To appear in ACM TOG 30(4).

Clipless Dual-Space Bounds for Faster Stochastic Rasterization

Samuli Laine Timo Aila

Tero Karras Jaakko Lehtinen

NVIDIA Research*

Abstract

We present a novel method for increasing the efficiency of stochas-
tic rasterization of motion and defocus blur. Contrary to earlier ap-
proaches, our method is efficient even with the low sampling den-
sities commonly encountered in realtime rendering, while allowing
the use of arbitrary sampling patterns for maximal image quality.
Our clipless dual-space formulation avoids problems with triangles
that cross the camera plane during the shutter interval. The method
is also simple to plug into existing rendering systems.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms;

Keywords: rasterization, stochastic, temporal bounds, dual space

1 Introduction

Traditional rasterization assumes a pinhole camera and an infinitely
fast shutter. These assumptions cause the rendered image to lack
two effects that are encountered in real-world images: motion blur
and defocus blur. Motion blur is caused by visible objects moving
relative to the camera during the time when the shutter is open,
whereas defocus blur is caused by different points of the camera’s
lens seeing different views of the scene.

Most realtime rendering algorithms use point sampling on the
screen and average the resulting colors to get pixel colors. In
stochastic rasterization, we associate time (¢) and lens position
(u, v) with each sample. The resulting average implicitly accounts
for motion and defocus blur.

In a traditional (non-hierarchical, non-stochastic) rasterizer, one
would find the 2D bounding box of the triangle on the screen and
test all samples within it. With this approach, the number of in-
side/outside tests is typically a few times larger than the number
of samples actually covered by the triangle. This brings us to an
important predictor for rasterization performance: sample test effi-
ciency (STE), which is defined as the number of samples covered
divided by the number of samples tested [Fatahalian et al. 2009].

In a stochastic rasterizer, achieving good STE has been one of the
most elusive goals. If we just find the bounding box of the triangle
in screen space, that does not guarantee high STE. Consider the ex-
ample of a triangle that covers only one sample. If we add motion
blur and allow the triangle to move from one image corner to an-
other, it will still cover only approximately one sample, but its 2D
bounding box is the whole screen. The sample test of a stochastic
rasterizer is also several times more expensive than in traditional
rasterization, further amplifying the performance impact of STE.
Interestingly, stochastic rasterization does not appreciably increase
the cost of shading [Cook et al. 1987; Ragan-Kelley et al. 2011].

Our goal is to make STE less dependent on the amount of motion
or defocus blur, especially in the context of relatively low sam-
pling densities of realtime rendering, where the current offline ap-
proaches [Cook et al. 1990] are inefficient. Contrarily to some re-

*e-mail: {slaine,taila,tkarras,jlehtinen} @nvidia.com

cent approaches that improve STE by restricting to specific (lower
quality) sampling patterns [Fatalian et al. 2009], our work focuses
on achieving high STE without sacrificing quality, allowing the use
of arbitrary sample sets. We achieve this by computing u, v and ¢
bounds for a pixel or a tile of pixels during rasterization, and then
avoiding the processing of samples that fall outside the computed
bounds.

We assume that the motion of the vertices is linear in world space,
and that the depth of field effect is physically based. We perform the
computation of (u,v) bounds after projecting the vertices to screen
space. This is feasible because the apparent screen-space motion
of a vertex is always affine with respect to lens coordinates. For
t bounds, motion along z makes the situation much more compli-
cated because linear motion in 3D is mapped to non-linear motion
on the screen, and camera plane crossings cause singularities. To
avoid these problems, we instead work in a linear dual space where
the operations required for computing the bounds are linear and
straightforward, and the lack of perspective division ensures that
there are no singularities.

Our algorithm has the following desirable properties:

e Clipless dual-space formulation avoids problems with trian-
gles that cross the camera plane during the shutter interval.

e High STE is achieved for arbitrary sampling patterns.

e Unlike in previous methods, each primitive is set up exactly
once.

2 Previous Methods

Akenine-Moller et al. [2007] describe a practical stochastic raster-
ization algorithm for rendering triangles with motion blur. They
fit an oriented bounding box that contains the triangle during the
exposure time, i.e., t € [0, 1], enumerate the pixels that the OBB
overlaps using hardware rasterization, and finally test each sam-
ple against the moving triangle. This basic structure can be found
in other stochastic rasterization methods as well. McGuire et al.
[2010] enumerate the pixels in a 2D convex hull formed by the six
vertices of a triangle att = 0 and ¢ = 1, which covers the projection
of the triangle at all ¢ given that the triangle stays in front of camera
plane. Near clipping is handled as a complicated special case.

Pixar Let us consider a simple example: a pixel-sized quad moves
X pixels during the exposure, and our frame buffer has S stratified
samples per pixel. A brute force algorithm (or indeed [Akenine-
Moller et al. 2007] and [McGuire et al. 2010]) would test all of
the S x (X + 1) samples. Cook et al. [1990] improve this by
processing the exposure time in multiple parts. For example, if we
split it into two equally long parts, each covers % + 1 pixels and we
need % sample tests per pixel, thus the total amount of work reduces
to S X (% + 1). Further optimization is achieved by splitting the
exposure more densely, up to S parts.

In the general case, Cook et al. subdivide the (u,v) and ¢ domains
into NN strata, pair these to form (u, v, t) strata, compute a screen-
space bounding box for each stratum, and test all samples that are
covered by the bounding box and whose (u,v,t) coordinates are
within the stratum. At low sampling densities few splits can be

To appear in ACM TOG 30(4).

InterleaveUVT Sobol sampling InterleaveUVT Sobol sampling
4 spp 4 spp 16 spp 16 spp

Figure 1: Quality comparison between InterleaveUVT using 2x2
pixel tiles and a good sampling pattern generated using Sobol se-
quences. InterleaveUVT suffers from a limited number of unique
(u,v,t) triplets, especially with low sample counts common in re-
altime rendering. The test scene has both motion and defocus blur.

afforded and STE remains low, but efficiency improves when sam-
pling density increases.

As Hou et al. [2010] point out, the pairing between lens and time
strata imposes constraints on the sampling pattern, and therefore
creates correlation between defocus and motion blur. This can lead
to aliasing when both effects are combined. To make the method
better suited as a comparison method, we modify it slightly by re-
moving the pairing restriction. Instead, our modified Pixar algo-
rithm subdivides the (u,v,t) space into N1 X N2 X N3 strata, al-
lowing the entire space to be sampled using arbitrary sampling pat-
terns.

InterleaveUVT Fatahalian et al. [2009] discretize the (u, v, t) do-
main into N unique triplets, and perform traditional 2D rasteriza-
tion for each. The major improvement over accumulation buffer
[Haeberli and Akeley 1990] is the use of high-quality interleaved
sampling patterns. Instead of having all of the N triplets in ev-
ery pixel, as in the accumulation buffer, Fatahalian et al. organize
the frame buffer so that each tile (e.g. 2x2 pixels) contains all N
triplets. These are carefully assigned to (z,y) sampling positions
so that each tile can use a different permutation. This converts most
“ghosting” artifacts of the accumulation buffer into high-frequency
noise and the perceived image quality is vastly improved.

Because each (u, v, t) triplet is processed separately using 2D ras-
terization, the STE of InterleaveUVT is fairly high. However, the
bounding boxes of triangles need to be snapped to full tiles (due to
permutations), and this reduces the efficiency with small triangles.
Also, the fixed number of unique (u, v, t) triplets can reduce image
quality especially for concurrent motion and defocus, as illustrated
in Figure 1. Neither the modified Pixar method nor our new al-
gorithm have this limitation. In a realtime rendering context each
unique triplet implies a separate rasterization pass.

3 Our Algorithm for Bounding (u,v,t)

To illustrate our basic idea, let us consider a small triangle moving
horizontally across 10 pixels during a frame with no defocus blur.
As an example, the triangle covers the 7th pixel for approximately
t €[0.6,0.7] and all of the ~90% of the pixel’s samples outside
that interval can be trivially rejected. This general idea works for
less trivial motion and for any screen rectangle. It also applies to
(u, v) intervals on the lens. In this section we develop the details of
making the basic idea practical.

To render a triangle, we process the tiles inside its screen-space
bounds, determine the ¢ and (u, v) intervals for each tile, and then
test all samples within the tile that fall within those intervals. If any
of the intervals is empty, the tile can be discarded. Highest STE
is obtained with tile size of 1x1 pixels, but tiles can also be made
larger to decrease the number of per-tile calculations. These trade-

offs are discussed in Section 4.1. For hardware implementation, we
envision that the interval tests would be carried out by the hardware
rasterizer that already produces a sparse set of covered samples that
are compacted afterwards.

In the following, we start by deriving the intervals for an infinites-
imally small screen point, followed by a generalization to finite
tile size. We first explain our approach in the context of defocus
blur, and then consider motion blur. Our input consists of clip-
space vertex positions' (z,y,w) fort = 0 and t = 1, as well as the
signed radii of circles of confusion (CoC), also expressed in clip
space. These determine how the positions of the vertices change
from their lens-center locations as we change the lens coordinates.
In a physically-based setting, the signed CoC has an affine depen-
dence on depth w in clip space, i.e., CoC(w) = aw + b.

3.1 Bounds for (u,v)

The computation of u and v bounds is relatively simple because,
for vertices that are in front of the camera plane, we can apply the
perspective division and work with screen-space coordinates which
we denote & and y. The apparent motion of a screen-space ver-
tex (&,) is always affine with respect to lens coordinates, because
the depth of the vertex, i.e., its distance from the camera plane, is
constant over the lens.

We parameterize the lens by (u,v) € [0, 1]. As the first operation
we calculate two screen-space bounding boxes that cover all six
input vertices (three for ¢ = 0 and three for ¢ = 1), one for the min-
imum lens corner with coordinates (0, 0) and one for the maximum
corner at (1, 1). The bounding box of the union of these two boxes
is the set of pixels that need to be processed during rasterization.

Now, because the apparent motion of vertex is linear with respect to
lens coordinates, we can synthesize a conservatively correct bound-
ing box for any given lens coordinates by linearly interpolating be-
tween these two bounding boxes. The & coordinates of the bound-
ing boxes depend only on u, and similarly for ¢ and v, and therefore
all calculations can be performed separately for the two axes.

Let us first consider the calculation of » bounds for an infinitesimal
screen-space point at £. We will denote the horizontal bounding
box extents for u = 0 as [£45., Z%70] and similarly for v = 1. The
interpolated bounding box’s minimum & extent at a given u is

~ ~u=0 Au=1 ~u=0
mzlin = x?nin + u(xain - 2'/.&in)7 (1)
from which we can easily solve the u’ for which 2%, = #:
!/ ~ ~u=0 ~u=1 ~u=0
u = (':B - wqunin)/(x?nm - x%in) (2)

The sign of the denominator is the direction of movement with re-
spect to u. If positive, the range of u is limited to [—oco, %], and
otherwise to [u’, oo]. We can repeat Eq. 2 for the maximum % ex-
tent to derive another range. The intersection of the two ranges tells
for which u the bounding box overlaps 2. If the resulting range
does not overlap the lens domain [0, 1], we can skip the entire tile,
and otherwise we can limit the testing to samples within the range.

To extend from an infinitesimal Z to a finite tile size, we simply
enlarge the two initial bounding boxes by the half-length of the tile,
and let & denote the tile’s center.

Since we typically compute bounds for many tiles, it is beneficial

to rewrite Eq. 2 as u’ = aZ — b, where a is the reciprocal of the
denominator and b = az%;.. The per-tile cost is then 4x 1 fused

! After the viewing and perspective transforms have been applied but be-
fore the perspective division.

To appear in ACM TOG 30(4).

multiply-adds (FMA) for (u, v) bounds plus a few MIN/MAX oper-
ations, which is cheap compared to the ~25 FMAs required by each
sample test.

Vertices behind camera plane If some of the vertices are behind
the camera plane (w < 0), we need to detect on which sides of the
camera the moving triangle may cross the plane, and extend the
bounding boxes to the respective screen edges.

We examine (z, w) and (y, w) separately in clip space, and the fol-
lowing explanation focuses on (x, w), cf. Figure 2. If all of the six
vertices extended with their respective CoCs are on one side of the
camera (left or right), the solution is trivial. In more complicated
cases we use a separating line algorithm: If all of the extended ver-
tices are on the same side of some line that goes through the camera
point, the moving triangle cannot intersect the camera plane on the
opposite side.

In practice, to determine whether a moving triangle intersects the
camera plane on the right, we consider the six vertices extended
rightward according to their CoCs. We start with a separating line
candidate that goes through one of the vertices and the camera
point. Then we loop over the remaining points once, and for each
point we test if it is on the same side of the candidate as (oo, 0). If
so, the candidate is updated, and we test if the point that defined the
previous candidate is now on the same side as (co, 0). If this hap-
pens, there is no separating line. Otherwise, if all points have been
processed once, we have found a separating line and consequently
there is no intersection on the right.

3.2 Bounds for t

Based on extensive attempts to derive sensible formulae for ¢
bounds based on screen-space projections of vertices, we believe
that the perspective division should be avoided for two reasons.
First, linear motion of points in 3D translates to non-linear mo-
tion on the screen, making it necessary to use rational expressions
for tight £ bounds. This would increase the cost and complexity
of determining the ¢ bounds. Second, the division produces mean-
ingful results only for points that are in front of camera plane, and
cases where w < 0 need to be handled separately, including the
cases where the sign of w changes during the shutter interval. We
avoid these problems by performing the computations in a linear
dual space (slope-intercept space).

In the following, we consider only the x axis, and hence our input
vertices are in the two-dimensional zw clip space. The y axis is
handled separately, in the same fashion. We will initially ignore the
CoCs, and as with (u,v) bounds, we begin by calculating bounds
for infinitesimal screen-space points.

Dual space Our key insight is replacing the perspective projec-
tion by an orthogonal projection parameterized by view direction
~ € [—1,1]. Figure 3a illustrates the operation in clip space for a
single . A sightline from the camera towards direction vy can in-
tersect a triangle only if the corresponding orthogonal projection of
the triangle onto w = 0 includes the camera point. The projected
coordinate § of a point (z, w) is given by

§=x —wy 3)

and for overlap to occur we need dmin < 0 < dmax, where dmin and
dmax are the minimum and maximum § obtained for the vertices of
the triangle.

Figure 3b shows the same situation in dual space spanned by ~ and
0. From Eq. 3 it is apparent that points in clip space are mapped to
linear functions in dual space. Conversely, points in dual space are
mapped to lines in clip space, and in particular, the clip-space lines

E E) » X
Figure 2: Handling vertices behind the camera plane when calcu-
lating (u,v) bounds. Camera plane is the horizontal line at the bot-
tom, and frustum side planes are indicated by the diagonal lines. In
this example, the 2D convex hull of the six input vertices, extended
with their respective CoCs to the right, intersects the half-line from

camera towards x = —+oo, which is detected using a separating
line algorithm.

that go through the camera are mapped to points on the v axis in
dual space. Therefore we can figure out which directions, e.g., the
t = 0 triangle covers by determining which points on the v axis are
covered (lower shaded region in Figure 3b).

Let us now consider the intermediate ¢ values. First, let us fix some
~ and consider the § coordinate of a vertex that moves linearly in
clip space as ¢ changes from O to 1. From Eq. 3 we can see that
linear motion in z and w produces linear change in d; the linearity
is also apparent from Figure 3a. The ¢ range spanned by the three
vertices of a triangle can thus be conservatively estimated at any ¢
by linearly interpolating dumin and dmax according to ¢, i.e., 8t =
Srnin + t(Biin — Grain)-

There is still the problem that dmin and dmax are rather complex
piecewise-linear functions of . To avoid storing them as-is, we find
dual-space lines that bound the actual region, indicated as dashed
lines in Figure 3b, by computing dmin and dmax at v = —1 and
~v = 1. If we mapped these lines to points in (x,w), they would
correspond to points that stay on the left or right side of the triangle
at all ¢, when viewed using any v € [—1,1].

We now have everything we need for computing the ¢ bounds for
a given screen-space point at £. First we obtain ~ by scaling and
translating & to range [—1,1]. Based on this -y, we evaluate the
Omin and dmax for t = 0 and ¢ = 1 from the four bounding lines.
Because dmin and dmax can be conservatively estimated for any ¢
using linear interpolation, we can transform the requirement that
5:11111 <0< 6fnax to

Stin 4+ t(0imn — Otmin) < 0 < St 4+ t(0imk — Otmar), (4)

from which the ¢ bounds can be solved analogously to how the
(u,v) bounds were calculated. However, this time we cannot pre-
calculate the reciprocal as its value depends on 7.

Extensions and optimizations We take non-zero CoCs into ac-
count by biasing the x coordinates of vertices into the direction that
is appropriate for maintaining conservativeness, e.g., when calcu-
lating 6min We bias x towards the negative direction regardless of
the sign of the CoC radius. Tile extents are handled similarly, by
further increasing the bias by half of the tile extents in clip space
(obtained by multiplication by w). This way, during rasterization
we can evaluate the ¢ bounds at the tile center and obtain a range
that is valid for all points in the tile.

To appear in ACM TOG 30(4).

y range from bounding box
(©

Figure 3: (a) Relationship between (x,w) clip space and (v, §) dual space. Triangle att = 0 and t = 1 is projected onto w = 0 line along
direction '. The positions of the projected points are denoted §'. Extents [Smin, Omax| for t = 0 and t = 1 are shown with bold red. (b)
In dual space, the § of each vertex traces a linear function of ~y. Projection direction ' is shown as a blue dot and the corresponding &
ranges are highlighted. The regions covered by the triangle att = 0 and t = 1 are shaded, and the dashed lines bound these regions. (c) By
restricting our interest to a limited ~y range, a tighter fit can be obtained (solid lines). Only t = 1 is shown for clarity.

Since we will need the ¢ bounds only for pixels that the raster-
izer processes, we can safely limit the v range to the screen-space
bounding box computed in Section 3.1, thus allowing a tighter fit
(Figure 3c). Furthermore, we can neglect the ¥ where dmin iS pos-
itive for both ¢ = 0 and ¢ = 1, because the dual space point cannot
be covered for any ¢t € [0, 1], and similarly for v where dmax is
guaranteed to remain negative. The sign of ¢ still needs to be con-
servatively correct, so we employ this latter optimization only when
all vertices have w > 0, in which case the correctness of the sign
automatically follows from dmin and dmax being monotonic.

As vertices in front of and behind the camera are not distinguished
in the calculations, it is possible that a triangle that moves behind
the camera could have nonzero ¢ bounds for superfluous pixels, thus
reducing efficiency. As an optimization, we reduce the ¢ range from
[0, 1] to the time span the triangle actually spends, even partially, in-
side the frustum. This range is calculated by computing the triangle
extents at £ = 0 and ¢ = 1 with respect to the frustum side planes
and the camera plane and solving for the ¢ range where the triangle
is inside all planes.

We have only considered ¢ bounds computed for the x axis so far.
For the y axis we obtain similar bounds, and the final ¢ bounds
are found by intersecting these two along with the above ¢ range.
If motion is diagonal on screen, the intersection of the ¢ bounds
obtained for the x and y axes is empty outside the area traced by
the triangle. Therefore diagonal motion is handled as efficiently as
axis-aligned motion.

4 Results

We compare against the modified Pixar method and a brute-force
approach that tests all samples within a bounding box that covers
the triangle for all (u, v, t). We call the latter “Bbox scan”. We also
run the tests using InterleaveUVT, although it does not produce the
same images. Two of our test scenes were constructed from Di-
rectX captures from Age of Conan PC MMO (Funcom) and Assas-
sin’s Creed (Ubisoft), and have an average triangle area of about 40
pixels. The third test scene contains several highly tessellated car
models, and with an average triangle area of 0.4 pixels it has the
kind of statistics one might see in today’s film content. To intro-
duce motion blur, we added either camera or object motion, and for
defocus blur we increased camera aperture size and chose a suitable
focus distance.

Figure 4 shows our test scenes under motion and defocus. The sam-

2 3
2
7
<
2
n
<

Figure 4: Test scenes rendered with motion blur (left) and defocus
blur (right). Output resolution was 960x 540 with 16 spp.

ple coordinates were generated using a 5D Sobol sequence [Joe and
Kuo 2008], and the tests were done using 16 samples per pixel (spp)
for brute force and our method. We used a tile size of one pixel.
The number of samples has no effect on STE of brute force and our
method, but it does affect the STE of the modified Pixar method
that was therefore evaluated using three sample counts. The strata
subdivision was performed as follows. when only motion or depth
of field present, we subdivided only in ¢ or (u,v), respectively. In
the combined case we subdivided (u, v, t) into 2x2 x4 strata for 16
samples per pixel, and 4x4 x4 for 64 samples. For 4 samples, we
used 2x2x 1 subdivision, as it resulted in higher STE than 1x1x4.

The results are summarized in Table 1. The STE of our method was
practically immune to motion or defocus, when only one effect was
present, and the benefit over prior art increased with scene com-
plexity, peaking in the highly defocused CARS at 160 brute force
and 15x modified Pixar at 16 spp. When both effects are strong
in the same parts of the scene, the efficiency of all three methods
is reduced; CONAN shows an extreme example of strong camera
motion and defocus. Doubling the magnitude of motion or defocus
decreased the STE of comparison methods significantly, but had

To appear in ACM TOG 30(4).

Scene Bbox modified Pixar New
scan 4 16 64 method
CONAN 23.6 23.6 23.6 23.6 23.6
motion 2.7 9.5 17.7 21.9 23.7
motion X2 1.3 6.0 14.6 20.9 24.0
defocus 1.7 4.4 8.8 13.9 23.1
defocus x2 0.7 1.8 4.4 8.8 21.9
both 0.7 1.2 2.6 4.3 5.6
both x2 0.4 0.6 1.1 2.0 2.9
ASSASSIN 23.2 232 232 232 232
motion 10.8 19.5 22.4 23.1 23.4
motion X2 4.3 14.8 21.2 23.0 23.6
defocus 9.5 15.1 19.0 21.1 23.2
defocus x2 4.3 9.5 15.1 19.0 23.0
both 4.5 6.8 7.2 10.1 14.1
both x2 1.3 2.1 3.9 6.7 6.9
CARS 8.59 8.60 8.59 8.60 8.59
motion 0.50 2.97 6.43 8.02 8.63
motion X2 0.14 1.27 4.70 7.40 8.69
defocus 0.19 0.59 1.53 3.13 8.57
defocus x2 0.05 0.19 0.59 1.53 8.51
both 0.12 0.25 0.49 1.08 4.51
both x2 0.03 0.07 0.16 0.39 2.42

Table 1: STE results as percentages (higher is better). Rows with
scene name refer to static case without motion or depth of field.
X 2 means the shutter time was doubled, and in case of defocus the
aperture radius was doubled.

virtually no effect to our STE except in the combined case. As
expected, the STE of InterleaveUVT was approximately constant
regardless of motion or defocus, around 21% in the game scenes,
but only 3.8% in CARS. We emphasize again that it creates lower
quality images than the other methods, and a higher sample budget
would be needed for comparable quality.

4.1 Further Analysis

We have restricted our analysis to STE, which is an important fac-
tor in stochastic rasterization efficiency. However, when the screen
footprint of a triangle is heavily enlarged by the stochastic effects,
the per-tile computations will eventually start to dominate the over-
all performance. In practice, it may therefore be beneficial to em-
ploy techniques from previous work [Akenine-Moller et al. 2007;
McGuire et al. 2010] to construct a tighter 2D footprint and hence
reduce the number of tiles that need to be touched.

Assuming that the per-sample bound tests are carried out by the
hardware rasterizer with negligible cost, the remaining workload
can be divided into per-primitive setup, per-tile bound computa-
tion, and per-sample visibility test. In the Pixar method, the setup
cost is roughly 100 operations (multiply-add, compare, etc.), but
it has to be repeated for each (u,v,t) stratum. Similarly, Inter-
leaveUVT needs about 50 operations to setup the triangle for one
(u,v,t) tuple. With 16 samples per pixel and a 2x2 pixel tile, this
amounts to a total of 1600 and 3200 operations per primitive for the
two methods, respectively. Our method performs a setup of roughly
500 operations exactly once per primitive regardless of spp or tile
size. With 16 spp, the cost is significantly lower than with the com-
parison methods. With 4 spp, all three methods are roughly equal
in setup cost.

In our method, the total cost of computing (u, v, t) bounds for one
tile is about 40 operations. In cases where we have to perform mul-
tiple visibility tests per tile, the cost is comparably small. However,
in the CARS scene with defocus, the primitives are tiny enough

compared to the amount of blur to make the two costs roughly
equal. This bottleneck can be countered to a large extent by increas-
ing tile size to 2x2 pixels, which offered the best tradeoff in terms
of operation counts in all of our test scenes. Increasing the tile size
decreased the STE by 5-10% in the game scenes and by 16-55% in
CARS. However, the decreased STE was more than compensated
by the reduced amount of per-tile work, and the overall operation
count was decreased by 23-54% in CONAN, by 5-19% in ASSAS-
SIN, and by 26-57% in CARS.

It should be kept in mind that in a real hardware implementation
the actual area and power cost of each of the stages is not perfectly
correlated with the number of arithmetic operations, and hence the
above estimates based on operation counts should not be taken too
literally. For example, if the calculation of per-tile bounds were
performed in fixed-function hardware, its comparative cost might
be diminished enough to make increasing the tile size unnecessary
for all practical situations.

5 Discussion

One could consider using screen-affine motion as a simpler approx-
imation to perspective motion. We believe that this would provide
acceptable quality in most cases, and in fact started out by trying
to formulate our algorithm for screen-linear motion. Unfortunately,
clipping is a major problem, as the post projective vertex position
is undefined if the vertex lies on or behind the camera plane. We
initially implemented a time-continuous clipper that is executed be-
fore projecting the vertices, but this approach has the problem—in
addition to its inherent complexity—that the clip vertices of mov-
ing edges follow quadratic rational instead of linear rational tra-
jectories. This requires either significantly complicating the bound
calculations, or approximating the clip vertex motion by linear mo-
tion, which in turn can produce arbitrarily large errors in the image.
Despite our efforts, we were unable to find a robust solution for
screen-linear motion approximation.

Our STE is practically immune to the amount of defocus or mo-
tion blur, but the combined case is more difficult. The root cause
is that in this case both time and lens coordinates affect whether
a primitive covers a given screen-space point. The covered sam-
ples in such pixels lie inside an oblique region in (u,t) and (v, t)
spaces, whereas with just one effect they fall approximately inside
axis-aligned slabs. The oblique region cannot be perfectly bounded
by lines oriented along w, v, or ¢t axes, which explains the reduced
STE in our method. Interestingly, the image quality issues in In-
terleaveUVT and the original Pixar method are related to this phe-
nomenon. Both employ sparse sampling of the (u, v, t) space, but
still guarantee that projections to ¢ and (u, v) are individually well
stratified. When only one effect is present and the covered region
is an axis-aligned slab, the well-stratified projections ensure good
results, but when both effects are present and the covered region
is oblique, the sparseness of the joint distribution yields banding
artifacts.

Our method combines the high STE of InterleaveUVT with the free
positioning of samples. Unlike the comparison methods, we set up
and process every triangle exactly once regardless of the number of
samples. This makes our method comparatively easy to integrate
into existing rendering systems, and also makes it a viable candi-
date for hardware acceleration of stochastic rasterization. For fu-
ture work, we hypothesize that the efficiency of simultaneous mo-
tion and defocus blur could be further improved by constructing
non-axis-aligned bounds in (u, v, t) space.

To appear in ACM TOG 30(4).

Acknowledgments

‘We thank Funcom for the permission to use a test scene from Age of
Conan PC MMO and Ubisoft for the permission to use a test scene
from Assassin’s Creed. Kayvon Fatahalian and Solomon Boulos
provided helpful insights into previous work. We also thank Peter
Shirley, Eric Enderton and Jacopo Pantaleoni for discussions and
feedback, and the anonymous reviewers for corrections and sug-
gestions for improvement.

References

AKENINE-MOLLER, T., MUNKBERG, J., AND HASSELGREN, J.
2007. Stochastic rasterization using time-continuous triangles.
In Proc. Graphics Hardware, 7-16.

CoOOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
Reyes image rendering architecture. In Computer Graphics
(Proc. ACM SIGGRAPH 87), vol. 21, 95-102.

CoOK, R. L., PORTER, T. K., AND CARPENTER, L. C., 1990.
Pseudo-random point sampling techniques in computer graphics.
United States Patent 4,897,806.

FATAHALIAN, K., LUONG, E., BouLoS, S., AKELEY, K.,
MARK, W. R., AND HANRAHAN, P. 2009. Data-parallel raster-
ization of micropolygons with defocus and motion blur. In Proc.
High Performance Graphics, 59-68.

HAEBERLI, P., AND AKELEY, K. 1990. The accumulation buffer:
hardware support for high-quality rendering. In Proc. ACM SIG-
GRAPH, 309-318.

Hou, Q., QIN, H., L1, W., Guo, B., AND ZHOU, K. 2010.
Micropolygon ray tracing with defocus and motion blur. ACM
Transactions on Graphics 29, 4, 64:1-64:10.

JOE, S., AND Kuo, F. Y. 2008. Constructing Sobol sequences
with better two-dimensional projections. SIAM J. Sci. Comput.
30, 2635-2654.

MCGUIRE, M., ENDERTON, E., SHIRLEY, P., AND LUEBKE, D.
2010. Real-time stochastic rasterization on conventional GPU
architectures. In Proc. High Performance Graphics, 173-182.

RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M.,
AND DURAND, F. 2011. Decoupled sampling for graphics
pipelines. ACM Transactions on Graphics 30, 3.

