Session Initiation Protocol Deployment in Ad-Hoc Networks:
a Decentralized Approach

Simone Leggio, Jukka Manner, Antti Hulkkonen, Kimmo Raatikainen

Department of Computer Science
University of Helsinki, Finland
Email: {simone.leggio, jukka.manner, antti.hulkkonen, kimmo.raatikainen} @cs.helsinki.fi

Abstract

Ad-hoc networks constitute a peculiar computing en-
vironment, characterized by the lack of centralized sup-
port from pre-existing network entities. Applications and
protocols designed for centralized environments must be
adapted for use in ad-hoc environments. For example, the
baseline Session Initiation Protocol (SIP) strongly relies
on the presence of an infrastructure, the SIP servers, and
cannot therefore be deployed as it is in ad-hoc networks.
This paper proposes a solution that enables devices in ad-
hoc networks to use SIP functionalities in a decentralized
way. Particularly, we embed a limited set of SIP server
functionalities in the end devices to allow distribute session
management for SIP end devices, without network support.

1. Introduction

Ad-hoc networks have been subject of research since
the *70s. Initially the purpose of the study was for military
applications, e.g., for quickly setting up communication in
battlefields or where no support from infrastructure was
available. Recently, developments in the capabilities of
mobile devices (laptops, PDAs, mobile phones) and new
wireless networking technologies, such as Bluetooth and
IEEE 802.11 WLAN:S, have pushed the research towards
other fields of interest as well. Ad-hoc networks formed by
mobile devices, mobile ad-hoc networks (MANETS), are
gaining a growing interest due to their flexibility and low
deployment costs. MANETS can be formed autonomously
and on-demand by mobile devices that connect to each
other to form an independent communication network
without any pre-existing infrastructure support.

A wider diffusion of MANETSs will only be possible if
applications extended for use in MANETS are developed.

MANETSs are often networks of peer devices, and very
interesting applications are based on a peer-to-peer net-
working scheme. An attractive scenario could take place
in an airport. A user, waiting for her flight to leave,
looks for someone else in the MANET willing to begin,
say, a gaming or chat session. Another scenario could be
a conference presentation or a lecture. The participants
connect their laptops in ad-hoc mode to share the slides,
an electronic white board is shared and comments can be
sent to the group or private comments can be exchanged
via instant messages. One of the participants offers through
the laptop external connectivity to the Internet, and invite
colleagues far away to join the meeting and look at the
slides and the minutes.

The common denominator of such applications is that
they all require the establishment of sessions before the
actual data flow can begin. The Session Initiation Protocol
(SIP) [7] has emerged in IETF as the session manage-
ment protocol, and it was also chosen as the signaling
protocol in the 3GPP framework. SIP relies on centralized
entities, namely servers, maintained by organizations or
service providers. SIP servers handle users’ registration,
their location, and forward SIP messages to the location(s)
where the recipient is reachable.

Networks of peer nodes, created on-demand without
support of infrastructured networks such as MANETSs are
not a feasible environment for the deployment of the
baseline SIP protocol. SIP end devices (user agents) in
a MANET do not have the means to contact other nodes
because the assistance of the servers is missing.

In this paper we propose an architecture for enabling
SIP in ad-hoc networks. The main design idea is that
SIP user agents have a limited set of SIP server function-
alities embedded. The SIP network architecture is made
decentralized, as the support that is originally provided by
centralized entities is now merged in all the end devices.

Other groups have studied SIP over ad-hoc networks,

too. In [4], the authors suggest the use of broadcast
REGISTER messages for spreading users’ SIP information
in ad-hoc networks. REGISTER messages are included in
the broadcast messages used in a given underlying ad-hoc
routing protocol. In [1], the focus is in the integration of
SIP services with an underlying ad-hoc routing protocol.
However, these approaches focus on the integration of SIP
and the underlying routing protocol and do not take several
SIP-related functionalities, such as efficient registration
handling, into account. We instead aim to define a frame-
work for a more generic and flexible deployment of SIP
in a decentralized environment, such as ad-hoc networks.

The rest of the paper is divided as follows. Section
IT explains in more detail the problems of SIP in ad-
hoc networks. Section III describes two approaches for
operating SIP in decentralized ad-hoc networks. Section
IV describes our software implementation forming the
architecture for decentralized SIP. Section V provides more
implementation details, and shows three scenarios where
the architecture has been tested. Section VI gathers our
observations about the main issues raised in this paper and
presents pointers for future work.

II. Problem Statement of Decentralized SIP

The architecture of the Session Initiation Protocol (SIP)
[7] is based on centralized entities. Two logical elements
play a key role in the architecture, registrar and proxy
servers. Registrars are the SIP entities where SIP users
register their contact information once they connect to the
SIP network. In a basic registration scenario, a SIP user
agent communicates to its registrar server (the registrar
IP address is usually preconfigured) the SIP user name of
the user(s) using the device, referred to as SIP address of
records (AOR) for that user, and the addresses where the
user is reachable. Usually, contact information is stored in
the form of IP addresses or resolvable names, but other
kinds of contact information, such as, telephone numbers
can also be used.

An association between a SIP AOR and a contact ad-
dress is called a binding. SIP registrars exploit an abstract
service, called location service, and return the bindings for
the SIP AORs falling under their domain of competence
to the SIP entities issuing a binding retrieval request.

Proxy servers are needed because SIP users cannot
know, in the majority of the cases, the current complete
contact information of the callee but only its AOR. SIP
presupposes that the AOR (SIP user ID) of the party to
contact is known in advance, analogously to what happens
when sending instant messages or e-mails. A basic SIP
session involves the calling user agent contacting the
calling side proxy server, which in turn will forward the
message to the proxy server responsible for the domain of

the called user agent. The called side proxy server retrieves
from the called side registrar (i.e. utilizes the location
service) the bindings for the called user and eventually
delivers the request to the intended recipient.

Registrars and proxies are logical entities, and it is not
an uncommon configuration for them to be co-located in
the same node. Usually, user agents have a preconfigured
outbound proxy server where all the outgoing requests are
sent and through which all the responses to the issued
requests, or new requests, are received.

The described architecture is clearly not applicable to
MANETS, as they are dynamic networks formed by peer
nodes while proxies and registrars are fixed, static and
centralized entities. As a result, the SIP protocol as it is
cannot be deployed in isolated ad-hoc networks. SIP users
in MANETSs cannot reach other parties, as they do not
have support from proxy servers, and cannot be reached
by other nodes, as there are no SIP registrars where they
can register their contact information.

III. Decentralized SIP

One solution for running SIP in ad-hoc networks could
be to elect a node as the registrar in the ad-hoc network;
newcomers retrieve from it the bindings of the other nodes.
However, this approach presents several disadvantages in
terms of fault-tolerance and scalability.

Our solution is to embed a set of the basic functionali-
ties of a SIP proxy and registrar server in every mobile
node forming a MANET. Registrar functionalities are
needed to let devices use the location service, while proxy
facilities are needed for logically accessing the location
service. We refer to this approach as decentralized SIP.
A major advantage of decentralized SIP is that embedded
server functionalities do not prohibit the device to func-
tion also according to the baseline protocol specification.
Users do not need to have two different software stacks
implemented in their device and can use their SIP clients
transparently in MANETs as well as in infrastructured
networks.

SIP operations in MANETS can be broadly divided into
two steps:

1) Discovery of users currently available in the network
2) Initiating and managing sessions with them

User discovery can be generic or targeted to find the
contact address of a specific individual, e.g., a user in the
contact list. Generic discoveries are needed because when
a new node joins an ad-hoc network, it usually has no
idea of the identities of available users. Initiating a SIP
session is not possible if at least the AOR is not known in
advance. The following subsections discuss two methods
for discovering users’ bindings in ad-hoc networks.

A. Fully Distributed SIP

Fully distributed SIP (dSIP) means that the basic oper-
ations of retrieving user contact information are performed
using SIP methods, although adapted for use without
centralized servers. To use dSIP, devices must first register
in the ad-hoc network and communicate their presence
to all the other nodes. Registering in the ad-hoc network
ensures that all nodes have means to contact the newcomer.
Distributed registration is done by broadcasting a SIP
REGISTER message.

The term broadcast is here used in a general scope.
Actually, there are three ways how the REGISTER can
be propagated. Link-layer broadcast is feasible in an en-
vironment where all the nodes are connected with each
other at link layer, e.g., a conference room. Alternatively,
nodes can send a multicast REGISTER, addressed to the
multicast address 224.0.1.75 registered for SIP. All the
nodes that have registered to the multicast address receive
the message. This approach requires the presence of an
underlying multicast ad-hoc routing protocol, but it is not
tied to any specific one. This approach is more suitable for
bigger multi-hop ad-hoc networks, where nodes are not all
directly connected with each other. A limit on the size of
the network is given here on the necessity of efficiently
handling the multicast tree. A last alternative would be
selective flooding. REGISTER messages are forwarded by
the nodes receiving them only if they have not been already
forwarded yet and to the neighbors with which it has not
been exchanged yet, and only if a hop count for maximum
number of forwards has not been reached. In the rest of
the discussion, broadcast is meant in the general way.

The broadcasted REGISTER is processed by the server
modules of the nodes in the network. The binding of the
registering user is stored and a SIP 200 OK message
containing the binding of the replying user is returned
to the sending node, unless local policies forbid to send
it, e.g., users may not want to reply to people outside
their existing contact list. This is a small variation to the
SIP logic, where registrars reply to a REGISTER request
returning all the contact addresses of the user sending the
REGISTER. In fully distributed SIP, the bindings of the
user receiving the REGISTER are returned.

The nodes receiving the REGISTER store the binding
of the registering user in their cache. Entries in the cache
have a limited validity time, set up either by local policies
or by the Expires header field that can be contained
in the REGISTER message. Nodes, whose registration
is going to expire soon, should refresh it by sending a
new broadcast REGISTER. Receivers must not reply to
refreshed REGISTER requests.

When a user decides to invite a peer to a dSIP session,
an INVITE message is built by the caller user agent

following baseline SIP recommendations. Every request to
users in an ad-hoc network is forwarded by the user agent
module to the local server module.

The local proxy module receives the message, looks in
the cache for the binding for the specified URI, and sends
the INVITE to the contacted user and the SIP session is
established. The logic of the SIP protocol has not changed;
message exchange is supported by “intermediary” entities.
The main difference is that now the intermediaries are
decentralized and embedded in every end device.

If the bindings for the requested target URI are not
found, e.g., the binding has expired, the server broadcasts
a refresh REGISTER message, specifying the AOR of the
user to contact as Request URI of the REGISTER message.
Only the node specified in the Request URI, if present in
the network, will reply to the refresh message. A targeted
REGISTER is also useful if the user suspects that a certain
person should be available in the ad-hoc network, yet, no
binding exists for a reason or another.

Malicious nodes can send faked registrations, e.g., after
they have learned bindings of other users through broadcast
REGISTERS, they send a faked refreshed REGISTER re-
quest. Thus, mutual authentication schemes between peers
are needed before beginning a sensitive session. The lack
of centralized trusted authorities makes mutual authentica-
tion in MANETSs a complex task. A promising solution is
adapting the SIP Identity Management enhancements [5].
We will not discuss security issues in this paper, but we
plan to address the topic in future work.

B. SIP with Service Location Framework

The support of a service discovery framework is useful
in MANETs to give users the possibility to discover
people, services, or devices in the network. For example,
one of the devices in the network may have Internet
connectivity, and offer this service to users in the network
looking for the service “gateway”.

Service discovery can support user discovery in decen-
tralized SIP either by finding out the bindings of users
within reach in the ad-hoc network or to discover the
IP address of a user by SIP AOR. This latter method is
correspondent to exploiting SIP location service with the
standard protocol means. We refer to this approach as sSIP.

Various service discovery frameworks can be used to
support decentralized SIP. The device needs only an API
so that the SIP modules and external applications can
issue service discovery queries. The service discovery
frameworks that could fit our architecture are (see also
[3]), among others, the Service Location Protocol (SLP),
Jini, Universal Plug and Play, Bluetooth Service Discovery
and Salutation.

We have chosen SLP as the service discovery mecha-

nism, as it is lightweight and also specified by IETF like
SIP. With SLP, the location service can be exploited by
broadcasting SLP service request messages. The query is
for the service SIP and contains the AOR of the user to
contact as attribute filter. All devices in the ad-hoc network
receive this request and the one that matches the attribute
AOR returns the IP address of the service SIP on that host.
When the server module receives the response it stores the
IP address of the service in the cache.

SLP requests for the service SIP with the attribute filter
generically set to AOR can be issued when joining the
ad-hoc network. All the nodes hosting the service SIP
will return the address of the service and the value of the
requested attribute. These steps substitute the registration
procedures used in fully distributed SIP, where bindings are
received and maintained through periodic SIP REGISTER
messages.

IV. Software Architecture

The software architecture of decentralized SIP is com-
prised of several modules, communicating with each other
according to a layered structure. Fig. 1 depicts the structure
and the connection between the modules. The lowest
layer of the architecture is a low layer SIP library, osip,
providing basic SIP functions such as message parsing and
syntax checks. On top of the low level library, the User
Agent and the Server modules are built.

The User Agent module, formed by the eXosip library
(higher level SIP library based on osip), contains functions
used for implementing SIP-based applications. It provides
primitives and functions for exploiting higher level func-
tionalities, such as building SIP messages. The server
module implements SIP server functionalities, handling
operations typical to proxy and registrar servers. It is based
on the Partysip' software. These three modules form the
basis of the decentralized SIP architecture; the only module
that has been added and modified for enabling decentral-
ized operations is the server (and its cache). UA and server
are independent modules and communicate through UDP
sockets; this design choice allows interoperability with
baseline SIP clients.

The SIP server interacts with a cache, which is the
logical correspondent to the SIP location service. The
cache contains the bindings of the users currently present
in the ad-hoc network. The way the cache is updated
depends on the kind of decentralized SIP approach chosen,
dSIP or sSIP.

The Session Management (SM) API, built on top of
eXosip, hides some of the complexity of the lower levels

"Documentation and source code of osip, eXosip, and Partysip server
modules are retrievable at http://www.gnu.org/software/
osip/osip.html

from the application and gives the application support for
operating in ad-hoc networks. As an example, the SM API
provides methods for initiating, modifying and terminating
SIP sessions. SIP-based applications can be built on top of
the decentralized SIP modules, using the methods that the
SM API makes available. Applications do not need to be
aware of whether they are running in ad-hoc networks or
not, as all the necessary modifications to SIP messages are
carried out by the underlying SM API module.

The SM API decides whether ad-hoc or centralized
functionalities must be used. In the first case, the API
passes to the UA module the loopback address as the
IP address of the registrar. The REGISTER is sent to
the local server, which broadcasts it. If communication
is performed according to standard SIP operations, the
SM API passes to the UA the IP address of the pre-
configured external registrar server, and the REGISTER
message is sent without involving the local server module.
Only the user agent side of the stack is used in this
case, which ensures full compatibility with standard SIP
implementations. This approach also allows a user to open
SIP sessions with nodes inside and nodes outside the ad-
hoc network at the same time.

The Service Discovery API allows the proxy module to
use a Service Discovery framework, like SLP, for retrieving
the bindings. This API can also be used by the application
itself for locating other services in the ad-hoc network.

Session Management Service Discovery
API

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
: ’ User Agent ‘ ’ SIP Server M Cache ‘ :
1 1
1 1
1 1
1 1
1 1
1 1
1 '

¢)

’ Low level SIP library ‘

Fig. 1. Components of Decentralized SIP

V. Discussion on the implementation

Decentralized SIP has been implemented on Linux and
the following three scenarios tested on laptops connected
with IEEE 802.11 wireless cards, running in ad-hoc mode:

1) Session Management with dSIP,

2) Session Management with sSIP, and

3) Session Management between nodes in an ad-hoc

network and nodes in an external network

For practical reasons, the tests were performed using
a link-local environment, so in this section broadcasting
means sending a message to all the nodes listening on the
shared medium. Fig. 2 shows the messages exchanged in

+ = = broadcast message
= unicast message

/7 4) REGISTER\

VY -
~~ 1) REGISTER 4) REGISTER
—_—

Fig. 2. User discovery with dSIP

dSIP when nodes join the ad-hoc network. Node A is the
first in the ad-hoc network, it sends a broadcast REGISTER
(1), but receives no reply. When node B arrives, it sends
a broadcast REGISTER (2); node A receives it, stores the
bindings of B and sends a 200 OK containing its own
bindings (3). B knows the binding of A from the 200 OK
message. Then a third node C joins. The operations and
messages exchanged (4-5) are similar to when B appeared.
After the exchange the three nodes know about each other.

Our implementation tries to minimize the number of
messages on the air, and thus bandwidth and terminal re-
source consumption. Each node keeps the ID and sequence
number of the received and sent broadcast REGISTERs.
Refreshed registrations have the same ID but higher se-
quence number than the original or the previous ones; in
this way nodes can discern whether the REGISTER is
original or refresh, and avoid answering with a 200 OK
message.

The sSIP scenario, illustrated in Fig. 3, is similar. We
in fact enabled the possibility of searching for the service
SIP when joining the network. The functions of broadcast
REGISTER are made by the SLP request, while SLP reply
returns the bindings of the available users. Every node
looks for the service SIP and the attribute aor, and all
nodes running that service, i.e., are SIP enabled, will return
the address of the service (IP address) and, as an SLP
attribute, the SIP AOR of the user.

There is a noticeable difference between the two de-
scribed approaches: with standard SLP queries it is not
possible to store the bindings of the querying user. This
means that at the end of the exchanges in Fig. 3 node C
knows the bindings of A and B; node B knows the bindings
of A (but not of C) and node A knows no one. In general,
users that join the ad-hoc network early cannot know the
bindings of newcomers.

+ = = broadcast message
= unicast message

N
4 4) SLP Query

-

~
l/ _~ 1)SLPQuey 4)SLP QueL —
~

(-] - - =
= <
S)SLPR%IY\/

Fig. 3. User discovery with sSIP

There are solutions for this problem: nodes may period-
ically send SLP queries to get also newcomers’ bindings,
e.g., node A in Fig. 3 would later send a refresh SLP Query
and get the binding of node B and C from their replies.
We refer to this way of retrieving users’ bindings as Active
Service Discovery. Alternatively, when a node receives an
SLP Query from an unknown IP address, it checks whether
there is a binding for that address and, if none exists, sends
an unicast SLP Query back to the node from which the pre-
vious Query was received. Finally, SLP can be enhanced
with Passive Service Discovery features. If passive service
discovery is used, nodes that join the ad-hoc network can
advertise their service, without external triggers, sending
a broadcast message containing their bindings. Passive
service discovery is currently not supported by standard
SLP. Active service discovery is easier to achieve, but
is more bandwidth consuming than the passive mode, as
messages are broadcasted periodically.

Fig. 4 shows a different situation: the messages ex-
changed when establishing a session between a node in
the ad-hoc network and a node in an external network,
like the Internet. The node in the ad-hoc network must
register its contact information to its registrar, as it would
do normally, to be reachable from outside. External users
do not need to know that the remote party is inside an ad-
hoc network, but only the AOR. To reach other users, the
node inside the ad-hoc network must forward all outgoing
messages to its predefined outbound proxy server.

A necessary condition for realizing this interworking is
that the ad-hoc network has external network connectivity,
e.g., through a gateway node. The address of the gateway
node can be retrieved with SLP, e.g. by looking for the
service “gateway”. Another option is for the gateway to
advertise its presence in the network by using router

External network

5 OK Client B Ad-Hoc network

S |

4) INVITE B

3) INVITE B Gateway

2) INVIT] [] 1) INVITE B
oK >

7

%

=

8) OK -
Outbound Pro; Client A

Fig. 4. Interworking with the Internet

advertisement messages [2]. If external connectivity is
available, nodes in the ad-hoc network will require a
globally meaningful IP address through the gateway.

In Fig. 4 the outbound proxy for client A also acts as
registrar. SIP messages addressed to the outbound proxy
server are routed through the gateway (1-2) and forwarded
to the intended recipient following the chain of inbound
SIP proxy and destination user agent (3-4). Replies are
routed following the reverse route (5-8).

If no global IP addresses are available in the ad-
hoc network, a Network Address Translator (NAT) based
solution is needed for routing messages to the ad-hoc
network from the external network. The gateway would
also act as the NAT for the ad-hoc network. RFC 3581
[6] discusses extensions to SIP for NAT traversal; these
can be utilized when the gateway node also operates a
NAT. Scenarios where nodes act as super-peers for a subset
of nodes in the ad-hoc network are not unrealistic. In a
huge meeting hall, a user may provide gateway and NAT
services to his company colleagues, while denying the
service to non-authorized users. A general problem with
NATs is that many protocols and services do not work
well when NATSs are involved, and often solutions for NAT
traversal are protocol specific, e.g., for SIP.

VI. Summary and Future Work

This paper has presented a framework for the deploy-
ment of decentralized SIP in ad-hoc networks. Decentral-
ized SIP is needed in network environments where no
support from pre-existing infrastructures such as servers, is
available. Every device that supports decentralized SIP im-
plements limited SIP server functionalities. By distributing
server functionalities among all the nodes in the network,
the SIP protocol can be deployed when no centralized
servers are available. Decentralized SIP devices can be
used also in infrastructured networks, as the architecture
is built respecting the logic of SIP operations.

Two methods for retrieving the identities and the contact

IP address of users in the ad-hoc network have been
discussed. In the first one, dSIP, users that join an ad-hoc
network communicate their presence and contact informa-
tion to other nodes in the network by sending a broadcast
REGISTER message. The second method, sSIP, relies on
the presence of a service discovery framework, e.g., SLP,
for retrieving users’ identities in the network.

The main problem with using a service discovery frame-
work is mutual interoperability; devices implementing a
framework may not be able to locate devices (and therefore
the services they host) implementing a different one. An
advantage of sSIP is that it is more bandwidth conservative
as SLP messages are binary encoded; conversely, dSIP
ensures interoperability as it relies only on SIP. Moreover,
it allows mutual knowledge of the users’ bindings among
nodes in the network.

Work is still needed for improving and refining the
architecture. An important issue to consider is how to
guarantee authentication of users, when no centralized
trusted identity can be used. We’ll extend the scheme
proposed in [5] to fit the needs of our architecture. We
also aim to integrate our framework with SIP-based Instant
Messaging and Presence functionalities, as specified by
the IETF SIMPLE framework, and study further the issues
related to ad-hoc networks connected through a gateway
to an external infrastructured network.

Acknowledgments

This work has been carried out as part of the SESSI
project, funded by the National Technology Agency of
Finland. The authors wish to thank their project partners
for their fruitful comments.

References

[1] N. Banerjee, A. Acharya, and S. K. Das. Peer-to-peer sip-based
services over wireless ad hoc networks. In BROADWIM: Broadband
Wireless Multimedia Workshop, October 2004.

[2] S. Deering Ed. ICMP router discovery messages. RFC 1256, IETF,
September 1991.

[3] S. Helal. Standards For Service Discovery And Delivery. [EEE
Pervasive Computing, 1:95-100, July-Sept 2002.

[4] H. Khlifi, A. Agarwal, and J. Gregoire. A framework to use SIP in ad-
hoc networks. In Canadian Conference on Electrical and Computer
Engineering. IEEE CCECE, volume 2, pages 985-988, May 2003.

[5] J. Peterson and C. Jennings. Enhancements for authenticated identity
management in the session initiation protocol SIP. Internet draft
(work in progress), Internet Engineering Task Force, February 2004.
draft-ietf-sip-identity-04.

[6] J. Rosenberg and H. Schulzrinne. An extension to the session
initiation protocol (SIP) for symmetric response routing. RFC 3581,
IETF, August 2003.

[7] J. Rosenberg et al. SIP: Session initiation protocol. RFC 3261, IETF,
June 2002.

