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e We learn to predict a Gaussian prior N (p,., 32,.) for clean pixel based on context €2,

e Known forward noise model maps this to a prior for noisy pixel N ( Ky, 32, ) which is
fit to observed noisy values y via maximum likelthood loss

Context e Optional: Auxiliary network 1s learned to estimate unknown noise model parameters £ ity e ﬂ [ |4
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: Noise parameters assumed unknown in all cases
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during training via masking [1, 2, 3] 31.0
e We construct branches with half-plane receptive 30.5 _ . . o o
- : J. Batson and L. Royer. Noise2Self: Blind denoising by self-supervision. In Proc. ICML, 2019.
fields, combine to cover all except center pixel 30.0
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