TEKNILLINEN KORKEAKOULU
Teknillisen fysiikan ja matematiikan osasto
Teknillisen fysiikan koulutusohjelma

Jarmo Hiipakka

Implementation and Control of
a Real-Time Guitar Synthesizer

Diplomi-insinddrin tutkintoa varten tarkastettavaksi jatetty diplomityd

Tyo6n valvoja professori Matti Karjalainen
Tybn ohjaaja dosentti Vesa Valimaki

Espoo 19.10.1999

TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA
Teknillisen fysiikan ja matematiikan osasto

Tyo6ssa toteutettu syntetisaattori perustuu akustisen kitaran fysikaaliseen malliin. F
aikatoteutus on tehty yleiskayttdisessa tybasemaymparistossa olio-ohjelmoinnin |2
mistapaa kayttden. Syntetisaattorin ohjausta varten on kehitetty uusi ohjausprotok

Diplomity¢ esittelee akustisen kitaran perusrakenteen ja 4dnentuottomekanismin.
soittotekniikoita kuvataan lyhyesti painottaen erityisesti klassisen kitaran soittotekr
ta. Tyossa kuvataan laskennallisesti tehokkaan, soittimen fysiikkaan perustuvan
kehittely. Mallinnuksessa olennainen kitaran kielen malli perustuu digitaalisten 3
johtojen teoriaan ja on yhden viivesilmukan kielimalli. Kommutoitu aaltojohtosyntee
menetelma, jolla laskennalliseen malliin voidaan liittda kitaran kopan seka kielen n
yksen vaikutus. Lisaksi esitetaan kaikukopan tarkeimpien resonanssien mallinnus ¢
digitaalisuotimia kayttaen.

Tyo6ssé kuvattu kitaramallin reaaliaikatoteutus on tehty C++-ohjelmointikielella. T¢
tuksen osat on jaettu kahteen luokkakirjastoon. Toinen kirjasto sisaltaa kaikki yleis
toiset signaalinkasittelyrakenteet ja toinen sisaltaa erityisesti soitinmallinnusta

tehdyt luokat. Toteutettu kitaramalli koostuu kuudesta kahteen suuntaan véarahte
kielimallista, jotka toimivat 22050Hz:n naytetaajuudella, seka kahdesta kitaran kop
sonansseja mallintavasta suotimesta, joiden naytetaajuus on 2205Hz. My0ds tybass
paristossa tehtavan signaalinkasittelyn yleisia kysymyksia on tydssa kasitelty.

Synteesimallin ohjausta kasittelevan osuuden aluksi kerrataan mallin parametrit ja
vaikutukset mallin tuottamaan &aneen. Liséksi kuvataan parametrien arvojen mu
sesta aiheutuvia ongelmia, seka esitetdén ratkaisuja naihin ongelmiin. Ty6ssa ki

ohjausprotokolla. Diplomitydssa selostetaan my6s tAméan uuden hierarkkisen ohjau
kollan soveltaminen toteutetun kitaramallin ohjaukseen.

Diplomitydn lopussa esitetaan yhteenveto tyon paakohdista ja esitetdan vaihtoehtg
van tutkimustyon suunniksi.

Tekija: Jarmo Hiipakka

Osasto: Teknillisen fysiikan ja matematiikan osasto

Paaaine: Informaatiotekniikka

Sivuaine: Signaalinkasittelytekniikka ja akustiikka

Ty6n nimi: Reaaliaikaisen kitarasyntetisaattorin toteutus ja ohjaus

Title in English: Implementation and Control of a Real-Time Guitar Synthesizer
Professuuri: Akustiikka ja ddnenkasittelytekniikka, S-89

Tyon valvoja: professori Matti Karjalainen

Tyon ohjaaja: dosentti Vesa Valiméaki

Tassa diplomitydssa kuvataan reaaliaikaisen kitarasyntetisaattorin toteutus ja phjaus.

Reaali-
Ahesty-
olla.

Kitaran
iikoi-
mallin
nalto-
5i on
appa-
erillisia

Dteu-
skayt-
yarten
evasta
an re-
Emaym-

niiden
uttami-
Ivataan

joitakin kaytdssa olevia aanisynteesin ohjausprotokollia ja esitelladn uusi tekstipohjainen

Sproto-

ja tule-

Sivumaara: 74 Avainsanat: kitara, mallipohjainen aanisynteesi, synteesin ¢

phjaus

Taytetdan osastolla
Hyvaksytty: Kirjasto:

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OFMASTER S THESIS

Department of Engineering Physics and Mathematics

Author: Jarmo Hiipakka

Department: Department of Engineering Physics and Mathematics

Major subject: Information technology

Minor subject: Signal processing and acoustics

Title: Implementation and Control of a Real-Time Guitar Synthesizer
Title in Finnish: Reaaliaikaisen kitarasyntetisaattorin toteutus ja ohjaus

Chair: Acoustics and Audio Signal Processing, code S-89
Supervisor: professor Matti Karjalainen

Instructor: docent Vesa Valimaki

The implementation and control of a real-time guitar synthesizer are discussed in this the-
sis. The implemented guitar sound synthesizer is a physics-based model of the gacoustic
guitar. The real-time model is implemented on a workstation computer platform using ob-

ject-oriented programming paradigm, and a new protocol is developed for the con
the synthesizer.

trol of

The thesis introduces the sound production principles and the structure of an acoustic gui-

tar. The playing techniques are shortly described placing main emphasis on the cl
guitar playing. A computationally efficient and physically relevant model of the aco

assical
ustic

guitar is then described. The model is based on the digital waveguide synthesis method,

formulated as a single delay loop model. Commuted waveguide synthesis methog
scribed as a way of including the guitar body and the plucked excitation in the model
digital filter implementation of the most prominent body resonances is discussed.

The guitar model implementation using C++ programming language is reported. T
plementation is contained in two class libraries, one for the general purpose signal p
ing units and another for the special instrument model classes. The implemented sy
model contains six dual-polarization string models running at the sampling rg
22050Hz, and two shared body resonators running at the rate of 2205Hz. Genera|
on signal processing on a general purpose workstation platform are also discusse

The discussion on the guitar model control starts with a review of the parameters
synthesis model. The implications of dynamically altering the values of the model
rameters are described along with the means of reducing the severity of such artifac
rent sound synthesis control protocols are described, a new text-based protoc
hierarchical addressing mechanism is developed, and its application to the guitar m
discussed.

The thesis is concluded with a summary of the work, and a proposal for future res
directions is given.

is de-
. Also

ne im-
r0Ccess-
nthesis
te of
issues
d.

of the
S pa-
(s. Cur-
Dl with
odel is

search

Number of pages: 74 Keywords: guitar, model-based sound synthesis, synthesis

control

Department fills
Approved: Library code:

Preface

There may be, for ought we know, infinite inventions of art, the
possibility whereof we should hardly ever believe, if they were
fore-reported to us. Had we lived in some rude and remote part
of the world, and should have been told, that it is possible, only
by a hollow piece of wood, and the guts of beasts stirred by the
fingers of men, to make so sweet and melodious a noise, we
should have thought it utterly incredible: vet now, that we see
and hear it ordinarily done, we make it no wonder.

— Joseph Hall (1574-1656)

This master’s thesis on guitar sound synthesis has been submitted for official exami-
nation in Espoo, Finland on October 19, 1999. The work has been carried out at Hels-
inki University of Technology, Telecommunications Software and Multimedia
Laboratory, and at the Laboratory of Acoustics and Audio Signal Processing, and it has
been supported by the Academy of Finland. The basis for the work has been the previ-
ous work done by the personnel at Laboratory of Acoustics and Audio Signal Process-
ing at HUT, during this decade.

| wish to thank Dr. Vesa Valiméaki for instructing this work. His valuable comments,
guidance, and encouragement have made this work possible. To Professor Matti Kar-
jalainen | want to express my gratitude for supervising this work. For generic and spe-
cific advice and comments | also wish to thank Mr. Tero Tolonen, Mr. Cumhur Erkut,
and Dr. Mikael Laurson. Professor Tapio ‘Tassu’ Takala | thank for the opportunity to
work with sound synthesis models, and for new, inspiring ideas.

| have had the opportunity to work with great people under the umbrella of the DIVA
project. Together we have had great time working with virtual acoustics, so thanks go
to the whole bunch. Special thanks to Lauri Savioja and Tapio Lokki, who have shared
the office with me, for good company and for an optimal signal-to-noise ratio.

The people at the Polytech Orchestra and the University of Helsinki Wind Orchestra |
thank for the opportunities to study sound production of musical instruments, to ex-
plore rehearsal room and concert hall acoustics, and to practice my organizational
skills in real world rather than in a virtual one.

Most of all, | want to thank my family for the endless support. My parents Leena and

Vesa Hiipakka have always encouraged me during my education. My beloved wife
Hanna | thank for the support, understanding, and love before, during, and after this
work.

Otaniemi, Espoo, October 19, 1999 Jarmo Hiipakka

Table of Contents

Preface L .

Table of Contents.1li

List of SymbolsVi

List of AbbreviationsViii

1

Introduction.1

1.1 Physical Modeling and Model-Based Sound Synthesis. 1
1.2 Synthesis Model Control 2
1.3 ThesisOutline 3

Acoustic Guitar and Its Playing 4

2.1 Guitar Construction 5
2.1.1 Body Constructionc i, 5
2.1.2 Neckand Fingerboard 7
2.1.3 Stringsand Bridge 8

2.2 Pluckingthe String. 9
2.2.1 Apoyando and Tirando Strokes 10
2.2.2 Rasgueado Techniques.......................... 10
2.2.3 Pluck Position 11

23 String Vibration 12
2.3.1 Vibratory Motion. 12
2.3.2 Horizontal and Vertical Polarizations of String Vibration . 13
2.3.3 Controllingthe Pitch. 13
2.3.4 HarmoNiCS . . . oot 14
2.3.5 Damping the String Vibration. 15

24 Guitar Body 15
2.4.1 PlayingPositions 15

Table of Contents

2.4.2 Tappingthe GuitarBody 16

3 The Guitar Model. 17

3.1 Modeling of Vibrating Strings Using Digital Waveguides. 18
3.1.1 Digital Waveguide Model for a Lossless String 18
3.1.2 String Terminations, Damping, and Dispersion 19
3.1.3 Single Delay Loop Formulation 19
3.1.4 Fractional Delay Filters in String Models 22

3.2 Extended String Model with Dual-Polarization Vibration 24
3.2.1 Sympathetic Couplings 24

3.3 Nonlinear Effectsin Strings 25
3.3.1 Tension Modulation 26
3.3.2 Amplitude-Limiting Nonlinearities. 27

3.4 Modeling the GuitarBody 29
3.4.1 Commuted Model of Excitationand Body 29
3.4.2 Body Resonators 29

3.5 Model Excitation. 31
3.5.1 Pluck Position i 32
3.5.2 PluckingStyle 33

3.6 Multirate Model Structures. 33

4 Guitar Model Implementation 35

4.1 DSP-Library Classes oo v it 35
4.1.1 Signal Source. 35
4.1.2 SignalDrain. 35
4.1.3 Signal Processor 36
4.1.4 Signal Filter 36
4.1.5 Classical Filter Structures 37
416 RingBuffer. 38

4.2 String Model Implementations 38
421 Filter Classes . . .o 39
4.2.2 Single Delay Loop StringModels. 40
4.2.3 Dual-Polarization Model. 40

Table of Contents

4.3 Body Model Implementations. 41
4.3.1 Excitation Wavetables 41
4.3.2 Shared Resonatorscoiiiiinnnnnnnn. 42

4.4 Instrument ModelBase Class, 42

4.5 The Aggregate Guitar Model 42
4.5.1 Model Structure 43
45.2 Guitar Model Classes., 44

4.6 Signal Processing on Workstation Platform. 44
4.6.1 Signal Processors vs. MiCroprocessors. 45
4.6.2 Operating Systems and Sound Subsystems 45

5 Synthesis Model Control 47

5.1 DSP Parameters of the Guitar Model 47
5.1.1 Excitation Signals. 47
5.1.2 String Parameters 48
5.1.3 Body Resonator Parameters 49

5.2 Dynamic Parameterst 50
5.2.1 Interpolation. 50
5.2.2 Cross-FadingMethod 50
5.2.3 Transient SUpPPression., 51
5.2.4 A Hybrid Method for Dynamic Delay Line Length 52

5.3 Real-Time Control 53

5.4 Summary of Current Control Protocols 54
541 MIDI e 54
5.4.2 ZIPl .. 55
5.4.3 Synthesis toolKit Instrument Network Interface........ 56
5.4.4 OpenSoundControl.............. 56
5.4.5 Structured AudioinMPEG-4 57

5.5 A New Control Protocol and Its Application to the Guitar Model . 57
5.5.1 Addressing Mechanism 58
5.5.2 Operations and Parameters. 59
5.5.3 Guitar Model Application 61
5.5.4 Using the Protocol Over a Network Interface. 64
5.5.5 DISCUSSION . . . it 64

Table of Contents

6 Conclusions and Future Work. 66
6.1 ThesisSSummaryi e 66
6.2 Future Work e 67

References 69

List of Symbols

symbol for right-hand ring finger

allpass filter simulating dispersion

allpass filter transfer function

loop filter parameter

impulse response of the guitar body model
transfer function of the guitar body model
coupling matrix

speed of the transversal vibration

fractional delay value

dynamic delay parameter

allpass filter denominator polynomial

symbol for right-hand little finger

impulse response of the excitation model
transfer function of the excitation model
transverse force at the bridge

fundamental frequency

body resonator center frequency on normalized frequency scale
sampling frequency

a function that maps the delay line signal to a delay parameter
loop filter zero-frequency gain
frequency-dependent gain factor

discrete-time impulse response

transfer function in the z-domain

loop filter transfer function

symbol for right-hand index finger

filter approximation of the time-domain integration operation
symbol for right-hand middle finger
dual-polarization string output mixing coefficient
dual-polarization string input mixing coefficient
discrete time index

filter order

transient eliminator advance time

filter coefficient change time

effective length of a filter impulse response
symbol for right-hand thumb

reflection function at the bridge in the z-domain
reflection function at the fret in the z-domain
string model impulse response

string transfer function in the z-domain

string tension

dynamic string tension

signal in the z-domain

Vi

List of Symbols

Z(2) bridge impedance

zt delay ofL samples

Af, body resonator bandwidth on normalized frequency scale
o(n) unit impulse

€ a small positive number

P linear mass density

() radian frequency

Vii

List of Abbreviations

CISC
CWS
FD
FIFO
FIR
IR
MAC
MIDI
MPDL
MPEG
NTP
OSC
RISC
RRS
SAOL
SASL
SDL
SKINI
TVFD
2z

Complex Instruction Set Computer
Commuted Waveguide Synthesis
Fractional Delay

First In, First Out

Finite Impulse Response

Infinite Impulse Response
Multiply-Accumulate instruction
Musical Instrument Digital Interface
Music Parameter Description Language
Moving Picture Experts Group

Network Time Protocol

Open SoundControl

Reduced Instruction Set Computer
Recursive Running Sum

Structured Audio Orchestra Language
Structured Audio Score Language
Single Delay Loop

Synthesis toolKit Instrument Network Interface
Time-Varying Fractional Delay
Zetterberg—Zhang method

viii

1 Introduction

The implementation and control of a model-based guitar synthesizer are described in
this master’s thesis. The sound of an acoustic guitar is simulated using a real-time im-
plementation of a physics-based guitar model. The real-time model is implemented on
a general purpose workstation platform using a high-level object-oriented program-

ming style. For the control of the synthesis model, an attempt is made to qualitatively

relate some of the playing techniques of the classical guitar to the parameters of the
synthesis model.

A computer can generate any sound within the limits posed by sampling rate and res-
olution. Musically meaningful sounds can be created using a number of synthesis al-
gorithms, which Smith (1991) divides into four categories:

1. abstract algorithms,
2. processed recordings,
3. spectral models,

4. physical models.

Abstract sound synthesis algorithms try to model neither a sound source nor a sound
signal, but are mathematical methods used to create sound signals with varying tempo-
ral and spectral characteristics. In processed recording synthesis methods, recorded
sound segments are combined and processed using various techniques. Examples of
this approach are sampling and granular synthesis. Spectral modeling techniques are
based on modeling the sound waves as they are perceived by the listener, whereas
physical modeling is based on the sound source instead. For an overview and an eval-
uation of several different digital sound synthesis methods, the reader is referred to
Tolonenet al. (1998a).

1.1 Physical Modeling and Model-Based Sound Synthesis

Physical modeling of musical instruments is an exciting paradigm in digital sound syn-
thesis, and it has been a very active research field since the 80s. The basic idea behind
the physical modeling approach is that when the vibrating structure is modeled with
sufficient accuracy, the resulting sound will automatically be identical with the real
sound of the modeled physical structure. The tepmgsics-based sound synthesisl
model-based sound synthears also used to refer to modeling of sound sources.

In speech synthesis, the modeling approach has been used from the beginning of the
1960s, but earlier music synthesis techniques very little considered the sound source.
Former synthesis methods try to imitate the properties of the sound signal, whereas
physical modeling sets the focus to the imitation of the sound source itself.

Introduction

Although the physical model parameters might not be directly measurable from the
modeled instrument, they nevertheless are physically meaningful, and this is one of the
greatest advantages of the physical modeling approach. Also perceptually important
parts of the instrument tones’ evolution will be automatically generated in a correct

way.

A vast majority of the sounds possible to digital sound synthesis is musically uninter-
esting. If sound synthesis algorithms are designed without any reference to natural,
acoustic sounds, it is easy to produce sound with unnatural and unpleasant character.
One of the properties of acoustic sounds is the low-pass tendency of the tones, which
is due to the stronger losses at higher frequencies. If the parameters of a physical in-
strument model are slightly modified from their original, “correct” values, it is possible

to create sounds that are strange, and yet have a natural and familiar identity.

_/alimaki and Takala (1996) divide the physical modeling techniques into five catego-
ries:

1. source-filter modeling,

2. numerical solution of partial differential equations,

3. vibrating mass-spring networks,

4. modal synthesis,

5. digital waveguide synthesis.

In this thesis the emphasis is on digital waveguide modeling, which is the most impor-
tant and widely used physical modeling method both in academic and commercial ap-
plications.

1.2 Synthesis Model Control

It is important that a digital sound synthesis method can be controlled much the same
way as traditional musical instruments are played, if it is to be used in musical appli-
cations of high quality. Currently, synthesizers are quite often criticized for their lack
of expressive means. For a performing musician, the control interface must provide
rather direct control of the synthesis parameters, and for automated music synthesis
also the expression synthesis may be automated.

The MIDI protocol has enabled widespread usage of sound synthesizers in various ap-
plications. However, it may be that the keyboard-oriented MIDI protocol has radically
limited the development of truly expressive synthesis methods. The prevalence of
MIDI has forced all synthesizers to follow its limited conventions.

The control of a synthesis model may be divided roughly into three different levels,
namely:

1. high-level control,

2. mapping of high-level control to implementation level,

3. implementation-level control.

Introduction

The highest synthesizer control level consists of describing the desired properties of
the synthesizer output using mostly musical terms and parameters, such as pitch, loud-
ness, and articulation. The second level transforms the musical parameters into com-
putational parameters that may be used by the synthesis algorithm. The lowest-level
control includes implementing the synthesis algorithms carefully, so that unwanted
transients and clicks are minimized. The implementation of the three control levels
may be divided into separately running computing units as desired. For communica-
tion between such units, a communication protocol is needed. This thesis qualitatively
describes some ways to map parameters from musical level to the lowest, signal pro-
cessing level. However, the main emphasis is on the implementation of the lowest level
control and on the communication protocol used for sound synthesis control.

1.3 Thesis Outline

Chapter 2 of this thesis describes the acoustic guitar and the related playing and expres-
sive techniques, placing the main emphasis on the classical guitar playing technigues.
In chapter 3 the development of the physics-based guitar model is described, and im-
plementation of the model is presented in chapter 4. The parametrization and the real-
time control problems of the model are described, and a new control protocol is intro-
duced in chapter 5. Chapter 6 concludes the thesis.

2 Acoustic Guitar and Its
Playing

The origins of the guitar are on the Iberian peninsula, which was later to become Spain.
Nevertheless, the earliest references to the instrument are from fifteenth-century Italian
sources (Tyler, 1980). The Italian terola was used as a generic term to refer to any
stringed instrument, but it was also used to specifically refer to a guitar-like instrument,
whether or not the wordda manowere added; the same is true for the Spanish term
vihuela de manoorvihuela(Figure 2.1). The termguitarra, chitarra, etc. cannot pos-
itively be taken to mean the guitar until the sixteenth century (Tyler, 1980).

The guitar evolved from the 16th-century, four-course (double-stringjegyn’ to the
five-course guitar of the barock period. The first guitars with six courses of strings
were made ca. 1760-70 (Giertz, 1979). At the end of the 18th century the double cours-
es were abandoned by many of the French guitar-makers in favor of single strings
(Grunfeld, 1969). The Spanish luthier Antonio de Torres (1817-1892) perfected and
codified the design and construction principles found in modern classical guitars by es-
tablishing the size and the proportions of the guitar body, as well as the fingerboard,
and standardized the length of the strings (Figure 2.2).

The acoustic guitar is currently a very well-known and popular instrument used in

many different musical contexts and styles. Nylon strings are used in guitars of classi-
cal and flamenco styles, and guitars with steel strings are common in folk, blues and
jazz music. Guitars differ also in other respects than the string material, resulting a
great variety of guitars with differing sounds. The basic structure of the acoustic guitar
is nevertheless the same for each construction.

Figure 2.1: Reconstruction of the vihuela, ¢.1500, Spain. (Tyler, 1980; Plate 3c)

1. Not to be confused with the earlier instrument of the same name which, in fact, is a small
treble lute.

Acoustic Guitar and Its Playing

Figure 2.2: Guitar by Antonio de Torres, Seville, 1883 (Grunfeld, 1969; Plate 227).

In this section the acoustic guitar is described mainly from the musicians perspective.
The guitar and its playing is conceptually divided into three subparts, namely,

1. plucking the string,
2. string vibration, sustaining and damping it,
3. the guitar body.

Each of these parts has its own section in the following discussion, but first the basic
construction of the instrument is briefly described.

2.1 Guitar Construction

The acoustic guitar is mainly made of wood. For quality instruments the quality and
the processing of the timber is thus essential. The lumber is usually quarter-sawn and
must be in moisture balance with the surrounding atmosphere (Cumpiano and Natel-
son, 1993). Guitars are usually made eithesedsonedr kiln-driedwood. Seasoning

is the process in which the timber is stored in controlled temperature and humidity con-
ditions for a long period of time. Properly seasoned timber has lost most of its moisture
during the process. In kiln-drying, the wood is artificially aged in a much faster proce-
dure. Some luthiers think, however, that for the wood to be suitable for instrument-
making, it must always be exposed to the atmosphere over a significant amount of time
(Oribe, 1985).

The anatomy of a classical guitar is illustrated in figure 2.3. The guitar body consists
of the top and the back plates and the ribs (sides), connected together with linings. The
neck is connected to the body, and the fingerboard is in turn attached to the neck. The
strings are attached to the bridge on the top plate of the guitar body, and the other ends
of the strings are connected to the tuning machine in the guitar head. The guitar is as-
sembled using different types of glues. The traditional choice is to use organic animal
glue, but currently modern synthetic glues are commonly used.

2.1.1 Body Construction

The top plate or the soundboard of the guitar is the most important part determining the
sound quality and character of the instrument, and is manufactured of two book-

Acoustic Guitar and Its Playing

s .lll_‘J Fih

Fas BRACT

ERRFED LIS

L ERIERS) b

g B

TIE BLLAR — ; a :l::__--

RRITECS ~ naLE

-

HEAINLH K

RN T

P

W W DR s FRETH

RAIE BESF

Figure 2.3: Exploded view of the classical guitar (Cumpiano and Natelson, 1993; Plate 1-2).

matched pieces of carefully selected timber for quality instruments. The first choice for
the soundboard wood has traditionally been the close-grained German spruce, but due
to the short supply of mature trees, also Sitka spruce, Eastern white spruce, as well as
variety of cedars and redwoods are used (Cumpiano and Natelson, 1993). There are
few direct comparisons of the soundboard materials, but, e.g., Elejabarrieta and Ezcur-
ra (1997) have concluded that cedar would be a better material than the spruce. In the
flamenco guitars, the surface of the soundboard is protectedyaiffeadore®r tap-
ping-platesfrom the fingernails of the right hand.

In the ribs and the back plate, the timber is less critical than in the top plate. Most fre-
guently rosewood, mahogany, and maple are seen in modern guitars. In the finest clas-
sical models the sides and the back are made of palo santo (also called Brazilian or Rio
rosewood, or jacaranda). In flamenco guitars, light-colored Spanish or Italian cypress
is traditionally used.

To increase the strength of the construction and to spread the vibrations, braces (struts)
are installed both to the top and the back plate. Several traditional designs for the top

plate bracing patterns exist (figure 2.4). The pattern has a remarkable effect on the

sound quality of the instrument and in every pattern there are a great number of vari-

ables. In the back plate the strutting pattern is usually quite simple. The material used

for the struts is often the same as that used for the plate itself, however, even carbon
fibre is sometimes used (Redgate, 1998).

The vibrations of the strings are radiated as sound waves through the vibrations of the
guitar body. The strings are connected to the body via the bridge and the saddle, and
vibrating strings apply a driving force to the body. The plates and the air cavity of the
body provide a better impedance matching to the surrounding air than do the strings.
In addition to the amplifying function, the body also colors the sound of the instrument

Acoustic Guitar and Its Playing

Figure 2.4: Bracing patterns: Torres pattern, asymmetric variation of the Torres pattern and X-
bracing pattern for steel-string guitar (after Cumpiano and Natelson, 1993).

by amplifying some frequency components more than others and resulting in a specific
sound quality for the specific instrument. The directional radiation pattern of the guitar
is also determined by the properties of the instrument’s body.

The lowest body resonance of the guitar is typically in the range from 90 to 100Hz and
the second one is between 170 and 250Hz. The lowest resonance corresponds to the
first mode of the air cavity or the Helmholtz mode of the instrument body, and the sec-
ond resonance is the first vibrational mode of the soundboard. The first few body res-
onances have fairly narrow bandwidths and thus also long decay times (Fletcher and
Rossing, 1991).

The subjective sound quality of the guitar in respect to the acoustical properties of the
guitar body have been studied by Meyer (1983a). He found that the third resonance of
the guitar body around 400 Hz is of great importance to the overall tone of the instru-

ment. The other criteria having great correlations with the positive subjective evalua-

tions are the average levels of the frequency ranges approximately from 80Hz to
1250Hz. An attempt to relate these acoustical criteria to a few possible design param-
eters of the guitar soundboard construction is made in (Meyer, 1983b).

2.1.2 Neck and Fingerboard

Different types of acoustic guitars differ considerably in the construction and the de-
sign of the instrument’s neck. The neck is usually made of hardwood, such as mahog-
any. The neck can be made of a single piece of wood, but a more common construction
is the three-piece neck, in which the head and the foot are made from separate pieces,
the foot often being laminated. To support the neck against the bending force exerted
by the strings, the steel-string guitars usually have a metaligs rodunder the fin-
gerboard. The nylon-stringed classical and flamenco guitars have solid wooden necks.

The frets are mounted to the fingerboard or fretboard, which is traditionally made of
ebony, but other hardwoods are also commonly used. In the classical and flamenco
guitars, the fingerboard is flat, but in steel-stringed instruments they are often curved.
Also the widths of the fingerboards differ radically between different guitar types, the

Acoustic Guitar and Its Playing

classical and flamenco guitars having much wider fretboards than the steel-string gui-
tars. The frets are metallic and are placed in positions resulting in an equal tempera-
ment tuning. Because the tension of the string increases when pushed against the
fingerboard, the distance from the nut to the saddle is slightly greater than the scale-
length would implicate. This increase is called string compensation (Fletcher and
Rossing, 1991).

2.1.3 Strings and Bridge

Modern acoustic guitar strings can be divided into two categories: nylon and steel
strings. In nylon-string guitars the three bass strings, i.e. 6th, 5th, and 4th, are made of
nylon floss, with fine metal wire wound on the nylon core. The 3rd string is of single
nylon filament or alternatively nylon floss wound with nylon filament. The 2nd and 1st
strings are usually of plain nylon filament. The steel strings are made similarly of plain
or wound steel wires. The tuning of the strings is adjusted with a tuning machine or
with traditional tuning pegs at the head of the guitar.

The bridge is the anchoring point of the strings on the soundboard. It determines the
spacing of the strings as well as the height of the strings above the fretboard. The bridge
couples the vibrations and distributes the tension of the strings onto the soundboard.
The design and the construction of the bridge may have a dramatic effect on the sound
quality and the action of the instrument. The standard modern design of the classical
guitar bridge (see Figure 2.5) with rectangular wings, a tie block and a removable bone
saddle was created by Antonio de Torres around 1850 (Cumpiano and Natelson, 1993).
Meyer (1984b) has studied the influence of different bridge designs on the quality of
the instrument tone, and found that a bridge being shorter and wider than the standard
may, in fact, be advantageous.

The forces that the strings exert on the bridge vary according to the polarization of the

string vibrations. The vibrations parallel and perpendicular to the soundboard excite

different sets of guitar body resonances and the decay rate of the vibratory motion also
depends on the angle through which the string is plucked. When the string is plucked
perpendicular to the soundboard, a strong but rapidly decaying tone will result. When

the string is plucked parallel to the top plate, a weaker but longer tone is obtained (Tay-
lor, 1978).

S

Figure 2.5: Classical guitar bridge (Middleton, 1997; pp. 123)

Acoustic Guitar and Its Playing

2.2 Plucking the String

The acoustic guitar is excited by plucking the strings either using fingertips or with a
plectrum. This thesis will concentrate on the finger-picking playing styles. In classical
guitar playing, two kinds of strokes are used to excite the stringpoyandqSpanish

for ‘leaning on’) strokes the finger comes to rest on the next string after the string has
been excited, iirando (‘pulling’) the adjacent string is not touched. Other plucking
techniques include, e.g., th@sgueaddechniques, which are mainly used in flamenco
music.

One important subject concerning the right-hand techniques of guitar playing is the use
or non-use of nails. Fernando Sor (1778-1839), the greatest guitarist of the romantic
era, and the writer of ‘Méthode pour la guitare’ (1830), did not use fingernails, but only
the fleshy part of the fingertips. His contemporary and friend, the Spanish virtuoso Di-
onisio Aguado (1784-1849) was firmly pro-nail. The issue has actually never been
solved; the flamenco guitarists use their nails, whereas classical guitarists try to make
best of both worlds by plucking the strings using fingertips in conjunction with care-
fully shaped nails (Grunfeld, 1969). Today guitar players typically shape their nails so
that the string makes a brushing contact with the flesh. This way the “click”, that can
result from the contact between the vibrating string and the nalil, is reduced. A very
thorough discussion of the advantages of finger nail usage and the function of the nails
is presented in (Taylor, 1978).

The right-hand fingers have conventional symbols widely used in guitar music and lit-
erature. The symbols are:

p for thumb (‘pulgar’),

i for index or 1st finger (‘indice’),

m for middle or 2nd finger (‘medio’),

a forring or 3rd finger (‘afiular’),

e for little or 4th finger (‘mefiique’).
The little finger is not used in the orthodox classical guitar playjiagd the symbaoé

IS not as established as the others (lettsralso used for the little finger).

Several phenomena take place, when a string is plucked. If the string to be plucked is
already vibrating, the finger first quickly damps the original vibration at the same time
starting new vibrations on both sides of the plucking position. The finger pushes the
string down toward the soundboard, and then the string is allowed to slip over the fin-
gernail, setting the string to vibrate.

The tone character can be controlled by varying the plucking position and plucking
style. Basic techniques of plucking the string are presented in the following subsec-
tions. These styles and the variable parameters give the performer a great repertoire of
tone character.

1. The little finger was earlier used to balance the guitar and to steady the hand by placing the
finger on the top of the guitar or against the bridge.

Acoustic Guitar and Its Playing

2.2.1 Apoyando and Tirando Strokes

In the apoyandoor rest strokethe plucked string is pulled towards the soundboard,
where it is allowed to slip over the fingernail. The finger continues its movement until

it comes to rest on the adjacent string. The nail acts as a ramp, which converts some of
the horizontal finger motion into vertical motion of the string (Fletcher and Rossing,
1991).

In thetirando or free strokethe line of impact is parallel to the soundboard of the gui-
tar rather than down towards it as in apoyando, and the striking finger does not touch
the adjacent string. The finger starts from a short distance from the string, where from
it accelerates to strike the string with the tip of the nail and stops after a follow-through.
When the striking finger touches the string, the tip-joint of the finger slightly bends
backwards, if the finger is fully relaxed. The player can control the amount of tension
with respect to the musical context.

According to Pavlidou and Richardson (1997), the main difference between the apoy-
ando and tirando strokes is the angle with which the string is released. The almost hor-
izontal finger movement of the tirando stroke forces the string to move nearly parallel
to the instrument soundboard, and results in a quieter sound of longer duration than the
apoyando stroke. Fletcher and Rossing (1991), however, see little difference between
the strokes in this regard, but conclude that the player may alter the balance between
horizontal and vertical string motion by changing the angle of his fingertip.

It is usually possible to play louder using an apoyando stroke, and it may be used to
discern the melody line from a dense accompaniment. The usage of the rest stroke is,
however, naturally limited by the fact, that leaning on the adjacent string will of course
damp its vibration. Therefore, some writers think that the player must develop his free
stroke to produce notes equivalent to those played with rest stroke (Russell, 1988).
Some tutors aim for core sound that would be the same for the rest stroke and the free
stroke, yet keeping the tonal extremes of the techniques available for contrast (Duncan,
1980).

The differences between the apoyando and tirando strokes may be very individual to
each player. Beginners typically have big differences in the sound quality according to
the playing technique, whereas advanced players are capable of very subtle intentional
variations and even sound quality irrespective of the plucking style (Helminen, 1999).

2.2.2 Rasgueado Techniques

Therasqueaddechniques give the characteristic sound to the flamenco guitar music,
and it is the flamenco music that has influenced modern composers so that they have
included rasgueado techniques in their work (Duncan, 1980). The term rasgueado (or
alternativelyrasgued embraces all strumming techniques using one or more fingers
of the right hand. The techniques range from single index finger strokes to the longer
and more advanced rolling sequences (Campbell, 1978).

In the simplest, index finger rasgueado, two kinds of strokes are used: downstrokes and
upstrokes. In downstroke the index finger is first flexed from the knuckle, so that the

10

Acoustic Guitar and Its Playing

finger almost touches the base of the right-hand thumb. From this position, the finger
is flicked forward, the nail striking downwards across all the six strings of the guitar.
During the upstroke, the finger is flicked back towards the starting position. The finger
now sounds the higher-pitched strings first. Generally, fewer strings are plucked dur-
ing the upstroke than during the corresponding downstroke.

The four-stroke rasgueado is a very important technique in flamenco playing. It con-
sists of a rapid succession of four downstrokes by the right-hand fingers, in the order
e, m, a, i. The accent of the four-stroke rasgueado is on the fourth stroke, i.e. on the
index finger. The accent also coincides the beat of the music.

The five-stroke rasgueado has two differences compared to the four-stroke rasgueado.
The accent of the rasgueado coinciding with the beat of the music falls on the first
stroke made by the little finger. The second difference is that the rasgueado ends with
an index finger upstroke after tieea, m, i sequence of downstrokes. Continuous roll
may be achieved by curling the other fingers to the palm when the index finger extends
for its downstroke. This way the fingers will be ready for the repetition of the five-
stroke rasgueado by the time the index finger has made the last upstroke.

Several other types of rasgueados can be described, all consisting of series of up- and
downstrokes with right-hand fingers and exciting more than one string in rapid succes-
sion.

2.2.3 Pluck Position

The effect of the plucking position is to produce a comb-filtering effect on the resulting
sound. When the string is plucked at the middle of the string, the amplitude distribution
of all the even-numbered harmonics is zero. In general, a vibrational mode of an ideal
string will not vibrate, if the string is excited at one of the nodes of the mode (Fletcher
and Rossing, 1991). For example, if the string is plucked 1/5 of the distance from one
end, the spectrum of mode amplitudes will be like shown in figure 2.6. Note the ab-
sence of the 5th, 10th, etc. harmonic. In a non-ideal string, however, the modes of the
string vibration are in general nonlinearly coupled so that a mode with zero initial en-
ergy will begin to vibrate (Legge and Fletcher, 1984). Also the finger or the plectrum
exciting the string always is of finite width, and thus there will be no mode with zero
vibration.

Log amplitude

INIINYINN

Figure 2.6: Spectrum of a string plucked one-fifth of the dis-
tance from one end (Fletcher and Rossing, 1991; Fig. 2.7).

11

Acoustic Guitar and Its Playing

The pluck position is used to vary the tone color of the guitar sound. The neutral posi-
tion of the right hand is just behind the sound hole. Plawualtasto(near or over the
fingerboard) produces mellow tone quality whersalsponticello(close to the bridge)
gives a brighter and more metallic tone than the neutral pluck position. This effect can
be used for major changes in tonal color. Nuances of color are produced by changing
the angle with which the string is released, and the angle of the fingernail against the
string direction (Duncan, 1980).

2.3 String Vibration

The vibratory motion of the guitar string consists of three components, namely trans-
versal, longitudinal, and torsional vibrations. The transversal vibration is further divid-
ed into horizontal and vertical components, which correspond to the vibrations along
and perpendicular to the top plate of the instrument, respectively. The longitudinal and
torsional vibrations can be considered non-essential in synthesizing the sound of
acoustic guitar, and are not considered in this work. Torsional waves may, however,
be important in the plucking process (Pavlidou and Richardson, 1997).

The player affects the vibration of an excited string by controlling the pitch of the
sound with his left-hand fingers. Also the damping of the string vibrations can be con-
trolled using either left or right hand.

2.3.1 Vibratory Motion

The transversal vibratory motion of the string can be expressed as a sum of modes that
are obtained by solving the wave equation for the string. The equation for transverse
waves in a lossless string is

’y _ Td%y

—2 = 2.1

ot° Pax’ &Y
whereT is the tension of the string,is the string’s linear density,is the displacement

of the stringxis the distance from the origin along the string, argtime. The general
solution of the wave equation can be described as two traveling waves traversing the
string in opposite directions and reflecting back from the ends of the string. A string
with fixed ends has harmonic normal modes of vibration and the general solution can
be described as a sum of normal modes (Fletcher and Rossing, 1991).

In a real string the vibratory motion attenuates gradually because of the external and
internal losses and as a result of transmission of the vibrations to the guitar body. When
all the energy in the string is consumed, the string comes to rest. In the low-frequency
range the attenuation is mainly caused by the air resistance and the losses at the string
terminations (Chaigne, 1992). For the higher frequencies the internal losses of the
string material become essential (Chaigne, 1991). Because of the small diameter of the
strings, the radiation of the energy to the air is usually negligible (Chaigne, 1992).

12

Acoustic Guitar and Its Playing

The harmonics in a real string are not exactly in integral ratios, because the finite stiff-
ness of the string causes the velocity of the vibratory motion to be frequency-depen-
dent. This effect is called dispersion.

The stretched string is linear only to the first approximation since the displacement of
the string causes a second-order change in the length, and thus the tension, of the string
(Legge and Fletcher, 1984). Therefore the calculated mode frequencies are not exact
for a vibrating string. The result of the change in tension can be heard as a change in
the fundamental frequencies of louder guitar tones. The coupling between the bridge
resonance and the string is another important cause for non-harmonicity of the partials
of the guitar tones.

The string vibrations in an acoustic guitar are connected to the other strings of the in-
strument through the mechanical coupling and via the air. This is called sympathetic
coupling.

2.3.2 Horizontal and Vertical Polarizations of String Vibration

The transversal vibrations of the guitar string can be divided into two polarization com-
ponents: the horizontal and the vertical polarization, i.e., vibrations parallel and per-
pendicular to the soundboard, respectively. As described in section 2.1.3, the bridge
characteristics differs in these two directions. The difference leads to slightly different
vibration in the two directions.

Two important phenomena resulting from the two polarizations are the two-stage de-
cay rate of guitar sounds and the modulation of partials of a guitar tone. The former
effectis a result of different decay rates of the two vibration polarizations (Fletcher and
Rossing, 1991) and the latter suggests that the frequencies of the two polarization com-
ponents are not the same. The similar two vibration polarizations in piano strings have
been described by Weinreich (1977).

2.3.3 Controlling the Pitch

The pitch of the guitar is controlled by the player mainly using the left-hand fingers.
The player can change the length of the vibrating part of the string by pressing the
string down to contact the frets of the fingerboard. The string is normally stopped as
close to the fret as possible in order to get clean, non-buzzing tones with minimum ef-
fort. During the history of the guitar, the left hand technique has been of little contro-
versy; the early sources given practically same the principles of left-hand fingering as
found on modern guitar tutors (Tyler, 1980).
In guitar notation, the left-hand fingers are numbered as follows:

1 forindex finger

2 for middle finger
3 forring finger
4

for little finger

13

Acoustic Guitar and Its Playing

The left-hand thumb is not normally used in fingerings, but is placed opposite the fin-
gers, and balances the pressure of the other four fingers

The termligado (Spanish for ‘tied’) refers to sequences of notes sounded by the left
hand only, with a plucked excitation by a right-hand finger only to the first note of the
sequence. In ‘hammering on’ ligado a left-hand finger descends firmly (with a ham-
mer-like action) onto an already vibrating string to produce a note of higher pitch.
‘Pulling off’ sounds a note of lower pitch by plucking the string with a left-hand finger
stopping the string on a fret. The note produced by pulling-off may be stopped by an-
other left-hand finger, which may again be ‘pulled off’ to sound yet a lower note.

In classical guitar technique, the left-hand fingers are normally used to stop only one
string behind a fret. Sometimes the index finger is however placed straight across all
six strings, stopping all strings behind the same fret. This technique is tealteéor

bar. Barré allows playing of chords in various positions along the fretboard. Besides
the full barré stopping all the six strings, the index finger may be used to stop fewer
strings in five- or four-string barré or two or three strings in a true half-barré. The tip
segment may also be used to cover lower strings without recourse to the full barré
(Duncan, 1980).

In glissandgthe string is struck once to sound a note of certain pitch. The pressure of
the left-hand finger is maintained and the finger is rapidly slid up or down the string,
so that the arrival at the new fret produces the desired pitch. The extent to which the
intervening chromatic series of notes is sounded may be varied.

Vibratois produced by rapidly changing the tension of the string; when the tension is
increased, the pitch of the note is sharpened, and when the tension is decreased, the
pitch will decrease as well. Vibrato can be produced either longitudinally or laterally

to the string. In longitudinal vibrato, the string is literally stretched in alternate direc-
tions, so that the pitch is both increased and decreased from the mean tone. On posi-
tions, where this technique is inefficient, lateral-bend vibrato can be used. In this form
the finger, flexing from its tip and middle joints, moves the string from side to side.
Since this method can only increase the tension of the string, the pitch will only fluc-
tuate upwards.

The capo(or capo tastd is a device which is fixed across the strings to shorten the
string length, thus resulting in upward transposition without altered fingering. It acts
as a movable nut, which stops the strings when tightly fixed behind a fret. The Spanish
capo,cejilla is widely used by flamenco guitarists to give added brightness to the per-
formance. Usually the capo influences the length of all the strings, but capos capable
of stopping only selected strings have also be manufactured.

2.3.4 Harmonics

Harmonicsor flageoletsrefer to the pure bell-like tones produced by sounding the
whole string in fractions of its length. Natural harmonics are the tones from the har-
monic series of the open strings. They are made by forcing a node on a specific location
along the string by lightly touching the string over an appropriate fret with a left-hand
finger and then lifting the finger away immediately after the right-hand excitation. Be-

14

Acoustic Guitar and Its Playing

cause it is of no use to touch the string on one nodal point, while plucking at another,
plucking positions rather near the bridge are chosen to obtain a strong harmonic.

If the string is pressed against any of the frets, a complete harmonic series will natural-
ly be accessible relative to the new string length. To produce tmtigieial harmon-

ics, the string must be both plucked and touched lightly using right-hand fingers, so

that the left hand is left free to press the string down on any desired fret. The index fin-
ger is used to touch the string and the thumb or the ring finger is used to actually pluck
the string. Because the plucking position cannot be very far from the index finger

touching the string, and thus is not near the bridge, the artificial harmonics tend to
sound weak.

2.3.5 Damping the String Vibration

The player has many alternative ways of stopping the vibrations of the string. In prin-
ciple any fleshy part of either hand can be used to damp the strings. The most effective
technique is to stop the vibrations of the strings is by bringing the right hand onto the
strings so that the edge of the palm contacts the strings.

Any right-hand finger may be used to damp the vibrations of any of the guitar strings.
The most typical example is the apoyando stroke, in which the finger exciting a string
comes to rest on the adjacent string effectively damping it.

The right hand may also be used to produpézaicatoeffect: if the hand is placed with

the palm in contact with the strings near the bridge, when the string is plucked, frequen-
cy-selective damping is introduced to the string. The higher modes of string vibration,
which have antinodes near the bridge, are strongly suppressed. This technique produc-
es a muffled, “woolly” sound (Taylor, 1978).

To damp the strings, left-hand fingers can be used in two alternative ways. If a left-
hand finger fretting a certain note is lifted from the fingerboard so that the contact with
the string is still maintained, the string vibration will die out rather quickly. The second

way is to bring, e.g., the little finger down lightly straight across the strings.

2.4 Guitar Body

The way of holding the guitar is mainly dictated by the musical style: classical guitar
has its own playing position differing e.g. from the flamenco position. However, the
posture of the player affects the sound of the instrument somewhat, because different
playing positions have different implications on the vibrations of especially the back
plate and the sides of the guitar body. The guitar body itself can be “played” by tapping
the guitar with either the palm or the fingers of the player’s right hand.

2.4.1 Playing Positions
Although each player ultimately has a rather individual playing position, a few nomi-

nal positions can be described for different musical styles. In the classical guitar play-
ing position the guitar is placed on the players left thigh. A footstool is placed under

15

Acoustic Guitar and Its Playing

the left foot to incline the left thigh and to bring the back edge of the upper side of the
guitar closer to the players chest. The traditional flamenco way of holding the guitar is
to support the weight of the instrument on the right thigh so that the larger curve of the
guitar body is placed on the outer side of the thigh. The right arm rests on top of the
guitar, the weight of the arm balancing the guitar (Campbell, 1978).

Both the classical and the traditional flamenco playing positions have evolved so that
the vibrations of the guitar body are only slightly affected by the player. The wide-
spread use of the acoustic guitar in different musical styles has given raise for many
different, individual playing positions. The hollow of the guitar body can, e.g., be rest-
ed on the right leg, which has been crossed over the left leg, or a neck strap can be used
if guitar is to be played in a standing position.

2.4.2 Tapping the Guitar Body

The guitar body can be tapped from various places to achieve special effects. These
percussive strokes are commonly used in contemporary guitar music. The most com-
mon places to strike are the bridge and different parts of the soundboard. To tap the
body, player may use palm, fingers, fingertips, the side of the thumb or even the knuck-
les. Nails are seldom used, because they might be harmful to the finishing of the instru-
ment. The best places to achieve desired percussive effects may vary from instrument
to instrument, and experimentation is required when these effects are needed (Russel,
1988).

Thetambouror tamborais a kettledrum effect, that includes striking the saddle of the
guitar bridge with the right hand. The sound is a mixture of the strings and the body,
and its exact properties are determined by the position of the stroke. A considerable
amount of the energy of the stroke is transferred to the guitar bridge and body in a rath-
er straightforward manner, so that the effect may be considered with the body-tapping
effects.

Thegolpe(Spanish for ‘tap’) is often used in flamenco music and is made by tapping
the guitar soundboard by the 3rd finger of the right hand, bringing both nail and flesh
into contact with the guitar body. Flamenco guitars are therefore equipped with a tap-
plate, which protects the instrument’s soundboard. The golpe is used both on its own
and simultaneously with strokes to the strings (Campbell, 1978).

16

3 The Guitar Model

The acoustic guitar is an extensively studied and simulated instrument (Grunfeld,
1969; Christensen and Vistisen, 1980; Pavlidou and Richardson, 1997; Karjagtinen
al., 1998) and many different sound synthesis algorithms have been demonstrated us-
ing guitar sounds. This is partly because of the popularity of the instrument, partly be-
cause realistic guitar sounds are fairly easy to produce due to the fact that the string is
to the first approximation a simple one-dimensional vibrating structure.

In the following discussion the development of a physics-based acoustic guitar model
is described. This thesis closely follows the formulation given by Tolonen (1998) and
Karjalainenet al. (1998). The purpose is to introduce the structure of the synthesis
model; readers interested in calibration of this model to achieve realistic guitar sound
synthesis are referred to Valimakial. 1996) and Valiméki and Tolonen (1998).

From the modeling point of view, guitar can be divided into two functionally separate
sub-structures: the strings and the body. The third functional part of the model is the
part corresponding to the excitation by plucking the string. These functional parts are
depicted in figure 3.1. The subsections 3.1-3.3 present both simple and advanced
string models based on digital waveguides. Body modeling is discussed in section 3.4,
and model excitation by plucking in section 3.5. Discussion of computationally effi-
cient multirate structures for guitar modeling in section 3.6 concludes this chapter.

v
'

String N

Excitation by } Vibration of } Sound
plucking \ the strings \ radiation
| |
| |
| . |
| String 1 |
| |

: ilnteraction

|)

. Guitar
|
Player ‘ String 2 body —

|

|

|

Figure 3.1: Block diagram of the sound production mechanism in the acoustic guitar, after
(Karjalainenet al, 1993).

17

The Guitar Model

The following discussion assumes that the reader is familiar with the concept of z-
transformation of discrete-time systems. The z-transform for the discrete-time systems
is quite similar to the Laplace transform for continuous-time systems. The relationship
between the input and output of a discrete-time system involves multiplication by the
appropriate z-transform, rather than convolution as for the signals themselves. Zeros
and poles having the same role as for continuous-time systems may be defined using
the z-transform, and the frequency response of the system can be derived from the
transform and related to an appropriately defined Fourier transform. For more infor-
mation on Laplace, Fourier, and z-transforms, the reader is referred to a standard text-
book on digital signal processing such as (Oppenle¢iah, 1983).

3.1 Modeling of Vibrating Strings Using Digital Waveguides

The theory of digital waveguides has primarily been developed by Smith (1987, 1992,
1993) and the method was first applied to artificial reverberation (Smith 1985). The
method suits particularly well to the simulation of one-dimensional resonators (vibrat-
ing strings, acoustic tubes, thin bars), which are found in many families of musical in-
struments. Waveguide techniques have also been applied to a variety of two- and three-
dimensional acoustical problems (Van Duyne and Smith, 1993; Satiaja1994).

A well-known forerunner of the waveguide synthesis models is the Karplus-Strong al-
gorithm developed by Kevin Karplus and Alex Strong for the synthesis of plucked
string instrument sounds (Karplus and Strong, 1983). The original Karplus-Strong
model has been further extended by Jaffe and Smith (1983), and has later led to a num-
ber of detailed models of string instruments (Karjalainen and Valiméki, 1993; Smith,
1993; Valimaki and Tolonen, 1998).

3.1.1 Digital Waveguide Model for a Lossless String

As stated in section 2.3.1, the general solution of the wave equation (Eq. 2.1) for a loss-
less flexible string can be interpreted as a linear combination of two traveling waves
proceeding in opposite directions along the string. This is also known as the d’Alem-
bert’s solution. The digital version of the solution can be obtained by discretization of
the functions representing the traveling waves.

The sampled traveling waves can be interpreted as delay lines depicted in figure 3.2
(Smith, 1992). The output of the waveguide model at pbistgiven by the sum of the

two waveguide variables at that point. The digital waveguide provides exact solution
to the wave equation at all integral points, if the original wavefronts are bandlimited to
the Nyquist frequency. Values at fractional points along the waveguide may be ob-
tained usingdractional delay filtersee section 3.1.4).

It is worth noting that the input and output signals to the delay line of figure 3.2 may
be of any wave variable type, such as displacement, velocity, acceleration or slope
(Smith, 1992). Selecting acceleration as the wave variable has an interesting conse-
guence since then an ideal pluck becomes an impulse (Karjalainen and Laine, 1991).
The derivation in section 3.1.3 assumes that this choice has been made.

18

The Guitar Model

y'(n) ——» msample delay line —— y*(n-m)
y(nK)
y(n) «—— msample delay line +«—— y(n+m)

Figure 3.2: One-dimensional digital waveguide, after (Smith, 1992).

3.1.2 String Terminations, Damping, and Dispersion

The string terminations in the digital waveguide model can be represented by reflection
filters, which produce phase inversion and frequency dependent damping. Due to the
losses always present in a real string, the string vibration also attenuates gradually and
the stiffness of the string causes dispersion.

The frequency-dependent losses in the string cause exponential attenuation of the
wavefronts traversing the string. This corresponds to multiplication of the traveling
waves by a frequency-dependent constant at each time step. The gain factors can be
lumped together for every unobserved portion of the string, because the system is lin-
ear (Smith, 1987). This is illustrated in figure 3.3.

The finite stiffness of a real string causes the velocities of the traveling waves to be fre-
guency-dependent, the high-frequency signal components having greater velocity than
the lower frequencies. This effect is called dispersion. In a string model, dispersion can
be taken into account by using allpass filters, that have group delays approximating the
effect found in real strings. The necessary allpass filters are also depicted in figure 3.3.

3.1.3 Single Delay Loop Formulation

The above formulation of the bidirectional waveguide string model can be simplified
to a string model with the loop consisting of a single delay line. This results in a single

Vo) —— F o GHe) ¥ A(0) bz o) 4, (0) > y'(n-m)
y(n,k)
y(n) «—— A4(0) <« GHo) [« z¢F | I 4, (0) &= G"Ho) e D e—— y(ntm)

Figure 3.3: A digital waveguide with frequency-dependent g&i(sv) are lumped together between
observation points. Dispersion is similarly implemented with allpass fikgts) that approximate the
dispersion in a string section of lengith

19

The Guitar Model

delay loop (SDL) string model (Karjalaineat al., 1998). The effects of the excitation

and pickup (in case of electric guitars) positions can be easily simulated using the bi-
directional waveguide model, but they may also be incorporated to the computational-
ly more efficient SDL model (Karjalaineet al,, 1998). In the following discussion a
string model with transversal bridge force as output is described, ignoring the effects
resulting from different pickup microphone positions. The model is applicable to
acoustic guitar sound synthesis. A more elaborate derivation of the single delay loop
string model is given in (Karjalainest al, 1998).

The basis for the SDL model is the bidirectional waveguide model of figure 3.4. The
notationHp g(2) in the figure refers to the z-domain transfer function from péirno

point B. The original excitationX(z) has been divided into two parts, so that
X1(2) = Xo(2) = X(2)/2. The filtersRy(z) andRy(2) represent the reflections at the fret-
board and the bridge end of the string, respectively. The output of the string model is
the transverse forde(z) at the bridge. The force can be derived from the acceleration
signal traversing the string by integration and multiplication with the bridge impedance
Z(2). The filter1(2) represents the discrete-time approximation of the time-domain in-
tegration operation.

The model may be first simplified by introducing at poktt a single excitation signal,
that corresponds to the combined effect of the two excitatiyig) and X,(2). The
equivalent excitatioms expressed as

Xz1(2) = X(2) + Hep 2(2) Ri(2) H 1 £1(2) X5(2)
- % [1+ Hep e1(D)] X(2) | (3.1)
= He(2) X(2)
where
Hez £1(2) = Hep 12(DR(DH 1 £1(2) (3.2)
H]LEI(Z) HELil(Z)
n—— = FE — Rl

> Delay line
tx (2 , J\Jr—’
12 !
RO | X0 R | (w2 R
X, 7

Delay line «

e - F~_ R
Hp,y 12(2) Hy, ()

Figure 3.4: Dual delay line waveguide model for a plucked string with output at the bridge, after (Kar-
jalainenet al, 1998)

20

The Guitar Model

is the left-side transfer function fro2 to E1, that consists of the transfer functions
from E2 to L2 andL1 to E1, and of the reflection functioR(z). The introduction of

the equivalent excitation signal and linearity of the system allow us to combine all
components of the string loop into a single transfer function

Hioop(2) = Ry(2)HRy e2(DHes 1 2(DRADH 1 g1(DHEq r1(2)

(3.3)
Ry(2)HRy, e2(2)HE2 £1(2)He R1(2)

Now the string transfer functio8(z) that represents the recursion around the string
loop, can be written as

1

= e (3.4)

(2

The string loop can be implemented efficiently, if the pure delay and the frequency-
dependent components of the transfer fundtigg(2) are separated, so that

Hioop(?) = Z H|(2). (3.5)

Here it is assumed that the delay component can be represented with sufficient accura-
Cy using an integer-length delay limé. Otherwise, a fractional delay approximation
must be used, as described in section 3.1.4.

A popular choice for the loop filteH;(z) in equation 3.5 is the one-pole filter (Jaffe
and Smith, 1983; Tolonen, 1998)

1+a,

Hi((2) = g—. (3.6)
1+a,z

In equation 3.6, the parametgdetermines the zero-frequency gain of the loop filter,
and the parametex; determines the cutoff frequency of the filter. The one-pole filter

is the simpliest filter that can be used to implement slow attenuation of the lower fre-
guencies and rapid attenuation of the higher frequencies. The formulation of the loop
filter given in eq. 3.6 allows for separate adjusting of the DC attenuation and the fre-
guency-dependent characteristics of the filter, and is therefore favorable over other
other formulations of the same filter.

The overall transfer function for the string model from excitation to bridge force output
is (using the definitions above)

He o(2) = % = He(DHey m(DS(IH5(2)., (3.7)
where
Ha(2) = Z(21 @)[1-Ry(2)]. (3.8)

21

The Guitar Model

Figure 3.5: A SDL string model with equivalent excitation, single string loop, bridge impedance and
integration. The model also takes into account the wave propagation from excitation point to bridge
and the reflection characteristics of the bridge.

The model described by equation 3.7 is illustrated in figure 3.5.

The string model previously developed can be further simplified for practical sound
synthesis as described in (Karjalaingtral,, 1998). The transfer functiog, £1(2) is

almost a lossless phase-inversive delay and the lowpass section may be replaced with
a negative constant slightly less than 1 in absolute value. The losses in wave propaga-
tion from excitation poinEl to bridge positiorR1 are also negligible and the block

He1 r42) may be left out. The reflection functidR,(2) is a nearly ideal, phase-inver-

sive fixed end for the vibrating string, so that the terin- R (2)] may be approximat-
ed by constant 2. The structure of the string I&g) cannot be simplified, because the
delay and the loop filter are critical to tone quality. A new timbre control filter is intro-
duced into the model, so that errors due the reductions can be compensated for. The
resulting model is presented in figure 3.6.

3.1.4 Fractional Delay Filters in String Models

The lengthL of the delay line inside the string loop approximately determines the fun-
damental frequencfy of the synthesized tone as

fS
L

f, (3.9)

wherefgis the sample rate of the model, and the lerigtt measured in samples. The
pure digital delay line allows the length only to have an integral value, thus limiting
the possible fundamental frequencies to discrete values. The error in the pitch of the

=

Figure 3.6: A string model for practical acoustic guitar sound synthesis. The model of figure 3.5 has
been somewhat simplified, and a new timbre control filter has been added.

S

22

The Guitar Model

synthesized sound becomes larger as the fundamental frequency increases and is intol-
erable in musical applications (Jaffe and Smith, 1983).

The problem can be avoided and real-valued delay line lengths can be obtained using
afractional delay(FD) filter in each string loop. The two most attractive design meth-
ods for fractional delays in digital waveguide modeling are the classagange in-
terpolationmethod for FIR (finite impulse response) filters and Tieran interpolator

for the IIR (infinite impulse response) filters. The main advantage of these methods is
that they approximate ideal interpolation accurately at frequencies near the fundamen-
tal frequencies of speech and music signals (Valiméki, 1995).

The transfer function of a FIR filter is of the form

N
H@ = 3 h(nz", (3.10)
n=0

whereN is the order of the filter, anti(n) (n=0,1,...N) are the coefficients (and the
impulse response) of the filter. For an FIR structure that implements Lagrangian inter-
polation, the coefficients are

N
_ D-k _
h(n) = |_| m, n=0,1,2,...N, (311)
k=0
k#n
whereD is the desired fractional delay ahds the filter order. The approximation er-
ror of a Lagrange interpolator in respect to an ideal fractional delay is lowest when the
fractional delayD has beenchosensoti@ -1)/2<D<(N+1)/2 .Ifthedelayis

in this optimal range, the filter is algmssivei.e., its magnitude response is less than
or equal to one on the whole frequency range (Valimaki, 1995).

Recursive IIR filters may also be used for fractional delay approximation. A discrete-
time filter, that has exactly flat magnitude response, has the transfer function of the
form

N -1 -1 —(N-1) , -N

1 “(N-1 N’
D(2) 1+a,z +.. +ay_z " Drayz

A(2) = (3.12)

whereN is the filter orderD(2) is the denominator polynomial, amg (k=1,2,...N)
are the real-valued filter coefficients. Filters of this type are callpdss filters

The only fractional delay allpass filter design that has a closed-form solution is the

maximally flat group delay design, also called the Thiran interpolator (Laakab,
1996). The coefficients of the Thiran interpolator of ofdere

23

The Guitar Model

k[ND D-N+n

%= OB sven b2 (3:13)

A close-to-minimum approximation error is obtained when the delay is
N-0.5<sD<N+0.5, (3.14)

a more exact range for the best possible accuracy for several Thiran allpass filters of
different orders is given in (Valimaki, 1995).

For the first-order Thiran allpass filter with transfer function

-1

a;+z
A = ——, (3.15)
l1+a,z
the coefficient, is given by
1-D
. A1
471D (3.16)

The range for the deldy can be chosen &5<D <1.5 (cf. equation. 3.14). Tolonen
(1998) suggests the usage of ramge D<1 for practical application, but letting
D - 0 gives an asymptotically unstable filter, because the pole of the filter approach-
es the unit circle. Usage of such filter is not recommended (Valimaki, 1995). In the im-
plementation of the guitar model for this thesis, real-valued delay line lengths are
obtained using a first-order Thiran interpolator.

3.2 Extended String Model with Dual-Polarization Vibration

To take into account the effects that result from the differences in horizontal and ver-
tical string vibration discussed in section 2.3.2, the string model may be extended with
a second string loop. The excitation signal is divided to the two string loops after a mul-
tiplication bym, andl—m, , wheren, is the input mixing coefficient. Respectively,
the outputs of t%e string models are mixed together using the output mixing coefficient
m, . The parameters of the two models are slightly mistuned to achieve two-stage de-
cay and beating effects. A string model with dual-polarization vibration is depicted in
figure 3.7.

3.2.1 Sympathetic Couplings

Using the extended string model with both horizontal and vertical vibration polariza-

tions, it is also feasible to implement the sympathetic couplings between strings. The
sympathetic vibrations can be implemented simply by feeding the outputs from all the
strings somehow filtered to the inputs of the string, but this approach is potentially un-

24

The Guitar Model

Sympathetic
coupling output

m
o

Sy(2)

. Output
Wavetable 4>D—> Timbre N Ph.lc.k +\
control position

1-m,
YR RT:
Sympathetic

coupling input

Figure 3.7: An extended string model with dual-polarization vibration and sympathetic coupling in-
put and output, after (Karjalainen al, 1998)

stable. The coupling implementation described by Toloeeal. (1998b) and por-
trayed in figure 3.7, is inherently stable. In this approach the excitation for sympathetic
vibrations is taken from only one of the parallel strings modeling the two polarizations.
To avoid feedback, the excitation is added to the input of those parallel strings that do
not have sympathetic coupling output.

The amount of coupling is determined by a ma€iwf coupling coefficients. This ma-
trix can be written as

Cll 012 e ClN

C = C21 022 C2N ' (3_17)

Cn1 Cnz -+ Cn
where N is the number of advanced string models and the matrix elemgnts

(1, =1, 2 ...,N) are the gains of thegh horizontal string output to be sent to fitle
vertical string input. Note that wher j, the gain represents the coupling of the vibra-
tion polarizations of one advanced string model. While it is physically motivated to
have real numbers less than one in absolute value as coefficients, the stability of the
algorithm does not depend on these values.

3.3 Nonlinear Effects in Strings

The string model thus far presented is completely linear, and is realistic only if the
string vibrations are sufficiently small in amplitude, and the string terminations are rig-
id. In plucked string instruments, there are, however, several nonlinear mechanisms,
that remarkably affect tone quality. The propagation speed of a wave travelling the
string is not constant, but varies with time. If either of the string terminations is not
completely rigid, the nonlinear vibration provides also a mechanism for coupling of vi-
brational modes. Highly nonlinear effects result, if the amplitude of string vibration is
strictly limited by, e.g., the frets or the fingerboard, as is the case in “slapping” playing

25

The Guitar Model

techniques on the electric bass. It is fairly rare for the string to rattle against the frets
in classical guitar playing, but flamenco guitars with lower action are more susceptible
to this effect.

3.3.1 Tension Modulation

The most important reason for nonlinearity of a vibrating string is the modulation of
the string length. Any displacement of the string results in an increase to its length, thus
modulating the string tension and the propagation speed of the transversal vibration.
Generally the speed of the longitudinal vibration is much larger than that of the trans-
versal vibration, so that the variation of the tension may be considered to be immedi-
ately spread over the whole string.

The speed of the transversal vibration can be written as

- [T
C—/\/;, (3.18)

whereTy is the dynamic tension of the string containing the nominal tension and its
deviation, ang is the linear mass density of the string. Because the relation between
the fundamental frequency and the average propagation speed is linear, the fundamen-
tal frequency is expected to decrease gradually towards the nominal value as the am-
plitude of the string vibrations decrease over time. This is indeed the case, as may be
seen from the fundamental frequency vs. time -graphs analyzed from recorded acoustic
guitar tones, presented in figure 3.8. The fundamental frequency detection method is
based on autocorrelation function with peak detection and parabolic interpolation, and
has been formerly used, e.g., by Tolonen (1998).

In model-based guitar sound synthesis, the effect of tension modulation may be imple-

mented using a time-varying fractional delay (TVFD) filter, in which the delay param-
eter is signal-dependent (Valimagi al, 1998). The general framework of a signal-

Estimated Fundamental Frequency; String 6, Fret 0

82.4 T T T T T T T T T
82.35 : : B
\
N o823F T~ .
s N
$ 82251 — - Somin .
2 . R .
o TT e~ T T -
L g22f S T R e)
82.15 B
821 ! ! ! ! ! ! ! ! !
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Timels

Figure 3.8: Examples of fundamental frequency evolution of guitar tones. Different dynamic
levels are represented by differing line styles: solid for piano, dashed for forte and dashdot for
fortissimo.

26

The Guitar Model

Input signal X Output signal
— Delay line » FD —»

G (d(n)

Figure 3.9: A general nonlinear delay line model, after
(Véalimaki et al, 1998).

dependent delay line is depicted in figure 3.9. In the model the fun@Giamaps the
delay line signal to a delay paramedén), in whichn is the discrete time index.

Valimaki et al. (1999) have shown that string tension modulation can be simulated by
controlling the TVFD filter with a power-like signal. This approach applied to the sin-

gle delay loop string model is shown in figure 3.10. The power estimation block in the
figure consists of summing the first sample of the delay line with the last one, the sec-
ond sample with the second last one, and so on. These sums are then squared and
summed up to a single estimate of the delay line power. The filgeapproximates
temporal integration that is needed when the time-varying resampling is lumped to a
single point at the end of the delay line (Toloe¢al, 1999).

The greatest computational cost in the model comes from the power estimation. A sim-
ple way to reduce the cost is to approximate the powerdpeaase squared suwhere

only everyMth sample pair is included in the calculation. Remarkable savings can be

achieved without compromising the sound quality by using sparse squared sum with,
e.g.,M = 6 (Valimakiet al, 1999).

3.3.2 Amplitude-Limiting Nonlinearities

An interesting nonlinear model has been described by Rank and Kubin (1997) for dual
delay line simulation of the slapping technique on the electric bass. In this playing
style, the string may be either struck using the knuckle of the thumb or pulled strongly
outwards with right-hand index or middle finger. In both of these cases, the string hits
the frets or the fingerboard during the first several fundamental periods of the tone.
Striking a string with the knuckle is similar to the string-hammer interaction in piano,
and the strongly pulled string may be modeled as having approximately triangular ini-
tial displacement.

IL@ Out

ik
FD Delay line Hz)

v
P .
L s o] Poves

A\

A

Figure 3.10: A single delay loop string model with tension modulation
modeled using a TVFD filter, after (Valimadi al, 1999).

27

The Guitar Model

If y'(nk) + y (n.k) > vy, (k) If y'(nk) + y (n.k) <y, (k)

y'(n.k)

y(n.k)

ViolK) Y (n.k)

Figure 3.11: Amplitude limitation modeling as displacement-conditional reflection. If the string dis-
placement is below the fret levg}.(K), the waves on the delay lines are reflected and the fret distance
is added to both of the delay lines. The reflection reverses the phase. After (Rank and Kubin, 1997)

The contact between the string and the frets results in a nonlinear limitation of the
string vibration amplitude. To facilitate this limitation requires testing the string dis-
placement against the limits set by the limiting fret. This test can be implemented in a
straightforward manner if displacement is selected as the wave variable. The actual
limitation is implemented by reflecting the waves on the two delay lines on the contact
position. The reflection is phase-inversive and the distance of the fretis added into both
of the delay lines, so that the amplitude is limited to the proper value (see figure 3.11).
Note from the way the condition has been formulated, that the limiting is assumed to
lie below the string.

To produce strong notes on an acoustic guitar requires a sufficient amount of string vi-
bration perpendicular to the soundboard. This leads to an apparent increase of the fret-
rattle risk. It is nevertheless possible to produce sounds with both body and volume be-
cause the vibration pattern of the string is anti-symmetrical. In figure 3.12 the two ex-
tremes of an ideal string vibration after release are depicted. The figure suggests that
if the string is pulled away from the soundboard near the bridge, it will easily rattle
against the frets. This technique is callgartok pizzicatand it is sometimes used in
contemporary guitar music. However, if the string is pushed towards the soundboard,
as in normal apoyando and tirando strokes, the risk of fret-rattle is considerably re-
duced.

Figure 3.12: Two extremes of an ideal string vibration.

28

The Guitar Model

3.4 Modeling the Guitar Body

In the beginning of this chapter, the guitar model was described to consist of three
functional substructures: the excitation, the vibration of the strings and the radiation

from the instrument body. It is convenient to preserve this partition when developing

a computational model of an acoustic guitar. In the previous sections, an effective and
detailed model of the string vibrations was presented. To obtain high-quality synthetic
guitar sound, the response of the guitar body must be introduced into the instrument
model.

3.4.1 Commuted Model of Excitation and Body

Direct modeling of the guitar body response by digital filters would require filters of
impractically high order for real-time applications, because of the complexity of the vi-
brating structure (Karjalainen and Smith, 1996). Commuted waveguide synthesis
(CWS) approach can be utilized to include the body response in the guitar model in an
efficient manner (Smith, 1993; Karjalainehal,, 1993). This approach is based on the
theory of linear systems.

In CWS the parts of the instrument are represented as linear #H(2ysSz) and Bg)
for excitation (plucking), string vibration and body radiation, respectively. The filter
system is excited with an impul$én). The output signal is now the convolution of the
impulse responsexn), s(n), andb(n) of the three filter&E(2), Sz), andB(z), and the
unit impulsed(n),

y(n) = &(n)*e(n)*s(n)+b(n) = e(n)*s(n)=b(n), (3.19)
wherex denotes the convolution operator.
In the Laplace- or z-transform domain the equation 3.19 can be expressed as a product

Y(2 = E(2S(2B(2). (3.20)

Because the instrument parts are represented by linear components, the principle of
commutation can be applied, and the equation 3.20 can be written as

Y(2 = B(2E(2S(2. (3.21)
It is advantageous to precompute the impulse respdsfagande(n) into a single im-

pulse responsg,,(n) that is then stored in a wavetable and used to excite the string
model as seen in figure 3.13.

3.4.2 Body Resonators

In commuted synthesis the computational complexity is reduced, but memory require-
ments are increased. The excitation signal contains components from the attack portion

29

The Guitar Model

8(n) — E(2) » S » Bz) —* y(n)
8(n) —» B(2) > E(2) » S —> ()

X)) —» S(2) > y(n)

exc

Figure 3.13: Commuted waveguide synthesis. The instrument
model is represented by three linear filters on the top. In the
middle, the order of the filters is changed. On the bottom, the
body and excitation models are precomputed into a single ex-
citation signakay{n). After (Tolonen, 1998).

of the guitar sound as well as a significant contribution from the few lowest body res-
onances. The attack part is fairly short, and the length of the needed excitation signal
is determined by the most prominent body resonances (Tolonen, 1998). If these reso-
nances are implemented separately, the excitation signal can be truncated, and the in-
strument sound can be adjusted by altering the parameters of the body resonators.

Separate body resonators can be implemented either in cascade or in parallel with the
string models. In cascade implementation the string model is fed with an excitation sig-
nalXeydN), Where the body resonances are absent. After the string model, the resulting
signal is fed to the body resonator filters. In parallel implementation, the body resona-
tors are fed with separate excitation signglgn) andxg4n), and the output of the fil-

ters is summed to the output of the string model. A hybrid of the two alternatives can
be implemented by cascading the two resonators, while still keeping them parallel to
the string model. Along the lines of (Tolonen, 1998), where comparison of the alterna-
tives as well as procedures for computation of the needed excitation signals are de-
scribed, parallel body resonators were chosen for this work.

In this work second-order IIR filters with transfer function

-1 -2
bg+ bz +byz
2 1

H(z) = (3.22)

-1 _
l+a,z " +ayz

are used for each of the separately implemented body resonators. For a second-order
peak filter suitable for parallel resonator implementation, the coefficients can be given
as (Orfanidis, 1996)

30

The Guitar Model

0 by= (1-B)

E b,=0

Ob,= (B-1) , (3.23)

E a;= —2pBcos(wy)

0 a,= (2B-1)
where

wy = 2mf (3.24)
and

B = 1 (3.25)

1+tan(mtAf,))

The parameters,, anfif are the center frequency and the 3dB bandwidth of the
resonator, respectively. Both are given on normalized frequency scale, 0.5 correspond-
ing to half of the sampling rate, or the Nyquist frequency. An example of a resonance
filter response with center frequency corresponding to 203Hz and bandwidth corre-
sponding to 10Hz with a sampling rate of 2205Hz, can be seen in figure 3.14.

3.5 Model Excitation

For expressive guitar synthesis, the implementation of different properties of the
plucking process is crucial. Different plucking techniques, the variation of pluck posi-
tion along the string as well as the more subtle changes in plucking process must some-
how be modeled, in order to achieve natural-sounding guitar synthesis. The following
subsections discuss the implementation of these properties in synthesis.

Resonance filter response

I © ©
IS o 0 =

Magnitude response

o
[N

| | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized frequency

Figure 3.14:Example of a resonance filter response.

31

The Guitar Model

3.5.1 Pluck Position

As was seen in section 3.1.3, the effect of the plucking position introduced in section
2.2 can be realized in the digital domain using a comb filter structure illustrated in fig-
ure 3.15. In the comb filter the delazg} corresponds to the actual distance from the
plucking position to the guitar bridge, and the coefficienwherec = 0 , is proportion-

al to the losses in the string from the plucking position to the bridge.

The delay of the comb filter corresponds to the time it takes for the excitation to travel
the left-side route around frofa2 to E1 in figure 3.4. In practice, however, the nor-
mally shorter right-side route from poiBL to E2, may be used.

If the total delay along the string loop lissamples and the delay corresponding to the
route from pointel to E2 is| samples, then the delay of the left-side route fig2to

ElisL —| samples. Now the transfer function of the comb filter for the right-side route
IS

He(2) = %(l—cz_l), (3.26)
and the corresponding filter for the left-side route is
_1 ~(L-1)
H (2) = é[l—cz]. (3.27)

The squared magnitude response of the fifigcan be written as

(@) = Ha(e) HR(e®) = %(1—ZCcoqwl)+cz), (3.28)

similarly

@ %(1—20008(@—(0') +¢%). (3.29)

Setting the two magnitude responses equal yields

% 1/2 -:@—’

Figure 3.15: The comb filter structure used to imple-
ment the effect of plucking position

32

The Guitar Model

cos(wL —wl) = cos(wl)
O w(L-I) = +wl+m2m, m=012...
m2Tt m2T1t '

O w:_L—ZI O oo:—L

(3.30)

The latter of the resulting relations gives exactly the radian frequencies of the funda-
mental and the harmonics of the string of lengthrhus, on the most important fre-
guencies the filters corresponding to the right-side route and the left-side route have
equal magnitude responses.

3.5.2 Plucking Style

In commuted guitar synthesis, the properties of the plucking process are contained in
the excitation signal, as described in section 3.4.1. The excitation signal must thus be
different for different types of excitation. In addition, the excitation signal depends on
string and fret position. Also the excitation signal for the parallel body resonators are
calculated from samples of natural guitar sound, and may be different for each sound.
The direct approach of using the calculated excitation signals leaves us with a great
number of quite similar signals, and requires a great amount of memory capacity. The
number of signals must thus be reduced somehow.

The most straightforward way of cutting down the number of necessary signals is to
use the same excitation signals for a small group of tonally similar sounds. To be able
to still produce high-quality synthesis, the similarity of the signals must be verified ei-
ther by listening or by some objective means. This task has not been addressed in the
literature, and further research is needed.

The differences in the string excitation signals may be partly compensated, and addi-
tional expressive control achieved by using a timbre control filter for the excitation sig-
nal (see figure 3.6). It can also be used to provide slight random variations to the sound,
to give a less monotone synthesis result.

The pizzicato effect described in section 2.3.5 could be implemented by adjusting both
the properties of the string model as well as the excitation signal. The frequency de-
pendent damping caused by the right-hand palm may be realized by increasing the
overall attenuation of the string model loop filters and adjusting the filter pole so that
higher frequencies are suppressed. The timbre control filter can be used to adjust the
properties of the excitation signal to get the desired effect.

3.6 Multirate Model Structures

The high-frequency components of guitar sound are quickly damped after the attack
part of the sound. This suggests that multirate implementations, where the decay part
of the sound is synthesized at a lower sampling rate than the attack part, can yield ef-
ficient synthesis models (Smith, 1993). If the two lowest body resonances are imple-
mented separately as described in section 3.4.2, the resonators can also be operated at
a much lower sampling rate than the string models (Valiméaki and Tolonen, 1997,

33

The Guitar Model

1998). The following discussion assumes basic knowledge on sampling rate conver-
sion. For further information see, e.g., Proakis and Manolakis (1992).

In the model suggested by Tolonen (1998), the shared body resonators are implement-
ed using a sampling rate of 2205Hz, the sum of the resonators is then upsampled to
11025Hz and added to the sum of the output signals of the string models, which oper-

ate at 11025Hz. Then this sum is upsampled by the factor of 2 and the attack parts of
the tones are produced at rate 22050Hz, and added to the output signal.

The purpose of the lower sampling rates is to yield computational savings over a sin-
gle-rate model. Thus the structures of the sample rate converters must be sufficiently
effective not to ruin the possibility of improved performance. Given the special condi-
tions of the guitar model, it is possible to use simpler approaches than in the general
case.

Referring to the figure 3.14, it can be noted that even with a sampling rate of 2205Hz
the body resonator peaks are close to zero frequency and hence it suffices to suppress
aliased signal components near the multiples of the original sampling frequency. This
can be achieved by using a filter with zeros on angular frequencies

o= n=1,..M1, (3.31)

whereM is the upsampling factor. The impulse response of this kind of filter consists
of M taps of values M, and they are calledecursive running sunRRS) filters
(Rabiner and Gold, 1975).

For the upsampling of the string model output signals by the factor of 2, a more com-
plex filter structure is needed. For this, a sparse linear-phase FIR filter may be selected.
For a Nth order halfband filter onl\N+1 filter coefficients need to be stored in com-
puter memory, since every other coefficient equals zero and the filter is symmetric
(Tolonen, 1998). As figure 3.16 shows, aliased components may be suppressed by
more than 50dB using a filter of order 60 with 16 distinct coefficient stored in comput-
er memory.

Response of a 60th order sparse FIR filter

Magnitude response (dB)

G s i | 4 AN ANAARY

I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized frequency

Figure 3.16:Magnitude response of a sparse halfband FIR filter of order 60.

34

4 Guitar Model
Implementation

In this chapter, the real-time implementation of the guitar model is described. The im-
plementation uses object oriented programming paradigm (Rumbetuglh) 1991)

and C++ programming language (Lippman, 1991). The program development has
been done on Silicon Graphics IRIX platform, but general portability has been an im-
portant design issue.

The implemented components have been divided to two libraries; general purpose dig-
ital signal processing components are included in the C++ class library called LibRdsp
while the LibRdim library contains the higher-level instrument model implementa-
tions. The signal processing library provides many components not presented in this
thesis, and also tools for multi-channel signal processing, but this chapter concentrates
solely on the one-channel processing units with relevance to the implemented guitar
synthesizer.

The following sections present the abstract base classes (section 4.1), the implemented
string models (4.2) and the guitar body model implementations (4.3) of the signal pro-
cessing library. The instrument model base class and the class interface are described
in section 4.4 and the complete guitar models in section 4.5. Section 4.6 discusses the
issues relating to signal processing in workstation environment.

4.1 DSP-Library Classes

All the signal processing units in the LibRdsp library inherit the properties of a few ab-
stract base classes. These classes include signal sources, drains, processors and filters.
The inheritance of the base classes and the methods they provide are depicted in figure
4.1 using OMT notation (Rumbaugtt al., 1991), and described in the following sub-
sections.

4.1.1 Signal Source
CSignalSource is an abstract base class for all units that produce an output signal
either from scratch or as a result of possibly quite complex filtering operations. All

classes inherited frol@SignalSource must implement th&et method, which re-
turns a sample from the source.

4.1.2 Signal Drain

The natural counterpart fa€SignalSource class is theCSignalDrain class.
This abstract class is the base class for all units that need to have an input signal for

35

Guitar Model Implementation

CSignalDrain {abstract} CSignalSource {abstract}

+Put(xInput: TSample) +Get(): TSample

A : A

CSignalProcessor {abstract}

CSignalFilter {abstract}

+NextSample(xInput: TSample): TSample
+operator()(xInput: TSample): TSample

Figure 4.1: Base classes of the LibRdsp library

some purpose. Currently, there are no implementations of “pure” signal drains in the
library, i.e. there are no classes derived only from @&gnalDrain class. Such
drains could, however, include platform audio outputs and writing of sound files of dif-
ferent formats. There are plans to include these functionalities directly to the DSP li-
brary.

The operational part of all classes inherited fré®ignalDrain is thePut method,
which feeds the signal drain with one sample or sample frame.

4.1.3 Signal Processor

The CSignalProcessor abstract base class inherits its properties from both
CSignalSource and CsSignalDrain , i.e. classes inherited from
CSignalProcessor can produce as well as consume a signal. Because the input
and output signals need not have same sample rates, also sample rate converters and
asynchronous signal processing blocks can be derived (but have not yet been derived)
from this base class.

4.1.4 Signal Filter

CSignalFilter is a base class for all “normal” one-channel signal processing units
that take one input sample for every output sample. This class implements the
NextSample method so that it first calls theut method and then théet method

of the derived class. The derived class must implerfent andGet methods so that
when called in the aforementioned order, they produce the desired filtering effect.
CSignalFilter also implements the parenthesis operator as an abbreviation for
writing NextSample()

The use oNextSample method instead of theut andGet methods, may, in some

cases, lead to reduced performance. This kind of situation may occur, if the actual non-
abstract class of the signal processing element is known to the compiler, i.e. no base

36

Guitar Model Implementation

class pointers or function arguments are used. Then the use of base class method may
result in one additional layer of pointer operations. In such cases it is advisable to use
thePut andGet methods of the derived class instead.

4.1.5 Classical Filter Structures

For classical DSP filter structures that can conveniently be described as numerator and
denominator coefficients; andg; of a filter transfer function of form

-1 -M
bg+byz " +...+byz

H(2) = -

— — (4.1)
l+az " +... +ayz

LibRdsp has theCFilter base class (see figure 4. ZFilter is derived from
CSignalFilter class, i.e. it has a method calldxtSample , which feeds the

next input sample to the filter and returns the corresponding output sample from the
filter.

CFilter class provides &et method, which simply returns the value of a protected
variable calledv_xCurrentSample , i.e. filter implementations only need to pro-
vide aPut method that leaves the filtering result in this variable. Filters also have
methods for setting the filter coefficients, for resetting the filter memory, and for que-
rying the order of the filter.

Filters derived fronCFilter all have two different overloadddpdate methods for
setting the filter coefficients. The one with prototype int*
CFilter::Update(CFilterCoeffs &xrCoeffs) " creates an internal copy
of the filter coefficients inxrCoeffs so that if the state okrCoeffs s later
changed, it has no effect on the actual parameters used bgFiiter instance. On

CSignalFilter {abstract}

CFilter {abstract}

#M_nOrder: TCount = (nOrder)
#M_xpCoeffs: CFilterCoeffs*
#M_xCurrentSample: TSample
#M_bDeleteFlag: bool

+CFilter(nOrder: TCount)
+GetOrder(): TCount
+Update(xrCoeffs: CFilterCoeffs&): int
+Update(xpCoeffs: CFitlerCoeffs*): int
+GetCoeffs(): CFilterCoeffs*
+ResetMemory()

+Put(xInput: TSample)

+Get(): TSample

Figure 4.2: CFilter base class

37

Guitar Model Implementation

the other handinht CFilter::Update(CFilterCoeffs *xpCoeffs) ”

causes the filter to use the coefficients pointed toxpgoeffs pointer. Using this
method it is quite easy to create a group of filters all using the same set of coefficients.
This way, all the changes in the coefficients can be done only once. Care must however
be taken when deleting the filter coefficients; the user must be sure that no filter is us-
ing the coefficients which are to be deleted.

Filter coefficients can also be accessed vB#tCoeffs method that returns a point-

er to the filters internal coefficients. If the coefficient instance that a filter is using was
originally allocated by the filter during its initialization, the filter coefficients will also
be deleted by the filter class destructor.

For filter coefficients LibRdsp provides theFilterCoeffs class, which has stor-

age space fonOrder+1 numerator coefficients and foiOrder denominator coef-
ficients, wherenOrder s this the order of the filter coefficient structunagx{n,nt,

see equation 4.1) The order is also a constructor argumer@RdterCoeffs

class. CFilterCoeffs class has the methods GetNumerator |,
GetDenominator , SetNumerator and SetDenominator for accessing the
coefficient values. Both the numerator and the denominator coefficients are indexed
from O to filter order, but querying the denominator coefficient with index 0 always re-
turns 1.0 and setting the same coefficient has no effect whatsoever.

4.1.6 Ring Buffer

CRingBuffer class implements a ring buffer to be used as an integer-length delay
line. The class is also used as a memory block iNitieorder filters of the signal pro-
cessing library. The implementation is tested for fast performance and it does not check
any of the parameter or signal values. The class has access methods for the ring buffer
length, and for signal values along the buffer (see figure 4.3). The constructor argu-
ment is the desired maximum length of the buffer.

For efficient operation, the pointer update and indexing operations of the ring buffer
are implemented using fast bit-manipulation operations. This way, no time-consuming
integer divisions are needed. The indexing is based on a memory buffer with length of
power of two. After an index has been increased or decreased, a bitwise ‘and’ operation
is performed with the index and a mask integer. The mask integer has theVatue ,
where2" is the length of the memory buffer. Thus, all index values are restored to the
proper range. For arbitrary integer ring buffer lengths, two indices are used, one for the
head and one for the tail of the ring buffer.

4.2 String Model Implementations

For string models presented in chapter 3, LibRdsp has a few different class implemen-
tations. The simpler ones of these models are described in section 4.2.2 and the more
advanced, dual-polarization model in section 4.2.3. All the implementations use com-
mon implementations of the necessary filters. These filter classes are described first.

38

Guitar Model Implementation

CSignalFilter {abstract}

CRingBuffer
-M_xpLine: TSample *
-M_xCurrentSample: TSample
-M_nLength: TCount
-M_nHead: TCount
-M_nTail: TCount
-M_nSize: TCount
-M_nMask: TCount

+CRingBuffer(nMaxLength: TCount)
+SetLength(nLength: TCount)
+GetLength(): TCount

+GetMaxLength(): TCount
+GetNewest(nNth: TCount): TSample
+GetOldest(nNth: TCount): TSample
+SetNewest(nNth: TCount, xValue: TSample)
+SetOldest(nNth: TCount, xValue: TSample)
+Put(xInput: TSample)

+Get(): TSample

+Reset()

Figure 4.3: Ring buffer class implementa-
tion.

4.2.1 Filter Classes

The classCFilterAPL1 is a one-channel first-order allpole filter implementation,
i.e., it implements the difference equation

y(n) = bpx(n)—a;y(n-1),. (4.2)

whereb, = g(a, + 1) (cf. Equation 3.6). In addition to the tWipdate methods de-
scribed in section 4.1.5, the allpole filter has a similar method with two double-preci-
sion floating-point arguments, anda,. This filter is a popular choice to be used as a
loop filter in the SDL string models (Valiméalat al, 1996; Tolonen, 1998), and can
also be used as an excitation timbre control filter, as seen in figure 3.6.

CCombeFilter class implements the pluck position filter of section 3.5.1. The class
is inherited fromCSignalFilter base class and has methods for setting and que-
rying the parameters of the model: the delay line lerigéimd the coefficient (see fig-

ure 3.15).

To be able to adjust the length of the string model delay lines, fractional delay filters
must be used, as discussed in section 3.1.4. The LibRdsp library implements both the
Lagrangian and the Thiran interpolator. Currently, the Thiran interpolator is used in the
string models, because of the exactly flat magnitude responseCFherAP1

class implements the first-order allpass filter. In addition to the two nolspdite

39

Guitar Model Implementation

methods, the class avpdateDelay method, which takes the desired fractional de-
lay as an argument, and updates the filter coefficient accordingly.

4.2.2 Single Delay Loop String Models

The clas<CSimpleString implements a simple single delay loop string model. The
structure of the string model is depicted in figure 4.4. The model consists of the delay
line zt (CCombFilter), the fractional delay filteF(z) (CFilterAP1), and the

loop filter H|(2) (CFilterAPL1). The class has separate methods for accessing each
of the model’s parameters.

The classCSDLString augments the basic string model by adding a first-order all-
pole filter in front of the actual string loop. With this additional filter it is possible to
control the tone quality of the string model to some extent. Although a simple model,
this class can yield relatively high-quality synthesis already with some expressional ca-
pabilities.

4.2.3 Dual-Polarization Model

The clas<CTwoPolarString implements the string model with two vibration po-
larizations, as described in section 3.2 (see also figure 3.7). Figure 4.5 presents the im-
plementational structure of the dual-polarization string model class. The timbre control
unit of the model is a first order allpole filter of tygeFilterAPL1 , the pluck posi-

tion filtering is done with &CCombFilter instance, and the two vibration polariza-
tions are implemented &SimpleString string models.

The greatest desired length of the string model in samples must be given as a construc-
tor argument for memory allocation. All other parameters of the string model are ini-
tialized to default values during instantiation, and can be changed using the
SetParam method. Parameter values may be queried with the corresponding
GetParam method. A shared method for all parameter updates was chosen because
of the number of parameters would make the number of methods impractically large,

if the updates were handled by separate methods. The parameter update and query
methods use an enumerated Ilist of possible arguments (type
ETwoPolarStringParam).

For sympathetic coupling implementation, t8&woPolarString class has two
methodsCouplingPut andCouplingGet for feeding and getting, respectively,
one sample from/to the string model.

L F(z)

Figure 4.4: CSimpleString block diagram.

A

L e H(z)

40

Guitar Model Implementation

CSignalFilter {abstract}

CTwoPolarString
-M_xHString: CSimpleString 2
-M_xVString: CSimpleString
-M_xExcitFilter: CFilterAPL1
-M_xPluckComb: CCombFilter

+CTwoPolarString(nMaxLength: TCount)

+GetMaxLength(): TCount

+SetParam(xParameter: ETwoPolarStringParam, xValue: TValue)
+GetParam(xParameter: ETwoPolarStringParam): TValue
+Put(xInput: TSample)

+Get(): TSample

+CouplingPut(xInput: TSample)

+CouplingGet(): TSample CCombFilter
+Reset()

CSimpleString

CFilterAPL1

Figure 4.5: The dual-polarization string model class composition.

4.3 Body Model Implementations

The most straightforward way to incorporate the body response in the guitar model
sound is the commuted synthesis method presented in section 3.4.1. This approach re-
quires only implementation of wavetables in addition to the actual string models. The
more versatile body model implementation with shared resonators is a little more de-
manding.

4.3.1 Excitation Wavetables

Wavetable is a memory structure that stores a prerecorded or -computed signal seg-
ment for retrieval at a later time. In DSP applications, the signal may be fetched one
sample at a time, so that the wavetable signal source class must store a pointer to the
current sample of the segment and return the next sample as desired. For some appli-
cations, it would be good to have multiple such pointers, to be able to get many samples
at a time from different locations of the wavetable.

The classCVectorSource is a wavetable signal source class, derived from the
CSignalSource abstract base class. It has methods for loading the signal from file,
setting and getting individual sample values, getting the signal length, and getting the
next sample from the memory buffer. For additional pointers to the wavetable, user can
use theCVectorSourcelter class that takes a pre-initializ&\ectorSource

instance as a constructor argument, and provides a new output for the same signal.

41

Guitar Model Implementation

4.3.2 Shared Resonators

Shared body resonators from section 3.4.2 can be implemented as standard second-or-
der IIR filters. For second-order, direct form | filters (Jackson, 1989), the LibRdsp li-
brary has the clasSFilterDFI2 . Note that a special implementation for the body
resonator type filter would be advantageous because one of the five filter coefficients
in equation 3.23 is zero. Taking this into account, however, will not lessen the compu-
tational burden significantly, especially, when the resonators function at a low sam-
pling rate compared to the complex string models.

For calculation of the resonator filter coefficients, the library has an auxiliary function
SecondOrderPeakFilter , Which takes the center frequency and the bandwidth

of the desired resonance on a normalized frequency scale as input arguments, and cal-
culates the filter coefficients into a preallocated or into a @&wilterCoeffs in-

stance.

4.4 Instrument Model Base Class

All instrument models in the implemented instrument library LibRdim are derived
from an abstract base claG$nstrModel (figure 4.6) that in turn inherits the prop-

erties of theCSignalSource class of section 4.1.1. THelnstrModel interface
contains the methods for controlling the parameters of the instrument models, for set-
ting and querying the sample rate, and for getting the next sound sample from the in-
strument model. The parameters of the model are controlled bRrélaet method,

which takes one ASCII control message as an argument, does the necessary operations
on the parameters, and returns an acknowledgement message.

4.5 The Aggregate Guitar Model

Guitar models that inherit the properties of tbstrModel base class combine all
the elements described in earlier sections of this chapter. Excitation signals from

CSignalSource {abstract}

ClnstrModel {abstract}
#M_nSampleRate: TCount

+ClnstrModel(nSampleRate: TCount)
+React(xMessage: CStr): CStr
+SetRate(nNewRate: TCount)
+GetRate(): TCount

+Get(): TSample

+Reset()

Figure 4.6: Instrument model abstract base
class.

42

Guitar Model Implementation

wavetables are filtered according to the plucking position and the desired timbre.
String models are fed with the equalized signal, and body model outputs are added to
the string outputs to give the end result.

45.1 Model Structure

The functional structure of the implemented guitar model is depicted in figure 4.7. The
model hadN dual polarization string models, and two lowest body resonances are im-
plemented in parallel to the strings.

The strings are of the typ€TwoPolarString and they run at a sampling rate of
22050Hz, which is also the output sampling rate of the whole model. Each string may
have multiple different excitation signals of ty@&ignalVector , e.g., one for each

fret along the string. The signals needed for sympathetic coupling between the strings
are taken from the special output, multiplied by the ma@iaf coupling coefficients,

and fed back to the string models’ coupling signal input.

22050 Hz
. Coupling <«—;
. matrix .
[C j
Excitation signals .
4| forstring 1 String 1
Excitation signals .
4| for string 2 String 2
Excitation signals > .
u for stringN StringN
: RRS
2205Hz | | filter 2
Excitation signals | Body | RRS
] for resonator 1 resonator 1 filter 1
g Upsampler
Excitation signals Body (M =10)
{| for resonator 2 resonator 2

Figure 4.7: Block diagram of the implemented guitar model with sympathetic coupling and shared
body resonators running at a lower sampling rate than the strings.

43

Guitar Model Implementation

The two shared body resonators are of tgjfalterDFI2 | as described in section
4.3.2. The resonators operate at a sampling rate of 2205Hz, i.e., resonator output sig-
nals must be upsampled by factgr = 10 before adding to the string output signal.
The conversion is done with two cascaded recursive running sum filters. It is noted that
the first of the filters can be readily implemented by observing the output values of the
resonators ten times before calculating the next output values. The second filter can be
efficiently implemented using the structure depicted in figure 4.8. This recursive struc-
ture for the finite impulse response filter is based on the identity

1-7M

—. (4.3)
M(1-z")

M
_1 K _
k=0

45.2 Guitar Model Classes

The guitar model can easily be implemented so that it permits having any reasonable
number of strings. This kind of a structure would allow easy adaptation to the synthesis
of instruments with different number of strings. However, the inclusion of the sympa-
thetic vibrations makes such a general model quite unfeasible, because the need for two
nested for-loops for the matrix multiplication possibly makes the implementation very
inefficient. If the number of strings in the model is constant, the for-loops may be “un-
rolled” to give better performance on modern pipelined processors.

In LibRdim library the six-string guitar model with dual-polarization strings and sep-
arate body resonators is calleddvGuitar6Str . The model is initialized by giving

the desired sampling frequency and the lowest possible fundamental frequencies of the
strings. Other methods are as described for the abstract instrument model class in sec-
tion 4.4. TheReact method controls the parameters of the model using a new control
protocol that is described for the guitar model in section 5.5.

4.6 Signal Processing on Workstation Platform

As the computational capacity has grown, interactive sound synthesis and processing
applications on PC and workstation platforms have gained increasing interest. General
purpose microprocessors have been developed to take into account the requirements
posed by real-time audio and multimedia. Operating systems have also been developed

Xn) 1M y(n)
>

Figure 4.8: Recursive running sum filter struc-
ture.

44

Guitar Model Implementation

along these lines, however, few vendors specify and much less guarantee the temporal,
real-time performance of their operating system.

4.6.1 Signal Processors vs. Microprocessors

RISC (Reduced Instruction Set Computer) and CISC (Complex Instruction Set Com-

puter) microprocessors and specialized signal processors have very different perfor-
mance profiles. As general purpose microprocessors need to be effective in many
different computational tasks, their structure is more compromised than the structure
of the specialized signal processors.

One thing that has traditionally differenced the signal processors from other micropro-
cessor families is the existence of the Multiply-Accumulate (MAC) instruction for ef-
ficient implementation of the inner product calculation often needed in signal
processing applications. Signal processors typically have also multiple memory bus-
ses, so that the operands of the calculations may be fetched in a parallel fashion, and
the performance of the loop constructions is very fast.

The structure and instruction set of modern microprocessors have been influenced by
the paradigms used in DSPs. Processors often implement the MAC instruction and it
has been estimated that a RISC processor with the MAC instruction is capable of per-
formance competition with signal processors (Weiss, 1996).

4.6.2 Operating Systems and Sound Subsystems

As the processors currently have enough capacity to do reactive sound synthesis and
processing, the next critical component is the operating system. Real-time multimedia
requires extensions or redesign of the operating systems. In current multiprocessing
operating systems, the system scheduler gives time slices of processor time to the pro-
cesses one at a time. The scheduler seldom gives any guarantee of the temporal perfor-
mance of the system, and give only limited means of controlling the priority of the
processes to the user.

In reactive audio applications the most common problematisncy the time delay

from the user input to the corresponding sound output. In audio applications the output
sound is usually calculated in blocks, i.e. a set of samples is calculated into a buffer and
this buffer is then sent to the operating system’s audio subsystem as a whole. Parameter
values are often not allowed to change during one block. One block may be, e.g., 1ms
long. The need for this approach arises because the system procedure that is used to
send audio to the output usually has some per block overhead, which would cause
problems if the samples were sent one at a time.

In multiprocessing environments, the operating system has its own FIFO (First In, First
Out) sound buffer. This buffer is emptied from the other end by the audio subsystem
with the audio sample rate, and filled by the application program block by block. The
application program must be able to monitor the state of the output buffer so that the
buffer is never completely emptied before new samples are written; if this condition is
not satisfied, clicks or breaks occur. The buffer must therefore be filled so that if the
system scheduler hands the control to another process, the control will return before

45

Guitar Model Implementation

the audio queue is empty. Furthermore, the buffer must not be too long because the
maximum latency caused by the buffering depends linearly on the maximum buffer
length. The total latency of the implemented guitar model is around 20ms on a SGI O2
workstation, when not using real-time priorities that are possible only with superuser
privileges.

The measurement of the total latency is a difficult task. The time measurement and log-
ging systems provided by the operating systems themselves usually interfere with the
system to be analyzed. Freetal. (1997) have described an event and audio logging
technique that uses an affordable multichannel digital audio recorder. In the system,
special hardware solutions are used to convert network and MIDI bus events into audio
signals recorded simultaneously with the actual audio output of the audio synthesis or
processing system. Latencies can then be analyzed by comparing the audio tracks.

46

5 Synthesis Model Control

Physical modeling based sound synthesis methods have widely been demonstrated us-
ing separate notes rather than musical passages as examples. This is understandable,
because musical, dynamic control of the synthesis methods is not easily achieved. Dy-
namic control poses various problems on all levels of sound synthesis. Both DSP-level
methods and higher level interfaces are affected. If the dynamic control is also to be
real-time, the efficiency issues will start to play a major role.

DSP-level problems are most often related to the fact that the parameters of the model
change constantly. Therefore special care must be taken to avoid unwanted transients
and discontinuities in the synthesized sound. Different parameter interpolation meth-
ods need to be applied for different parameters.

Higher-level control problems are related mainly to the musical control issues. To be
useful to a musician, the synthesis method must have parameters that are musically
meaningful. Those parameters must also be easily and versatilely controllable by some
control method, e.g., using a keyboard. The lack of control capabilities of the standard
controllers has turned some scientists to alternative controllers (see Cook, 1992). Jano-
syet al.(1994) have used standard controllers and presented new “intelligent” control
interfaces between the MIDI keyboard and a plucked string synthesis engine to make
playing the guitar on the keyboard feasible. Laursbal.(1999) have described a no-
tation system that can be used to add expressional information to standard music nota-
tion and to control sound synthesis using this information.

In the following subsections, the issues relating to dynamic, real-time synthesis param-
eters and currently available synthesis model control protocols are presented. In sec-
tion 5.5 a new control protocol and its application to the implemented guitar model is
described.

5.1 DSP Parameters of the Guitar Model

The guitar model implementation introduced in chapter 4 contains an extensive hum-
ber of signal processing parameters that together affect the resulting sound output. In
the following subsections the excitation signal and adjustable parameters, and their in-
fluence on the model output are discussed. For information about controlling the pa-
rameter values, see section 5.5.

5.1.1 Excitation Signals

The string model and body resonator excitation signals determine the basic sound char-
acteristics of the guitar model. By changing the signals it is possible to synthesize dif-

47

Synthesis Model Control

ferent playing techniques and different instruments altogether, e.g., the model can be
applied to mandolin synthesis if appropriate excitation signals are available.

Excitation signal computation and equalization scheme based on sinusoidal modeling
has been described by Tolonen (1998), and is used as such for the signals used in this
work. Excitation signals are loaded from disk at initialization time and there can be dif-
ferent signals for every fret on each string. Also different playing styles may have dif-
fering excitations.

5.1.2 String Parameters

The dual-polarization string model presented in section 3.2 has quite a large number of
adjustable parameters. The model consists of two simple string models for vibration
polarization modeling, two additional filters, and a few extra multipliers. The total
number of string model parameters excluding the coupling coefficients is twelve.

The parameters for the vibration polarizations include the real-valued delay line length
and the coefficients of the loop filter. The delay line length determines the fundamental
frequency as discussed in section 3.1.4. The loop filter is of first-order allpole type, and
thus has two coefficients, which make it possible to control the zero-frequency gain
and the high-frequency attenuation of the filter.

Varying the vibration polarization parameters affects the tonal quality of the decay part
of a guitar tone. The audible duration of a guitar tone after plucking is determined by
the loop filter gain, and the string material’s frequency-dependent damping is con-
trolled by the loop filter frequency response. Currently, the only way to attenuate a note
is to change the loop filter properties; another possible method for damping the string
might be to utilize the amplitude-limiting nonlinearity model described in section
3.3.2. Naturally, the parameters of the two polarizations can be set independently of
each other, e.g., two-stage attenuation can be implemented by setting the gains of the
two loop filters to different values.

The string model excitation can be filtered according to desired tone quality with the
timbre control filter and the pluck position filter. Filtering the excitation affects also
the attack part of the instrument sound, unlike to the vibration polarization loop filter.
Similarly to the loop filter, the timbre control filter is a first-order allpole filter with

two coefficients for sound gain and brightness. The usage of the timbre control filter
for expressive synthesis was also briefly described in section 3.5.2. The pluck position
filter (see section 3.5.1) also has two parameters: the delay line length and the attenu-
ation coefficient. The delay line length is directly proportional to the distance from the
bridge to the plucking position and the attenuation coefficiggtusuallyl — € , where

€ is a small positive number.

The dual-polarization string model also contains two mixing parameters that can be
used to control the contribution of the two vibration polarizations to the sound. The in-
put mixing coefficient corresponds to the plucking angle discussed in section 2.2.1 in
the context of apoyando and tirando strokes. If the input mixing coefficient is near 0.0,
the vertical vibration, i.e., the vibration perpendicular to the soundboard, will be dom-
inant; correspondingly, for values near 1.0 the horizontal polarization will receive most

48

Synthesis Model Control

of the vibration energy. Notice, that setting the value to 1.0 actually changes the instru-
ment configuration so that the vertical polarization becomes a resonance string with no
input other than via the sympathetic coupling input (Tolonen, 1998).

The output mixing coefficient determines the amount of energy transfer from each of

the vibration polarization to the output sound. This makes it possible to model the di-

rectional impedance of a guitar bridge. The normal way is to use a value slightly less

than 0.5, this makes the model natural in a sense that the vertical polarization drives
the guitar bridge more efficiently than the horizontal polarization.

Guitar string sound is also affected by the strength of the sympathetic coupling phe-
nomenon. Because no usable methods are known for approximating the coupling co-
efficients between the strings, manual tweaking of these parameters is needed. It is
physically motivated to have coupling coefficients considerably less than 1. The cou-
pling coefficient matrix used in the current implementation is

0.020 0.010 0.010 0.005 0.005 0.005
0.010 0.020 0.010 0.010 0.005 0.005
c = |0.010 0.010 0.020 0.010 0.010 0.005 (5.1)
0.005 0.010 0.010 0.020 0.010 0.010
0.005 0.005 0.010 0.010 0.020 0.010

10.005 0.005 0.005 0.010 0.010 0.020

5.1.3 Body Resonator Parameters

The two shared body resonators are implemented as second-order filters with five filter
coefficients (see equation 3.22). Because the filter coefficients as such are not mean-
ingful parameters for the body resonators, they are never adjusted directly. The adjust-
able parameters of the resonators are the center frequency and the bandwidth, and the
filter coefficients are given by the formulae in eq. 3.23.

If needed, the center frequendy,, and the bandwislfh may be calculated from
the filter coefficientdy anda; as

_ 1 0 % 0
fro = ZTarccosEmD (5.2)
and
b
Af, = %[arctanEIL Ob E (5.3)
—Mo

49

Synthesis Model Control

5.2 Dynamic Parameters

If the parameters of the synthesis model are dynamically changed, the output signal of
the model may suffer two kinds of consequences (Valimaki, 1995):

1. There may be @mansientin the output signal. Transients occur if the filter
state variables contain intermediate results that are related to the former filter
coefficients, or if the state variables are cleared. The transient problem does
not exist in correctly implemented nonrecursive filters, but dynamic recur-
sive implementations have to take transients into account.

2. Discontinuitiesoccur in both recursive and nonrecursive signal processing
structures because, after the parameter update, the output signal is a result of
a different filtering operation. Discontinuities may also cause audible arte-
facts to the synthesized sound.

Both the transients and the discontinuities can be reduced using various interpolation
techniques. Specific techniques to suppress the transients of the recursive filter struc-
tures are also available.

5.2.1 Interpolation

Both the transient and the discontinuity of a filter output depend on the input signal and
the magnitude of the coefficient change. It is possible to decrease the seriousness of
these unwanted signal components by gradually interpolating the filter coefficients to
the target values over a reasonably long transition time. This is because a small change
in the coefficient values produces both a smaller transient and discontinuity than a
large change (Zetterberg and Zhang, 1988).

The most straightforward type of parameter interpolation between two values is linear
interpolation. In audio applications, also exponential interpolation, that is linear on
logarithmic scale, may be desired. Techniques that take into account more than one
previous value of the parameter can be used. For such techniques see a textbook in nu-
merical analysis, such as (Burden and Faires, 1993).

Straightforward interpolation techniques may cause problems if used carelessly. If re-
cursive filter structures are used, interpolating the parameters independently may lead
to unstable filters, even if the coefficient values at the beginning and at the end result
in a stable filter. In addition, interpolating the filter coefficients may not represent well
the desired modifications of the filter responses. These problems can be tackled by in-
terpolating the design parameters of the filter instead of the filter coefficients. For ex-
ample, if the body resonance filter parameters are to be changed using some
interpolation technique, the right way is to interpolate the center frequency and the
bandwidth of the filter; the actual filter coefficients are always given by equation 3.23.

5.2.2 Cross-Fading Method

In cross-fading, two filters are run simultaneously, one with the old filter coefficients
and one with the new ones. The filter with new coefficients is taken into use by grad-

50

Synthesis Model Control

A

H,(2

\

Xn) (+ y(n)

A,

H,(2)

~_ I

Figure 5.1: Cross-fading between two filter outputs.

ually increasing the input or output gain of the filter. Simultaneously, the old filter is
faded out by decreasing its gain value, hence the name cross-fading. Figure 5.1 illus-
trates the procedure. Given sufficiently long transition time, the cross-fading method
is able to eliminate both the discontinuities and the transients. An example of the cross-
fading method is the legato cross-fading described by Jaffe and Smith (1995).

5.2.3 Transient Suppression

Valiméki and Laakso (1998) have described a novel method for transient suppression
in recursive filters. Their approach is a modification of ttate-variable update tech-
niquefirst introduced by Zetterberg and Zhang (1988). The Zetterberg—Zhang (Z2)
method is able to completely eliminate the transient related to a parameter change if all
the past input samples are available. This requirement makes the method impractical,
but the requirement can be loosened, if total elimination of the transient is not required
(valiméki and Laakso, 1998).

The key observation in the ZZ method is that the transient is eliminated if the state vec-
tor of a digital filter is modified at coefficient change time so that it corresponds to the
steady state of the filter after coefficient change. But the steady state of a filter cannot
be calculated if all the past input samples are not known.

The idea in the transient suppression method by Valimaki and Laakso (1998) is to run
atransient eliminator filter parallel to the signal filter duriNgsamples before the co-
efficient change at time index = n, . At the coefficient change time the state of the
transient eliminator is copied to the signal filter. Figure 5.2 shows the different stages
of the method.

The motivation to use a finite number of samples before coefficient change for tran-
sient suppression comes from the fact that the impulse response of a stable recursive
filter decays exponentially and can thus be regarded to be of finite length for the appli-
cation (Valimaki and Laakso, 1998). The number of observably nonzero values of the
impulse response is calledfective lengtlof the impulse response. Estimating the ef-
fective length can be done, e.g., with an energy-based method proposed by Laakso and
Valiméaki (1999). Given effective lengtNp and filter orderN, the required advance

time N, is given by (Valimaki and Laakso, 1998)

N. = NP+N' (54)

a

51

Synthesis Model Control

Timen
X(n) —» Hl(Z) S — y(n)
T nC_Na
x(n) > Hl(Z) > y(n)
Transient
H,(2) Eliminator
v Update coefficients 1 q
C
x(n) » H@ > y(n)
4 Copy state
H,(2)
—— n.+1
X(n) —» HZ(Z) S — y(n)
v

Figure 5.2: The principle of transient elimination. The transient eliminator filter is run
for N, samples before coefficient change in parallel with the signal filter. At tigthe
coefficients are updated and the state vector of the transient eliminator is copied to the
signal filter. After (Valimaki and Laakso, 1998).

5.2.4 A Hybrid Method for Dynamic Delay Line Length

In the guitar model the length of the string delay line is the parameter with most severe
problems, if the dynamic effects of parameter value updates are not handled carefully.
In addition, the length may be altered by both continuous and discrete processes. The
change associated with vibrato (Laursdml., 1999) and tension modulation (Tolonen

et al, 1999) is continuous in nature and may be automatically created. Continuous
changes occur at regular intervals and are usually relatively small in value. Changing
the sounding length of the string and the sound pitch by pressing the string against a
fret causes an abrupt change in delay line length. These discrete changes occur only at
special control events and may be quite large.

To handle the different requirements posed by different delay line length updates, the
guitar model uses a hybrid approach that combines the transient suppression method
with cross-fading. The method has two phases: 1) before the delay line length change
the fractional delay filter with new coefficients is initialized as defined in the transient
suppression method, and 2) the outputs of the two filters are cross-faded during a de-
sired time period. The first phase enables suppression of transients, and the second
phase eliminates discontinuities.

The first phase makes it possible to use very short or even zero cross-fading times with

small changes in length, while the latter gives the possibility to use cross-fading that is
long enough for avoiding troublesome discontinuities. A similar scheme has been pro-

52

Synthesis Model Control

posed by Van Duynet al.(1997). They used a special crossfading function that allows
the fractional delay filter with the new coefficients to reach its steady state before the
output signal is used.

5.3 Real-Time Control

Real-time implementation of the guitar model poses some extra requirements for the
control performance of the model. Processing of incoming control events must be ef-
ficient, so that a sufficient number of control events can be processed without causing
problems to the sound output. Also methods that require some kind of a look-ahead
possibility are not realizable.

Each string of the guitar model has twelve parameters, and six of these are closely re-
lated to physical playing parameters assiciated with each newly plucked guitar sound,
namely the lengths of the horizontal and vertical delay lines (2 parameters), the coef-
ficients of the timbre control filter (2), the plucking position (1), and the input mixing
coefficient (1). These are the parameters that may have to be set for each note played
on the guitar model. For the other parameters suitable default values as a function of
these playing variables may be found. The loop filter parameters mainly depend on the
guitar and string properties and the length of the string, the attenuation coefficient of
the plucking position filter depends on the plucking position and string length, and the
output mixing coefficient is dependent on the properties of the instrument.

It can be assumed that the two delay line lengths can be changed in one control event,
that the coefficients of the timbre filter require one event, and that the plucking position
and input mixing coefficients are transmitted in the excitation event. The damping of

a sounding note requires setting the total of four loop filter parameters, and resetting
these parameters for undamped strings is also required. If all the loop filter parameters
can be contained in one event, then exciting and damping one note will require five
control events in total. In a case of quite a dense musical structure with twelve notes
per second a total of 60 control events per second are needed. If all the aforementioned
parameters are set using separate control events, 180 events per second are required.

In addition to the parameter changes related to note events, the lengths of the horizontal
and vertical delay lines may be changed at a constant rate by, e.g, a vibrato control pro-
cess. For musically relevant modulation frequencies in the range below 10 Hz, length
update frequency of 100Hz for one string should be enough. Assuming a six string gui-
tar will raise the number of control events per second up to 780. Some special cases,
such as rapid glissandos, may require even greater number of control events per sec-
ond.

The time required to process the control events must be so small that the synthesis al-
gorithm always has enough time to calculate the output sound samples before the out-
put buffer of the audio subsystem runs out of new samples. In practice, it is usually not
wise to aim for perfect worst-case performance, but to optimize the implementation for
demanding material in the normal range. The implementation can also be made tunable
so it can be optimized for different platforms and situations.

53

Synthesis Model Control

One more restriction is that in real-time applications there is no look-ahead possibility.
This means that, e.g., the changes in parameter values cannot be prepared beforehand,
as the transient suppression method described in section 5.2.3 would require. The pa-
rameter change may be delayed to compensate the unrealizable advance time. The oth-
er possibility is to always store a sufficient number of past samples so that at the
parameter chance time, the filter structure can be initialized using the extra samples.
This approach has been used in the delay line change method described in section
5.2.4.

5.4 Summary of Current Control Protocols

The MIDI protocol was the first and is the only widely supported real-time protocol to
enable communication between two hardware devices, made to process musical infor-
mation. It enabled professionals and amateurs to explore the possibilities of synthe-
sized sound. The shortcomings of MIDI have later led to a number of proposals of
more advanced control protocols. In the following subsections, current and proposed
sound synthesis control protocols and schemes are described.

5.4.1 MIDI

MIDI is an acronym for Musical Instrument Digital Interface, and it originated as a
real-time hardware communication protocol. The first commercial application was in
1986 and the protocol specification was published in 1988 (Heedett, 1997). The
protocol is oriented to make information obtained from an electronic keyboard avail-
able to other devices. MIDI is very widely supported and is available for almost all
computer platforms.

The MIDI control stream consists of consecutive messages that occur one at a time.
The most basic musical information: the note pitch and duration are represented by
note numbers and series of Note_On and Note_Off messages. The note numbers are
directly related to the keys of the keyboard and the note messages relate to the “on”
and “off” times of the keys. Each of the MIDI’s standard messages consists of a fixed
number of bytes except for the variable length System-Exclusive (SysEx) message.
This is why it is impossible to transmit any additional, instrument-specific information
directly within the standard messages.

The addressing scheme in MIDI is based on MIDI channels. Each MIDI bus is capable

of driving sixteen independent channels. The first byte of every MIDI message is a sta-
tus byte that tells the type and possible channel number of the message. The messages
with channel number are called Voice messages, and messages without channel num-
ber are either System Common or System Realtime messages. The second level of MI-
DI's addressing hierarchy is the note number, which directly corresponds to the desired
pitch of the instrument. This scheme makes the expression of some musical situations
awkward, e.g., the pitch of a note might change over time or there might be two notes
with the same pitch played simultaneously on one instrument.

One of the main restrictions of MIDI is the small number of possible channels. Also

the direct cabling of input and output devices hinders construction of flexible setup of
more than a few MIDI instruments. The second obvious restriction is the keyboard-ori-

54

Synthesis Model Control

entedness of MIDI. The protocol integrates the timing, pitch, and loudness information
into an indivisible Note_On message. For other instruments than the keyboard instru-
ments, these parameters can, however, be independent. In the guitar, the right hand
generally determines loudness and timing, whereas the left hand is responsible for
pitch control. Further restrictions of the MIDI protocol that affect, e.g., the control in-
timacy and the ability to capture musical gestures, have been described by Moore
(1988).

5.4.2 ZIPI

The ZIPI protocol was developed at the University of California, Berkeley as a more
advanced alternative to MIDI, and it was first described in 1994 (McMillan, 1994). The
ZIPI proposal included a new hardware specification as well as an application layer for
transferring musical information across a ZIPI network. As the protocol never was
widely adopted, it is safe to say that ZIPI is history (Freed, 1997), but the application
layer and especially the Music Parameter Description Language (MPDL) are still
worth a short description here.

Much of the MPDL design considers minimal usage of the limited transmission band-
width. The growth of the network bandwidth has later made these aspects of the MPDL
somewhat outdated. In the following discussion, the information coding issues are thus
ignored, and the logical aspects of the language are emphasized.

To overcome the problems that arise in MIDI because the note number determines also
the pitch of the note, in MPDL the note numbers are just identifiers given to the indi-
vidual notes. MPDL has a three-level address hieramsbtgsare withininstruments

which in turn are grouped tamilies Any control signal can be applied to any level of

the address hierarchy.

The parameters on the hierarchy levels are in principle separate and can interact with
four different ways to affect the actual parameters used by the synthesis algorithm. The
rules are “and”, “multiply”, “add”, and “overwrite”. The “and” rule is used only for the
triggering messages, and describing it is beyond the scope of this text. If a parameter
belongs to the “multiply” group, each layer of the hierarchy stores its most recent value
for the parameter, and the final parameter value is a product of these. The “add” rule
is similar to the “multiply” rule, except that the values are added together, not multi-
plied. The “overwrite” rule results in a direct substitution of the current parameter val-
ue, i.e., a parameter update on the instrument level overwrites the parameter values of
each of the active notes of that instrument. (McMiéaal, 1994)

To achieve efficient usage of network capacity, MPDL uses eight-bit ID numbers for
parameters, instead of using, e.g., parameter names. The published parameter tables
contain a few dozens of different parameters, the rest left empty for future use. The pro-
posed parameters include also some psychoacoustical parameters, such as brightness,
roughness, and attack character. Two of the more advanced MPDL messages are worth
mentioning, namely the possibility to send modulation and parameter segment infor-
mation, and the ability to control the allocation priority of the individual notes.

55

Synthesis Model Control

5.4.3 Synthesis toolKit Instrument Network Interface

Synthesis toolKit Instrument Network Interface (SKINI) is a sound synthesis control
language developed by Perry Cook. SKINI has been designed to be used as a control
protocol in Cook’s “Synthesis ToolKit” (Cook, 1996a). The SKINI language is highly
compatible with MIDI, extending it incrementally. SKINI has been used, e.g., in the
FAUST sonification system to control the sound synthesis algorithms (Weinstein and
Cook, 1997). The main differences from MIDI and the motivations behind SKINI are
the usage of text-based messages and floating point numbers (Cook, 1996b).

Text-based messages allow any system capable of producing formatted text output to
generate SKINI. Also any system that can read strings and make conversions from
strings to floating point and integer numbers can consume SKINI. Because of the tex-
tual form of the format, scripts can easily be devised to perform simple and advanced
tasks on the musical information. Most importantly, SKINI is human-readable; the to-
kens are meaningful names for the things they stand for, and debugging the files and
programs is much easier than when using binary file formats and data streams.

Double-precision floating point numbers are used in SKINI to represent parameter val-
ues. Only the numbers used as identifiers are integers. The value ranges typically cor-
respond to the MIDI value ranges so that incoming MIDI integers can be passed on
without value modifications. The extra precision (the fractional parts) provided by
floating point numbers can be used, e.g, to specify fractional pitch, or ignored, if full
MIDI compatibility is required.

5.4.4 Open SoundControl

Open SoundControl (OSC) is a sound control protocol independent of any transport-
layer protocol. The assumptions made concerning the network transport layer are com-
monly fulfilled by all modern network technologies. OSC assumes that the network
bandwidth is over 10 Mbit/s, that the data is delivered in packets, that multiple devices
may be connected together in one network, and that the network layer provides a return
address so that a response can be sent back to the device that sends a message (Wright
and Freed, 1997).

The data in OSC protocol is binary and is aligned on 4-byte boundaries. Numeric data
can use big-endian 32-bit or 64-bit integers or IEEE floating point numbers. Strings are
padded with extra null characters to reach the 4-byte boundary, if necessary. OSC data
stream consists of messages that in turn include the address and message names and
the associated data. Messages can be collecteagndlesthat are time-tagged collec-

tions of messages or bundles (note the recursive definition).

The addressing scheme in OSC is a dynamic, hierarchical system. Each sound synthe-
sis system that can be controlled using OSC defines its own address hierarchy, the pro-
tocol itself does not constrain the object structure. This approach avoids the limitations
of all the protocols that rely on fixed length bit fields as addresses. There is, however,
no guarantee that any two synthesizers will have consistent name spaces. Thus, what
the other synthesizer calls “volume”, the other might call “amplitude”. In OSC, multi-

ple destination addresses can be specified using wildcards for regular expression like

56

Synthesis Model Control

pattern matching. If multiple addresses match the given address string, the message is
forwarded to all relevant objects, just as if several messages had been sent.

An important feature of the OSC protocol is the possibility to request information of a
device. Because the address space of any device may be dynamic, the address space
can be explored using the query messages. Also information of the parameter types and
values, as well as human-readable documentation can be requested.

5.4.5 Structured Audio in MPEG-4

MPEG-4 is a comprehensive digital media standard developed by the Moving Picture
Experts Group (MPEG). The formal ISO/IEC designation of the MPEG-4 standard is
ISO/IEC 14496 (see ISO/IEC, 1999 for an overview of the standard). For sound syn-
thesis control, the MPEG-4 standard provides the Structured Audio tools, including
two relevant description languages: SAOL (Structured Audio Orchestra Language)
and SASL (Structured Audio Score Language) (ISO/IEC, 1998).

SAOL is a digital signal processing language that is suitable for describing arbitrary
sound synthesis and control algorithms as part of standard MPEG-4 content stream. It
is used to define aorchestraconsisting ofinstrumentsSAOL is not a synthesis meth-

od, but rather a way of describing any synthesis method (Scheirer and Vercoe, 1999).

In MPEG-4, scores that are used to control sound synthesis, are described in the SASL
language. Scores are sequential sets of commands that describe the way in which the
sound generation algorithms described in SAOL are used to produce sound. Com-
mands invoke the specified instruments at desired times to contribute to the overall
sound production. SASL control can range from simple sound effects to very compli-
cated acoustical scenes.

SASL itself is a simple language, simpler than many other existing score languages. It
consists of a series of note, control, tempo, and dynamical wavetable events, all affect-
ing an orchestra defined in a SAOL stream. Control events can control the whole or-
chestra or a set of currently running instruments. They may change the value of a
global variable or the value of a specific instrument’s variable. All times in a score file
are measured in beats, i.e., in musical time. The mapping of the musical time to the real
time is controlled using tempo events. Wavetables can be dynamically created or de-
structed bytablelines of the score file. This mechanism makes it possible, e.g., to dy-
namically supply new sound samples to be used in sound scene synthesis.

5.5 A New Control Protocol and Its Application to the Guitar
Model

All control protocols described in section 5.4 provide some attractive features for syn-
thesis model control. However, for reasons stated later none of them seemed to be the
ideal choice for guitar model control. A new control protocol has therefore been im-
plemented. Although the only implementation of the protocol is the guitar model, the
protocol itself is designed to be generic and portable.

57

Synthesis Model Control

The protocol consists of control events which are formatted strings of ASCII charac-
ters. Each control event is of the foraddress/operation[?x1[?x2]] . The
parts enclosed in square brackets are optionalxarehdx2 denote operation param-
eter values. This syntax is motivated by the similarity with the familiar URL notation.

In the following subsections the parts of the control event are described in detail and
the application of the protocol to the current guitar model is discussed. In section 5.5.4
the addition of network addresses to the protocol is presented, and in section 5.5.5
some of the possible shortcomings of the protocol are discussed and solutions to those
are presented.

5.5.1 Addressing Mechanism

The addressing mechanism in the new protocol is a hierarchical system similar to the
familiar URL and file system hierarchies. The address or path string is constructed of
tokens delimited with slash characters{J, each slash representing a new level of hi-
erarchy. The root of the hierarchy tree is represented by a single slash. The tokens in
turn consist of one or more alphanumeric characters and/or a few special characters.
The allowed characters are presented in table 5.1.

Using the proposed addressing system it is possible to define any suitable address hi-
erarchy for any specific synthesizer. For example, it is possible to implement a synthe-
sizer that is capable of synthesizing the sounds of all the instruments in a symphony
orchestra. In this case it would be intuitive and beneficial to construct the synthesizer
so that the address space represents the conventional division of the instruments into
sections. The whole orchestra could be divided into string instruments, wind instru-
ments, and percussion. The wind instruments could be further divided into woodwinds
and brass instruments, and the strings could be divided into first and second violins,
violas, cellos, and contrabasses, and so on. A sketch of a possible orchestra synthesizer
control tree is depicted in figure 5.3.

The hierarchical character string based addressing mechanism requires considerably
more processing capacity and time than the simpler bit-field addresses of, e.g., the
MIDI and ZIPI protocols. However, the advantages of such a system are also clear.
Each synthesizer may define the most suitable address hierarchy, the addresses may be
human-readable, and the addressing capabilities never become outdated. Also creation
of modular synthesizer systems, where implemented components can be reused, is
made simple by the possibility of placing readily implemented components into the
control tree.

Table 5.1: Allowed characters in protocol address and operation strings

allowed character alphanum | mark
alphanum letter | digit
mark P PR R D

58

Synthesis Model Control

/

\

strings/ winds/ percussion/
/ |
1st vl/ / cb/ woodwinds/ brass_sec/
| / | \
2nd_vl/ ve/ \
| | fi/ fg/ col to/

Vel | \ | | |

ob/ cl/ tr/ trb/
\ \ \ \

Figure 5.3: Control hierarchy of an orchestra synthesizer

5.5.2 Operations and Parameters

Theoperation part of a control event specifies the operations to be done on the ob-
ject determined by the giveaddress . The necessary parameters follow the opera-
tion in a ‘question mark’ separated list of values. The parameters are transmitted as
ASCII characters and the transformation to the desired data type is done by the receiv-
ing unit. The characters allowed in operations and parameters are the same that are per-
missible in the event address (see table 5.1). Examples of different operations and their
parameters are given in section 5.5.3, where the application of the control protocol to
the guitar model is described.

To gain full benefit of the control model hierarchy, a fesgerved operationsith spe-

cial meaning have been defined. These operations are special in a sense that when im-
plemented on multiple hierarchy levels, they interact across the levels unlike ordinary
operations, and that the names of the operations are reserved and may be used only for
the predefined purposes. The reserved operations are shown in table 5.2 with the cor-
responding combination rules.

Thepitch is given as a floating point number, where the integer part is the number
of the nearest MIDI note below the desired pitch, and the fractional part is the upward
offset. Thus pitch 60 is the middle C and pitch value 60.5 means a quarter tone sharp
middle C. Thepitch operation is reserved in a sense that it may not be used for any
other purpose or with any other value range than specified. However, the protocol does
not specify the interaction gitch operations across several control levels.

59

Synthesis Model Control

Table 5.2: The reserved operations

Operation Combination Rule
pitch combine withtranspose
transpose add

dynamics multiply

amplitude multiply

The synthesizer may also implement trenspose operation on one or more con-

trol layers. Theranpose operation takes one numerical parameter that determines
the amount of transposition. This means thattifaanspose operation with param-

eter value 1 is sent to the ‘brass instruments’ level of an orchestra synthdsizer (
winds/brass_sec/transpose?1), the result will be an upward transposition of

all the notes played by the brass section by one semitone. The combination rule for
transposition is add, i.e., if the winds level of the orchestra synthesizer is transposed
one semitone down, and the brass section is transposed up by one semitone, the actual
brass section sound will have the original pitch, but the woodwind section will sound
one semitone flat.

Thedynamics operation sets the musical dynamic value of the target object. Dynam-
ics is given as a floating point number, value 1.0 corresponding to the chosen neutral
musical dynamic level, mezzofortenf). The numerical dynamics values and the cor-
responding musical dynamic levels are presented in table 5.3. As with real instruments,
the dynamics value may also affect the tonal properties of the synthesized sound. Dy-
namics values are combined across the hierarchy levels using multiplication, i.e., two

Table 5.3:Dynamic levels andynamics values.

Dynamics Dyn. Level
1/32 pPPp
1/16 ppp
1/8 pp
1/4 p

1/2 mp

1 mf

2 f

4 ff

8 fff

16 ffff

60

Synthesis Model Control

mezzofortes give mezzoforte, mezzoforte and piano give piano, two mezzopianos give
piano, and so on. The idea is to provide a “conductor’s view” to musical dynamics. The
user may use this system, e.g., to adjust the proportional dynamical levels of the sec-
tions of the orchestra synthesizer irrespective of the dynamical levels of the individual
instruments.

Theamplitude operation affects the volume of the sound, but without any modifi-
cation to the sound’s timbre. It has the same effect as setting the amplification level on
a mixing console. Similarly to the dynamics operation, the combination rule for ampli-
tude is multiply. The default value, i.e., the value before any control event, for both the
dynamics and the amplitude is 1.0.

The implementation of the reserved operations on all hierarchy levels is not required,
but is recommended whenever it is natural and feasible. The purpose of the reserved
operations is to provide user some properties that are similar between different synthe-
sis engines and to ensure that some concepts are used consistently across all implemen-
tations.

5.5.3 Guitar Model Application

The control hierarchy of the implemented guitar model is depicted in figure 5.4. As can
be seen, the hierarchy is closely related to the guitar model structure presented in sec-
tion 4.5.1. In the figure address hierarchy is represented by rectangular boxes and solid
lines, and operations are represented by rounded boxes. The figure gives details only
for the control of the guitar body model resonators; the string model control is elabo-
rated later.

The guitar model is divided into body and individual string entities. bbey subtree

of the guitar model control hierarchy is further divided imessonl andreson2

parts, corresponding to the first and the second body resonator, respectively. In addi-
tion, thebody level has ammplitude operation, which may be used to set the body/

stringl/ wuw | StringN/ \\t:matrix > body/ @nspose) @udness) gnplitude)
\ \
resonl/ reson2/ @plitude)

\
@plitude) ‘kfreq > @Width)

Figure 5.4: Guitar model control tree.

61

Synthesis Model Control

string balance of the instrument sound. The operations of the resonators ifielyde
bwidth , andamplitude , for center frequency, filter bandwidth, and resonance am-
plitude, respectively. Each of the body and resonator level operations take one floating
point number as a parameter. The center frequency and filter bandwidth are given on
normalized frequency scale, i.e., the user must be aware of the guitar model sampling
rate when changing these parameters.

In addition to the body and string model subtrees, the control contains four operations
directly under the root node. Tloenatrix coupling operation implements the control

of the coupling matrixC (see section 3.2.1), and gets three parameters: one integer
number for each matrix index and one floating point number for the actual coupling
coefficient value. The order of the parameters is: 1) source string number, 2) destina-
tion string number, and 3) the coefficient value. Trenspose , dynamics , and
amplitude operations belong to the reserved operations, and thus their meanings
and properties are as discussed in section 5.5.2.

The control implementation of the dual-polarization string models is depicted in figure
5.5. The operations below the string level are placed inside one big rounded box in-
stead of individual boxes, because of the large number of the operations. The opera-
tions below the individual string level mostly used for normal guitar model control
during playing arepluck , dynamics , pitch , loop_gain , andloop_shape

The additional operations and address entities are for more advanced playing control,
for configuration and for direct DSP-level control of the model. The operations of the
vertical vibration modevert/) are the same as for the horizontal modwiriz/).

Thepluck operation is used to actually excite the string, i.e., it sets different pointer
values so that the proper excitation signal is fed to the string model during several sub-
sequent samples. The pluck operation recognizes two optional parameters: the gain
that multiplies the excitation signal and the index of the wavetable used as excitation
signal. The gain is given as a floating point number and the wavetable index is an in-

stringl/
horiz/ vert/ 4 pluck N
dynamics
/ \ pluck_shape
pluck_point
pluck_point_gain
wtable
f // pitch
fret oop gam)’loop shape fret
\ loop_gain
loop_shape
in_mix
loop_length_d loop_gain_d | loop_shape_d) out mix

Figure 5.5: Control tree for a dual-polarization string model.

62

Synthesis Model Control

teger. The excitation gain can also be set usinglijeamics operation, and the ex-
citation wavetable can be changed by thiable operation. If gain or wavetable
values are given, they overwrite the values previously selimamics orwtable .

Properties of the excitation signal filtering can be set usingplek _shape
pluck_point , andpluck_point_gain operations. Theluck_shape oper-

ation sets the frequency-dependent properties of the timbre control filter. This opera-
tion takes one floating point number as an argument, the range of the argument being
[-1,1]. Negative values of the argument lead to lowpass characteristics, positive values
result in high-frequency emphasis, and zero is the neutral value. The operations
pluck_point andpluck_point_gain set the parameters of the pluck position
filter described in section 3.5.1.

The pitch operation sets the length of the string delay lines so that the resulting
sound output has the desired pitch. Tred operation is similar to thpitch oper-
ation, but whereagitch sets the absolute pitch, thet operation sets the pitch as

an offset from the open pitch of the string. Both operations take one floating point val-
ue as an argument. Tipitch andfret operations under the string level overwrite
the values set using tifet operations under tHeoriz/ andvert/ entities.

Theloop_gain andloop_shape operations are used to set the damping proper-
ties of the polarization loops. Theop_gain operation sets the zero-frequency gain

of the loop filters, and théoop_shape operation sets the frequency-dependent
damping. The influence of tHeop_gain andloop_shape operationsis based on
using tables for default values of the related DSP-level parameters, and using the user-
specified operation arguments as modifiers to the default values. For each string and
each fret there exists tabulated values for both loop parameters. The actual DSP-level
loop gaing is given by

g= ggl/ W (5.5)

wheregy 0 [0.0, 1.9 is the default gain ands theloop_gain value given by the
controller. Similarly, the filter coefficierd is given by

= Had”, &9

whereay U (-1.0, 0.0 is the default coefficient amds theloop_shape argument.
Similarly to thefret operation, thdoop_gain andloop_shape operations of

the string overwrite the values set using the corresponding operations of the individual
vibration polarizations.

The operationdoop length_d , loop_gain_d , andloop_shape_d can be

used to set the parameters of the vibration polarizations directly (hence the letter d).
When these operations are used, the parameter mappings of equations 5.5 and 5.6 are
not used, but the DSP parameters are immediately updated using the provided argu-
ment values.

63

Synthesis Model Control

The operationgn_mix andout_mix are used to set the mixing coefficiemtg and

m, of the dual-polarization string model. Tloet_mix operation is mainly used for
model configuration, whereas thie_mix operation can be used to set the string
plucking angle. Both operations take one floating point argument in the range
[0.0, 1.0].

The user may switch between different string model and the resonator excitation sig-
nals using the proposed protocol, but the properties of the excitation signals cannot cur-
rently be changed. It is suggested thalbad operation be implemented for this
purpose at a later time.

5.5.4 Using the Protocol Over a Network Interface

The proposed control protocol may be used over a network interface quite easily. The
network address can be appended in front of the hierarchical address part of the proto-
col. If, e.g., an orchestra synthesizer software was to listen the port 10001 on host
synth.host.fi , the complete address of the first violin section could be
synth.host.fi:10001/strings/1st_vl/

5.5.5 Discussion

The control protocol has similarities with several of the earlier sound synthesis control
protocols. Thepitch operation of the protocol uses the same value range for the mu-
sical pitches as the MIDI protocol (see section 5.4.1), butimplementing the microtonal
pitches similarly to the SKINI protocol (see section 5.4.3). The idea of the reserved pa-
rameters that interact across the hierarchy levels has been adopted from the ZIPI pro-
posal (see section 5.4.2). The addressing mechanism of the proposed protocol is
similar to the addressing scheme of the OSC control protocol (see section 5.4.4). How-
ever, the data is not binary as it is in the OSC protocol, and the network address inclu-
sion is differently defined.

There are a few features, which might prove useful in the future, that are not included
in the proposed control protocol. It is not possible to transmit multiple control events
concurrently, and the events are not time-stamped.

Multiple concurrent events could be implemented by allowing a special meta control
event that could include several messages in one entity. The OSC protocol reserves the
string #bundle to indicate a bundle of events. Another mechanism for concurrent
events in OSC is the possibility to use a pattern matching syntax similar to regular ex-
pressions to refer to multiple operations in a single event. Thus, addtesgs/

* vl could refer to both first and second violins in the orchestra synthesizer example.
Pattern matching is potentially a very efficient technique in reducing the network band-
width needed for the protocol, but requires a substantially more complex implementa-
tion of the address parsing mechanism than does a protocol without pattern matching.

In the proposed protocol, the control events are not time-tagged, but the events take ef-
fect as soon as they are received. However, the traveling time of separate events may
differ from each other so that time intervals between events are not the same for the

receiver as they were when sent. This variation of the time intervals is called jitter. If

64

Synthesis Model Control

the events included time tags, it would be possible to resynchronize the events with
bounded latency, thus eliminating the jitter. The OSC protocol uses time tags with the

time representation also used by the Network Time Protocol (NTP) timestamps
(Wright and Freed, 1997).

It would have been possible to implement the proposed protocol as an OSC application
to the guitar model. This way multiple concurrent events as well as time tags would
have been easy to implement. The decision to use ASCII parameters and the imple-
mentation of the combinatory operations are however different from the approaches
used in OSC so that the development of the new protocol was motivated.

65

6 Conclusions and Future
Work

In this thesis, development, structure, implementation, and control of a model-based
guitar synthesizer were discussed. The computational model of an acoustic guitar was
already known to be able to produce good quality synthetic sound. Thus this work con-
centrated on implementing the model on a workstation platform, and on the control of
the model so that natural-sounding guitar music synthesis can be achieved.

The synthesis model of this work was implemented using the C++ programming lan-
guage and object-oriented programming paradigm for efficient digital signal process-
ing. One of the main goals was to create reusable signal processing structures for
model-based sound synthesis. The work was originally done on one hardware/software
platform, but portability has been taken into account in the design.

Using the synthesis model for music synthesis required development of the control
mechanisms of the model. Typical playing techniques of the acoustic guitar, and im-
plementing some of them using the guitar model were described in this thesis. For syn-
thesis control a new protocol was designed during the work.

The implemented guitar model with six dual-polarization string models and sympa-
thetic couplings runs easily in real-time as was desired. The primary goal of creating a
real-time guitar synthesizer as a combination of rather general purpose signal process-
ing objects was thus satisfied. With properly implemented interpolation and transient
suppression methods, the implementation is able to produce clean sound with no dis-
turbing clicks. With the implemented control protocol, it is possible to control the pa-
rameters of the synthesis model using a structured addressing scheme. The
implemented parameter mappings make these parameters more accessible to the user.

The rest of this chapter is divided into two parts. In section 6.1 a summary of the thesis
is presented by briefly revising the contents of each chapter. Section 6.2 gives direc-
tions for future work in the field of real-time expressive model-based sound synthesis.

6.1 Thesis Summary

After the introduction to the thesis and to model-based sound synthesis in chapter 1,

chapter 2 described the construction, acoustics, as well as the playing techniques of the
acoustic guitar. The different playing techniques were addressed so that basic knowl-

edge of the relationship of the physical phenomena to the instrument sound may be

gained.

Chapter 3 discussed the development of the implemented guitar model from signal pro-
cessing point of view. In the beginning of the chapter the modeling of vibrating strings

66

Conclusions and Future Work

with digital waveguide models was outlined. The waveguide model was formulated as
a single delay line string model, that was then extended to a dual-polarization string
model with sympathetic coupling. Models for two different kinds of nonlinearities of
string vibration were also discussed. Guitar body modeling was addressed and both
commuted body modeling and shared body resonators were introduced. Guitar model
properties that permit synthesis of some expressive means by filtering the excitation
signal were described, and finally, computationally efficient multirate model structures
were discussed.

The real-time implementation of the guitar model was the subject of the fourth chapter.
At first, the classes of the implemented DSP software library were presented from the
abstract base classes to the filter, ring buffer, string model, and body resonator imple-
mentations. After the DSP library classes, the base class for instrument models was de-
scribed. The structure of the implemented guitar model was depicted and the guitar
model class was described. The chapter ended with a discussion of the signal process-
ing capabilities of the modern workstation hardware and software.

The control problems of the real-time guitar synthesizer were discussed in chapter 5.
DSP-level parameters of the guitar model were reviewed and their relevance to the
sound quality of the model was described. The implications of dynamically altering the
parameter values, as well as techniques used to eliminate undesired transients and dis-
continuities were presented. Some problems specific to a real-time implementation
were also discussed.

The rest of the chapter 5 concentrated on the protocols used to control sound synthe-
sizers. First, a summary of five currently available or proposed control protocols was
given. Second, a new protocol for sound synthesis control was proposed, and its appli-
cation to the guitar model was described. The chapter was concluded with a discussion
of the similarities of the proposed protocol to the earlier ones, and of the shortcomings
and possible improvements.

6.2 Future Work

The future development of expressive model-based synthesis will consist of both de-
veloping new model structures and developing new control mechanisms for the mod-
els. As the new structures will produce even more realistic instrument sounds, the new
control mechanisms will provide more efficient, intuitive, and expressive musical con-
trol.

The synthesis model described in this work can yield high-quality guitar sound synthe-

sis with moderate computational cost. Truly expressive music synthesis, however, re-
quires a large number of precalculated excitation signals, that may have to be different
for different playing techniques and styles. Thus the model with body resonator filters

parallel to the string model may be impractical.

With modern computers, guitar models that could not be implemented as real-time ap-
plications a few years back, are today feasible. Future synthesis models may incorpo-
rate guitar body models implemented as digital filters, rather than precalculating the
body response to the excitation signal. If the guitar body model can be excluded from

67

Conclusions and Future Work

the string model input signal, the interaction between the player and the instrument can
be parameterized and the nonlinear effects that depend on the properties of the string
vibration can be more easily and realistically reproduced.

The development of the control mechanisms for the physics-based sound synthesis
models depends greatly on the development of the models themselves. The methods of
producing expressive synthesis may differ from model to model, but generic frame-
works and definition of desired features will be valuable.

The MIDI protocol has determined the manner of controlling sound synthesizers for
quite some time now. The development of the synthesis methods and the growing de-
mands of the users have pinpointed the defects of MIDI. In the future the control pro-
tocols will most likely be more application specific, or alternatively, specific
applications of more generic control protocols.

68

References

Burden, R. L. and Faires, D. J. 199%8umerical Analysis, 5th Editio®®WS Publishing
Company, Boston, Massacusetts, USA, p. 768.

Campbell, P. 1978Juan Martin’s Guitar Method, El arte flamenco de la guitarra
United Music Publishers Ltd., London, UK.

Chaigne, A. 1991. Viscoelastic Properties of Nylon Guitar Stri@ggut Acoustical
Society Journall(7), pp. 21-27.

Chaigne, A. 1992. On the Use of Finite Differences for Musical Synthesis; Application
to Plucked Stringed Instrumenggurnal d’Acoustique5(2), pp. 181-211.

Christensen, O. and Vistisen, B. B. 1980. Simple Model for Low-Frequency Guitar
Function,Journal of the Acoustical Society of Ameri6&(3), pp. 758—766.

Cook, P. R.1992. A Meta-Wind Instrument Physical Model, and a Meta-Controller for
Real Time Performance Contrélroceedings of the 1992 International Comput-
er Music Conference (ICMC’92%an Jose, California, USA.

Cook, P. R. 1996a. Synthesis ToolKit in C++ [online, referenced April 15 1999].
Available in PostScript format athttp://www.cs.princeton.edu/
“prc/SKINIO9.txt.html>

Cook, P. R. 1996b. Synthesis toolKit Instrument Network Interface [online, referenced
April 15 1999]. Available in HTML format akhttp://www.cs.prince-
ton.edu/"prc/STKPaper.ps>

Cumpiano, W. R. and Natelson, J. D. 19€iitarmaking: Tradition and Technology;
A Complete Reference for the Design and Construction of the Steel-String Folk
Guitar & the Classical Guitar Chronicle Books, San Francisco, California,
USA, p. 388.

Duncan, C. 1980The Art of Classical Guitar PlayingsSummy-Birchard Music, Prin-
ceton, New Jersey, USA, p. 132.

Elejabarrieta, M. J. and Ezcurra, A. 1997. Material Dependence of the Vibrational Be-
haviour of the Guitar’'s Plat&roceedings of the Institute of Acoustiv®I. 19,
pp. 143-148. Presented at the International Symposium on Musical Acoustics,
Edinburgh, UK.

Fletcher, N. H. and Rossing, T. D. 199he Physics of Musical Instrumen&pringer-
Verlag, New York, USA, p. 620.

Freed, A. 1997. ZIPI Home Page [online]. Center for New Music and Audio Technol-
ogies, updated June 1997 [referenced April 13 1999]. Available in HTML format
at<http://www.cnmat.berkeley.edu/ZIPI/>

69

References

Freed, A., Chaudhary, A. and Davila, B. 1997. Operating Systems Latency Measure-
ment and Analysis for Sound Synthesis and Processing Applicattwosged-
ings of the 1997 International Computer Music Conferenthessaloniki,
Greece, pp. 244-247.

Giertz, M. 1979Den klassiska gitarren, Instrumentet musiken mastafinegswedish)
P. A. Norstedt & soners forlag, Stockholm, Sweden, p. 313.

Grunfeld, F. V. 1969The Art and Times of the Guitar, An lllustrated History of Gui-
tars and GuitaristsThe Macmillan Company, Collier-Macmillan Canada Ltd.,
Toronto, Canada, p. 340.

Helminen, K. 1999. Personal communication.

Hewlett, W. B., Selfridge-Field, E., Cooper, D., Field, B. A., Ng, K.-C. and Sitter, P.
1997. MIDI, in Selfridge-Field, E. (editor) 199Beyond MIDI: The Handbook
of Musical Codespp. 41-72, The MIT Press, Cambridge, USA.

ISO/IEC FCD 14496-3 Subpart 5, Information Technology - Coding of Audiovisual
Object - Low Bitrate Coding of Multimedia Object, Part 3: Audio, Subpart 5:
Structured Audio, May 1998.

ISO/IEC JTC1/SC29/WG11 N2725, Overview of the MPEG-4 Standard, March 1999,
Seoul, South Korea. Also available in HTML format athttp://
www.cselt.itympeg/standards/mpeg-4/mpeg-4.htm>

Jackson, L. B. 198Digital Filters and Signal Processing, 2nd Editiolkluwer Aca-
demic Publishers, p. 410.

Jaffe, D. A. and Smith, J. O. 1983. Extensions of the Karplus-Strong Plucked-String
Algorithm, Computer Music Journal/(2), pp. 76-87.

Jaffe, D. A. and Smith, J. O. 1995. Performance Expression in Commuted Waveguide
Synthesis of Bowed String®roceedings of the 1995 International Computer
Music Conference (ICMC’95Banff, Canada, pp. 343-346.

Janosy, Z., Karjalainen, M. and Valimaki, V. 1994. Intelligent Synthesis Control with
Applications to a Physical Model of the Acoustic Guit®roceedings of the
1994 International Computer Music Conferen@earhus, Denmark, pp. 402—
406.

Karjalainen, M. and Laine, U. K. 1991. A Model for Real-Time Sound Synthesis of
Guitar on a Floating-Point Signal Procesd@rpceedings of the 1991 IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP’91)vol. 5, Toronto, Canada, pp. 3653—3656.

Karjalainen, M. and Smith, J. 1996. Body Modeling Techniques for String Instrument
SynthesisProceedings of the 1996 International Computer Music Conference
Hong Kong, pp. 232-239.

Karjalainen, M. and Valimaki, V. 1993. Model-Based Analysis/Synthesis of the
Acoustic Guitar,Proceedings of the Stockholm Music Acoustic Conference
Stockholm, Sweden, pp. 443-447.

70

References

Karjalainen, M., Valimaki, V. and Janosy, Z. 1993. Towards High-Quality Sound Syn-
thesis of the Guitar and String InstrumerRspceedings of the 1993 Internation-
al Computer Music Conference (ICMC’93)okyo, Japan, pp. 56—63.

Karjalainen, M., Valiméki, V. and Tolonen, T. 1998. Plucked String Models: from the
Karplus—Strong Algorithm to Digital Waveguides and Beyo@dmputer Music
Journal 22(3), pp. 17-32.

Karplus, K. and Strong, A. 1983. Digital Synthesis of Plucked-String and Drum Tim-
bres,Computer Music Journal/(2), pp. 43-55. Also published in Roads, C. (ed-
itor) 1989. The Music Machinepp. 467-479. The MIT Press, Cambridge,
Massachusetts.

Laakso, T. I. and Valimaki V. 1999. Energy-Based Effective Length of the Impulse
Response of a Recursive FiltHEEE Transactions on Instrumentation and Mea-
surement48(1), pp. 7-17.

Laakso, T. I., Valimaki, V., Karjalainen, M. and Laine, U. K. 1996. Splitting the Unit
Delay—Tools for Fractional Delay Filter DesigisEE Signal Processing Mag-
azine 13(1), pp. 30-60.

Laurson, M., Hiipakka, J., Erkut, C., Karjalainen, M., Valimaki, V., Kuuskankare, M.
and Takala, T. 1999. From Expressive Notation to Model-Based Sound Synthe-
sis: a Case Study of the Acoustic GuitBrpceedings of the 1999 International
Computer Music Conference (ICMC’'9®eijing, China.

Legge, K. A. and Fletcher, N. H. 1984. Nonlinear Generation of Missing Modes on a
Vibrating String,Journal of the Acoustical Society of Ameri¢é(1), pp. 5-12.

Lippman, S. B. 1991C++ Primer, 2nd Edition Addison-Wesley, p. 614.

McMillen, K. 1994. ZIPI: Origins and Motivations;omputer Music Journall8(4),
pp. 47-51.

McMillen, K., Wessel, D. L. and Wright, M. 1994. The ZIPI Music Parameter Descrip-
tion LanguageComputer Music Journall8(4), pp. 52—73.

Meyer, J. 1983a. Quality Aspect of the Guitar Tone, in Jansson, E. V. (e&itoQ-
tion, Construction and Quality of the Guitar: Papers given at a seminar orga-
nized by the Committee for the Acoustics of MuBigblications issued by the
Royal Swedish Academy of Music, No. 38, pp. 51-75, Stockholm, Sweden.

Meyer, J. 1983b. The Function of the Guitar Body and Its Dependence Upon Construc-
tional Details, in Jansson, E. V. (editdfunction, Construction and Quality of
the Guitar: Papers given at a seminar organized by the Committee for the Acous-
tics of Musig Publications issued by the Royal Swedish Academy of Music, No.
38, pp. 77-100, Stockholm, Sweden.

Middleton, R. 1997The Guitar Maker's Workshof@he Crowood Press Ltd., Rams-
bury, UK, p. 160.

Moore, F. R. 1988. The Dysfunctions of MIDGomputer Music Journall2(1),
pp. 19-28.

71

References

Oppenheim, A. V., Willsky, A. S. and Young, I. T. 1988ignals and Systemilew
York, Prentice—Hall, p. 796.

Orfanidis, S. J. 1996@ntroduction to Signal ProcessindPrentice—Hall, Englewood
Cliffs, New Jersey, USA, p. 798.

Oribe, J. 1985The Fine Guitar Mel Bay Publications, Inc., Pacific, USA, p. 96.

Pavlidou, M. and Richardson, B. E. 1997. The String-Finger Interaction in the Classi-
cal Guitar: Theoretical Model and Experimer®pceedings of the Institute of
AcousticsVol. 19, pp. 55-60. Presented at the International Symposium on Mu-
sical Acoustics, Edinburgh, UK.

Proakis, J. G. and Manolakis, D. G. 19®igital Signal Processing; Principles, Algo-
rithms, and Applications. 2nd editioMacmillan Publishing Company, New
York, USA, p. 969.

Rabiner, L. R. and Gold, B. 197%heory and Application of Digital Signal Process-
ing, Prentice—Hall, Englewood Cliffs, New Jersey, USA, p. 762.

Rank, E. and Kubin, G. 1997. A Waveguide Model for Slapbass SynthHersiseed-
ings of the 1997 IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP’9Aol. 1, Munich, Germany, pp. 443—-446.

Redgate, 1998. About Redgate Guitars [online]. Jim Redgate Guitars, 1998, updated
November 10 1998 [referenced March 18 1999]. Available in HTML format at
<http://www.ozemail.com.au/"redgate/index.html> .

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen W. Ci§jict-
Oriented Modeling and DesigRrentice—Hall International, 1991.

Russell, D. 1988. Classical Technique Stimpson, M. (editor) 1988. The Guitar; A
Guide for Students and Teachefxford University Press, New York, USA,
pp. 142-157.

Savioja, L., Rinne, T. and Takala, T. 1994. Simulation of Room Acoustics with a 3-D
Finite Difference MeshProceedings of the 1994 International Computer Music
Conference (ICMC’94)Aarhus, Denmark, pp. 463—466.

Scheirer, E. D. and Vercoe, B. L. 1999. SAOL: The MPEG-4 Structured Audio Or-
chestra Languag€omputer Music JournaR3(2), pp. 31-51.

Smith, J. O. 1985. A New Approach to Digital Reverberation Using Closed Waveguide
Networks,Proceedings of the 1985 International Computer Music Conference
(ICMC’85), Vancouver, Canada, pp. 47-53.

Smith, J. O. 1987Music Applications of Digital WaveguideJechnical Report
STAN-M-39, CCRMA, Department of Music, Stanford University, USA,
p. 181.

Smith, J. O. 1991. Viewpoints on the History of Digital SyntheBisgceedings of the
1991 International Computer Music Conference (ICMC'Qlpntreal, Canada,
pp. 1-10.

72

References

Smith, J. O. 1992. Physical Modeling Using Digital Waveguidésmputer Music
Journal 16(4), pp. 74-91.

Smith, J. O. 1993. Efficient Synthesis of Stringed Musical Instrumétrsseedings
of the 1993 International Computer Music Conference (ICMC'93)kyo, Ja-
pan, pp. 64-71.

Taylor, J. 1978Tone Production on the Classical Guitdiusical New Services Ltd.,
London, UK, p. 80.

Tolonen, T. 1998Model-Based Analysis and Resynthesis of Acoustic Guitar Tones
Master’s thesis. Helsinki University of Technology, Laboratory of Acoustics and
Audio Signal Processing, Report 46, Espoo, Finland, p. 109. Also available at
<http://www.acoustics.hut.fi/"ttolonen/thesis.html>.

Tolonen, T., Véalimaki, V. and Karjalainen, M. 1998avaluation of Modern Sound
Synthesis Methodslelsinki University of Technology, Laboratory of Acoustics
and Audio Signal Processing, Report 48, Espoo, Finland, p. 114. Also available
at <http://'www.acoustics.hut.fi/"ttolonen/sound_synth_
report.html>.

Tolonen, T., Valimaki, V. and Karjalainen, M. 1998b. A New Sound Synthesis Struc-
ture for Modeling the Coupling of Guitar String3roceedings of the IEEE Nor-
dic Signal Processing Symposium (NORSIG ' 88)sga, Denmark, pp. 205—-208.

Tolonen, T., Valimaki, V. and Karjalainen, M. 1999. Modeling of Tension Modulation
Nonlinearity in Plucked Strings, accepted for publicatiomnB&E Transactions
on Speech and Audio Processing

Tyler, J. 1980The Early Guitar, A History and HandbooEarly Music Series 4. Ox-
ford University Press, London, UK, p. 176.

Valimaki, V. 1995.Discrete-Time Modeling of Acoustic Tubes Using Fractional De-
lay Filters. Doctoral thesis. Helsinki University of Technology, Laboratory of
Acoustics and Audio Signal Processing, Report 37, Espoo, Finland, p. 193. Also
available at <http://www.acoustics.hut.fi/~vpv/
publications/vesa_phd.html>

Valimaki, V., Huopaniemi, J., Karjalainen, M. and Janosy, Z. 1996. Physical Modeling
of Plucked String Instruments with Application to Real-Time Sound Synthesis,
Journal of the Audio Engineering Societf(5), pp. 331-353.

Valimaki, V. and Laakso, T. I. 1998. Suppression of Transients in Variable Recursive
Digital Filters with a Novel and Efficient Cancellation MethdBEE Transac-
tions on Signal Processing6(12), pp 3408-3414.

Valimaki, V. and Takala T. 1996. Virtual Musical Instruments—Natural Sound Using
Physical ModelsQrganised SoundL(2), pp. 75-86.

Valimaki, V. and Tolonen, T. 1997. Multirate Extensions for Model-Based Synthesis
of Plucked String InstrumentBroceedings of the 1997 International Computer
Music Conference (ICMC'97hessaloniki, Greece, pp. 244-247.

73

References

Valimaki, V. and Tolonen, T. 1998. Development and Calibration of a Guitar Synthe-
sizer,Journal of the Audio Engineering Socie#$%(9), pp. 766—778.

valimaki, V., Tolonen, T., and Karjalainen, M. 1998. Signal-Dependent Nonlinearities
for Physical Models Using Time-Varying Fractional Delay Filtd?spceedings
of the 1998 International Computer Music Conference (ICMC'#8)n Arbor,
Michigan, USA, pp. 264-267.

valimaki, V., Tolonen, T. and Karjalainen, M. 1999. Plucked-String Synthesis Algo-
rithms With Tension Modulation Nonlinearitygroceedings of the 1999 IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’99) Phoenix, Arizona, vol. 2, pp. 977-980.

Van Duyne, S. A. and Smith J. O. 1993. Physical Modeling with the 2-D Digital
Waveguide MeshProceedings of the 1993 International Computer Music Con-
ference (ICMC’93) Tokyo, Japan, pp. 40-47.

Van Duyne, S. A, Jaffe, D. A., Scandalis, G. P. and Stilson, T. S. 1997. A Lossless,
Click-free, Pitchbend-able Delay Line Loop Interpolation Scheme, Proceedings
of the 1997 International Computer Music Conference (ICMC’97), Thessaloni-
ki, Greece, pp. 252-255.

Weinreich, G. 1977. Coupled Piano Stringsurnal of the Acoustical Society of Amer-
ica, 62(6), pp. 1474-1484.

Weinstein, J. R. and Cook, P. R. 1997. FAUST: A Framework for Algorithm Under-
standing and Sonification Testingroceedings of the International Conference
on Auditory Display (ICAD'97)Palo Alto, California, USA, pp. 97-104.

Weiss, R. 1996. DSPs Wrestle With CPUs in the Embedded A@omputer Design
35(4), pp. 75-87.

Wright, M. and Freed, A. 1997. Open SoundControl: A New Protocol for Communi-
cating with Sound SynthesizeRroceedings of the 1997 International Comput-
er Music Conference (ICMC’97Thessaloniki, Greece, pp. 101-104.

Zetterberg, L. H. and Zhang Q. 1988. Elimination of Transients in Adaptive Filters
with Application to Speech Codin§ignal Processingl5(4), pp. 419-428.

74

	Implementation and Control of a Real-Time Guitar Synthesizer
	Preface
	Table of Contents
	Table of Contents ii
	1 Introduction 1
	1.1 Physical Modeling and Model-Based Sound Synthesis 1
	1.2 Synthesis Model Control 2
	1.3 Thesis Outline 3

	2 Acoustic Guitar and Its Playing 4
	2.1 Guitar Construction 5
	2.2 Plucking the String 9
	2.3 String Vibration 12
	2.4 Guitar Body 15

	3 The Guitar Model 17
	3.1 Modeling of Vibrating Strings Using Digital Waveguides 18
	3.2 Extended String Model with Dual-Polarization Vibration 24
	3.3 Nonlinear Effects in Strings 25
	3.4 Modeling the Guitar Body 29
	3.5 Model Excitation 31
	3.6 Multirate Model Structures 33

	4 Guitar Model Implementation 35
	4.1 DSP-Library Classes 35
	4.2 String Model Implementations 38
	4.3 Body Model Implementations 41
	4.4 Instrument Model Base Class 42
	4.5 The Aggregate Guitar Model 42
	4.6 Signal Processing on Workstation Platform 44

	5 Synthesis Model Control 47
	5.1 DSP Parameters of the Guitar Model 47
	5.2 Dynamic Parameters 50
	5.3 Real-Time Control 53
	5.4 Summary of Current Control Protocols 54
	5.5 A New Control Protocol and Its Application to the Guitar Model 57

	6 Conclusions and Future Work 66
	6.1 Thesis Summary 66
	6.2 Future Work 67

	List of Symbols
	List of Abbreviations
	1 Introduction
	1. abstract algorithms,
	2. processed recordings,
	3. spectral models,
	4. physical models.
	1.1 Physical Modeling and Model-Based Sound Synthesis
	1. source-filter modeling,
	2. numerical solution of partial differential equations,
	3. vibrating mass-spring networks,
	4. modal synthesis,
	5. digital waveguide synthesis.

	1.2 Synthesis Model Control
	1. high-level control,
	2. mapping of high-level control to implementation level,
	3. implementation-level control.

	1.3 Thesis Outline

	2 Acoustic Guitar and Its Playing
	Figure 2.1: Reconstruction of the vihuela, c.1500, Spain. (Tyler, 1980; Plate 3c)
	Figure 2.2: Guitar by Antonio de Torres, Seville, 1883 (Grunfeld, 1969; Plate 227).
	1. plucking the string,
	2. string vibration, sustaining and damping it,
	3. the guitar body.
	2.1 Guitar Construction
	Figure 2.3: Exploded view of the classical guitar (Cumpiano and Natelson, 1993; Plate 1–2).
	2.1.1 Body Construction
	Figure 2.4: Bracing patterns: Torres pattern, asymmetric variation of the Torres pattern and X- b...

	2.1.2 Neck and Fingerboard
	2.1.3 Strings and Bridge
	Figure 2.5: Classical guitar bridge (Middleton, 1997; pp. 123)

	2.2 Plucking the String
	2.2.1 Apoyando and Tirando Strokes
	2.2.2 Rasgueado Techniques
	2.2.3 Pluck Position
	Figure 2.6: Spectrum of a string plucked one-fifth of the distance from one end (Fletcher and Ros...

	2.3 String Vibration
	2.3.1 Vibratory Motion
	(2.1)

	2.3.2 Horizontal and Vertical Polarizations of String Vibration
	2.3.3 Controlling the Pitch
	2.3.4 Harmonics
	2.3.5 Damping the String Vibration

	2.4 Guitar Body
	2.4.1 Playing Positions
	2.4.2 Tapping the Guitar Body

	3 The Guitar Model
	Figure 3.1: Block diagram of the sound production mechanism in the acoustic guitar, after (Karjal...
	3.1 Modeling of Vibrating Strings Using Digital Waveguides
	3.1.1 Digital Waveguide Model for a Lossless String
	Figure 3.2: One-dimensional digital waveguide, after (Smith, 1992).

	3.1.2 String Terminations, Damping, and Dispersion
	Figure 3.3: A digital waveguide with frequency-dependent gains G(w) are lumped together between o...

	3.1.3 Single Delay Loop Formulation
	Figure 3.4: Dual delay line waveguide model for a plucked string with output at the bridge, after...
	, (3.1)
	(3.2)
	. (3.3)
	. (3.4)
	. (3.5)
	. (3.6)
	, (3.7)
	. (3.8)
	Figure 3.5: A SDL string model with equivalent excitation, single string loop, bridge impedance a...
	Figure 3.6: A string model for practical acoustic guitar sound synthesis. The model of figure 3.5...

	3.1.4 Fractional Delay Filters in String Models
	(3.9)
	, (3.10)
	, n = 0,�1,�2,�…,�N, (3.11)
	, (3.12)
	, k = 1�,�2,�…,�N. (3.13)
	, (3.14)
	, (3.15)
	. (3.16)

	3.2 Extended String Model with Dual-Polarization Vibration
	Figure 3.7: An extended string model with dual-polarization vibration and sympathetic coupling in...
	3.2.1 Sympathetic Couplings
	, (3.17)

	3.3 Nonlinear Effects in Strings
	3.3.1 Tension Modulation
	, (3.18)
	Figure 3.8: Examples of fundamental frequency evolution of guitar tones. Different dynamic levels...
	Figure 3.9: A general nonlinear delay line model, after (Välimäki et al., 1998).
	Figure 3.10: A single delay loop string model with tension modulation modeled using a TVFD filter...

	3.3.2 Amplitude-Limiting Nonlinearities
	Figure 3.11: Amplitude limitation modeling as displacement-conditional reflection. If the string ...
	Figure 3.12: Two extremes of an ideal string vibration.

	3.4 Modeling the Guitar Body
	3.4.1 Commuted Model of Excitation and Body
	, (3.19)
	. (3.20)
	. (3.21)
	Figure 3.13: Commuted waveguide synthesis. The instrument model is represented by three linear fi...

	3.4.2 Body Resonators
	, (3.22)
	, (3.23)
	(3.24)
	. (3.25)
	Figure 3.14: Example of a resonance filter response.

	3.5 Model Excitation
	3.5.1 Pluck Position
	Figure 3.15: The comb filter structure used to implement the effect of plucking position
	, (3.26)
	. (3.27)
	, (3.28)
	. (3.29)
	. (3.30)

	3.5.2 Plucking Style

	3.6 Multirate Model Structures
	, n = 1,…,M-1, (3.31)
	Figure 3.16: Magnitude response of a sparse halfband FIR filter of order 60.

	4 Guitar Model Implementation
	4.1 DSP-Library Classes
	Figure 4.1: Base classes of the LibRdsp library
	4.1.1 Signal Source
	4.1.2 Signal Drain
	4.1.3 Signal Processor
	4.1.4 Signal Filter
	4.1.5 Classical Filter Structures
	, (4.1)
	Figure 4.2: CFilter base class

	4.1.6 Ring Buffer
	Figure 4.3: Ring buffer class implementation.

	4.2 String Model Implementations
	4.2.1 Filter Classes
	,. (4.2)

	4.2.2 Single Delay Loop String Models
	Figure 4.4: CSimpleString block diagram.

	4.2.3 Dual-Polarization Model
	Figure 4.5: The dual-polarization string model class composition.

	4.3 Body Model Implementations
	4.3.1 Excitation Wavetables
	4.3.2 Shared Resonators

	4.4 Instrument Model Base Class
	Figure 4.6: Instrument model abstract base class.

	4.5 The Aggregate Guitar Model
	4.5.1 Model Structure
	Figure 4.7: Block diagram of the implemented guitar model with sympathetic coupling and shared bo...
	. (4.3)
	Figure 4.8: Recursive running sum filter structure.

	4.5.2 Guitar Model Classes

	4.6 Signal Processing on Workstation Platform
	4.6.1 Signal Processors vs. Microprocessors
	4.6.2 Operating Systems and Sound Subsystems

	5 Synthesis Model Control
	5.1 DSP Parameters of the Guitar Model
	5.1.1 Excitation Signals
	5.1.2 String Parameters
	. (5.1)

	5.1.3 Body Resonator Parameters
	(5.2)
	. (5.3)

	5.2 Dynamic Parameters
	1. There may be a transient in the output signal. Transients occur if the filter state variables ...
	2. Discontinuities occur in both recursive and nonrecursive signal processing structures because,...
	5.2.1 Interpolation
	5.2.2 Cross-Fading Method
	Figure 5.1: Cross-fading between two filter outputs.

	5.2.3 Transient Suppression
	Figure 5.2: The principle of transient elimination. The transient eliminator filter is run for Na...
	. (5.4)

	5.2.4 A Hybrid Method for Dynamic Delay Line Length

	5.3 Real-Time Control
	5.4 Summary of Current Control Protocols
	5.4.1 MIDI
	5.4.2 ZIPI
	5.4.3 Synthesis toolKit Instrument Network Interface
	5.4.4 Open SoundControl
	5.4.5 Structured Audio in MPEG-4

	5.5 A New Control Protocol and Its Application to the Guitar Model
	5.5.1 Addressing Mechanism
	Table 5.1: Allowed characters in protocol address and operation strings
	Figure 5.3: Control hierarchy of an orchestra synthesizer

	5.5.2 Operations and Parameters
	Table 5.2: The reserved operations
	Table 5.3: Dynamic levels and dynamics values.

	5.5.3 Guitar Model Application
	Figure 5.4: Guitar model control tree.
	Figure 5.5: Control tree for a dual-polarization string model.
	, (5.5)
	, (5.6)

	5.5.4 Using the Protocol Over a Network Interface
	5.5.5 Discussion

	6 Conclusions and Future Work
	6.1 Thesis Summary
	6.2 Future Work
	References

