase 2 in which we have to (repeatedly) prove the exis-

tence of a binding from the subject to the right:

• The binding from a key to an authorisation is unnecessarily long – it consists

of two steps: key to name and name to authorisation. This is an important

10

aspect, as the verification of this binding will be performed many times – in

fact, every time the subject uses the resource.

An authorisation certificate, on the other hand, makes a direct binding from the key

to the authorisation. This makes the binding simpler, but also anonymous. In reality,

the key is not totally anonymous but an alias or a pseudonym, but since these pseu-

donyms do not have to be registered anywhere, it can be very difficult to trace them

back to the user’s identity. This kind of situation could present itself e.g., if an au-

thorisation certificate is used to implement a single-trip bus ticket which the subject

pays for in advance – then, the issuer would have no need to verify the subjects iden-

tity. If however the anonymity becomes a problem, it can be circumvented by verify-

ing the subject’s identity already in Phase 1 (but should this be omitted, we cannot

perform it retroactively).

Because authorisation certificates enable delegation and hence, distributed access

management which ACLs cannot accomplish without much complication, and be-

cause authorisation certificates provide a more direct, anonymous and more secure

binding to the right, we can conclude that authorisation certificates offer a simpler

solution for distributed systems than solutions based on identity certificates.

2.6. MANAGING CERTIFICATE VALIDITY

So far we have looked at how certificates are used to grant rights to a subject. These

rights however, are seldom limitless. They usually expire after a specified period

(Phase 4) and the usage can also be limited in other ways, for instance, by limiting the

times a certificate can be used. Also, they sometimes even have to be revoked before

they would naturally expire (Phase 3). There are essentially two reasons to revoke a

certificate:

• Issuer discovers or wants to prevent misuse (=Issuer initiated revocation).

• Subject loses control of the certificate and wants a replacement issued

(=Subject initiated revocation).

11

Regardless of the initiator, it is always the issuer that actually revokes the certificate.

Collectively, the methods used to limit certificate usage and to revoke them are called

validity management.

The basic method for limiting certificate validity, which most certificate types have in

common, is validity period dates. They are often called the not before date and the not

after date. Validity periods are easy and efficient to check, even in an offline environ-

ment. However, validity periods alone do not always suffice, the need to revoke a

certificate may arise long before the certificate was originally planned to become out-

dated. The longer life span the certificate has, the longer is the potential period dur-

ing which the certificate is spreading false information, but if certificates with very

short validity periods are used to reduce the risk, the management overhead might

easily grow too large.

Certificate Revocation Lists (CRLs) are the most common revocation method used in

combination with validity periods. A CRL is a signed list issued by the certificate is-

suer identifying all revoked certificates by their serial numbers or some other reliable

identification (e.g. a hash). If the certificate is not on the list, it is assumed valid. The

list includes a time stamp or a validity period. The CRLs are published on a periodic

basis, even if there are no changes, to prevent replaying old CRLs.[12]

The main problem with CRLs is that they only shorten the period of possibly false

information being accepted as correct - they do not eliminate it. Furthermore, the

verifier has no control over how often the CRL is updated, and thus cannot affect

the amount of risk it is accepting [15]. The CRLs also may get very long, requiring a

lot of bandwidth, a large storage capacity and excessive processing. There have been

several proposals for improving the performance of the CRLs including Delta-CRLs

and Certificate Revocation Trees [12]. Their effect on performance varies, but their

revocation characteristics are the same as a CRLs.

If all the parties can be assumed to stay online, the most timely way for the verifier to

check revocation is to directly ask the issuer or a designated validity server about the

certificate in question every time the certificate is used. The issuer or validity server

may respond with a simple yes or no together with a timestamp and a signature, or

12

the reply may also include other information such as a time period during which no

further proof of validity is required. Online validation is simple for the verifier, but

compared to a CRL, it requires more processing power from the validation server,

who must create a signature for each new reply.

Although the online check seems to be very simple, it is flexible enough to allow for

a wide variety of validation policies. The validation server could simply say the cer-

tificate is valid if it has not been revoked, but it could also keep track of the how

many times and how the user has used the certificate, and make the validation deci-

sions based on the context. The different revocation methods have been discussed in

more detail in Publication I.

The majority of work done in the field of certificate validity management has so far

concentrated on identity certificates, in particular on X.509 identity certificates. Un-

fortunately, compared to SPKI authorisation certificates, there are a few significant

differences in the X.509 model, which prevent us from directly applying all the solu-

tions:

• The number of certificate issuers. In X.509, the number of CAs that issue

certificates is orders of magnitude smaller (in SPKI, every human, computer

etc. can issue certificates).

• Risk model. In X.509, the issuer and verifier are normally separate entities.

The risk is taken by the verifier, yet the revocation decisions are made by the

issuer. In SPKI, the risk takers are also issuing the certificates and can there-

fore control the revocation decisions to balance the risk.

So far authorization certificates have been used in binary ways: either you get the ac-

cess to the resource or you do not. The resource itself can be defined with very fine

granularity, but the result is always the same: if you get the access, there is no limit to

how much you can use the resource.[13] With this kind of approach, it is not possi-

ble to implement bus tickets, which are good for ten trips, or credit cards with

monthly limits.

13

2.7. THE SPKI CERTIFICATES

The Internet Engineering Task Force (IETF) has been developing SPKI as a more

flexible alternative to X.509. SPKI was designed to support certificate-based authori-

sation but it can also be used to certify identity. However, it should be noted that

while X.509 and other name oriented systems use names as a starting point and bind

keys to names, SPKI uses cryptographic keys to represent identities and binds rights

or names to keys. SPKI has adopted many ideas from the SDSI [16] and PolicyMaker

[4] prototype systems. We have concentrated on SPKI because it focuses on the

management of rights as opposed to e.g. KeyNote[6], which focuses on mathemati-

cal proofs on chain validity.

SPKI authorisation certificates[8] like any authorisation certificates, are signed state-

ments of authorisation. The certificate can be abstracted into a signed quintuple

(I,S,D,A,V) where

• I is the Issuer's (signer's) public key, or a hash of the public key.

• S is the Subject of the certificate, typically a public key, a hash of a public key,

a name, or a hash of some object.

• D is a Delegation bit.

• A is the Authorisation field, describing what access rights the Issuer delegates

to the Subject.

• V is a Validation field, describing the conditions (such as a time range) under

which the certificate can be considered valid.

The meaning of an SPKI authorisation certificate can be stated as follows: Based on

the assumption that I has the control over the rights or other information described

in A, I grants S the rights/property A whenever V is true. Furthermore, if D is true

and S is not a hash of an object, S may further delegate A or any subset of it. The

integrity and authenticity of the certificate are protected by a signature created with

the issuer’s private key. Hence, it is easy to verify the signature with the issuer’s pub-

lic key and be assured that the certificate indeed comes from the issuer.

14

1. Subject’s public key Phase 1

2. Authorisation certificate Issuer Subject

Verifier 3. Authorisation Certificate +
Proof of private key

Phase 2

Figure 3: Access control using SPKI certificates

The first two phases of the access control process described earlier are depicted using

SPKI certificates in Figure 3. In Phase 1, the subject first provides her public key to

the issuer e.g. by handing it over in person. This could be a key already used in some

other certificate or a brand new key – in fact, every single certificate could use a dif-

ferent key. Then, the issuer can create the authorisation certificate with appropriate

rights and validity conditions. In Phase 2, to use the right, the subject provides the

verifier with the certificate and proves the possession of the private key correspond-

ing to the subject’s public key in the certificate. The verifier also verifies all the valid-

ity conditions and only if they all are valid, the certificate is valid and the right can be

used.

As the figure shows, logically the issuer and verifier can be thought of as two differ-

ent roles of a single entity. In practice, however, usually these roles are divided be-

tween two entities: a mechanical verifier that only validates certificates (or chains of

certificates) and a more intelligent issuer that makes the decisions to grant the rights.

However, if these roles are divided, how does the verifier get the issuers public key

so that it can verify the certificate chain? This can be solved by the verifier first grant-

ing the issuer a certificate with the right to make all access decisions. All chains now

start from the verifier, go through the issuer and end with the subject making the

chain validation possible for the verifier.

15

In SPKI, all the validity management methods are placed in the validation fields. In

addition to the validity period, there are three online validity checks: CRLs, revalida-

tions (also known as reval) and one-time checks. Furthermore, the SPKI theory [7] de-

fines other online checks, but they do not appear in the structure drafts [8] yet.

The validity period definition consists of two parts: not-before and not-after. Both

parts are optional, and if either one is missing the certificate is assumed to be valid

for all time in that direction. There is an additional type of validity period called now,

which has a length of 0, and can only be the result of an online check. It is inter-

preted to mean that the certificate is valid the moment the validation request was

made, but it states nothing about the future.

Validating a certificate is relatively straightforward, as all the different validity condi-

tions end up being converted to validity periods. Therefore we only check that the

validity period stated in the certificate, as well as the online checks (all replies are va-

lidity periods) are all valid at the time of use, and the certificate as a whole is then

valid and therefore grants the included permission.

All the online checks are defined in the Validation field of the certificate using the

following format (BNF[13] notation is used for the formats):

<online-test>::"(" "online" <online-type> <uris> <principal> <s-part>* ")" ;

Where <online-type> can be crl, reval or one. The <uris> specify one or more Uni-

form Resource Identifier (URIs)[4] that can be used to request the validity informa-

tion: e.g. in the case of crl, the URI points to the crl file. <principal> specifies the

public key used for verifying the signature on the online reply. The <s-part> is op-

tional, and may contain parameters to be used in the online check. In their replies, all

methods identify the certificate they refer to with the hash of that certificate.

CRL is the standard list approach discussed earlier. SPKI includes both traditional

and Delta CRLs in its specification. Reval is an online condition, where the response

is always valid for some stated period, during which the same reply can be used re-

peatedly. One-time, on the other hand, is an online condition whose reply is valid

only once at the time of requesting - every usage therefore requires a new validation.

16

3. PROBLEM STATEMENT AND CRITERIA

The goal of this thesis is to improve the SPKI authorization certificate model to sup-

port the management of limited resources.

In order to better understand the different limitation levels, let us first classify rights

in Table 1 (based on [Publication II]) and then go over use cases for each of them

[Publication II]. The classification goes from the widest to the most restrictive, so a

higher level is always a subset of the preceding levels.

Table 1: Classification of rights

Type Name Description

A Implicit trust The right does not expire

B Expiring right The right has a validity period

C Revocable right Right can be revoked

D Context dependent Right is valid only in certain contexts

E History dependent Right depends on usage history

Type A is a rare case; it is only applicable to situations like a computer implicitly

trusting its administrator to make all decisions.

Type B suits a situation, where the right can be used without limit until it expires and

it is not valuable enough to require revocation. An example would be a single use bus

ticket valid for one hour.

17

Type C comes into play when the right is so valuable that revocation capability is re-

quired. An example is a bus ticket valid for a whole year – if it is lost, the subject

would want it revoked and a replacement for it.

Type D applies to situations, where the context of usage determines whether the

right can be used. One example might be a parking building, where a company rents

space for its employees. As only a limited number of employees are present at any

given moment, a company of 100 employees might rent only 45 parking spaces. Any

employee is able to park as long as there are less than 45 other employees already

parked in the building.

Type E applies to situations where the right depends on previous usage. An example

is a credit card with a monthly limit or a bus ticket with 10 trips.

The problem is therefore to define the necessary changes to SPKI so that it can be

used for cases of all types, A-E.

The solution developed should satisfy the following criteria:

• Usability: As users are generally considered the weakest link in security, the

usability of the solution should be sufficiently high.

• Security: the new mechanisms should not weaken the security of SPKI access

control.

• Scalability: the solutions should be able to scale to global applications.

18

4. SOLUTION

SPKI has been intended to be a very flexible access control solution. The intended

application domains extend from things like organisations which want to control

their internal access rights and know their users, to global applications where con-

sumers buy some access rights with cash (e.g. the right to read the current issue of a

particular magazine) and want to stay anonymous.

Yet, despite these goals, at their current state SPKI certificates can only be used to

solve cases of types A and B. There are validation methods for types C and D, but

SPKI lacks the protocols to validate these methods at the time of usage and a proto-

col for the certificate issuer to change the validity state of a certificate, e.g. to revoke

one. Without these, no online method (type C, D and E) can be used. In addition,

SPKI lacks a method to implement type E solutions.

Therefore, to solve the problem presented in the previous chapter, the author has

designed the following:

• A new method for managing type E situations

• A protocol for validating a certificate at the time of usage

• A protocol for managing the validity of a certificate

4.1. NEW METHODS

Let us start with the new type E method, limit. Unfortunately, a certificate alone can-

not accomplish history-based validation, as the certificate cannot contain any infor-

mation about its usage history. The certificate cannot be modified to signify that it

19

has been used and we cannot take the certificate away from the user and replace it

with one that has less right remaining, as the user might have numerous copies of the

original certificate – after all, it is good to have backup copies of the certificate and

the user might use the same certificate in different devices. Finally, the information

about the use cannot be stored separately, as this additional information might “acci-

dentally'' get lost, should the user need more credit. The solution chosen was to use

an online server that keeps track of the amount of usage. The certificate then con-

tains a reference to an obligatory online check that grants or denies every operation

based on the accumulated total. Further, the new method does not limit what kind of

things the server can keep track of: they can be trips on a bus or an amount of

money spent so far this month or anything else the system designer wants.

The problem in this method is that not everyone can be allowed to perform the vali-

dation. With revocation, anyone can be allowed to verify whether a particular certifi-

cate has been revoked or not. However, when we talk about the new type E valida-

tion, every successful validation also consumes part or all of the right to the limited

resource. Therefore, only a party to whom this limited use of resource has been

granted either directly or through delegation, can be regarded to have the right to

make these validation requests. Otherwise it would be possible for a malicious

neighbour to use all of the limit (but not the resource itself) without the rightful par-

ties' consent.

As we discussed earlier, the current SPKI structure includes the validity period

(Types A and B) and three online validity checks: CRLs (Type C), revalidations

(Type C) and one-time (Type D). So, with the new method limit (Type E), we have

all the necessary methods. However, the author defined one additional method to

essentially replace the revalidation method: Renew offers an alternative approach to

revocation. Instead of issuing long-lived certificates and then worrying about their

validity, we issue a string of short-lived certificates, which together cover the lifetime

of a long-lived certificate. This simplifies matters, as the short-lived certificates can

often operate offline and the network connection is required only to automatically

fetch the subsequent certificate. If everything is in order, the reply contains the next

certificate, but if the right has been cancelled, the reply contains a validity period dur-

20

ing which renewal requests will be denied (i.e. the conceptual long-lived certificate is

not valid during this period). Thus, the benefits of Renew are that it is conceptually

simpler and that it also offers the interesting possibility of changing the right and

other fields from certificate to certificate.

[Publication I] proposes the formats for the two new online validations: limit and

renew.

4.2. CERTIFICATE VALIDATION PROTOCOL

The second issue requiring development is the protocol used to validate the certifi-

cate chain at the time of usage – i.e. a protocol to implement Phase 2 from Figure 1.

To better understand the problems involved, let us take an example: Helen is in

London buying groceries and wants to pay with a credit card that is implemented as

an SPKI certificate. In this case, the various parties have the following interests dur-

ing the transaction [Publication I]:

The merchant is interested in

• receiving the payment for the groceries.

Helen, on the other hand, wants to make sure that

• the payment is indeed received by the merchant and not by an impostor.

• the merchant is not able to charge her more than once.

She could also be interested in

• hiding her identity from the merchant to avoid receiving further publicity ma-

terial or because she does not want the merchant to keep a record of her pur-

chases.

The credit company (or anyone else, who grants or delegates rights) might be inter-

ested in

• limiting her purchases by imposing a monthly limit on our credit card.

• being able to cancel the card, should she misuse it or should the card fall in

wrong hands.

21

A successful validation depends on several things. First, we have to be able to au-

thenticate the participants reliably - otherwise Helen’s money might end up with an

impostor. So we have to be able to authenticate Helen, the merchant, the verifier and

all validation servers. We achieve this using an existing secure transport. The relevant

public keys for the validator, validation servers and Helen can be found in the certifi-

cate chain: the validator is the originator of the chain, the possible validation server is

identified in the validation part of the certificate requiring online validation and

Helen is the final subject of the chain. The only new public key is the merchant’s key,

which Helen has to acquire at the moment of purchase with any of the methods dis-

cussed earlier. As parties know each other’s public keys and have their own private

keys, authentication can be arranged. It should be noted that it is not necessary to

authenticate the parties in every transaction type. For instance, while fetching a CRL,

it is not necessary to authenticate the validation server as long as the CRL is correctly

signed.

Secondly, we have to be able to guarantee that the merchant receives one and only

one payment. To accomplish this, Helen would delegate the merchant the right to

charge her account by a specified amount and control the number of uses with an

online check. This online check could, for instance, be directed to the user's own

terminal, which would eventually show that the merchant is requesting to use his

right. The terminal could then validate this request once, and later deny any further

validation attempts.

The remaining problem is related to the right to make Type E validation requests,

which is limited to only those who are able to use the related resource themselves. In

practice, this means those entities to whom the limited right was granted, and all

other entities to whom this right was further delegated. As the verifier is not a re-

ceiver of the right, but rather the originator of the chain, he is not be allowed to

make any Type E checks in the chain without explicit permission. Therefore, the

user of the resource, i.e. the final receiver in the chain, has to authorise the verifier to

validate the certificates by issuing a special validation certificate for this particular use of

this particular chain. In our example, the merchant would authorise the credit card

company to make all the necessary online checks.

22

After having received the payment certificate from the user, the merchant could con-

tact the credit company, which can validate the certificate chain and, should the chain

prove valid, credit the merchant's account. If the chain is not valid, the verifier can

notify the merchant, which can then deny delivering the service. The merchant, on

the other hand, cannot deny having received the payment, and will therefore be

caught should he try to deny the service on the pretence of not being paid.

The traditional SPKI view has been that the validation information is fetched by the

prover trying to use the certificate (in this case, the merchant or client). However, it

may be impossible to equip clients having very limited computing and storage capa-

bilities with the logic needed to acquire certificate chains. One solution would be that

the verifier could also take care of completing the chains. The downside is that the

verifier could face excessive loads, even denial of service. Another solution would be

to introduce third party services for resolving the chains as discussed in Chapter 6.

The SPKI certificate validation protocol is presented in detail in Publication I.

4.3. VALIDITY MANAGEMENT PROTOCOL

The final required element is a protocol to manage validity, so that it is possible to

e.g. revoke a certificate. Compared to the validation protocol, the management pro-

tocol is simpler, as there are fewer parties involved.

Still, there are a number of issues the protocol has to address. One of the basic things

is naming the principal(s) that are allowed to issue revocation commands. The most

obvious solution is that the principal, who issued the certificate, is implicitly assumed

to have the right to revoke it. However sometimes it would make sense to authorise

others to revoke a particular certificate, for instance in a situation, where it is impera-

tive that the certificate is revoked as fast as possible after a breach but the original

issuer is not available to perform the revocation.

The issuer might also be interested in following how the certificate is used, particu-

larly if it contains one-time or limit conditions, or if there are several individuals with

the ability to revoke the certificate. Therefore, this functionality is included.

23

Finally, the commands and their replies have to be auditable in case there is dispute

over the replies given by the server.

The protocol has been defined with the listed features in Publication III.

24

5. ANALYSIS

We shall now look at how the developed solution can be used to solve the problem

identified in this thesis and how well the solution meets the criteria. We shall start by

looking at how the different validation methods work and give some guidelines on

their usage. We then proceed to how our cases can be solved within the confines of

our criteria and finish by looking at the limitations of our solution.

5.1. SOLVING THE CASES

The problem of this thesis was defined as being able to solve situations of Types A

to E using SPKI authorisation certificates. We noted that SPKI already had the nec-

essary methods for most of the cases, but lacked the one required for Type E situa-

tions. Such a method was therefore defined, as well as another method of Type C.

With these new methods, there are now altogether six different methods to limit the

validity of a certificate: validity period, crl, reval, renew, one-time and limit

[Publication I]. We have ordered the different methods by increasing capability using

the classification presented in Table 2. We can say that the types refer to the validity

mechanisms themselves, or to certificates, whose most effective mechanism is of the

type mentioned. The relative roles of methods have also been illustrated in Figure 4

[Publication III].

In Chapter 3 we introduced our example cases for each type and [Publication II] ex-

amined in detail how they could be solved. Having at least one method for each type

obviously means that we can successfully implement all the cases.

25

Table 2: The SPKI validity management methods

Type Method Speed of Revocation Notes

A

No Validity Period /

Only beginning time

(= no end time)

N/A Does NOT expire

B
End time /

complete Validity Period
N/A

Renew
After current certificate

expires

CRL After current CRL expires C

Reval
After current “Bill of

Health” expires

D One-time Immediately
Can limit the usage of a

group of users

E Limit Immediately
Can limit the usage of the

particular user

The most interesting observations are related to choice between Types C and D,

which are affected not only by the required speed of revocation, but also by the cost

of implementing the system and providing sufficiently fast response time for the us-

ers.

Naturally, it would be nice to always use Type D as it makes the revocation immedi-

ate. Unfortunately, it also requires a network connection every time the certificate is

used. This can be expensive to arrange compared to Type C method, which requires

the network connection only at some intervals. Also, Type C is normally much faster

to validate, because we do not have to access a server on the network. This can be an

important factor in some situations, like implementing a ticket system for public

transport, as each passenger cannot be forced to wait more than a moment for the

validation or the access control system becomes a bottleneck for normal operation.

Fortunately, as we concluded in [Publication II], the added risks of Type C method,

which is the main reason for favouring Type D, can often be covered at least in

26

commercial systems by including the risk in the business model, just like credit card

companies do.

Another interesting observation is related to choice between the different Type C

methods. The CRL method works well when there is only one issuer, like in the pub-

lic transport case. This finding is contrary to the finding in [Publication I] and reflects

the author’s current view. If on the other hand, there are many issuers, renew be-

comes an interesting option.

The other missing elements to solve the problem were the two missing protocols to

actually use the methods: one to validate all the methods at the time the certificate is

used, which was defined in [Publication I], and another to manage the validity status

of a certificate (e.g. to revoke a certificate), which was defined in [Publication III].

suspended expired

available

9. Renew – a new
certificate is issued

2. Validity period
OK and usage
not denied by
crl or reval

7. Expired by
time constraint

8. Expired by time constraint

1. Granted

3. Used if not denied by
one-time or limit

4. Usage
denied by
crl or
reval 5. Revoked

by crl or reval

6. Revoked by crl or reval

s
Figure 4: The Roles of Different Validation Method
27

Now, with all the necessary elements it is possible to solve all the required use cases

and hence, we have solved our research problem.

5.2. CHOOSING THE RIGHT VALIDITY METHOD

Based on the classification of methods, a heuristic for choosing the most suitable

validation method for a particular situation has been developed and it is illustrated in

. Most, if not all, of these choices should be made by the designer of the sys-

tem - they should not be left to the end users. We also note that using more than one

online method in one certificate is usually redundant since the methods form a hier-

archy, where the more capable can always achieve something a less capable method

could. Therefore, the question is merely identifying what level is sufficient.

Figure 5

First we consider if the right depends on usage history, in which case the only option

is Type E. Next, we consider if the right depends on context, in which case we take

Type D. Type D is also the correct choice if the value of the right is such that we re-

quire revocation to take effect immediately and cannot compromise as discussed in

the previous section. If however, there is room for compromise or the speed is not

of the essence, Type B will suffice. However, it must be noted that for the end-users

it is important that they do not need to bear the risk. The system should be such that

from their point of view, the revocation takes place immediately.

Finally, unless we have a very good reason for choosing Type A, we should normally

choose Type B. The reason is that Type A certificates do not expire and will there-

fore will remain in the system indefinitely – and if there are a lot of them, this will

become a problem. Hence they should be used sparingly.

28

History
dependent?

Yes Type E: limit

No

Context
dependent?

Yes Type D: one-time

No

Immediate
Revocation?

Yes Type D: one-time

No

YesRevocable? Type C: CRL,reval
 or renew

No

Implicit
trust?

Yes Type A: no expiration

No

Type B: expiration time

Figure 5: Heuristic for Choosing the Most Suitable Method

29

5.3. CRITERION: USABILITY

Managing access can be a challenging task for the system designers and resource

owners, particularly if the system is large and distributed. Hence it becomes very im-

portant to make access control as easy to use as possible – only if users can correctly

use the access control, can the system be secure and available as it is meant to be.

In a certificate-based system the users have essentially two different roles: the issuer

and the subject. We have to assess the usability for both of them. As usability is very

much a function of final system, not just the access control technology, we assess

usability by evaluating the usability of our solution concepts to the cases.

Of the two roles, the subject is the less technical: they are using a system for some

purpose (e.g. taking a bus to go shopping) and for them the access control is a neces-

sary evil. To make it as usable as possible, it should not be represented as certificates

or validation methods, but as something related to the application, in this case a bus

ticket with an expiration time, or a phone number to call when the bus ticket or

credit card is lost. Also, we note that it is relatively straight forward to transfer the

remaining limit of credit to a new certificate if the earlier was lost.

Interestingly, the same applies to most issuers as well They too do not have to be

aware of the technology, but can be presented with information that matches their

goal: a button to cancel someone's right to use one’s bank account. In all the exam-

ples we looked at in [Publication I] we discovered that a suitable goal-related form

for the necessary information could be found and thus, extrapolate that the same

should hold true for the majority of situations.

The designer of a system however, has to understand certificates and revocation

methods. It is the designer’s responsibility to choose a suitable method with which to

support the user’s goals and to analyse which options are relevant to the end-user.

A typical end user, e.g. someone using a certificate-based credit card, is less interested

in the technical reasons for choosing between methods and more interested in the

system behaving in an intuitive manner: when the parent presses the button to re-

voke the child’s credit card, the revocation should take effect immediately, not after

30

some arbitrary time. For that reason, methods of Type C are not suitable: they sacri-

fice the sense of control for the benefit of reduced overhead. On the other hand, the

delay does not have to matter to the end user – the possible misuse and its costs can

be included in the business model of the system, similarly to the existing credit card

systems, as we mentioned earlier.

Since one of the most interesting qualities of authorisation certificates is their sup-

port for delegation, we assume that many systems will make use of this feature and

thus, force many users to make delegation decisions. Again, the solution is to use

terms from the application domain: if we are delegating a credit card to a child, the

user interface should talk about credit cards, not certificates.

In our evaluation we were unable to find any insurmountable obstacles for good us-

ability: much of the usability rests on the system designer, but with careful design,

good usability should be attainable. We therefore, conclude that this criteria was suf-

ficiently fulfilled.

5.4. CRITERION: SECURITY

The security of SPKI authorisation certificates before the described changes has al-

ready been looked at in [14], so the focus of this evaluation is to look at the security

implications the changes possess. We shall evaluate each of the three elements sepa-

rately.

In [Publication I], the security of the validation protocol has been evaluated with re-

spect to several key characteristics and we can conclude that it does not contain any

significant problems in those respects. The security is naturally, dependent on the

security of the transport mechanism used (the publication proposes using ISAKMP).

The transport is responsible for authenticating parties and guaranteeing integrity and

(optionally) privacy.

The management protocol [Publication III] is designed with the same principles, al-

though it has not been evaluated in the publication. Again, its security is dependent

on the security of the transport used. The protocol is very straightforward and hence,

31

is not likely to contain hidden problems. The one known issue is the lack of time

stamps or sequence numbers in the commands, which can make it impossible to re-

construct the correct sequence in which commands were issued. This would become

a problem if certificate issuer and validation server disagree on a reply sent by the

validation server. Hence some method of ordering the commands should be added.

As to the new methods, renew is quite clear: conceptually it is very close to a Type B

certificate with just the added online validation, which is as secure as other Type C

online validations. Hence no new weaknesses.

Unfortunately, there still remains the issue related to the limit method. Limit was de-

signed to prevent outsiders from targeting Denial of Service (DoS) attacks agains the

subject by depleting the usage limit. It cannot however, prevent authorised chain

members from making these attacks, as they are by design authorised to use the limit.

They will however be caught, as any usage will require a signed request and is there-

fore traceable (all the online validations are designed so that an audit trail can be built

during normal operation). Still, this means that a legitimate user could be unable to

use some or all of her resource because of this type of misuse and the fact that the

culprits can be traced might not make her happy at the time.

A more severe problem is that all online validations are vulnerable against a DoS at-

tack aimed at the validation server: if the validity information cannot be fetched, the

default interpretation is to regard the certificate invalid. Obviously, particularly D and

E Types are affected by this, because these validations cannot be performed in ad-

vance. Unfortunately, as there is no general solution to DoS attacks, none exists for

validation servers either.

This weakness could perhaps partially be softened by the verifier accepting at least

small requests without the validation information and later performing the missed

validations. This idea however, is left for Future work.

So, we can conclude that the first protocol has no known weaknesses, the second has

only one, but the limit method has a few. Therefore, we can conclude that this crite-

ria is mostly fulfilled.

32

5.5. CRITERION: SCALABILITY

The performance and scalability issues of certificate based systems in general and the

validation protocol in particular still need further work. At the moment, they look

promising, but without extensive empirical tests we can not state anything definite

about their suitability as an Internet-wide solution.

Certificates are not very light to evaluate, as the evaluation entails verifying the signa-

ture, which is always a calculation intensive operation. Individual SPKI certificates

are no more expensive to evaluate than any other certificates and in fact, if we com-

pare evaluation of a single SPKI certificate to the combined evaluation of an identity

certificate and an ACL entry, the latter is likely to be slower in all cases.

This problem will naturally become easier over time with increasing computational

capacity and a modern desktop computer already verifies thousands of signatures in a

second. A smaller device, like a PDA or a smart card on the other hand, is unable to

perform signature verification fast enough to be usable in most applications without

the help of a cryptographic coprocessor. These coprocessors can also be used in lar-

ger devices to boost performance without significantly adding to the complexity of

the system. Another big factor is the choice of the signature algorithm, which have

very different performance characteristics: the currently popular RSA[17] is heavier

than upcoming options like Elliptic Curve[2] or NTRU[10].

The only party forced to evaluate large numbers of certificates is the verifier. In very

large system, the verifier could be a cluster of computers, which raises the perform-

ance. (In clustering verifiers, the biggest question security-wise is that all the verifiers

need access to the same private key.) Still, an upper limit for scalability exists, but

should be high enough for most applications. After all, as global services are often

created with several server clusters around the globe, each of these can have a dedi-

cated access control cluster thus further improving scalability.

Another computationally heavy operation is the creation of new key pairs necessary

for the subject wishing to remain anonymous. This operation is only necessary when

receiving a new right, which is not likely to happen at a very high rate, so even a

33

moderately powered device can create the necessary keys by creating them in advance

when the device is otherwise idle. So, even though the total number of keys created

can be high, contrary to chain validation, this operation is spread to a very large de-

vice-base. Also, the choice of algorithm again plays an important role: Elliptic curves

for instance, are significantly easier than RSA.

Finally, the creating of a certificate requires the creation of a signature, an operation

that is computationally of the same magnitude than verifying. This operation is also

spread among the user base, but not so effectively as key generation: some large ser-

vice providers obviously create many more certificates for their users than individu-

als. Yet, these operations seldom have to be performed on small devices, so com-

pared to validation, this is an easier problem.

We can conclude that the cryptographic operations required are not easy and they

require some planning, but high scalability should be achievable. Further analysis is

required however, for more exact conclusions.

SPKI draws many of its benefits from delegation and hence, distributed management

of access rights. A result of this process is that the user could end up with a long

chain of certificates that has to be presented whenever the right is used – and storing,

handling and evaluating long chains can result in significant performance overhead.

To solve this problem, the SPKI theory[7] introduces the concept of a Chain Reduc-

tion Certificate (CRC) – it is a certificate that corresponds to the semantics of the un-

derlying certificates and online test results. Throughout this discussion it is important

to bear in mind that at the moment, CRCs are merely an idea.

In creating CRCs, there are two options: all the online validations can be performed

before reduction, in which case the resulting certificate has no online conditions, but

presumably a shorter validity period. The other option is to include some or all of the

online conditions in the CRC and let the verifier perform them as needed.

The main motivation for creating CRCs is performance benefits: by using a CRC, we

can avoid repeating the costly operations of evaluating long chains and the validator

can instead evaluate a single certificate to reach the access decision. But the use of

34

online limitations makes performance enhancements more difficult: it is possible to

get more processing power to reduce the chain processing time by spending money,

but no amount of money can reduce the inherent delays in communication networks.

Another motivation for creating CRCs is to promote anonymity by hiding parties in

the chain. However, if a reduction certificate contains online checks, anonymity

might be compromised. Therefore, any online validation does not appear to be com-

patible with reduction certificates created for privacy purposes. If on the other hand,

the online validations can be performed before reduction and the resulting certificate

has no online checks, the reduction might end up improving privacy. The problems

of CRCs are looked at more closely in [Publication IV] and present highly interesting

Future work.

We can conclude that the verifier is indeed a bottleneck in the system, but CRCs

should provide partial relief.

Another potential bottleneck are the validation servers. Particularly in systems with

large user bases, if a certificate high up in the certificate tree has an online validation

(in particular: a limit validation), the server responsible for this validation is definitely

a bottleneck. The fact that the validation servers can be selected freely and there can

be several servers for each validity condition, helps significantly the scalability of the

system. Still, this issue merits further work, because it poses a limit to the size of us-

able certificate trees.

The protocols presented in this thesis do not have any scalability issues that would

significantly change the picture. Naturally, a secure transport requires the use of cryp-

tography, but the additional load is of the same magnitude than chain evaluation, and

the same remedies apply.

We can now conclude that of the three criteria, scalability remains the most unre-

solved. The certificate based system appears very scalable, but the online validations

require some further work to be usable in very large systems. The developed proto-

cols do not change the situation in a significant way. The limit method however, is

the heaviest online validation, so any scalability problem in online validations is

35

bound to have a particularly strong effect with limit. Therefore, we conclude that this

criteria is fulfilled only partially.

5.6. IMPLEMENTING THESE TECHNOLOGIES

The strengths of authorisation certificate based access control are in large distributed

systems that require delegation, distributed management and anonymity. If these

qualifiers do not apply, a centralised solution like ACL can be a more suitable solu-

tion. Still, this leaves us a large application domain, where authorisation certificates

should be the correct choice.

Currently, authorisation certificates have practically no foothold. This is most likely

the result of two main factors: the standards are not finished and as there are practi-

cally no existing solutions, no-one wants to be first to risk their operation on a new

technology, particularly if they have to co-operate with other systems having tradi-

tional access control.

Still, after the standards are finished, introducing this technology is relatively easy. It

does not require the existence of a large certification hierarchy, like identity certifi-

cates do, but if such exists, it can be utilised quite easily. The main problems are

likely related to the devices used in the system: they have to have enough computa-

tional power and secure storage for the private keys. Still, these requirements are

common to identity certificates, so undoubtedly solutions are being constructed.

5.7. A SUMMARY

I have successfully defined the missing elements in SPKI and designed elements so

that the described use cases can be implemented and hence, the research problem

solved. Of the three criteria, usability was sufficiently fulfilled, security was mostly

fulfilled, but scalability remains only partially fulfilled.

36

6. FUTURE WORK

The main effort in future work should be directed in improving the scalability of the

system. One promising way are the CRCs.

There are problems in creating CRC from chains that have online validations. It is

not possible to perform all online validations in advance of usage. CRL and reval can

be performed in advance - their result is a validity period which can be used to de-

termine the validity period of the CRC. One-time and limit on the other hand, have

to be evaluated at the time of usage and therefore they have to be included in the

CRC. Finally, due to the nature of limit, it is not possible to perform a reduction over

a certificate containing a limit condition, because that particular certificate has to be

in the chain for the limit check to work. So, the problem remains for how online

validations and limit in particular are handled.

Further performance improvements could be achieved, if all the remaining online

validations in a CRC could be replaced with a single online validation representing all

of them. Naturally, this raises trust issues, but could provide significant improve-

ments, particularly in situation with limited network access. Another idea worth ex-

ploring is to use tokens: when the limit server is accessed, it grants the user tokens

for more than one usage. Now, the user can utilise these tokens without further con-

sultation with the limit-server. Naturally, this also introduces a delay in the revocation

capability, but the amount of tokens could be balanced with the need for timely

revocation providing us with usable compromise.

The treatment of multiple online validations in a chain seems to have natural links to

the scalability problems discussed earlier. It might be particularly advantageous to

37

combine chain reduction with token fetching, thus creating certificates with no

online validation but the requirement to present a suitable token.

38

7. CONCLUSIONS

In a distributed system, traditional centralised access control solutions present prob-

lems with scalability and anonymity. Proposed alternatives, like the SPKI authorisa-

tion certificate based access control is naturally a better fit to a distributed system. It

facilitates the granting of rights by supporting delegation and distributed manage-

ment. On the other hand, the problems of limiting usage or revoking the rights be-

come more difficult, as the issuer of the right is no longer in control of the issued

certificate.

In this thesis, we have discussed the problems of managing the online validation and

revocation of SPKI authorisation certificates. All the existing solutions to these prob-

lems are based on online servers that give authoritative statements about the validity

of a certificate. We have discussed the advantages and drawbacks of the various solu-

tions and proposed two new ones. We have also presented a protocol for validating

the certificates at the time they are used and, finally, we have presented a protocol for

managing the online servers.

With these extensions, the SPKI certificates can now be used to implement many

everyday applications, which were earlier impossible for SPKI. These include bus

tickets worth 10 trips and credit cards with monthly limits. We have also concluded

that the presented solution can be made usable and secure, but the scalability to

global applications still requires further work.

We have discussed the role of chain reduction certificates as a possible element in

achieving better scalability. We conclude that CRCs could provide performance im-

provements at minimal cost, if issued by the verifier. Finally, online validations still

present challenges for reduction and should be examined further.

39

Possible future application areas for this technology include things like roaming in

wireless networks and context aware applications.

40

REFERENCES

[1] Amorosi, E: Fundamentals of Computer Security Technology, Prentice Hall, New Jersey, 1994

[2] ANSI X9.62 - "Elliptic Curve Digital Signature Algorithm (ECDSA), 1999

[3] Atkins, D. et. al.: PGP Message Exchange Formats, Request for Comments: 1991, August 1996

[4] Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifiers (URI): Generic syntax,
Request for Comments 2396, August 1998

[5] Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management, In Proceedings of the 1996
EEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, May
1996

[6] Blaze, M., Feigenbaum, J., Ionnidis, J.: The KeyNote Trust-Management System Version 2, Re-
quest for Comments: 2704, September 1999

[7] Ellison, C.; Franz, B.; Lampson, B.; Rivest, R.; Thomas, B.; Ylönen, T.: SPKI certificate theory.
Request for Comments: 2693, September 1999.

[8] Ellison, C.; Franz, B.; Lampson, B.; Rivest, R.; Thomas, B.; Ylönen, T.: Simple public key cer-
tificate. Internet draft (expired), IETF SPKI Working Group, July 1999.

[9] Heikkilä, J, Laukka, M: SPKI based Solution to Anonymous Payment and Transaction Authoriza-
tion, Proceedings of the 4th Nordic Workshop on Secure IT Systems, 1999, Kista, Sweden

[10] Hoffstein, J., Pipher, J., Silverman, J.: NTRU: A Ring-Based Public Key Cryptosystem, Algo-
rithmic Number Theory (ANTS III), Portland, OR, June 1998, J.P. Buhler (ed.), Lecture Notes in
Computer Science 1423, Springer-Verlag, Berlin, 1998, 267-288.

[11] Housley, R. et. al.: Internet X.509 Public Key Infrastructure Certificate and CRL Profile. Request
for Comments: 2459, January 1999

[12] Naor, M., Nissim, K.: Certificate revocation and certificate update. In Proceedings of the 7th
USENIX Security Symposium, San Antonio, Texas, January 1998

[13] Naur, P. (ed.): Revised Report on the Algorithmic Language ALGOL 60, Communications of the
ACM, Vol. 3 No.5, pp. 299-314, May 1960.

[14] Nikander, P.: An Architecture for Authorisation and Delegation in Distributed Object-Oriented
Agent Systems, Doctoral dissertation, Helsinki University of Technology, 1999

[15] Rivest, R.: Can we eliminate certificate revocation lists? In Proceedings of the Second Interna-
tional Conference on Financial Cryptography, Anguilla, British West Indies, February 1998

[16] Rivest, R, Lampson, B.: SDSI – A simple distributed security infrastructure. In Proceedings on
the 1996 USENIX Security Symposium, 1996

[17] Rivest, R., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems, Communications of the ACM, v.21, n.2, Feb. 1978

41

42

PUBLICATIONS

43

44

A Revocation, Validation and Authentication Protocol for

SPKI Based Delegation Systems ∗

Yki Kortesniemi
Helsinki University of Technology,
Department of Computer Science,
FIN-02015 HUT, Espoo, Finland

yki.kortesniemi@hut.fi

Tero Hasu
Helsinki University of Technology,
Department of Computer Science,
FIN-02015 HUT, Espoo, Finland

tero.hasu@hut.fi

Jonna Särs
Nixu Oy

Mäkelänkatu 91
FIN-00610 Helsinki, Finland

jonna.sars@nixu.fi

Abstract

In distributed systems, the access control mechanism
is often modeled after stand-alone solutions, such as
ACLs. Such arrangement, however, is not ideal as the
system may be mirrored around the world and main-
taining the ACLs becomes a problem. A new approach
to this problem is using authorisation certificates to
control access to resources. This diminishes manage-
ment overhead, but introduces problems with revoca-
tion.

A related problem is enforcing quotas in distributed
systems. Traditionally, authorisation certificates just
limit the usage interval, but not the volume. In this
paper, we discuss these problems in SPKI based del-
egation systems and propose some refinements to the
SPKI specification. In particular, we address the prob-
lem of limiting the usage of resources to which a cer-
tificate grants access. Finally, we develop a protocol
for solving these problems using online revocation and
validation.

1 Introduction

Interactions between entities like people, organisations
and software often rely on trust. If we trust someone or
something, we are willing to grant them extra rights,
and, similarly, we might receive some ourselves, if they
trust us. However, to convince others that someone

∗This work was partly funded by the TeSSA research project
at Helsinki University of Technology under a grant from Tekes.

trusts us and has granted us the rights, we have to be
able to provide them with some proof of this trust. To
take an example, we might have a credit account in
a financing company, which allows us to pay for our
purchases and later settle our bill with the financing
company. Here, the company trusts us to take care of
the bill. However, to convince the merchant, we need
proof this trust, which is expressed in the form of a
card. The possession of a card assigned to the bearer
is considered an assurance of this trust.

The use of a card was a good choice for on-the-place
purchases as it made it relatively difficult for the major-
ity of people to forge these expressions of trust. How-
ever, the situation is completely different when shop-
ping over the Internet, or any other telecommunica-
tions line, where it is impossible to verify the posses-
sion of the card. Then, the right to purchase is granted
solely based on the knowledge of the contents of the
card, which makes it too easy to just copy this infor-
mation and misuse it.

A more secure way would be to express the trust
in the form of a certificate. A certificate is a digital
document, where a signature is used to guarantee the
unmodifiability of the information within. Certificates
have traditionally appeared in two major types: iden-
tity certificates, where a trusted third-party testifies
his belief that a particular public key belongs to a cer-
tain individual or other entity, and authorisation cer-
tificates, which grant some rights to the specified public
key. The use of the right can be controlled by requir-
ing the possession of the corresponding private key. A
credit card can now relatively easily be represented as

1 of 17

an authorisation certificate. Furthermore, the posses-
sion of this certificate alone will not grant any rights;
the user of the certificate also has to prove the posses-
sion of the private key.

All of this can be accomplished with existing autho-
risation certificates, like the SPKI [6] certificates cur-
rently being standardised by the IETF. However, to
solve anything other than the most trivial problems,
the certificates alone will not suffice – we need other
supporting mechanisms. First, it is necessary to have
a mechanism to revoke a certificate in case of misuse,
change of situation or if the private key is compromised.
Second, we might want to impose some limits on the
use of a certificate, like a monthly limit on purchases.
This can not be accomplished with the certificate alone,
additional online checking is necessary. Finally, we re-
quire a mechanism to authenticate the user of a certifi-
cate to make sure they possess the private key.

The revocation and validation problems have been
discussed in the SPKI theory specification, but the
structural specification leaves many of the details as
well as the questions regarding a suitable protocol to
accomplish these tasks completely unanswered. In this
paper, we discuss the problems of revocation and vali-
dation and propose some refinements to the SPKI spec-
ification. Further, we present a protocol for online vali-
dation and revocation. As the protocol requires a com-
munications channel that can guarantee integrity and
authentication, we have based it on the ISAKMP [11]
framework. ISAKMP is meant for providing a secure
channel for key agreement, but can easily be extended
to support other negotiations as well. It should be
noted that some of the communication does not re-
quire ISAKMP and can use other, lighter protocols, as
well, to reduce the overhead.

The rest of this paper is organised as follows: in Sec-
tion 2 we explore these problems in detail and intro-
duce our example case: the application of certificates as
a replacement for credit cards. In Section 3 we go over
different solutions to revocation and validation and es-
tablish the criteria for a good solution. In Section 4 we
introduce the SPKI certificates, discuss their solution
to revocation and validation, and finally suggest some
refinements. In Section 5 we introduce the ISAKMP
protocol, which we use as part of our solution. In Sec-
tion 6 we detail the design rationale. In Section 7 we
present our solution to the presented problems in the
form of a protocol. Section 8 gives an example of the
use of this protocol, Section 9 compares the solution
to the criteria introduced and Section 10 discusses the
limitations of these solutions and suggests further work.
Finally, Section 11 presents our conclusions.

2 Problems in detail

In our example, we wanted to purchase something from
the merchant over the Internet. In this case the various
parties have the following interests during the transac-
tion:

• The merchant is interested in

– receiving the payment for his product or ser-
vice

• We, on the other hand, want to make sure that

– the payment is indeed received by the mer-
chant and not by an imposter

– the merchant is not able to charge us more
than once

• We could also be interested in

– hiding our identity from the merchant to
avoid receiving further publicity material or
because we do not want the merchant to keep
a record of our purchases

• The credit company (or anyone else, who grants
or delegates rights) might be interested in

– controlling our purchases by imposing a
monthly limit on our credit card

– being able to cancel the card, should we mis-
use it or should the card fall in wrong hands

Now, how can these problems be solved using certifi-
cates and what new problems does this introduce?

The information contained in a credit card can eas-
ily be included in a certificate. However, not all the
information is necessary if certificates are used. Credit
cards normally have the name of the owner printed on
the card to facilitate the verification that the card is
indeed in the possession of its rightful owner. Certifi-
cates like the SPKI authorisation certificates, on the
other hand, do not require the use of a name, because
the use of a public/private key pair can accomplish the
same end even better. An added bonus is that now the
certificate only contains a public key, which does not
identify the user, thus improving privacy. In fact, it is
possible to use a different public key for every certifi-
cate, making it virtually impossible for the merchant to
identify the user as long as the certificate is acquired
from a source that does not reveal this information.
The credit card company, however, has to know the
identity of the holder of the card to be able to bill him.

2 of 17

In this respect, there is no change from the current sit-
uation and the credit company is still able to practice
some data mining.

One additional advantage of a certificate compared
to a credit card is delegation. It is possible to grant
someone else a part or all of our own rights without
giving away our own proof to these rights. An example
could be that we want to allow our offspring to use our
credit account. Now, with a traditional credit card, it
would be possible (but usually not allowed) to loan our
own card, thus losing control over it for a while. Fur-
ther, if the offspring misuses our card, it is not possible
to identify him as the guilty one. Another solution is to
acquire a parallel card, but this requires a visit to the
bank and has several limitations. If, however, the off-
spring uses his own certificate, which we delegated, it
is possible to identify who has actually used the credit.
And finally, the use of delegation does not require the
credit company to be involved; we can use it at our
convenience.

A more complicated, yet more realistic example could
be that we want to allow our offspring to use our credit
account, but only to a certain limit. A certificate
alone can not accomplish this, as the certificate can
not contain any information about its usage history.
The certificate can not be modified to signify that it
has been used and the information about the use can
not be stored separately, as this additional informa-
tion might “accidentally” get lost, should the user need
more credit. One solution is to use an online server that
keeps track of the amount of purchases. The certificate
would then contain a reference to an obligatory online
check that grants or denies every purchase based on the
accumulated total. The use of an online server deviates
from the basic idea that certificates are selfcontained
and that they can be used without additional infor-
mation. However, in many situations it is unrealistic
to expect that certificates can be used without some
additional control – certificates merely grant the right
to use some resource, but used alone offer no solution
(other than time periods) to control the volume of us-
age. Accepting the use of online validation opens up
new possibilites in this area.

The choice of the validation server is up to the is-
suer of the certificate, and should be made so that the
server understands the concept of limits. There could
be different kinds of servers, some with more advanced
capabilities like limit checking. Others, with less capa-
bilities, can take care of simple problems, like verifying
whether a certificate has been revoked or not. Revo-
cation could result for instance from the compromise
of the private key controlling the use of the certificate.

Again, this feature requires that a revocation check is
included in the certificate.

The online checking system is complicated because
the entity verifying the certificate chain with online
checks is usually the originator of the chain. The prob-
lem is that not all online checks can be allowed to be
performed by everyone. With revocation, it is plausible
that anyone can be allowed to verify whether a particu-
lar certificate has been revoked or not. However, when
we talk about a limit type of check (a certain amount
every month, a certain number of times, etc.), every
successful validation also consumes part or all of the
right to the limited resource. Therefore, only a party,
to whom this limited use of resource has been granted
either directly or through delegation, can be regarded
to have the right to make these validation requests.
Otherwise it would be possible for a malicious neigh-
bour to use all of the limit (but not the resource itself)
without the rightful parties’ consent. Now, the verifier,
being the originator of the chain, is neither the receiver
of the limited resource nor his descendant. Therefore,
for the validation to succeed, the user of the resource
also has to delegate the right to make the validation
check to the verifier using a validation certificate.

The remaining problem is, how to guarantee that the
merchant receives one and only one payment. To ac-
complish this, the user of the credit card would delegate
the merchant the right to charge his account by a spec-
ified amount and control the number of uses with an
online check. This online check could be directed to the
user’s own terminal, which would eventually show that
the merchant is requesting to use his right. The ter-
minal could then validate this request once, and later
deny any further validation attempts.

The merchant could, after having received the pay-
ment certificate from the user, contact the credit com-
pany, which can verify the certificate chain and, should
the chain prove valid, credit the merchant’s account.
If the chain is not valid, the verifier can notify the
merchant, which can then deny delivering the service.
The merchant, on the other hand, can not deny hav-
ing received the payment, and will therefore be caught,
should he try to deny the service on the pretense of not
being paid.

In all of these validation situations, it is paramount
that all the parties in the negotiations are reliably
authenticated to avoid any possible impersonations.
First, it is important to verify that the validation server
is indeed the intended server. This can be achieved by
incorporating the server’s public key in the validation
part of the certificate and then using a suitable authen-
tication mechanism. Further, the server has to verify
that the party requesting the validation has been au-

3 of 17

thorised to perform it by verifying the certificate chain.
Also, the merchant and credit card company have to
authenticate each other to make sure the transaction
happens to the benefit of the right parties.

The traditional SPKI view has been that the revoca-
tion information is fetched by the prover (in this case,
the merchant or client). However, it may be impossi-
ble to equip clients having very limited computing and
storage capabilities with the logic needed to acquire
certificate chains. One solution would be that the veri-
fier could also take care of completing the chains. The
downside is that the verifier could face excessive loads,
even denial of service attacks. Therefore, the verifier al-
ways has the right to refuse from anything other than
verifying the chain and performing those checks the
prover can not take care of. Another solution would
be to introduce third party services for resolving the
chains.

As a final point, it should be noted that arranging for
reliable and efficient certificate revocation is difficult,
no matter how good the protocols used are. Whenever
possible, revocation should, therefore, be avoided al-
together, by setting the validity periods of certificates
small enough, so that if a potential problem with a cer-
tificate is noticed, any damages sustained by the time
the certificate expires cannot climb too high. Revoca-
tion can be further obviated by choosing the policy of
the verifier suitably. For example, the verifier could
maintain a list of “problematic” entities, whose appear-
ance in a certificate chain would cause the verifier not
to accept the chain regardless of its validity.

3 Certificate revocation and val-
idation

Certificates are designed to be self-contained, so that
only a minimum amount of context information is
needed to process the certificate. However, as men-
tioned before, the certificates cannot be completely in-
dependent. The trust relationships may change over
time, while the information on the certificates still re-
flects the old circumstances. Thus, certificates may not
live forever.

Revocation of certificates is always difficult, and es-
pecially so in systems like SPKI, where certificates are
delegated among autonomous users for which there ex-
ists no centralised authority that could restrict dele-
gation. Furthermore, in decentralised systems, tra-
ditional “operating system” style mechanisms such as
simple deletion of the certificate [21] cannot be used to
implement revocation, because there may exist multi-
ple copies that we do not know of. [9]

Certificate revocation is intimately tied to the va-
lidity period and permission granted by the certificate.
One key idea has been that certificates are only valid for
a reasonably short period or grant a limited permission.
Then, the loss would be limited, should the private key
be compromised, and other precautions, like revoca-
tion, would be less critical. [19] Maybe they could even
be omitted. This would be desirable, as a revocation
check every time a certificate is used can amount to sig-
nificant traffic. If, however, it is impractical to use very
“short” certificates, revocation can become necessary.

Different revocation mechanisms can be evaluated
according to certain properties: timeliness, third party
side effects, reversal of revocation, and granularity. Of
these properties, granularity and timeliness are the
most important. [1] In addition, some revocation mech-
anisms protect the ability to revoke certificates so that
only the issuer or the certificate owner has a right to
revoke it. [4]

Further design criteria for revocation could be that
the revocation mechanism should provide fail safety
and availability. Also, it should be recent, adjustable
and bounded in terms of revocation delays and con-
tained so that compromises in the revocation do not
allow further compromises of the system. [20]

3.1 Validity periods

The basic method for limiting certificate validity, which
most certificate types have in common, are validity pe-
riod dates. They are often called the “not before” date
and the “not after” date.

Validity periods are easy and efficient to check, even
in an offline environment, but they also have draw-
backs. The need to revoke a certificate may arise long
before the certificate was originally planned to become
outdated. The longer life span the certificate has, the
longer is the potential period during which the certifi-
cate is spreading false information. Thus, if a validity
period is used as the only validation mechanism in a
certificate, the period should be specified as short as
possible. [19]

If certificates with very short validity periods are
used, the management overhead might easily grow too
large. To reduce the overhead, the certificates could in-
dicate a location from where a replacement certificate
can be fetched. If the information in the certificate is
still valid, the replacement can be issued as a standard
procedure.

3.2 Certificate Revocation Lists

CRLs are the most common revocation method used in
combination with validity periods. A CRL is a signed

4 of 17

list issued by the Certificate Issuer identifying all re-
voked certificates by their serial numbers or some other
reliable identification. If the certificate is not on the
list, it is assumed valid. The list includes a time stamp
or a validity period. The CRLs are published on a pe-
riodic basis, even if there are no changes, to prevent
replaying old CRLs. [14]

The main problem with CRLs is that they only
shorten the period of possibly false information taken
as correct, but they do not eliminate it. Further more,
the verifier has no control over how often the CRL is
updated, and thus cannot affect the amount of risk it
is accepting [16]. The CRLs also may get very long,
requiring a lot of bandwidth, a large storage capacity
and excessive processing.

There have been several proposals for improving the
performance of the CRLs [14]. Some of the most ac-
cepted are using short validity periods for certificates
in the first place, thus shortening the time the certifi-
cates spend on the CRL, and using Delta-CRLs that
only include the changes since last update instead of
sending the complete list every time. To complicate
matters, some techniques to improve the performance
have been patented. [12]

Essentially, CRLs are a memory from the age of man-
ually verifying credit cards. Today, when even refriger-
ators are going online, it could be argued that a more
online-oriented solution could be used.

3.3 Certificate Revocation Trees

One proposed solution to the revocation problem is
called a Certificate Revocation Tree (CRT) [14]. A
CRT issuer creates a group of statements of the type
“If the CA is X and the serial number is between Y and
Z, the certificate is valid”. Together, the group speci-
fies the status of any certificate known by the issuer.
These statements are placed as leafs in a binary tree
structure and the tree nodes are filled with hash val-
ues calculated from the child nodes. Finally, the root
node value is signed by the issuer to provide proof of
integrity.

To check the validity of a certificate, the verifier needs
to check the appropriate statement, and verify the asso-
ciated hash values and the root node’s signature. The
other statements and hash values do not need to be
transfered nor stored. However, the tree must be com-
pletely rebuilt and signed every time the status of any
single certificate changes.

3.4 Online validation

If all the parties can be assumed to stay online, the
most simple, efficient and timely way for the verifier to

check revocation is to directly ask the issuer or a valid-
ity server about the certificate in question. The issuer
or validity server may respond with a simple boolean
value together with a timestamp and a signature, or the
reply may also include other information such as a time
period when no further proof of validity is required.

An alternative solution based on regularly sent af-
firmation tokens has been proposed [7]. If this token
is not received in time, the certificate is taken as hav-
ing been revoked. However, this approach fails to con-
sider communications disruptions. Also, it requires a
global clock, which is not a practical notion in a world
wide distributed environment. Rivest comes to a simi-
lar idea of using positive affirmations in his analysis of
CRL. [16]

Although the online check seems very simple, it is
flexible enough to allow for a wide variety of validation
policies. The validation server could simply say the
certificate is valid if it has not been revoked, but it
could also keep track of the context of how many times
and how the user has used the certificate, and make
the validation decisions based on the context.

Online validation is simple for the verifier, but
requires more processing power from the validation
server, who must create a signature for each reply.

The general opinion seems to be moving from CRLs
to online checks. The X.509 specification has origi-
nally relied on CRLs. However, there is a draft that
defines an online status protocol similar to the one we
are proposing. [13]

4 SPKI certificates, validation
and revocation

Simple Public Key Infrastructure (SPKI) is a proposal
for a Public Key Infrastructure (PKI) that would be
more flexible than X.509 and free from the requirement
of a global, trusted Certification Authority hierarchy.
It has adopted many ideas from the SDSI [18, 17] and
PolicyMaker [3] prototype systems. IETF is developing
SPKI, and so far it has reached the experimental status.

SPKI was designed to support certificate based au-
thorisation. It can be used to certify identity, as well,
but unlike X.509 and other name oriented systems,
SPKI uses cryptographic keys to represent identities.
To facilitate certificate management by humans, SPKI
has local name spaces that can be linked together.

SPKI authorisation certificates [5], like any authori-
sation certificates, are signed statements of authorisa-
tion. The certificate can be abstracted into a signed
quintuple (I, S,D,A, V) where

5 of 17

I is the Issuer’s (signer’s) public key, or a secure hash
of the public key,

S is the Subject of the certificate, typically a public
key, a secure hash of a public key, a name, or a
secure hash of some object,

D is a Delegation bit,

A is the Authorisation field, describing what access
rights the Issuer delegates to the Subject,

V is a Validation field, decscribing the conditions
(such as a time range) under which the certificate
can be considered valid.

The meaning of an SPKI authorisation certificate can
be stated as follows:

Based on the assumption that I has the control over
the rights or other information described in A, I grants
S the rights/property A whenever V is true. Further-
more, if D is true and S is not a hash of an object, S
may further delegate A or any subset of it.

4.1 SPKI validity conditions

SPKI certificates, like most other certificate types, have
a validity period. In SPKI, the validity period defini-
tion consists of two parts:
<not-before>:: "(" "not-before" <date> ")"

;

<not-after>:: "(" "not-after" <date> ")" ;
Both parts are optional and if either one is missing,

the certificate is assumed to be valid for all time in
that direction. There is an additional type of validity
period called “now”, which has a length of 0. It can
only be the result of an online check and is interpreted
to mean that the certificate is valid the moment the val-
idation request was made, but it states nothing about
the future. If the same certificate is used repeatedly,
the online check has to be repeated, as well.

In addition to the validity period, SPKI includes
three online validity checks: CRLs, revalidations and
one-time checks. Furthermore, the SPKI theory [6] de-
fines other online checks, but they do not appear in the
structure drafts [5], yet. Later in this paper we discuss
and propose structures and reply formats for some of
them.

To facilitate the desision of whether or not the cer-
tificate is valid at a particular instance of time, all the
different validity conditions end up being converted to
validity periods as specified above. So, validating a
certificate is relatively straightforward: check that the
validity period stated in the certificate as well as the on-
line checks (converted to validity periods) are all valid

at the time of use and the certificate as a whole is valid
and, therefore, grants the included permission.

4.2 SPKI online checks

All the online checks are defind using the following for-
mat:
<online-test>:: "(" "online" <online-type>

<uris> <principal> <s-
part>* ")" ;

where <online-type> can be crl, reval or one-
time. The <uris> specify one or more URIs (Uni-
form Resource Identifier [2]) that can be used to re-
quest revalidation. The <s-part> is optional and may
contain parameters to be used in the online check.

SPKI includes both traditional and delta CRLs in its
specification. These must also be signed by the afore-
mentioned principal. The CRL formats are specified
below.
<crl>:: "(" "crl" <version>? "(" "can-

celed" <hash>* ")" <not-before>?
<not-after>? ")" ;

<delta-crl>:: "(" "delta-crl" <version>?
<hash-of-crl> "(" "canceled"
<hash>* ")" <not-before>?
<not-after>? ")" ;

Another way of getting assurance that the certificate
is still valid is to ask for a “bill of health” which testi-
fies that the certificate can be considered valid for the
stated period. The SPKI definitions specify the reply
format:
<reval>:: "(" "reval" <version>? "("

"cert" <hash> ")" <not-before>?
<not-after>? ")" ;

The reply identifies the original certificate in the hash
and gives a confirmed validity period for that certifi-
cate. The reply must be signed with the key given as
<principal> in the original certificate.

The third option is that the verifier of a certificate
can just ask the issuer directly about the certificate’s
validity every time the certificate is used. In SPKI, this
is called one-time validation, as the validation proof is
valid one time only, at the moment the reply is received.
The corresponding reply message is:
<reval>:: "(" "reval" <version>? "("

"cert" <hash> ")" "(" "one-time"
<nonce> ")" ")";

Again, the hash must correspond to the original cer-
tificate, and the reply message must be signed by the
principal given in the certificate.

6 of 17

4.3 Proposed changes to SPKI

In light of our earlier comments, we propose a number
of changes to the SPKI structure.

Proposition 4.1 Deprecate crl.

In the SPKI context, CRLs are an outdated, imprac-
tical technology. They are at their best in situations
where there are only few certificate issuers and it is thus
possible to prefetch most or all relevant CRLs and then
work offline. But in the SPKI model there are possi-
bly a huge number of certificate issuers and it is not
possible to predict, which CRLs are going to be used,
so the online connection is still required. Furthermore,
to validate a single certificate using CRLs, it is neces-
sary to download a potentially long list of information,
most of which is useless unless other certificates from
the same issuer are validated in the near future.

A better way to manage revocation is to use reval,
which provides only the necessary information about
the certificate in question and nothing more. However,
even better is to use short lived certificates and avoid
online checks altogether.

Proposition 4.2 Introduce online test query formats.

<crl-query>:: "(" "test" <version>? "crl"
"forbid-delta"? ")" ;

<reval-query>:: "(" "test" <version>?
"reval" <cert> ")" ;

<one-time-query>:: "(" "test" <version>?
"one-time" <cert>
<nonce> ")" ;

<valid-basic>:: <valid-date> | <valid-
dates> ;

<valid-date>:: <not-before> | <not-after> ;
<valid-dates>:: <not-before> <not-after> ;

Proposition 4.3 Introduce negative online test reply
formats for reval and one-time.

The SPKI specification currently defines online test
reply formats for tests of type crl, reval and one-
time. However, the definitions for reval and one-time
assume positive replies. To make it possible for a ver-
ifier to prove that a test failed, negative reply formats
should also be defined. We propose the following re-
ply formats, which support both positive and negative
replies to reval and one-time queries, respectively.
<reval-reply>:: "(" "reval" <version>? "("

"cert" <hash> ")" "in-
valid"? <valid-basic> ")"
;

<one-time-reply>:: "(" "reval" <version>?
"(" "cert" <hash> ")"
"invalid"? "(" "one-
time" <nonce> ")" ")"
;

To allow use as proof, all replies must be digitally
signed by the validator.

Proposition 4.4 Introduce renew.

The SPKI theory document states that SPKI has
a mechanism to fetch a sequel to the current (short
lived) certificate; this provides an alternative way of
controlling revocation. As the specification itself does
not currently define the format for this kind of online
check or the related messages, we will propose such
formats here.
<renew-test>:: "(" "online" "renew" <uris>

<principal> <s-part>* ")" ;

<renew-query>:: "(" "test" <version>? "re-
new" <cert> ")" ;

<renew-reply>:: "(" "renew" <version>?
<cert> ")" ;

<renew-reply>:: "(" "renew" <version>? "("
"cert" <hash> ")" <valid-
basic>? ")" ;

The former <renew-reply> is a positive reply, and
contains the new certificate. The latter one is a nega-
tive reply, and contains the hash of the certificate for
which an extension certificate was asked for. The valid-
ity period states a period of time during which renewal
requests will be denied.

Proposition 4.5 Introduce limit.

Online tests guarding limited resources should be dis-
tinguished from other online tests and we propose a
new type of an online check called limit. It is similar
to one-time, but a verifier may not perform a limit
check without proof of its right to ask about the valid-
ity of the certificate containing the test. Our proposals
for the syntax of the test and the related messages are
below.
<limit-test>:: "(" "online" "limit" <uris>

<principal> <s-part>* ")" ;

<limit-query>:: "(" "test" <version>?
"limit" <cert> <request>?
<chain> ")" ;

where <cert> is the certificate whose online test(s)
are to be made, <request> specifies the amount of re-
sources requested, and <chain> proves that the verifier
is entitled to ask about the validity of the certificate.
The last certificate of the chain must be the validation
certificate, which contains the <nonce> that is to be
included in the reply to the query.

7 of 17

<request>:: "(" "request" <s-part> ")" ;

<chain>:: "(" "chain" <cert>+ ")" ;

<limit-reply>:: "(" "limit" <version>? "("
"cert" <hash> ")" "in-
valid"? "(" "one-time"
<nonce> ")" <context> ")" ;

<context>:: "(" "context" <hash> ")" ;

where <hash> is a hash of the concatenation of the
canonical forms of <request> and <chain>.

5 ISAKMP

The Internet Security Association and Key Manage-
ment Protocol (ISAKMP) [11] has been designed to
be a framework for securely implementing key and se-
curity association agreement negotiations. A security
association (SA) is a simplex communication channel,
which provides integrity, authentication and possibly
confidentiality. The actual channel can be implemented
using various techniques, like IPSec, but the role of
the management protocol is to agree on the parame-
ters used for the channel, such as the algorithms used.
To provide high bandwith two-way communications, at
least two different SAs (one in each direction) have to
be agreed on.

ISAKMP provides the building blocks for defining
the actual negotiation protocols by defining the types
of information that can be passed between the negoti-
ating parties and by defining a two-phase process for
the negotiation. In this model, the first phase is used to
agree on an internal SA, which is then used to protect
the possibly numerous phase two negotiations. This
makes the phase two negotiations much more simple
as they do not have to worry about securing their com-
munication. The phase two negotiations then agree on
the parameters for the actual communications. These
can include negotiations on an SA for the communica-
tion as well as the keys used.

A negotiation (be it a phase one or phase two nego-
tiation) is described in the ISAKMP world as an ex-
change. The exchange defines the order and contents
of the messages sent between parties. The ISAKMP
RFC defines some exchanges, but the actual protocols
are free to define their own.

One example of a key agreement protocol built
on top of ISAKMP is the Internet Key Exchange
(IKE) [8], which uses techniques from the Oakley [15]
and SKEME [10] RFCs to define a key agreement pro-
tocol for the Internet environment. It uses two of the
ISAKMP exchanges for its phase one negotiation and
defines its own phase two negotiation.

In our case, we use the ISAKMP to define the nego-
tiation protocols for validating the certificates and for
using the rights granted by the certificate. ISAKMP is
used to provide integrity and authentication and pos-
sibly confidentiality by using the standard ISAKMP
phase one exchanges to create a suitable SA. We then
define new phase two exchanges for the negotiations.

Even though our protocols are not key agreement
nor SA negotiations, the use of ISAKMP can be jus-
tified because they share many similar characteristics.
Further, the use of ISAKMP makes the protocol more
secure as ISAKMP takes care of most of the security
problems. And finally, this makes the implementation
of the protocol easier, as most of the protocol function-
ality is already implemented in ISAKMP.

The actual communications in our protocol may in-
volve three or more parties, so a three-party protocol
could possibly be even more suitable than ISAKMP.
However, the evaluation of this option is left to future
work.

6 Background for the protocol

In this section we go over some of the essential problems
in implementing a validation protocol.

6.1 The SPKI reality

For some applications revocation is essential. In SPKI,
revocation and online validation is possible only if it has
been defined in the certificate. The format of an online
check definition was already described in Section 4.2
for those online tests currently included in the SPKI
specification. The goal for our protocol was to support
them, as well as the tests proposed in Section 4.3.

An online check expression must contain one or more
URIs. The purpose of an URI is to define the proto-
col used to perform the verification, and to identify the
entity or resource that should be consulted using the
protocol. Only one of the URIs should be chosen and
used during validation, and the others should be con-
sidered as backups in case the initially chosen entity
or resource cannot be reached. The <principal> field
is used to authenticate the server; it typically contains
the public key of the server. The <s-part>* part of an
online check definition may contain additional informa-
tion that only needs to be understood by the validation
server. Depending on the type of URI, the same infor-
mation could also be contained in the URI itself. (This
is true for an HTTP URL, at least.)

Once a verifier receives a certificate chain, it must
first check to see if the chain is valid, apart from the
online checks. It may be that only the verifier is able

8 of 17

to understand the tags in the certificates. Only if the
chain is otherwise valid should the verifier proceed to
make the online checks.

6.2 Authenticating the parties involved

A successful validation depends on several things.
First, we have to be able to authenticate the partic-
ipants or the source of information reliably. The SPKI
specification does not give details regarding connect-
ing to online servers or transmitting messages between
them. One way to solve the problem is to use ISAKMP
to authenticate the parties. The relevant public keys
can be found in the certificate chain: the verifier is
the originator of the chain and the possible validator
is identified in the validation part of the certificate re-
quiring online validation. As both parties know each
others’ public keys and have their own private keys,
authentication and possible session key exchange can
be arranged. Our protocol requires authenticity and
integrity from the security association; other qualities,
such as confidentiality are optional, and are left for ap-
plication specific policies to decide.

It should be noted that it is not necessary to au-
thenticate the parties in every transaction type. For
instance, while fetching a CRL, it is not necessary to
authenticate the parties involved as long as the CRL is
correctly signed. In such cases, ISAKMP can be lim-
ited to first part of the protocol, namely the service
request.

6.3 Authorising the limit validations

The second problem is related to the right to make
some validation requests: validity queries of type crl,
reval, one-time and renew do not diminish any lim-
ited resource and can therefore be made by anyone. A
limit-type validation, however, will use some or all of
the resource by approving the validation, and therefore
the access to such validation has to be limited to only
those who are able to use the related resource them-
selves. In practice, this means those entities, to whom
the limited right was granted, and all other entities, to
whom this right was further delegated.

As the verifier is not a receiver of the right, but rather
the originator of the chain, he must not be allowed to
make any limit-type checks in the chain without ex-
plicit permission. The user of the resource, i.e. the
final receiver in the chain, has to authorise the verifier
to validate the certificates by issuing a special valida-
tion certificate for this particular use of this particular
chain. In our example, the merchant would authorise
the credit card company to make all the necessary on-
line checks.

6.4 Auditing the validations

All of the online checks in a certificate chain must pass;
otherwise the certificate chain is not valid. It is in the
chain verifier’s best interest that it handles the verifica-
tion correctly, as it is usually guarding access to its own
resource. In any case, the verifier should be the one re-
sponsible for properly verifying the chain. It could be
argued that the verifier must also be able to prove that
it verified a chain according to the rules in case some
in the chain denies having authorised the transaction
by having revoked one or more certificates. However,
the need for proofs depend on the nature of the service
and is therefore a policy decision.

It is possible for the verifier to have proof if it stores
the verified chain, as well as the signed replies sent by
the validation servers mentioned in the online checks.
Now, the verifier should only approve a chain when
it has such a signed statement for each of the online
checks in the chain.

6.5 Validation certificates

A validation certificate must contain at least all the
fields shown in certificate cvalidation.

cvalidation = (cert (issuer Kissuer)
(subject Ksubject) (tag (validate
hash(Schain)) (nonce vnonce)) (not-after
Texpiration))

(1)

where Kissuer is the public key of an entity autho-
rised to issue a permission to validate certificate chain
Schain, Ksubject is the public key of an entity that
wishes to check the validity of Schain (i.e. the verifier).
vnonce should be a unique value in the sense that after
the validation server has seen a certificate that has a
particular vnonce value, it will not accept another cer-
tificate with the same value until after the expiration
time Texpiration of the first certificate has been reached.
Texpiration should be chosen to provide sufficient time
for validation, but nothing more.

6.6 Avoiding unnecessary checks

A possibility for a certificate to get unnecessarily used
is when there are multiple limit-type online checks in a
chain. If these limit checks are performed sequentially,
it could be that some checks pass, before one of the
checks fails thus wasting the limits checked so far. Now,
all unlimited checks can then be performed first, and
only after that should any of the limited-use checks be
made.

In our case, we have used the refined SPKI speci-
fication, which gives us new options. In order to re-
duce the likelihood of wasted checks, we have decided

9 of 17

to use two-phase negotiation for limit-type validations
and one-phase negotiation for others. Furthermore, the
one-phase negotiations can be performed without an
ISAKMP connection as the integrity of the information
is not at risk. The two-phase negotiations, however, ei-
ther require ISAKMP or signed requests and replies.

One possibility of unnecessary use of limited-use
checks still remains. Any network failures during the
second phase might cause the transaction to fail when it
is already partially complete. As online checks cannot
be cancelled, there is no possibility of rolling back the
transaction, and those online checks already commit-
ted may have been wasted. To alleviate this situation,
the implementation can try to recover by rereserving
the resource and committing again. Also, the valida-
tion server can keep the reservations past the timeout
until someone else reserves the resource. Then, if the
network failure is temporary and verifier keeps sending
the commit request even after the timeout (but still
within the authorisation), the commit may succeed.

7 The SPKI Validation Protocol

An overview of the protocol from the verifier’s point
of view has been given in Figure 1. In the first phase,
the validation servers are queried to see if the online
checks would pass or not (see Figure 2). For non-limit
validations, the final response will come already in this
phase. For limit validations, if the replies to the queries
indicate that all of the checks will pass, the verifier can
then commence with the second phase, in which all the
reservations are then committed (see Figure 3).

7.1 Message formats

Between client and verifier

All the messages in this section have been defined us-
ing expressions resembling S-expressions for uniformity
and readability purposes. The actual messages will fol-
low the ISAKMP message structure and an example
of a message in ISAKMP form has been included. The
conversion of other messages is equally straightforward.

When a client wants to request a service from a ser-
vice provider, it sends a message containing the follow-
ing information to the server:

(Message definition 1)

(service-request
(version VERSION) [optional]
(request REQUEST)
(auth CHAIN)
(valid-auth VALIDCERT) [optional]

(verbose)) [optional]

where VERSION is a byte string that uniquely de-
fines the version of the message format. REQUEST is
a free-form field understood by both the client and the
server/verifier, CHAIN is the certificate chain proving
that the client has the permission to request the service,
and VALIDCERT is the validation certificate that proves
that the verifier has the right to check all the limited-
use online checks contained in CHAIN. "verbose" is an
optional field that, if present, specifies that the verifier
should give detailed error messages; instead of a single
return value, the verifier should reply by sending the
entire chain of certificates it attempted to verify and
a reason code for each online check contained within
those certificates. The possible reasoncodes are listed
in Section 7.2.

The information contained in messages of the above
format can be represented using ISAKMP payloads as
illustrated in Figure 4.

Between verifier and validator, unlimited checks

All online checks except limit checks can be performed
in one phase. For crl, reval and one-time checks, the
verifier sends to the validator a request of the form:

(Message definition 2)

(validation-request
(version VERSION) [optional]
(spki-query QUERY)
(verbose)) [optional]

where QUERY is a validation query as defined in Sec-
tion 4.3.

The validator then sends back a reply of the form:

(Message definition 3)

(validation-reply
(version VERSION) [optional]
(spki-query hash(QUERY))
(spki-reply REPLY)
(reason REASONCODES))

where hash(QUERY) is a reference to the query. RE-
PLY is the reply as defined in Section 4.3.

Between verifier and validator, limited checks

limit checks have to be performed in two phases to
make sure all the checks in the chain will either succeed
or fail. In the first message the verifier announces the
wish to use some of the limit:

(Message definition 4)

10 of 17

C = client
P = provider/verifier
V = validation server

E: chain complete
A: P asks for online check
 authorisation from C,
 unless it was provided
 together with CHAIN
 or is not needed

E: P got
 authorisation
 certificates
 (Certificate 1)

A: for each online check
 in CHECKS:
 P negotiates SA with V
 if SA does not exist,
 makes a reservation

E: all reservations
 okay or no online
 checks

A: for each online check
 in CHECKS:
 P sends a signed
 request to V,
 asking to commit
 the reservations

E: event

A: action

(initial
state)

E: C
contacts
P

A: SA negotiation
 b/w C & P

E: negotia-
 tion failed

E: negotiation
 successful

A: C sends service
 request and
 certificate
 chain CHAIN
 to P

E: SA b/W C & P exists
 and has sufficient
 lifetime
A: C sends service
 request and
 certificate
 chain CHAIN
 to P
(Message 1)

E: CHAIN
 incomplete

A: P sends
 request to
 resolver

E: no more relevant
 certificates

A: P says NO
(300,301,
303,304)
to C

E: found more
 certificates

A: resolver sends
 certificates to P,
 P may add to CHAIN

E: error, did not
 get authorisation

A: P says NO (300,302) to C

A: P asks
 C if
 should
 retry

E: C says no retry

A: P sends CHAIN to C if P completed it,
P asks V to cancel successful reservations

E: C says
should
retry

A: P waits a
moment, then
tries to reserve
checks not
yet reserved

Reserve phase

Commit phase

E: all commits
 okay

A: P gives service to C,
 and says YES (200)

E: critical failure:
 some commits failed
A: P reports error (5xx) to C

A: P asks C if should
 attempt to recoverE: C says

 no recovery

E: C says should
 try to recover

A: set list of online
 checks CHECKS to
 contain all checks
 in CHAIN

E: some
 reservations
 failed

E: all
failures
because
already
reserved
and
retries
left

E: not all failures
because already
reserved

A: P sets CHECKS to contain
 those online checks
 whose commit failed

E: there are no
 retries left

E: there are
 retries left

E: no SA b/w C & P

E: all reservations okay

E: not all failures
 because already
 reserved

 OR

 there are no
 retries left

E: some
 reservations
 failed

E: all failures
 because already
 reserved and
 retries left

A: P waits a moment,
 then tries to
 reserve checks
 not yet reserved

E: reservations to commit
E: nothing to commit

A: P says NO
 (500) to C

A: for each online check
 in CHECKS:
 P negotiates SA with V
 if SA does not exist,
 makes a reservation

Reserve phase

A: for each online check
 in CHECKS:
 P sends a signed
 request to V,
 asking to commit
 the reservations

Commit phase

A: P says NO
 (300,305)
 to C

 A: P
 says NO (300,
400) to C, and sends
CHAIN with reason
codes if verbose

(final
state)

Figure 1: Verifier state machine.

11 of 17

(initial
state)

A: SA negotiation
 b/w P & V

E: negotiation
 failed
A: return NO
(305)
(connectivity
problem)

E: negotiation
 successful

E: timeout
 (no reply)
 AND
 authorisation
 exhausted
A: return NO (305)
 (connectivity
 problem)

E: V said YES (200,210,211)
 (reserved) (Message 5)

A: return YES (200,210,211)

E: no SA b/w P & V

E: SA already exists

A: P sends
 reservation
 request to V
 (Message 2 or 4)

E: V said YES (201)
 (approved) (Message 3)
A: remove the passed
 check from CHECKS,
 return YES (201)
 as a signed
 message

A: return NO
 (4xx)

E: V said NO (4xx)
 (Message 3 or 5)

E: timeout (no reply)
 AND
 authorisation still valid
A: resend the request

E: V said
 NO (3xx)
 (Message 3 or 5)

A: return
NO (3xx)
 (validity
 unknown)

Figure 2: The reserve phase. Executed concurrently for each online check in the list of checks CHECKS.

E: V said NO
 (Message 7)

A: return NO
 (5xx)

E: V said YES (2xx)
 (Message 7)
A: return YES (2xx)
 as a signed
 message

A: P sends V
 a signed
 commit request
 (Message 6)

E: timeout (no reply)
 AND
 authorisation still valid
A: resend the request

E: timeout (no reply)
 AND
 authorisation exhausted
A: return NO (305)
 (connectivity
 problem)

(initial
state)

Figure 3: The commit phase. Executed concurrently for each online check in the list of checks CHECKS.

12 of 17

(reservation-request
(version VERSION) [optional]
(spki-query QUERY)
(verbose)) [optional]

In the reply, the validator informs the verifier,
whether the necessary limit exists:

(Message definition 5)

(reservation-reply
(version VERSION) [optional]
(spki-query hash(QUERY))
(reason REASONCODES)
(commit-by COMMITBY)) [optional]

where COMMITBY indicates by which time the verifier
has to confirm that it wants to use the limit. The
validator has reserved the limit for the indicated time
and if the verifier does not send the confirmation within
the indicated timeframe, the reservation will expire.

This does present a problem for the protocol: if for
some reason the verifier is unable to send the confirma-
tion message in time although other confirmations in
the chain have been sent, there is a risk that the chain
will not be completely valid and some limits will be
lost. The verifier can try to compensate by rereserving
the limit, but this is only a partial solution. Further
study of this problem is left to future work.

When the verifier has successfully reserved all the
necessary limits, it can send the confirmation message:

(Message definition 6)

(commit-request
(version VERSION) [optional]
(spki-query hash(QUERY))
(cancel) [optional]
(verbose)) [optional]

where "cancel" indicates that the verifier does not
want to confirm the reservation. This would be appli-
cable if some other reservations had failed, for instance.

The validator will reply with a message of the form:

(Message definition 7)

(commit-reply
(version VERSION) [optional]
(spki-query hash(QUERY))
(spki-reply REPLY)
(reason REASONCODES))

It should be noted that if the confirmation for some
reason arrived late, the reply could be negative.

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

! Initiator !

! Cookie !

+-+

! Responder !

! Cookie !

+-+

! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !

+-+

! Message ID !

+-+

! Length !

+-+

! Next Payload ! RESERVED ! Payload length !

+-+

! Domain of Interpretation (DOI) !

+-+

! Protocol-ID ! SPI Size ! Notify Message Type !

+-+

! !

~ Security Parameter Index (SPI) ~

! !

+-+

! !

~ Notification Data ~

! [Version] !

+-+

! Next Payload ! RESERVED ! Payload length !

+-+

! Cert Encoding ! !

+-+-+-+-+-+-+-+-+ !

~ Certificate Data ~

! !

+-+

~ ~

~ ~

~ ~

+-+

! Cert Encoding ! !

+-+-+-+-+-+-+-+-+ !

~ Certificate Data ~

! !

+-+

! Next Payload ! RESERVED ! Payload length !

+-+

! Domain of Interpretation (DOI) !

+-+

! Protocol-ID ! SPI Size ! Notify Message Type !

+-+

! !

~ Security Parameter Index (SPI) ~

! !

+-+

! !

~ Notification Data ~

! [Verbose] !

+-+

Figure 4: An ISAKMP payload definition of a service
request.

7.2 Reason codes

The possible REASONCODE values are divided into cate-
gories as follows:

1xx Informational. These values are reserved for in-
formational messages.

2xx Is valid.

200 YES, for no particular reason. The server did
not specify a reason for saying yes.

201 YES, is valid. Indicates the resource was not
reserved, and that the online check was al-
ready performed and it passed. This code
should only get returned if the resource is of
a non-exhaustible nature.

13 of 17

210 YES, reservation was successful. The online
check was reserved and will be available for a
commit for a limited period of time.

211 YES, reservation was committed, and the on-
line check thus passed.

3xx Not known if valid.

300 NO, validity unknown for no particular rea-
son. The server did not specify a reason for
its inability/unwillingness to determine if the
certificate is valid.

301 NO, try later. E.g., the resolver was busy
and a complete chain could not be formed,
or reservation would have been possible un-
less some other reservation(s) had not already
been made.

302 NO, not authorised to ask. The authorisation
provided was insufficient.

303 NO, send complete chain. The client should
send the complete certificate chain to use.
The server is not willing to acquire the chain
for the client.

304 NO, incomplete certificate chain. The server
tried to complete the chain provided by the
client, but failed.

305 NO, connectivity problem.

310 NO, not interested. The server is not autho-
rised to validate the certificate.

311 NO, syntax error. E.g., the validation server
did not understand the question due to a mal-
formed request.

4xx Not valid.

400 NO, for no particular reason. The server did
not specify a reason for saying no.

401 NO, was revoked. The certificate has been
revoked.

402 NO, is exhausted. The resource that the on-
line check was guarding has been (possibly
temporarily) exhausted.

5xx Severe error occurred. Some, but not all of the
online checks were committed.

500 NO, a severe error has occurred. The server
did not specify more details about the error.

501 NO, connectivity problem at a critical mo-
ment.

8 An example

As an example of the usage of our protocol we cover a
scenario in which certificates are used to authorise and
control credit-card-like payments, like in our original
example.

C

H

K

S

credit
card
company

cardholder

parallel
card
holder

shop

CSC CCH

CKS CHK

Figure 5: An example scenario.

In the scenario we have a credit card company C
and a ”cardholder” H. C issues H a certificate cCH

with which it authorises H to make payments, which
will first be debited from C’s account, and which H
should later pay back to C. (This certificate represents
a traditional credit card.)

cCH = (cert (issuer C) (subject H)
(propagate) (tag (has-credit unlim-
ited)) (not-after E))

(2)

where E is the expiration date. Here we are assum-
ing that H has no monthly credit limit. It should be
noted that the account number of H is not mentioned
in the certificate. This is not necessary as the credit
company can store this information, when it issues this
certificate. The account number is of no concern to the
user nor the merchant; in fact, leaving it out promotes
privacy. Also, it makes it possible to change the ac-
count number and Certificate 2 without affecting any
of the subsequent certificates in the chain.

H wants to give his offspring K a ”parallel card”, i.e.
H wants to allow K to use his credit account. However,
H does not trust K to fully understand the value of
money, and wants to only allow K to accumulate a
maximum of $500 worth of debt to H. To do this H
sets up a validation server (or uses an existing one),
and issues the certificate cHK to K.

14 of 17

cHK = (cert (issuer H) (subject K)
(propagate) (tag (has-credit $500))
(not-after E) (online limit (uri
svp:hv.net) Hv (max $500)))

(3)

where the URI prefix svp: (SPKI Validation Proto-
col) refers to the validation protocol presented in this
paper. Hv is the principal that handles validation for
H, and hv.net is the DNS domain name of Hv.

The validation server Hv keeps track of the transac-
tions initiated by K, and will only confirm the validity
of a certificate if that certificate does not cause the
limit mentioned in the validity check field of cHK to be
exceeded.

The value $500 in the authorisation field serves as a
sanity check in the sense that it makes it impossible to
attempt charges of more than $500 at once. Thus, the
online check only needs to be made for charges of $500
or less.

Now, suppose K would like to order a game console
priced at $300 from the Internet. He has unfortunately
forgotten that he has already used $240 of his credit
limit this month, so he will not have enough credit left.
He writes the following certificate cKS to the seller S.

cKS = (cert (issuer K) (subject S)
(propagate) (tag (may-charge $300))
(not-after E) (online limit (uri
svp:kv.net) Kv (once-only)))

(4)

As can be seen from the certificate, it does not con-
tain any information that would specify the “account”
from which the charge may be made. If S were to pos-
sess a chain other than {cCH ,cHK} that would prove
that K is authorised to make the transaction described
in cKS and to delegate that authority, then S might be
able to get its $300 from a different source. The use of
a particular chain can be enforced through the use of
different keys. If a particular key only has one autho-
risation, then there can be no confusion of which one
to use.

K uses the validation server kv.net (with principal
Kv) that ensures that authorised payments can only be
charged once, and that K knows if the charge has been
made or not. In practice, this validation server could
be e.g. K’s own terminal, which asks K to confirm.

K then acquires and sends the chain {cCH ,cHK ,cKS}
to S. S then writes the certificate cHSval, which will
authorise C to check the validity of the certificates that
require an online check.

cHSval = (cert (issuer S) (subject C)
(tag (validate hash({cCH,cHK,cKS}))
(nonce 666)) (not-after T+5min))

(5)

where T is the current time at the time of creating
cHSval. It should be noted that cHSval only authorises
the validation of certificates in the context of the spec-

ified certificate chain. This is to forbid another party
(for instance, the credit card company) from construct-
ing a different chain for the transaction, and using this
authorisation for a purpose other than it was intended
for.

Validation servers are naturally free to decide whose
authorisations to trust, but in this example we follow
the rule presented in Section 6.3. The validation server
Hv only honors validation certificates issued by H, K
or S. The validation server Kv only honors validity
check authorisations issued by K or S. In general, Hv

honors authorisations from those entities who appear
in certificate chains after those certificates in which Hv

is mentioned as the validation server; in this case, (pos-
sibly indirect) recipients of the certificate cHK could all
be accepted by Hv as a source of authority.

When S has the payment information and charge au-
thorisation, it can make the charge if it has the prod-
uct in stock and chooses to make the deal. It can do
so by sending all of the certificates received from K to-
gether with the validation certificate that S itself wrote.
C then makes the validity checks, and finds that the
Hv replies that a check failed, because the charge at-
tempted exceeds the limit set by H.

Had the limit not been exceeded, the online checks
would have been successful, and C would then have
committed to the transaction, and transferred the
charged amount (minus any fee) to S’s account. S
should then deliver the ordered product to K.

The transaction must be handled in 5 minutes, or
otherwise some of the certificates expire, which makes
it impossible to complete the transaction.

9 Evaluation

According to the criteria introduced in Section 3, we
can state that our protocol has the following properties:

Fail safety If the validation server fails to respond,
the permissions should not be granted. This pre-
vents denial of service attacks against the valida-
tion servers from hiding the fact that the certifi-
cate has been revoked.

Timeliness The validation protocol does not intro-
duce any significant delay in the propagation of
revocation information. Because everything is on-
line, there is no need to use outdated copies of
information. However, the notification and man-
agement of the validation servers may introduce
some delay and is, therefore, a relevant topic for
future work.

15 of 17

Adjustability The verifier can affect his own risk
level by choosing to skip the online check based
on the length of time elapsed since the same check
was previously made.

Granularity The revocation can be performed on a
per certificate basis, but not to individual permis-
sions within a certificate. It should be noted that
revoking certificates can affect third parties if the
rights had been delegated.

Containment The validation server only controls the
online validation and not the issuing of certificates.
So, a compromise of the validation server will not
facilitate the creation of new illegal certificates.
The only exception is renew, where the validation
server distributes new certificates. These certifi-
cates can, however, be issued offline in which case
there is no problem with containment.

Reversal of revocation It is a simple matter of noti-
fying the validation server that the revocation was
an error or that the circumstances have changed
and that the certificate should be re-enabled.

Protection of revocation This depends on the
management of the validation server and is cur-
rently under work.

10 Future work

One way to improve the performance of long certificate
chains is to use reduction certificates [6]. A certifi-
cate reduction certificate (CRC) replaces two or more
certificates with one certificate so that this one certifi-
cate has the exact same meaning as the chain replaced.
This reduction can be performed automatically and will
make any future use faster. However, an unfortunate
side-effect of the need for authorisation in limit valida-
tions is that it makes reduction over such certificates
impossible. To verify the limit validation, we need an
authorisation from the receiver of the original certifi-
cate or her descendant. However, if the receiver is re-
moved from the chain by the reduction, there is no way
of proving the descendence and, hence, the authority.
This makes any further validations impossible and the
CRC unusable.

Although certificate chain reduction certificates
bring problems to the revocation protocol, they may be
critical to the performance of the system. This would
be the case especially in a widely deployed PKI with
millions of certificates and potentially very long certifi-
cate chains. Thus, merely noting that chain reduction
certificates cannot be created for chains that include

online validity checks is not an attractive option in the
long term. This is an issue that we are going to address
in the future.

A possible other benefit of reduction certificates is
the promotion of anonymity. However, if a reduction
certificate contains online checks, anonymity might be
compromised. Therefore, any online validation does
not appear to be compatible with reduction certificates
created for privacy purposes. If, on the other hand,
the online validations can be performed before reduc-
tion and the resulting certificate has no online checks
(though presumably a shorter validity period), the re-
duction might end up improving privacy.

Another issue that needs further attention is how
the validation server finds out that the certificate is
revoked. If the validation server is not the same server
that issued the certificate or is otherwise responsible
for making the revocation decision, an additional noti-
fication protocol may be needed.

The performance and scalability issues of certificate
based systems in general and the validation protocol
in particular still need further work. At the moment,
they look promising, but without extensive empirical
tests we can not state anything definite about their
suitability as an Internet-wide solution.

In our project, we are also going to do further usabil-
ity research on the subject of delegation management.
So far we have built the underlying certificate function-
ality in a fairly technology-oriented manner, but the
management issues really cannot be addressed with-
out a strong emphasis on usability. In our usability re-
search, we are trying to find out how certificates should
be presented to users, i.e. how much must the users un-
derstand themselves and how much can be taken care
of by the software. Furthermore, in a related research
effort we are studying what makes users feel secure,
i.e. which information the users want to see and what
decisions they want to make themselves.

11 Conclusions

In this paper, we have discussed the different methods
for certificate validation and revocation, and presented
a protocol for authentication and certificate validation
for SPKI based systems.

We conclude that certificate revocation lists are not
the most attractive revocation method as they tend
to transfer possibly large amounts of unnecessary in-
formation. We feel that online checks, which transfer
only the relevant information and do not require stor-
age of information that the party may never need, are
more appropriate. As a consequence, we propose that

16 of 17

CRLs should be deprecated, if not removed and that
the emphasis should be moved to online validations.

Using the authority delegated to a public key through
a certificate chain requires a proof of possession of the
corresponding private key. This is achieved using an
authentication protocol. ISAKMP is a standard frame-
work for key and security association agreement. We
proposed to use the framework for certificate validity
checks as well, and defined two new phase two ex-
changes for ISAKMP to implement our protocol.

We presented a set of design criteria a good proto-
col should fulfill and finished by analysing our protocol
and concluding that we were able to satisfy most of
them. The remaining ones were discussed and they are
currently under work.

References

[1] Paul Ammann, Ravi S. Sandhu, and Gurpreet S.
Suri. A distributed implementation of the extended
schematic protection model. In Proceedings of the sev-
enth Annual Computer Security Application Confer-
ence, pages 152–164, 1991.

[2] Tim Berners-Lee, Roy T. Fielding, and Larry Masin-
ter. Uniform Resource Identifiers (URI): Generic syn-
tax. Request for Comments: 2396, August 1998.

[3] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decen-
tralized trust management. In Proceedings of the 1996
IEEE Computer Society Symposium on Research in
Security and Privacy, Oakland, California, May 1996.
IEEECSP.

[4] Claudio Calvelli and Vijay Varadharajan. Represen-
tation of mental health application access policy in a
monotonic model. In Proceedings of 1993 IEEE Com-
puter Security Applications Conf., December 1993.

[5] Carl M. Ellison, Bill Franz, Butler Lampson, Ronald L.
Rivest, Brian M. Thomas, and Tatu Ylönen. Simple
public key certificate. Internet draft (expired), IETF
SPKI Working Group, March 1998.

[6] Carl M. Ellison, Bill Franz, Butler Lampson, Ronald L.
Rivest, Brian M. Thomas, and Tatu Ylönen. SPKI cer-
tificate theory. Request for Comments: 2693, Septem-
ber 1999.

[7] Thomas Hardjono and Tadashi Ohta. Approaches to
secure delegation in distributed systems. In Proceed-
ings of the 12th Annual International Phoenix Confer-
ence on Computers and Communications, pages 188–
194. IEEE Computer Society Press, March 1993.

[8] Dan Harkins and Dave Carrel. The Internet Key Ex-
change (IKE). Request for Comments: 2409, Novem-
ber 1998.

[9] I-Lung Kao and Randy Chow. An extended capabili-
ties architecture to enforce dynamic access control poli-
cies. In 12th Annual Computer Security Applications
Conference, 1996.

[10] Hugo Krawczyk. SKEME: A versatile secure key ex-
change mechanism for Internet. In Symposium on Net-
work and Distributed Systems Security, pages 114–127,
San Diego, California, February 1996. Internet Society.

[11] Douglas Maughan, Mark Schertler, Mark Schneider,
and Jeff Turner. Internet Security Association and Key
Management Protocol (ISAKMP). Request for Com-
ments: 2408, November 1998.

[12] Silvio Micali. Certificate revocation system. U.S.
Patent 5666416. Issued September 9, 1997.

[13] Michael Myers, Rich Ankney, Rich Malpani, Slava
Galperin, and Carlisle Adams. X.509 Internet public
key infrastructure Online Certificate Status Protocol –
OCSP. Internet draft, March 1999.

[14] Moni Naor and Kobbi Nissim. Certificate revoca-
tion and certificate update. In Proceedings of the 7th
USENIX Security Symposium, San Antonio, Texas,
January 1998. Usenix Association.

[15] Hilarie K. Orman. The Oakley key determination pro-
tocol. Request for Comments: 2412, November 1998.

[16] Ronald L. Rivest. Can we eliminate certificate re-
vocation lists? In Proceedings of the Second Inter-
national Conference on Financial Cryptography, An-
guilla, British West Indies, February 1998.

[17] Ronald L. Rivest and Butler Lampson. SDSI –
A simple distributed security infrastructure. (see
SDSI web page at http://theory.lcs.mit.edu/~cis/
sdsi.html).

[18] Ronald L. Rivest and Butler Lampson. SDSI – A sim-
ple distributed security infrastructure. In Proceedings
of the 1996 Usenix Security Symposium, 1996.

[19] Ian Simpson. Modeling the risks and costs of dig-
itally signed certificates in electronic commerce. In
Proceedings of the second USENIX Workshop on Elec-
tronic Commerce, pages 287–297, Oakland, California,
November 1996. USENIX.

[20] Stuart G. Stubblebine. Recent-secure authentication:
Enforcing revocation in distributed systems. In Pro-
ceedings 1995 IEEE Symposium on Research in Secu-
rity and Privacy, pages 224–234, Oakland, California,
May 1995.

[21] Vijay Varadharajan and Claudio Calvelli. An ac-
cess control model and its use in representing mental
health application access policy. IEEE Transactions on
Knowledge and Data Engineering, 8(1):81–95, Febru-
ary 1996.

17 of 17

Evaluating Revocation Management in SPKI
from a User’s Point of View

Kristiina Karvonen1, 2, Yki Kortesniemi1, Antti Latva-Koivisto1

1Helsinki University of Technology, P.O. Box 9800, 02015 HUT, Finland
2Visual Systems/ TietoEnator Ltd, Vanha Talvitie 19 a, 00580 Helsinki, Finland

{Kristiina.Karvonen,Yki.Kortesniemi,Antti.Latva-Koivisto}@hut.fi

Abstract
The topic of computer and network security has gained an ever-increasing amount of interest
in recent years. The pervasiveness of computers everywhere means that novel users, from
novice to expert, need to be able to manage their own security in an understandable way,
when giving information about themselves or making transactions online. In this paper, we
will present, discuss, and analyse the various revocation methods of a Simple Public Key
Infrastructure (SPKI) certificate based access control mechanism from a user's point-of-view.
We will consider the downsides and benefits of each revocation method, and make
recommendations for which methods to use in which use situations, and how to present the
best choices to the user in an understandable way.

Key words: revocation, management, authorisation, certificates, usability

1. Introduction
Controlling access to valuable resources is a necessity, be they traditional resources such as a
safe or a bank account, or computer resources, such as a file containing secret information.
Managing the access can be a challenging task for the system designers and resource owners,
particularly if the system is large and distributed. Currently, there are many kinds of security
architectures used to manage the security of these systems. With most, the trend is to involve
the users more in handling their security. The users have to decide whom to trust, to what
extent, where and when.

Traditionally, access control systems have been based on the concept of Access Control List
(ACL), where every resource is bundled with a list of authorised users. Typically, the list is
located next to the resource, with all the relevant information in one place. An example could
be the VIP list at the door of a club. If there are several doors, we need several copies of the
list, and keeping them up to date requires extra work. Authorisation certificates reverse the
concept, turning the centralised system into a distributed one. With certificate-based systems,
the users of the resource are given a ticket that proves they have the right to use the system.
The right no longer resides with the resource but with the user (all the VIPs have a special
card they show at the door), and the right automatically follows the users to whichever copy
of the resource they go to. If the club has several entrances, the VIP can use any one of them.
A significant difference to the paper-based tickets is that authorisation certificates can be used
to delegate the rights to other users without any help from the owner of the resource: users
can delegate their own rights. This means that it becomes possible e.g. to create new credit
cards that make it possible for children to use their parents credit right in such a way that the

parents keep their own card and the children have a limit to the amount they can charge from
the card [Heikkilä-Laukka, 1999].

Certificates are intuitive in many ways – a certificate granted means a right granted – but
sometimes there is a need to cancel, to revoke, a right previously granted. Unfortunately, the
revocation mechanisms create problems from the user’s point-of-view, because revoking a
right is not as intuitive as granting a right, and because there are many mechanisms of
revocation to choose from. The core of this paper is to pinpoint and answer the specific
usability issues that these revocation mechanisms give rise to, and to be able to choose
between them. We will do this by first having a look at existing research on usability of
computer security – the area the work at hand falls into, describe the various revocation
methods in SPKI, and outline the usability issues that these revocation methods give rise to
with the help of several use cases. We will conclude with bringing together the outcome of
the analyses of these use cases and their significance for the usability of revocation
management in SPKI.

2. Usability of Security - Previous Work
Usability issues in revocation management are part of the problems in usability of computer
security, still taking its first steps. It is a generally known fact that users are often considered
to be the "weakest link", when computer security issues are at hand ([e.g., Adams and Sasse]).
Rightly so, for no matter how sophisticated security mechanisms we use, they are only
effective when used correctly. However, more and more "ordinary" people, without any
former experience with security issues or technologies will have to learn to manage security
now, and even more so in the future. One answer might be to increase the automation level of
security. In this scenario, security would be taken care of by the system on behalf of the user,
and the user need not bother about it. However, Whitten and Tygar [1999] state that even
though automation may be the right solution for securing the communication channel itself,
there remain situations where automation is not and cannot be the answer. At many points
manual involvement is required from the user, for example when giving access to shared files
for others. They also argue that usability of security has some specific usability problems not
encountered in other areas. These include making users aware of the security tasks at hand,
providing guidance throughout the procedure, and preventing dangerous errors [Whitten-
Tygar, 1999]. Adams and Sasse [1999] give more or less the same recommendations for
creating usable security in their treatment on how to make passwords user-friendlier, such as
motivating users and providing feedback.

A further problem with usability of security is to define the right level of information
provided. In case of certificate revocation, it seems we have two options: either we can hide
the certificates from the users as fully as possible, or we must make the certificates
understandable from the user's point-of-view. A mixture of hiding and revealing information
about the certificates, along with preventing the user from making any serious mistakes, is a
likely solution.

3. Revoking SPKI Authorisation Certificates
The SPKI authorisation certificates and their revocation methods have been developed by the
Internet Engineering Task Force (IETF). The theory behind SPKI has reached the status of
experimental RFC [Ellison & al, 1999], although the latest document has expired. The
structure of the SPKI authorisation certificates has been derived from the theory document,
but the document has not been completed and is therefore not an RFC. The revocation

mechanisms discussed in this paper are based on the latest draft of the structure document, but
we have also included the proposed changes from Kortesniemi, Hasu and Särs [2000].

An SPKI authorisation certificate is essentially a ticket granting the specified right to the
indicated recipient. The certificate is always valid and can be used an unlimited number of
times, unless its validity is somehow limited by listing conditions in the validity field of the
certificate. Once the resource owner issues a certificate, there is no practical method of
getting it back from, say, a misbehaving recipient, so the issuer needs to include some
limiting conditions in the validity field when the certificate is created. And here lies the
difficulty: all possible future problems have to be anticipated and suitable countermeasures
must be devised at the creation time. To better appreciate the problems involved, let us have a
look at the various revocation methods available. Although there are six different methods to
limit the validity of a certificate, only four (types C, D and E) can be considered revocation
methods; the rest are just validity management methods. In this paper, we have grouped the
methods in five types based on the speediness of revocation and expiration characteristics
(Table 1). We can say that the types refer to the validity mechanisms themselves, or to
certificates, whose most effective mechanism is of the type mentioned.

Table 1: The SPKI validity management methods
Type Method Speed of Revocation Notes

A
No Validity Period /
Only beginning time
(= no end time)

N/A Does NOT expire

B
End time /
complete Validity
Period

N/A

Renew After current certificate
expires

CRL After current CRL expires C

Reval After current “Bill of Health”
expires

D One-time Immediately Can limit the usage of a
group of users

E Limit Immediately Can limit the usage of
the particular user

The simplest method is a validity period: the certificate is valid only between the
dates stated. However, both of the dates (not-before and not-after) are optional, so it is
possible to create e.g. “eternal” certificates by omitting the expiration date (type A). Such
certificates should be used only with careful consideration and are not likely to be seen by
end-users (example: a computer granting the administrator all the rights to the computer).
Once the validity period also contains an end time, we have a more regular certificate (type
B). These kinds of certificates are good when the value of the right or the risks from misuse
are not significant (example: one-day bus ticket).

When the value or the risk is high, we need some way of revoking the certificate. First, we
look at type C that has three methods. Renew divides the long validity period into several
shorter ones that are represented by individual certificates, and provides an automated method
for fetching the subsequent certificate after the current one has expired. The issuer can at any
time stop the distribution of new certificates so after the current (short lived) certificate
expires, the right is revoked. CRL (Certificate Revocation List) is based on a periodically
published list of revoked certificates. Revocation takes effect as soon as the subsequent list

has been published (i.e. after the current one expires). Reval is based on a periodically
published “bill of health”, which assures that a certificate is still valid. Without it, the
certificate is invalid. Unlike CRL, Reval is not a list; it is issued individually to each
certificate. These three methods appear similar to the issuer: the revocation takes place after a
delay. This makes them suitable for a situation, where revocation is required, but the speed of
revocation is not essential (example: one year bus ticket, which can be revoked every two
weeks). The revocation methods of types D (one-time) and E (Limit) require contacting an
online server every time the certificate is used. They can also be used to control the amount of
use, not just to revoke the certificate completely. One-time can limit the usage on a general
level (example: there are only 50 parking spaces in the garage, so limit the number of cars to
50), whereas Limit can actually control each individual certificate (example: this certificate
allows 10 bus trips). The advantage of these methods is that revocation takes place
immediately, but they also require a network connection.

4. Cases
In order to implement a system that is based on certificates, the user needs to have a terminal
into which the certificates are loaded. Here, we consider a hand-held device type of terminal
that has a screen and an ability to communicate with other systems either wireless or via a
physical interface.

4.1 Bus Tickets
Helen, 15, wants to go shopping downtown, so she gets on a bus and buys a single ticket that
is loaded onto her PDA. The ticket is valid for one hour, during which time she can transfer
freely. In downtown, she needs to transfer to a tram to get to her favourite department store.
This ticket scheme can be implemented with type B certificates. Helsinki City Transport
(HCT) has delegated the right to sell tickets to all the buses and kiosks by issuing certificates
to them. When Helen gets on the bus, the ticketing system of the bus creates a new certificate
that is valid for one hour. The new certificate, together with the bus’s certificate, is loaded
onto Helen’s PDA, which already contains a software module that can talk with the bus’s
system, and Helen’s account is charged. When Helen transfers to the tram, the tram’s system
talks with Helen’s PDA to check that she has the right to enter the tram. This ticketing
scheme is rather simple. No revocation mechanism is needed, because the value of the ticket
is very small. If Helen loses her PDA (and her ticket), the value of the ticket is her least
concern. The issuer, HCT, does not have any interest in being able to cancel customer’s
tickets, because customers pay for their tickets in advance, and the customers cannot break
any agreements that should result in the termination of the ticket.

Helen's father Matt wants to get to work in the morning and back to home in the evening, five
days of a week, and an annual bus ticket is a good solution for him. He will not have to keep
on buying new tickets, and an annual ticket will probably cost much less than, say, 500 single
tickets. However, Matt is a forgetful person, and since an annual ticket costs around 600 €, he
is worried about losing the PDA and the tickets with it. He needs some way to ensure that if
the PDA does get lost, he will be able to revoke the ticket and get a refund for it. All this can
be achieved with type B certificates, but for the user, losing the ticket involves too great a
risk. In order to provide good and safe service for its customers, HCT should be prepared to
issue new tickets to replace lost or stolen ones, so HCT should use a method where tickets can
be cancelled. This requires the use of type C or type D methods.

With the type C methods, tickets cannot be cancelled immediately but only after a period of
waiting. The CRL method requires that the list of cancelled tickets is updated onto every bus
every morning, i.e. it requires a periodic connection to a central server. As a result, it may
take up to 24 hours before a ticket becomes invalid. This system works well when there is
only one issuer (HCT). It also requires that tickets cannot be resold or delegated, since that
would mean more issuers. If there are many issuers, it gets impractical or impossible to obtain
all the possible CRLs in advance, or alternatively, the required CRLs must be obtained online
at the time when the ticket is used. In the simple case, the end-user’s terminal is not required
to go online, and the bus’s system needs to go online only occasionally. The next method,
Renew, is based on dividing the annual ticket into, say, two-week periods. At the end of each
period, the ticket is renewed until one year has passed. In this case, we don’t need a list of all
cancelled tickets on every bus. Instead we get the problem of renewing the ticket. The ticket
must contain the address of an online server where the renewed ticket can be obtained. This
kind of renewal must not be the user’s responsibility, since it does not match the user’s goals.
Let’s consider the simple case. If Matt gets on the bus and the ticket is in the middle of a two-
week period, everything goes well. The ticketing system on the bus checks Matt’s ticket and
lets him in. If one two-week period is coming to an end, Matt’s ticket needs to be renewed.
This can be done automatically by the user’s terminal. The user’s terminal should contact the
online server and ask for a new ticket. When Matt gets on the bus next morning, everything is
fine again, and Matt does not need to know anything about the renewal process. Alternatively,
if Matt’s terminal is unable to go online, the bus’s ticketing system can renew the ticket when
Matt gets onto the bus.

The third method, Reval, is based on revalidating the certificate again and again. It works
very similarly to Renew, but here, the user’s terminal must supply the ticketing system both
with the certificate that is valid for one year and with a “bill of health” that is valid for two
weeks at a time. Instead of renewing the certificate itself, the bill of health must be renewed,
which makes the system more complex. From Matt’s point of view, all the three different type
C mechanisms are the same, so they should also look the same. The differences are technical
and understanding them does not provide any added value for the end-user.

The problem of type C certificates is that they cannot be revoked immediately. This is both a
usability and a utility problem. The user may have difficulties in understanding or accepting
that his electronic ticket cannot be cancelled immediately. With type D certificates, where the
certificate requires that its validity be checked from an online server each time the ticket is
used, the ticket can, instead, be cancelled immediately. However, using type D certificates
requires that the resource is always online when it is used. Alternatively, the user’s terminal
could be required to go online, but this would be poor service and poor system design. When
we look this from Matt’s point of view, we see that for Matt, the only thing that matters is that
he does not have to bear the risk of losing his investment in the yearly ticket. This can be
achieved with type C certificates by making a business decision. HCT could issue a new
ticket for Matt if the old one is lost or stolen. Possibly HCT could charge a small fee for this
service. HCT could then itself bear the risk that somebody uses Matt’s ticket before it can be
revoked. HCT could make this business decision, because this could be more economical than
implementing a type D system, where all the buses must be online at all times. Also, the speed
of the process is important for both Matt and HCT. If passengers must wait before they can
enter the bus, it is irritating. If an actual implementation of type D system turned out to be too
slow, a type C system should be used to ensure good quality service.

4.2 Parking House
Jane, Matt’s wife, works for a company that rents 50 parking spaces for its employees from a
nearby parking house, because it is known from experience that there are normally about 45
cars present at any one time, although there are almost 100 employees. The company then
needs to distribute the parking permits to the employees. With the One-time method, we
can implement a system for the garage that allows resource pooling and efficient use of
parking lots. Every employee’s PDA stores the certificate that grants access to the parking
house. At the garage door, Jane’s PDA automatically communicates with the door. The door
lets Jane in only if less than 50 lots are in use. If all the rented spaces are occupied, the door
tells Jane that all the spaces are full. For Jane, it is important to be able to know how many
lots are still free. Therefore, the server that verifies the validity of the parking ticket (by
checking the number of used lots) should also provide a facility to check the number of free
lots. If Jane should decide to leave the company, her certificate can be immediately revoked,
thus preventing any further use of the garage and without affecting any of the other
employees.

4.3 Charge Card
Helen is about to leave for a two-month language course in London. During the course, Helen
will need money for food, travelling, souvenirs and activities like theatre. Matt concludes that
300 € should suffice nicely and gives Helen access to his bank account for that amount. With
a traditional charge card or a credit card, this would mean going to the bank and ordering a
separate card for Helen (which can take several days). Further, such a card cannot be limited
to any amount, so theoretically Helen could empty Matt’s account.

When using certificates to implement a paying scheme, we can accomplish the limit
[Heikkilä-Laukka]. Matt can go to his PC, open the bank program (used to pay bills) and
create a “charge card” (certificate) for Helen, without any assistance or delay from the bank.
These “charge cards” are stored in the user’s PDAs and are used in shops to pay for products
and services. For the certificate Matt needs Helen’s “ID number” (public key), which is kept
inside Helen’s PDA. Helen gives the ID number by bringing the PDA next to the PC. Matt
then keys in the limit (300 €), chooses the account from which the money should come, and
finally sends the finished certificate to Helen’s PDA. Technically, the limit of 300 € is
implemented using the Limit method, which means that somewhere there is a server that
monitors the usage of Helen’s certificate. Theoretically, this could be any server, but in
practice giving that choice to Matt would just make the system more difficult to use. Hence, it
is quite natural that the server belongs to the bank, which Matt trusts already. The choice
about which server to use must be made by the designer of the system, and Matt does not
need to know the details.

During her course Helen can pay for her expenses by using the PDA at the cashier. The due
amount appears on the PDA’s screen, and once Helen accepts the sum, the money is
transferred to the shop. Towards the end of Helen’s course she finds out that a trip to Paris is
being organised, but she no longer has enough money to participate. She decides to call her
father and ask for a higher limit on her charge card. At that time, Matt is enjoying his summer
vacation at the family cottage. Luckily, he has his PDA with him, so he can use it to raise the
limit to £400 by simply typing a new value over the old one in the bank program. In Paris, the
unexpected happens: Helen is pick-pocketed and she loses her PDA. She immediately calls
her father, who can revoke the certificate at once.

In the case of a bank account/ charge card, only the Limit method can be used to control the
amount of money spent on that certificate. If Matt had decided not to impose a limit, the
bank’s software would have chosen the One-time method instead, because the possibility of
losing one’s PDA still requires the possibility of immediate revocation. Implementing the
system in this way is the responsibility of its designer. The system must not require that Matt
make the decision about which kind of certificate to use. In order to make good decisions on
the user’s behalf, the designers must uncover the user’s goals and needs before the system is
implemented, and simulate their design from the end-user’s point of view.

4.4 Summary of findings
Certificates can be used to enable various user tasks. In the cases just presented, the end-user
does not need to be aware of certificates or revocation methods as such. They would be
confusing by introducing new concepts that have nothing to do with the user’s real goals.
Instead, the end-user should be presented with concepts and information that match her goals:
a bus ticket with an expiration time, a button to cancel someone's right to use one’s bank
account, or a phone number to call when the bus ticket or credit card is lost.

The designer of a system, however, has to understand certificates and revocation methods. It
is the designer’s responsibility to choose a suitable method with which to support the user’s
goals and to analyse which options are relevant to the end-user. To do this, the designer
probably has to conduct field studies and observe and interview end-users. In particular, in
each presented use case the required functionality could be reached with only one or two
different revocation methods. Therefore, offering the end user a full list of methods is a bad
idea. We also noted that CRL, Reval and renew can be made to look identical to the end-
user (except in a limited set of cases), so the choice between them can be based on technical
reasons.

The designer should follow established usability and interaction design guidelines in creating
the system. Especially visibility of the user’s data and the system’s state are important. The
end-user must be able to see what rights she has acquired, such as a bus ticket. The validity
periods and limits for such rights should be shown. With the Limit method (type E), it is
important that the server is able to tell the remaining limit, in addition to validation checking.
The user must be able to easily see, to whom she has delegated rights, and revoked
permissions must also be clearly visible. When presenting user’s data and the system’s state,
all information should be shown in its context. The delegated right to use one’s account must
be presented together with the account in the bank application.

The two reasons for revocation – the issuer discovers that the receiver is misusing the
certificate and wants to take it away, or the receiver loses the certificate and wants it replaced,
in which case the old one has to be revoked – enable us to make the following conclusion on
the different types. Type A certificates should not be offered as an option to end-users,
because they are valid forever and cannot be revoked. Type B certificates are a good choice,
when the value of the right is not significant and the end-user cannot cause significant damage
to the issuer by misusing the certificate. Type C certificates could come into play when the
value becomes so big that a revocation method is necessary, but the misuse does not require
immediate revocation – for instance, when misuse is rare and the issuer can understand and
bear the risk of misuse. This is how credit card companies handle misuse today. However, it
must be noted that for the end-users it is important that they do not need to bear the risk. The
system should be such that from their point of view, the revocation takes place immediately.

Finally, the online methods should be used when immediate revocation is desirable. The
choice then depends on whether we want to limit individual certificates (type E) or just the
certificate group (type D).

An implementation issue with type C is the required online connection. If the validity
information is fetched by the user’s PDA, it should take place automatically so that the
operation is transparent to the user. If the user has to take some steps to get the information, it
makes the system appear much more complicated and means unnecessary work. Since
currently many PDAs are not capable of online connections, it seems that the resource, e.g.
the bus, should fetch the validity information. In this case, however, the resource has to be
online all the time, because it usually cannot anticipate the required information, whereas the
PDA only requires occasional connections. Only in limited situations where there are a very
small number of CRL issuers (the HCT in the bus ticket example), can the CRLs be regularly
fetched, and hence the connection is not required continuously. Another implementation issue
is the feedback time. If the response time of a higher level revocation method (type D or E) is
too long, say, over a couple of seconds in the bus example, the designer should choose a
lower level method (type B or C), since immediate feedback and fast operation are important
for the end-user.

5. Conclusions
On basis of the above analysis, we can clearly see that from the end-user's point of view, the
revocation methods indeed have differences. For example, the types D (One-time) and E
(Limit) can be recommended, since they provide the users with the greatest amount of
control over the revocation management and are relatively easy to understand. However, we
have also seen that the usability issues within revocation management are manifold and
cannot be resolved without a thorough understanding of the specific use situations the system
is designed for, nor without knowing who will be using these systems, where, when and how.

References
Adams, A, Sasse, M.A: Users Are not the Enemy. Communications of the ACM, December

1999, Vol. 42, No. 12, pp.41-46.
Ellison, C, Franz, B, Lampson, B, Rivest, R, Thomas, B and Ylönen, T. SPKI certificate

theory. Request for Comments: 2693, September 1999.
Heikkilä, J, Laukka, M: SPKI based Solution to Anonymous Payment and Transaction

Authorization, Proceedings of the Fourth Nordic Workshop on Secure IT Systems
(Nordsec’99), 1999, Kista, Sweden

Kortesniemi, Y, Hasu, T and Särs, J: A Revocation, Validation and Authentication Protocol
for SPKI Based Delegation Systems, Proceedings of Network and Distributed System
Security Symposium (NDSS 2000), 2-4 February 2000, San Diego, California

Whitten, A. and Tygar J.D: Why Johnny Can't Encrypt: A Usability Evaluation of PGP 5.0.
Proceedings of the 8th USENIX Security Symposium, August 1999.

Validity Management in SPKI

Yki Kortesniemi
Helsinki University of Technology

Yki.Kortesniemi@hut.fi

ABSTRACT

In a distributed system, using authorisation certificate based access control tends to facilitate the granting of rights.
On the other hand, the problems of limiting usage or revoking the rights become more difficult, as the issuer of the
right is no longer in control of the issued certificate.

In this paper we take a look at the role of certificates in access control, evaluate the technical merits of different
validity management mechanisms an SPKI authorisation certificate supports, discuss the problems related to man-
aging the validity and finally introduce a protocol for validity management.

1. Introduction

Access control becomes an interesting question when-
ever an entity controls some resource that others would
like to use. In the absence of control, a resource likely
ends up being exploited without any benefit to the
owner. A computer related example is the protection of
a database system. Traditionally, this has been imple-
mented using an ACL (Access Control List), which lists
the authorised usernames and their associated rights.
This solution has many good qualities in mainframe-
type systems, but in a distributed environment with
multiple instances of the database, problems arise be-
cause we are relying on a central list. Solutions like
replication can be used to lessen the impact, but essen-
tially an ACL is a centralised solution.

Authorisation certificates, on the other hand, yield
themselves quite naturally to a distributed environment.
SPKI certificates, for instance, can successfully be used
to implement systems that support anonymity, delega-
tion and dynamic distributed policy management – all
qualities not traditionally associated with ACLs. The
key idea in authorisation certificates is to give the user
an unforgeable ticket, which states the user's rights,
thus making ACLs unnecessary. The verifier monitor-
ing the resource simply has to make sure that the cer-
tificate is valid, originates from the verifier and has
been granted to the user in question, before giving the
user access to the resource. It is interesting to note that
Kerberos combines elements from both ends: it main-
tains the long term access information in the server’s
database (ACL), but the actual access control decisions
are based on short-lived tickets not unlike certificates.

However, actual authorisation certificates tend to be
much longer-lived and do not normally rely on a back-
ing ACL.

The self-containment is a strong point of authorisation
certificates, but also the source of one of their weak-
nesses: the difficulty of revoking them. With ACLs,
revocation is easy: just erase the unwanted entries. With
certificates, the problem is more complicated, because
instead of the issuer, the user is in control of the certifi-
cate. Therefore, all the revocation solutions for SPKI
certificates rely on additional online checks. By using
online servers, we lose the self-containment, but this
loss is often acceptable. Nevertheless, using these revo-
cation mechanisms always has a performance impact on
the system, and they should therefore be used with con-
sideration.

The immutability of certificates, unfortunately, also
makes it difficult to keep track of the amount of usage –
we cannot just cross out a part of the certificate as a
sign of usage, we need other methods. One solution
proposed in [10] is to use online servers to keep track of
usage, thus enabling the use of tickets that are valid 10
times or credit cards that have monthly limits. How-
ever, managing this limit presents some problems.

In this paper, we take a look at the validity management
options of one particular authorisation certificate,
namely Simple Public Key Infrastructure (SPKI) cer-
tificate[7][8], study the problems of managing them and
finally offer a solution in the form of a revocation man-
agement protocol.

The intended application domains could include things
like organisations, which want to control their internal
access rights – in these cases the users identity is usu-
ally known by the administrators granting the rights and
the user might have several rights assigned to the same
public key. At the other end we have global applica-
tions, where consumers buy some access rights with
cash (e.g. the right to read the current issue of a particu-
lar magazine) and want to stay anonymous. In this case,
the user might create a new public key for every right
bought just to enhance privacy.

The rest of the paper is organised as follows: we first
look at access control and how certificates can be used
for it. Then, we look at SPKI certificates and their va-
lidity management methods, discuss their suitability for
different situations and finally present a protocol for
managing the online servers.

2. Access Control and certificates

The goal of access control is to make sure that only
authorised users (be they humans or computers) get
access to the protected resources. The access control
process therefore can be said to consist of the following
phase (depicted in Figure 1):

Figure 1. Phases of access control.

0. Making the decision
In this phase, the issuer (someone either owning
the resource or having the right to control access
to it) makes the decision to grant a subject the
right to access the resource. This decision could be
based on things like the issuer knowing the subject
(a friend), the subject holding some position in is-
suer’s organisation or the subject being a paying
customer to issuer’s service.

1. Expressing the decision
For the decision to be automatically enforced, it
has to be expressed in a precise format. This could
be e.g. an ACL entry or an authorisation certifi-
cate.

2. Enforcing the decision
Whenever the subject tries to use the resources,
the validator makes sure that the right still exists.
This could entail checking the subject’s creden-
tials or the ACL and verifying that the subject is
indeed the same as mentioned in the credentials or
in the ACL.

3. Changing or revoking the decision
Should the access right become insufficient, un-
necessary or should there be risk of misuse, the
right can be changed or even revoked.

4. The right expires
Eventually, the right expires, either intentionally,
or implicitly.

2.1. Different types of certificates

There exist three major types of certificates: identity
certificates (e.g. X.509 and PGP), authorisation certifi-
cates (e.g. SPKI) and attribute certificates as shown in.

Figure 2. Three major types of certificates.

An identity certificate binds a public key to a name so
that outside parties can be convinced that a particular
person uses a particular key. Of course, this entails that
the issuer (typically an organization called Certification
Authority, CA) actually makes sure that the key is con-
trolled by said person. Hence, CAs must be trusted by
all users and they tend to be large organisations.

An authorisation certificate, on the other hand, binds a
right to a public key. Authorisation certificates can be
issued by anyone owning a resource or having the right
to grant access to someone else’s resource. This means
that potentially every human, computer, or even a soft-
ware agent could be issuing certificates. This difference
in the number and resources of issuers between the two
certificate types has significant implications on the
revocation systems used, as we’ll later discuss.

4. The right
expires

3. Changing or
revoking the decision

1. Expressing
the decision

2. Enforcing the
decision

0. Making the
decision

Key Authorisation

Name

Authorisation
certificate

e.g. SPKI

Name or identity
certificate

e.g. X.509

ACL or
attribute

certificate

Subject
(person /

computer /
software agent)

has

uses

The third, a less common type, an attribute certificate,
is used to bind an authorisation to a name. Essentially,
it is a distributed version of an ACL.

To better appreciate the differences between identity
and authorisation certificates, let us briefly look at how
they are utilised in phases 1 and 2 of the access control
process. In phase 0, certificates play no role, and the
role of authorisation certificates in phases 3 and 4 is the
subject for the rest of the paper. In this discussion, we
assume the usage of public key based authentication.

2.2. Using certificates in phase 2: Enforcing
the decision

To fulfil phase 2 in the access control process, we have
to prove the binding between the subject requesting
access and the required right. As we can see from
Figure 2, there are several ways of doing this. In all of
these, the binding between the subject and the key is
assumed much tighter than the binding with password.
This assumption however does not always hold, as the
subject can either lose the control or just give the re-
quired private key away. In both these situation, revoca-
tion of that key and the associated rights is normally
required.

The most common way of using certificates is to use
identity certificates to establish a mapping from the key
to a name and then use ACLs or attribute certificates to
map the name to an authorisation. This approach nicely
extends existing solutions, but it also has many prob-
lems:

• By design, it makes anonymous usage impossible.
In some system, it is a requirement to prevent
anonymous usage, but in other cases knowing the
user’s identity is not a necessity; it merely pro-
motes unnecessary monitoring of users.

• Making a tight binding through the name is not
easy, as it requires names that unique within the
application domain – otherwise namesakes can
share their rights. If we have a small organisation,
this might be quite feasible, but even in a moder-
ately sized organisation there can be more than one
John Smith and we have to be very careful never to
mix them up. And if we make global consumer ap-
plications, we need globally unique names, which
are difficult for humans and impractical for com-
puters. The local names can be complemented with
additional information to make them global, but for
global applications it is more straightforward to use

global identifiers like public keys from the begin-
ning.

• The binding from a key to an authorisation is un-
necessarily long – it consists of two steps: key to
name and name to authorisation. This is an impor-
tant aspect, as the verification of this binding will
be performed many times – in fact, every time the
subject uses the resource.

However, this two step binding does present an advan-
tage: by revoking the identity certificate we can auto-
matically revoke all the associated rights (naturally, this
is an advantage only if there are several rights associ-
ated to a single certificate). Further, we can create a
similar construct with authorisation certificates, if nec-
essary, so this is not a unique advantage of identity cer-
tificates.

An authorisation certificate, on the other hand, makes a
direct binding from the key to the authorisation. This
makes the binding simpler, but also practically anony-
mous. In reality, the key is a pseudonym, but since
these pseudonyms do not have to be registered any-
where, it can be very difficult to trace them back to the
user’s identity. And, should the anonymity become a
problem, it can be circumvented by verifying the sub-
ject’s identity already in phase 1 (but if this is omitted,
we cannot perform it retroactively).

Based on the above, we can conclude that authorisation
certificates offer a simpler solution to phase 2 than so-
lutions based on identity certificates.

2.3. Using certificates in phase 1: Express-
ing the decision

This phase is a more natural application area for iden-
tity certificates. They are often used to get the unique
name of the subject, which is then used in the ACL or
in an attribute certificate. But as we saw, this approach
presents some problems.

Another way of using identity certificates is to acquire
the known user’s public key to issue them an authorisa-
tion certificate. This applies to situations such as issu-
ing rights to members of an organisation. It should be
noted, however, that identity certificates are not always
necessary for issuing authorisation certificates. For in-
stance, we could receive the public key directly from
the subject in a face-to-face meeting, in which case an
identity certificate is unnecessary.

2.4. Additional advantage of authorisation
certificates - delegation

If the certificate does not expressly forbid it, it is possi-
ble to delegate the rights listed in the certificate to other
users without any help from the owner of the resource -
a feature, which makes distributed management easier
to organise than in centralised solutions. In fact, regular
users can delegate their own rights. For example, this
means that we can implement a scheme, where a parent
can issue a copy of her credit card to a child and limit
the amount the child can charge from the card, while
still keeping her own credit card [9].

The downside of this flexibility is that the certificate
chains can become very long and evaluating them is no
longer trivial. The solution is to view the chains as a
means of implementing the granting of rights and then
let the verifier automatically create a reduction certifi-
cate that replaces the chain with a single certificate,
thus making the usage of the right efficient.

3. The SPKI Certificates

The Internet Engineering Task Force (IETF) has been
developing SPKI as a more flexible alternative to
X.509. The key idea is that anyone (or anything) with
access to a resource can authorise others to use the re-
source by issuing them an authorisation certificate. So,
compared to X.509, where only CAs issue certificates,
in SPKI any person, computer, etc. can issue certifi-
cates - and also has to be able to manage their validity.

Altogether there are six validity options in SPKI certifi-
cates. The simplest and the only locally evaluateable is
the validity period. In addition, the current SPKI struc-
ture includes three online validity checks: CRLs, re-
validations and one-time checks. Furthermore, [10]
proposes formats for two additional online validity
checks: limit and renew. As we shall later see, the dif-
ferent methods can be ordered by increasing capability.
Therefore, using more than one online method in the
same certificate is usually redundant since the most
capable suffices (although the selected method can be
used several times).

The author’s model for the lifecycle of an SPKI certifi-
cate is depicted in Figure 3. Each new certificate begins
its life in the suspended state (transition 1), but the cer-
tificate moves to the available state when its validity
period, crl and reval permit, possibly even immediately
(transition 2). In the available state, the certificate can
be used, provided that one-time and limit agree (transi-
tion 3). Should the crl or reval methods be used to re-

voke the certificate, it moves to the suspend state if it
can later become available again (transition 4), or to the
expired state if it no longer can be made available (tran-
sition 5 and 6). Finally, the certificate should naturally
expire as dictated by the validity period (transitions 7
and 8). The renew method (transition 9) complements
the model by forming a chain of shorter lived certifi-
cates – once a short-lived certificate expires, the subse-
quent one is ready to take its place (though it could be
argued that the validity periods of consecutive certifi-
cates might be allowed to overlap).

Figure 3. The lifecycle of an SPKI certificate.

3.1. Validity periods

In SPKI, the validity period definition consists of two
parts:

<not-before>::
"(" "not-before" <date> ")" ;

<not-after>::
"(" "not-after" <date> ")" ;

Both parts are optional, and if either one is missing, the
certificate is assumed to be valid for all time in that
direction.

<valid-basic>::
<valid-date> | <valid-dates> ;

<valid-date>::
<not-before> | <not-after> ;

<valid-dates>::
<not-before> <not-after> ;

suspended expired

available

9. Renew – a new
certificate is issued

2. Validity period
OK and usage
not denied by
crl or reval

7. Expired by
time constraint

8. Expired by time constraint

1. Granted

3. Used if not denied by
one-time or limit

4. Usage
denied by
crl or
reval 5. Revoked

by crl or reval

6. Revoked by crl or reval

There is an additional type of validity period called
``now'', which has a length of 0, and can only be the
result of an online check. It is interpreted to mean that
the certificate is valid the moment the validation request
was made, but it states nothing about the future. If the
same certificate is used repeatedly, the online check has
to be repeated, as well.

To facilitate the decision of whether or not a certificate
is valid at a particular instance of time, all the different
validity conditions end up being converted to validity
periods as specified above. So, validating a certificate is
relatively straightforward: check that the validity period
stated in the certificate, as well as the online checks
(converted to validity periods), are all valid at the time
of use, and the certificate as a whole is then valid, and,
therefore, grants the included permission.

3.2. Online checks

All the online checks are defined using the following
format:

<online-test>::"(" "online"
<online-type> <uris> <principal>
<s-part>* ")" ;

where <online-type> can be crl, reval, one-
time or limit. The <uris> specify one or more
URIs (Uniform Resource Identifier [6]) that can be used
to request revalidation; e.g. in the case of crl, the URI
points to the crl file. <principal> specifies the pub-
lic key used for verifying the signature on the online
reply. The <s-part> is optional, and may contain
parameters to be used in the online check.

Next, we’ll go over the individual methods and their
reply formats.

3.3. CRL

CRL (Certificate Revocation List) is based on the idea
that a certificate is valid unless it appears on the speci-
fied CRL. SPKI includes both traditional and delta
CRLs in its specification. These must also be signed by
the aforementioned principal. The CRL formats
are specified below.

<crl>::"(" "crl" <version>?
"(" "canceled" <hash>* ")"
<valid-basic>")" ;

<delta-crl>::"(" "delta-crl" <ver-
sion>? <hash-of-crl>

"(" "canceled" <hash>* ")"
<valid-basic> ")" ;

3.4. Reval

Reval is based on an opposite idea: the certificate is
invalid unless the prover can provide a current ``bill of
health'', which testifies that the certificate can be con-
sidered valid for the stated period. [10] specifies the
reply format:

<reval-reply>::"(" "reval"
<version>? "(" "cert" <hash> ")"
"invalid"? <valid-basic> ")" ;

The reply identifies the original certificate in the hash
and gives a confirmed (in)validity period for that cer-
tificate. The reply must be signed with the key given as
<principal> in the original certificate.

3.5. One-time

One-time is based on the idea that it is impossible for
the issuer to predict anything about the future validity
of a certificate and, therefore, the user has to check the
validity with every use of the certificate. The certificate
contains a URI to the server, and the reply is ``yes'' or
``no'' with a time period of ``now''.

<one-time-reply>::"(" "one-time"
<version>? "(" "cert" <hash> ")"
"invalid"? "(" "one-time" <nonce>
")" ")" ;

Again, the hash must correspond to the original certifi-
cate, and the reply message must be signed by the prin-
cipal given in the certificate.

3.6. Limit

Limit is meant to enable quotas, i.e. it can be used to
limit the usage based on suitable properties, like the
number or length of usage. It is otherwise similar to
one-time except that the server will not reply to queries,
unless the user is able to prove that she is authorised to
use the resource in question by presenting a suitable
certificate chain. The limit query sent to the online
server is of the form:

<limit-query>::"(" "test" <version>?
"limit" <cert> <request>? <chain>
")" ;

<request>:: "(" "request" <s-part>
")" ;

<chain>::"(" "chain" <cert>+ ")" ;

Above, <cert> is the certificate whose online test(s)
are to be made, <request> specifies the amount of
resources requested, and <chain> proves that the
verifier is entitled to ask about the validity of the cer-
tificate. The last certificate of the chain must be the
validation certificate, which contains the <nonce> that
is to be included in the reply to the query.

<limit-reply>:: "(" "limit"
<version>? "(" "cert" <hash> ")"
"invalid"? "(" "one-time" <nonce>
")" <context> ")" ;

<context>:: "(" "context" <hash> ")"
;

where <hash> is a hash of the concatenation of the
canonical forms of <request> and <chain>.

3.7. Renew

Renew offers an alternative approach to revocation.
Instead of issuing long-lived certificates and then wor-
rying about their validity, we issue a string of short-
lived certificates, which together cover the lifetime of a
long-lived certificate. This simplifies matters, as the
short-lived certificates can often operate offline and the
network connection is required only to automatically
fetch the subsequent certificate.

If everything is in order, the reply contains the next
certificate:

<renew-reply>:: "(" "renew" <ver-
sion>? <cert> ")" ;

If, however, the right has been cancelled, the reply is of
the form:

<renew-reply>:: "(" "renew" <ver-
sion>? "(" "cert" <hash> ")"
<valid-basic>? ")" ;

Again, the hash must correspond to the original certifi-
cate and the validity period states a period of time dur-
ing which renewal requests will be denied (i.e. the con-
ceptual long-lived certificate is not valid during this
period).

4. Related work

The majority of work done in the field of certificate
revocation has so far concentrated on identity certifi-
cates, in particular X.509 identity certificates. There
exist several RFCs and Internet drafts that deal with
X.509 certificate management and validation
[5][1][2][3][4][14][12]. As to revocation methods, most
of them concentrate on the CRL concept, and on how to
effectively use it, but lately the trend has been to intro-
duce other methods including online methods.

As to research, the majority of work has concentrated
on evaluating the efficiency of CRLs and implementing
improved, yet similar solutions. Further, some different
solutions have been proposed [13]. Some work has also
concentrated on the risk models and on the evaluation
of different mechanisms in light of these risks [15][11].
Unfortunately, compared to SPKI authorisation certifi-
cates, there are a few significant differences in the
X.509 model, which prevent us from directly applying
the same solutions:

- The number of certificate issuers. In X.509,
the number of CAs that issue certificates is or-
ders of magnitude smaller (in SPKI, every
human, computer etc. can issue certificates).
This makes CRLs, which aggregate revocation
information, much more feasible.

- Risk model. In X.509, the issuer and verifier
are normally separate entities. The risk is taken
by the verifier, yet the revocation decisions are
made by the issuer. In SPKI, the risk takers
are also issuing the certificates and can there-
fore control the revocation decisions to bal-
ance the risk.

These issues have been discussed in more detail in [10]

5. Choosing the validation and revocation
methods

The phases of access control were presented in Figure
1. In [10] we have discussed the revocation problems at
the time the certificates are used (phase 2 in Figure 1).
These include the problems of authenticating the par-
ticipants and providing undeniable evidence, also for
liability reasons. In this paper, we focus on phases 1, 3
and 4. In phase 1, the essential problems include choos-
ing the right validation methods, choosing the servers to
implement them, informing the servers about the valid-
ity rules, and possibly paying the server's owner, if the
servers are operated by a third party. In phase 4, the

problems include things like informing the server about
the revocation decision and providing undeniable proof,
again for liability reasons.

5.1. Validity period

Phase 4 is simply a mechanism for making sure that
certificates do not remain valid indefinitely, but instead
automatically expire after a reasonable time. As a rule,
it is a good practice to always include an expiration date
in a certificate (only in very rare situation are there
good reasons to make it a permanent certificate). In
most of the cases, the matters themselves tend to
change over time, so it makes sense to periodically reis-
sue the certificates, if the rights are still required. Oth-
erwise, the issuer is stuck with a growing number of
certificates, which cannot be purged from the systems,
as they are still officially valid.

5.2. Choosing the online method

This section discusses some of the main criteria in
choosing the most suitable revocation method for a
particular situation. Most, if not all, of these choices
should be made by the designer of the system - they
should not be left to the end users. [9] provides further
examples of cases for each method and how they affect
the end user. The results of this discussion have been
summarised in Table 1.

An authorisation certificate is essentially a ticket grant-
ing the specified right to the indicated recipient. Now,
the certificate is always valid unless its validity is
somehow limited by listing conditions in the validity
field of the certificate. Once the certificate has been
issued, there is no practical method of getting it back
from, say, a misbehaving user. The only recourse the
issuer has is to include some limiting conditions in the
validity field when the certificate is created. Here lies
the difficulty: all possible future problems have to be
anticipated and suitable countermeasures devised at the
creation time. This is almost a mission impossible, be-
cause delegation will take place - the final user cannot
be known until the time the certificate is used.

The choice of the most suitable validation/revocation
method depends on what we want to achieve with it.
We typically have two different goals: to control the
amount of usage either discriminately (limit) or non-
discriminately (one-time), or just to enable the revoca-
tion of the right in case the circumstances change, there
is misuse of the right, etc. With the proposed changes to
SPKI, any of the online methods can be used for the
latter.

In the latter use, one important aspect is how fast we
want our revocation command to take effect. CRLs and
reval are both issued with a validity period, which is
then the worst case time the issuer has to wait for her
command to take effect. On the other hand, making the
period very short does have performance implications,
as the users are then forced to be online more often and
fetch the latest validity statement. The issuer can natu-
rally vary the validity period depending on the rate of
problems or some other factor, but essentially both
methods are best suited for situations, where the valid-
ity period does not have to be very short. This is par-
ticularly true about CRLs, where the validity period has
to be the same for all certificates on the list, thus mak-
ing it less practical to shorten the period if one of the
certificates is showing signs of misuse. Processing
overhead for the online server is fairly low with both of
these methods, as the same reply can be used through-
out the validity period.

On the other hand, a typical end user, e.g. someone
using a certificate-based credit card, is less interested in
the performance problems and more interested in the
system behaving in an intuitive manner: when the par-
ent presses the button to revoke the child’s credit card,
the revocation should take effect immediately, not after
some arbitrary time. Even if security-wise this time
might not be that important, compared to the time it
might have taken for the parent to realise that security
has been breached and that the certificate should be
revoked, the delay is still a source of anxiety to the par-
ent and should whence be minimised. For that reason, a
method like CRL or reval is not good: they sacrifice the
sense of control for the benefit of reduced overhead.

Table 1: A summary of the online methods

Method Typical use Processing overhead Revocation speed
Limit Quota High Immediate
One-time Limit usage on non-user specific factors Moderate Immediate
Reval Revocation Low After current reval validity period
CRL Revocation Low After current crl validity period
Renew Revocation Low After current certificate expires

The only additional advantage they offer is support for
offline operation, which is not necessary in all situa-
tions. On the other hand, the delay does not have to
matter to the end user – the possible misuse and its
costs can be included in the business model of the sys-
tem, similarly to the existing credit card systems [9].

One-time is more suitable in a situation where we es-
sentially want our revocation decision to take effect
immediately or at least with a very short delay. On the
other hand, we pay a price in performance for this con-
venience – every instance of usage requires network
connection, as well as an individual reply from the
server. So, if the certificate is used very often and per-
formance really becomes a problem, we might consider
using a lighter method and taking care of the misuse
with the business model as mentioned above.

The other use for one-time, namely, controlling the
amount of use, is another matter. In this case, we con-
sider the certificate to be a recommendation, but the
actual right depends on the circumstances, like the time
of day or current load on the system. In this case, we
are most likely more than willing to accept the per-
formance penalty in exchange for the additional func-
tionality.

Finally, limit is most likely used for controlling a quota;
the possibility of revocation is just a fringe benefit. In
this case, we pay an even higher price in performance,
as its usage requires a two-phase negotiation with indi-
vidual replies, but the new possibilities should more
than outweigh that.

6. Background for the validity management
protocol

In this section, we go over some of the key questions in
designing the protocol.

6.1. Who can issue commands?

One of the basic things is naming the principal(s) that
are allowed to issue revocation commands. The most
obvious solution would be to state that the principal,
who issued the certificate, is implicitly assumed to have
the right to revoke it. However sometimes it would
make sense to authorise others to revoke a particular
certificate, for instance in a situation, where it is im-
perative that the certificate is revoked as fast as possible
after a breach but the original issuer is not available to
perform the revocation.

6.2. Requesting status information

The issuer might be interested in following how the
certificate is used, particularly if it contains one-time or
limit conditions, or if there are several individuals with
the ability to revoke the certificate.

6.3. Auditability

The commands and their replies have to be auditable in
case there is dispute as to the correct replies given by
the server.

6.4. Support pre-evaluated answers and
dynamic answers

In some cases, the answers are known in advance, e.g.
when we revoke a certificate. In other situation, like
with one-time and limit, we want to evaluate the answer
at the time of usage.

7. SPKI Validity Management protocol

The protocol has been defined in XML and correspond-
ing DTD can be found in appendix A. It defines the
structure and contents of the messages between the is-
suer and online server. All messages are signed, which
guarantees message integrity and authentication. Fur-
ther, to protect against replay attacks and to guarantee
confidentiality, a secure transport layer is used to carry
the messages.

The protocol consists of just two messages: a command
and a corresponding reply.

7.1. The Command

The command has the following structure:

Server_update cert, chain?,
online_test_hash, de-
lete_request*, test_definition*,
status_query*, signature

Cert is the certificate, whose online condition is being
managed. Chain is an optional field containing a list
of certificates that proves that the current command
issuer is authorised to send the command (this is re-
quired only if the command is sent by someone other
than the certificate issuer). Online_test_hash
identifies, which one of the possibly multiple validity
conditions in the certificate is being managed.

The following three fields form the main part of the
message. Even though they all are optional, at least one
of them must be included in the command for it to be
valid. The first, delete_request, defines which
already defined rules are to be deleted. Each de-
lete_request contains a validity period; all rules
applying to that validity period are to be deleted.

The next part, test_definition, issues the new
validity rules. There are two types of rules: pre-
evaluated answer to be distributed at the specified time,
and dynamic code that is to be evaluated by the server
when a request is made. The pre-evaluated answer is
further divided in three classes: a yes_no_answer is
used for reval and crl, i.e. methods that reply with a
validity period, Now_answer is used for one_time and
new_cert_answer is used with renew. Limit always
requires a dynamic_condition.

The final part, status_query, requests information
on the validity status. It defines validity period for
which we want the status information. Further, with the
verbose flag the server is instructed to include in the
reply the rule used to deduce the status.

The command ends with a signature.

7.2. The Reply

The reply follows a similar structure:

server_reply cert_hash,
online_test_hash, delete_reply*,
test_definition_reply*,
status_reply*,service_status,
signature

Cert_hash is a hash of the certificate in question.
Delete_reply and test_definition_reply
contain status codes about the success of the corre-
sponding commands. Finally, status_reply con-
tains status information for the requested periods and
optionally the rules for deducing those.

8. Conclusions

In this paper, we have discussed the problems of man-
aging the online validation and revocation of SPKI au-
thorisation certificates. Due to their nature, authorisa-
tion certificates are well suited for granting rights, but
limiting or revoking them presents a bigger challenge.

All the existing solutions to these problems are based
on online servers that give authoritative statements

about the validity of a certificate. We have discussed
the advantages and drawbacks of the various solutions.
Finally, we have presented a protocol for managing the
online servers.

9. References

[1] C. Adams, P. Sylvester, M. Zolotarev, R. Zuc-
cherato: Internet X.509 Public Key Infrastruc-
ture Data Validation and Certification Server
Protocols. Request for Comments: 3029, Feb-
ruary 2001.

[2] C. Adams, S. Farrell: Internet X.509 Public
Key Infrastructure Certificate Management
Protocols. Request for Comments: 2510,
March 1999.

[3] C. Adams, S. Farrell: Internet X.509 Public
Key Infrastructure Certificate Management
Protocols. Internet Draft, December 2001.

[4] Ambarish Malpani, Russ Housley, Trevor
Freeman: Simple Certificate Validation Proto-
col (SCVP). Internet Draft, March 2002.

[5] A. Aresenault, S. Turner: Internet X.509 Pub-
lic Key Infrastructure: Roadmap. Internet
Draft, January 2002.

[6] Tim Berners-Lee, Roy T. Fielding, and Larry
Masinter. Uniform Resource Identi_ers (URI):
Generic syntax. Request for Comments: 2396,
August 1998.

[7] Carl M. Ellison, Bill Franz, Butler Lampson,
Ronald L. Rivest, Brian M. Thomas, and Tatu
Ylönen. Simple public key certificate. Internet
draft (expired), IETF SPKI Working Group,
March 1998.

[8] Carl M. Ellison, Bill Franz, Butler Lampson,
Ronald L. Rivest, Brian M. Thomas, and Tatu
Ylönen. SPKI certificate theory. Request for
Comments: 2693, September 1999.

[9] Kristiina Karvonen, Yki Kortesniemi, Antti
Latva-Koivisto. Evaluating Revocation Man-
agement in SPKI from a User’s Point of
View, Proceedings of Human Factors in Tele-
communication 2001, November 2001, Ber-
gen, Norway

[10] Yki Kortesniemi, Tero Hasu, Jonna Särs: A
Revocation, Validation and Authentication
Protocol for SPKI Based Delegation Systems,
Proceedings of Network and Distributed Sys-
tem Security Symposium (NDSS 2000), 2-4
February 2000, San Diego, California

[11] Patric McDaniel and Aviel Rubin. A Response
to "Can We Eliminate Certificate Revocation
lists". In Proceedins on the Financial Cryptog-
raphy '00. The International Financial Cryp-
tography Association (IFCA)., February 2000.

[12] M. Myers, R. Ankney, A. Malpani, S.
Galperin, C. Adams: X.509 Internet Public
Key Infrastructure Online Certificate Status
Protocol - OCSP. Request for Comments:
2560, June 1999.

[13] Moni Naor and Kobbi Nissim. Certificate
revocation and certificate update. In Proceed-
ings of the 7th USENIX Security Symposium,
San Antonio, Texas, January 1998. Usenix As-
sociation.

[14] Denis Pinkas, Russ Housley: Delegated Path
Validation and Delegated Path Discovery Pro-
tocol Requirements (DPV&DPD-REQ). Inter-
net Draft, April 2002.

[15] Ronald L. Rivest. Can we eliminate certificate
revocation lists? In Proceedings of the Second
International Conference on Financial Cryp-
tography, Anguilla, British West Indies, Feb-
ruary 1998.

Appendix A: The DTD of SPKI Validity
Management Protocol

<!--

 DTD for a SPKI online test management messages.

-->

<!ELEMENT hash EMPTY>

<!ATTLIST hash data CDATA #REQUIRED>

<!ELEMENT cert_hash hash>

<!ELEMENT cert EMPTY>

<!ATTLIST cert data CDATA #REQUIRED>

<!ELEMENT chain (cert+)>

<!ELEMENT online_test_hash hash>

<!ELEMENT reason (#PCDATA)>

<!ELEMENT no EMPTY>

<!ELEMENT notbefore (#PCDATA)>

<!ELEMENT notafter (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT valid (notbefore?, notafter?)>

<!ELEMENT yes_no_answer no?, valid>

<!ELEMENT now_answer no?, valid>

<!ELEMENT new_cert_answer cert, notbefore>

<!ELEMENT currently_in_use EMPTY>

<!ELEMENT dynamic_condition valid?>

<!ATTLIST dynamic_condition

 type PCDATA #REQUIRED

 data CDATA #REQUIRED>

<!ELEMENT crl_test yes_no_answer | dynamic_condition>

<!ELEMENT reval_test yes_no_answer | dynamic_condition>

<!ELEMENT one_time_test now_answer | dynamic_condition>

<!ELEMENT renew_test new_cert_answer |
 dynamic_condition>

<!ELEMENT limit_test dynamic_condition>

<!ELEMENT limit_status (#PCDATA)>

<!ELEMENT service_status (#PCDATA)>

<!ELEMENT test_definition (crl_test | reval_test | one_time_test |
renew_test | limit_test)>

<!ELEMENT test_definition_reply reason>

<!ELEMENT status_query verbose?, valid?>

<!ELEMENT status_reply (yes_no_answer, currently_in_use?) |
now_answer |

(new_cert_answer, currently_in_use?) | limit_status, dy-
namic_condition?>

<!ELEMENT delete_request valid>

<!ELEMENT delete_reply reason>

<!ELEMENT signature EMPTY>

<!ATTLIST signature data CDATA #REQUIRED>

<!ELEMENT server_update cert, chain?, online_test_hash, de-
lete_request*, test_definition*, status_query*, signature>

<!ELEMENT server_reply cert_hash, online_test_hash, de-
lete_reply*, test_definition_reply*,
status_reply*,service_status, signature

SPKI Performance and Certificate Chain Reduction
Yki Kortesniemi

Helsinki Institute for Information Technology
Helsinki University of Technology

P.O. Box 9800
FIN-02015 HUT

Yki.Kortesniemi@hiit.fi

Abstract: Authorisation certificate based access control owes much of its expressive power to
delegation; delegation enables distributed access control management, where the authorisation de-
cisions are manifested as certificate chains. Unfortunately, these chains have to be evaluated every
time a right is used, and if the right is used repeatedly, this can result in significant performance
overhead. However, if the chains are replaced with reduction certificates, this overhead can be cut
down.

In this paper we discuss performance in SPKI and how it can be improved with certificate chain
reduction. We elaborate on certificate chains, reduction certificates, and their performance impli-
cations, the choice of issuers of reduction, and take a look at the problems of reducing chains with
online validity checks.

1 Introduction

Implementing a global service for a multitude of users can present daunting management
challenges for the access control technology used. One solution is to use a technology that
allows the management rights to be distributed along with the access rights as authorization
certificates do. The Internet Engineering Task Force (IETF) has been developing Simple Pub-
lic Key Infrastructure (SPKI) as a more flexible alternative to X.509 [El99a][El99b]. The key
idea in SPKI is that anyone (or anything) with access to a resource can authorize others to use
the resource by issuing them an authorisation certificate. Further, the authorisation certificates
can be used to delegate the rights to other users without any help from the owner of the re-
source: users can delegate their own rights. These certificates therefore form chains, which
always start from the verifier controlling access to the resource, go through 0-N intermediate
entities (e.g. administrators) and end with the actual user of the resource. This means that it
becomes possible e.g. for a global credit card service to authorize all of its regional offices to
issue the actual credit “cards” to the end users and for the credit card users to create new
credit cards that make it possible for children to use their parents credit right in such a way
that the parents keep their own card and the children have a limit to the amount they can
charge from the card [HL99].

A result of this process is that the user (e.g. the child) could end up with a long chain of cer-
tificates that has to be presented whenever the right is used – and storing, handling and evalu-
ating long chains can result in significant performance overhead. In this paper we look at how
this overhead could be reduced by using chain reduction certificates (or certificate result cer-
tificates), CRCs, that replace a chain of certificates with a single certificate having the same
properties as the chain. The rest of the paper is organized as follows: Section 2 elaborates on
the motivations for chain reduction; section 3 discusses reducing chains having online valida-
tions; section 4 talks about different reducers and section 5 presents our conclusions.

2 Motivations for Reducing Certificate Chains

The SPKI theory introduces the concept of a CRC – it is a certificate that corresponds to the
semantics of the underlying certificates and online test results [El99a]. The main motivation
for creating CRCs is performance benefits:

1. discovering the correct chain from a pool of certificates is not a trivial operation
[Au98],

2. as neither the user’s terminal nor the verifier always have storage space for long
chains, some of the certificates might even have to be fetched from the network further
adding overhead [HK00],

3. and even with the correct certificates, deducing the access decision from the rights ex-
pressed in the certificates present challenges [BD02].

By using a CRC, we can avoid repeating these costly operations and the verifier can instead
evaluate a single certificate to reach the access decision. But here we also note that for a CRC
to make sense from performance perspective, it normally has to be used repeatedly. More pre-
cisely, the cost of creating and using the CRC over its lifetime has to be less than the cost of
using the chain (without creating the CRC) for the CRC to be beneficial. Naturally, it is not
always possible to know in advance, whether a particular CRC will be used again in the fu-
ture, but there has to be at least the possibility for that CRC to make sense. Another justifica-
tion for a CRC can be, if the reduction (of a section of the chain) is created by someone other
than the verifier thus freeing resources from the (potentially burdened) verifier. A third moti-
vation for creating CRCs is to promote anonymity by hiding parties in the chain as proposed
in [NKP99].

3 Reduction Certificates and Online Validations

SPKI structure draft [El99b] defines several online validity conditions used to limit the usage
of the certificate. [KHS00] further adds a couple, one of which, limit, creates particular com-
plications for reductions, as we shall soon see (limit is used to create certificate with a con-
trolled amount of usage such as a credit card with a monthly quota or a bus ticket for 10 jour-
neys – without limit these kind of applications are not possible).

In creating CRCs, there are two options: all the online validations can be performed before
reduction, in which case the resulting certificate has no online conditions, but presumably a
shorter validity period. The other option is to include some or all the online conditions in the
CRC and let the verifier perform them as needed. However, there are problems in both ap-
proaches. It is not possible to perform all online validations in advance of usage. CRL and
Reval can be performed in advance - their result is a validity period, which can be used to de-
termine the validity period of the CRC. One-time and limit, on the other hand, have to be
evaluated at the time of usage and therefore they have to be included in the CRC. Finally, due
to the design of limit, it is not possible to perform a reduction over a certificate containing a
limit condition, because that particular certificate has to be in the chain for the limit check to
work.

A structural definition is required to include online tests from other certificates. The current
SPKI structure does not define how CRCs are to be constructed, so the inclusion of online test

from the other certificates is still undefined. Nevertheless, the size of the CRC with online
checks will be rather large, as we have to include complete certificates. Because the instruc-
tions to the online servers can be included in the s-part of the original certificate, we have to
include the whole certificate to convince the online server that the instructions really come
from the issuer. Just including the relevant validity part will not suffice, as there is no signa-
ture authenticating the information. With these limitations in mind, the performance im-
provements achievable with CRCs containing validity conditions are still an open question.
Further performance improvements could be achieved, if all the remaining online validations
in a CRC could be replaced with a single online validation representing all of them. Naturally,
this raises trust issues, but could provide significant improvements, particularly in situation
with limited network access. However, the other type of a CRC should still be very useful in
many situations. Particularly, if no online validations are left, the resulting CRC can be quite
fast to evaluate.

4 Different Reducers

The SPKI structure draft only talks about the verifier creating CRCs, possibly also for the
benefit of others, who choose to trust this verifier. However, any other certificate issuer in the
chain can also issue partial reductions starting from themselves and ending at any point after
them in the chain. The largest reduction naturally comes from the original issuer until the final
user. The trust issues in all the cases, where the reduction issuer is already a member of the
chain, are fairly clear. As they simply use their existing right to issue certificates, no new par-
ties are introduced, which could change the trust model. However, the reduction issuer has to
be additionally trusted to make correct reductions. If the reduction carries fewer rights than
the original chain, the original chain can still be used to get to the remaining rights, but this
might be inconvenient or even impossible thus mandating a new reduction. If, on the other
hand, the reduction carries more rights (larger amount or other/larger rights), the reducer is
doing this at own expense – the original chain issuers can not be expected to take responsibil-
ity for this. Therefore, it always makes sense for the reduction issuer to keep a copy of the re-
duced chain so that any disputes can later be solved.

The cost of performing reductions are different for verifier and other issuers. The verifier
would anyway have to check the chain and reduce it, so the additional effort of creating the
CRC is not very large. The other issuers, however, would not normally evaluate the chain, so
for them the additional effort is bigger. Therefore, not all issuers are like to offer reduction
services for arbitrary users. The verifier, on the other hand, should probably always issue a
CRC just in case (with the exception of chain without any remaining rights, naturally). The
structure draft talks about other entities trusting the verifier for creating CRCs. This appar-
ently implies that the verifier can act as a TTP creating reductions for others. If we accept
TTPs, they would not necessarily even have to be verifiers; any suitable TTP could be used.
But this changes the trust model of the system by introducing an outsider capable of creating
certificates for anyone without limits (or at least the limits have to be much higher than for
regular certificate issuers). Of course, a incorrectly acting TTP can be asked to justify the ac-
tions afterwards by presenting the original chains, but the TTP still creates a tempting target
for attacks due to larger than normal rights.

5 Conclusions

We have discussed the role of certificate reduction certificates and the motivations for using
them. Certificate chains are a product of the management process and should be viewed as
such. We conclude that CRCs could provide performance improvements at minimal cost, if
issued by the verifier. Finally, online validations still present challenges for reduction and
should be further looked into.

Bibliography

[Au98] Aura, T.: Fast access control decisions from delegation certificate databases, in proceedings of 3rd Australasian
Conference on Information Security and Privacy ACISP '98, July 1998, Brisbane, Australia

[BD02] Bandmann, O.; Dam, M.: A Note on SPKI’s Authorisation Syntax, Proceedings of 1st Annual PKI Research
Workshop, April 2002, Maryland, USA

[El99a] Ellison, C.; Franz, B.; Lampson, B.; Rivest, R.; Thomas, B.; Ylönen, T.: SPKI certificate theory. Request for
Comments: 2693, September 1999.

[El99b] Ellison, C.; Franz, B.; Lampson, B.; Rivest, R.; Thomas, B.; Ylönen, T.: Simple public key certificate. Internet
draft (expired), IETF SPKI Working Group, July 1999.

[HK00] Hasu, T.; Kortesniemi, Y.: Implementing an SPKI Certificate Repository within the DNS, Poster Paper Collec-
tion of the Theory and Practice in Public Key Cryptography (PKC 2000), January 2000, Melbourne, Australia

[HL99] Heikkilä, J, Laukka, M: SPKI based Solution to Anonymous Payment and Transaction Authorization, Proceed-
ings of the 4th Nordic Workshop on Secure IT Systems, 1999, Kista, Sweden

[KHS00] Kortesniemi, Y.; Hasu, T.; Särs, J.: A Revocation, Validation and Authentication Protocol for SPKI Based Dele-
gation Systems, Proceedings of Network and Distributed System Security Symposium, February 2000, San
Diego, California

[NKP99] Nikander, P.; Kortesniemi, Y.; Partanen, J.: Preserving Privacy with Certificates in Distributed Delegation, Pro-
ceedings of 1999 International workshop on Practice and Theory in Public Key Cryptography, March 1999, Ka-
makura, Japan

	Summary of Contents
	Table of Contents
	ACKNOWLEDGEMENTS
	LIST OF PUBLICATIONS
	INTRODUCTION
	BACKGROUND
	PHASES OF ACCESS CONTROL
	DIGITAL ACCESS CONTROL
	DIGITAL SIGNATURES AND PKI
	DIFFERENT CERTIFICATE TYPES
	USING CERTIFICATE FOR ACCESS CONTROL
	MANAGING CERTIFICATE VALIDITY
	THE SPKI CERTIFICATES

	PROBLEM STATEMENT AND CRITERIA
	SOLUTION
	NEW METHODS
	CERTIFICATE VALIDATION PROTOCOL
	VALIDITY MANAGEMENT PROTOCOL

	ANALYSIS
	SOLVING THE CASES
	CHOOSING THE RIGHT VALIDITY METHOD
	CRITERION: USABILITY
	CRITERION: SECURITY
	CRITERION: SCALABILITY
	IMPLEMENTING THESE TECHNOLOGIES
	A SUMMARY

	FUTURE WORK
	CONCLUSIONS
	REFERENCES
	PUBLICATIONS
	HFT_karvonen_kortesniemi_latvakoivisto-reduced.pdf
	1Helsinki University of Technology, P.O. Box 9800, 02015 HUT, Finland
	Abstract
	1.Introduction
	2.Usability of Security - Previous Work
	3.Revoking SPKI Authorisation Certificates
	4.Cases
	4.1Bus Tickets
	4.2Parking House
	4.3Charge Card
	4.4Summary of findings

	5.Conclusions
	References

