High-Performance Software Rasterization on GPUs

Samuli Laine

Tero Karras

NVIDIA Research*

Abstract

In this paper, we implement an efficient, completely software-based
graphics pipeline on a GPU. Unlike previous approaches, we obey
ordering constraints imposed by current graphics APIs, guarantee
hole-free rasterization, and support multisample antialiasing. Our
goal is to examine the performance implications of not exploiting
the fixed-function graphics pipeline, and to discern which addi-
tional hardware support would benefit software-based graphics the
most.

We present significant improvements over previous work in terms
of scalability, performance, and capabilities. Our pipeline is mal-
leable and easy to extend, and we demonstrate that in a wide variety
of test cases its performance is within a factor of 2-8x compared to
the hardware graphics pipeline on a top of the line GPU.

Our implementation is open sourced and available at
http://code.google.com/p/cudaraster/

1 Introduction

Today, software rasterization on a CPU is mostly a thing of the
past because ubiquitous dedicated graphics hardware offers signif-
icantly better performance. In the early times, the look of GPU-
based graphics was somewhat dull and standardized because of the
lack of programmability, but currently most of the stages of the
graphics pipeline are programmable. Unfortunately, it looks like
the increase in programmability has hit a limit, and further free-
dom would require the capability of changing the structure of the
pipeline itself. This, in turn, is firmly rooted in the graphics-specific
hardware of the GPU, and not easily changed.

The hardware graphics pipeline is a wonderfully complicated piece
of design and engineering, guaranteeing that all kinds of inputs are
processed efficiently in a hardware-friendy fashion. On the flip side,
the complexity means that breaking the meticulously crafted struc-
ture almost certainly results in a disaster, making an incremental
change towards a more flexible pipeline difficult. Fortunately, a
modern GPU does not consist solely of graphics-specific units. A
large portion of the work in the graphics pipeline—most notably
the execution of vertex and fragment shaders but also the other
programmable stages—is performed by the programmable shader
cores. Most of the responsibilities of the remaining hardware re-
volve around data marshaling and scheduling, e.g., managing prim-
itive FIFOs and frame buffer caches in on-chip memory, fetching
shader input data into local memory prior to shader execution, trig-
gering shader executions, running ROP, and so on. The graphics-
specific units also perform a number of mostly trivial calculations
such as edge and plane equation construction and rasterization, and

*e-mail: {slaine,tkarras } @nvidia.com

some non-trivial but not as performance-critical ones such as clip-
ping.

Since NVIDIA introduced CUDA [2007], the programmable shader
cores have also been exposed for general-purpose programs. The
overall architecture of a GPU is still chiefly optimized for running
the graphics pipeline, which has implications to the kind of pro-
grams that can be run efficiently. As such, one could expect to
obtain a decent performance from a purely software-based GPU
graphics pipeline. The main question is how expensive it becomes
to handle the duties of the graphics-specific hardware units in soft-
ware. If we only consider raw FLOPs the situation does not look too
grim, because with today’s complex shaders, the calculations per-
formed by the hardware graphics pipeline constitute only a small
part of the overall workload. Data marshaling and scheduling is a
more likely source of inefficiency, but we can expect the high mem-
ory bandwidth and exceptionally good latency-hiding capabilities
of GPUs to offer some help.

In this paper, our mission is to construct a complete pixel pipeline,
starting from triangle setup and ending at ROP, using only the pro-
grammable parts of the GPU. We employ CUDA for this task be-
cause it offers the lowest-level public interface to the hardware.
In order to capture the essential challenges in the current graph-
ics pipeline and to avoid oversimplifying the task, we obey sev-
eral constraints imposed by current graphics APIs. Unlike previ-
ous approaches, we strictly enforce the rendering order, therefore
enabling order-dependent operations such as alpha blending, and
producing deterministic output which is important for verification
purposes. Furthermore, we guarantee hole-free rasterization by em-
ploying correct rasterization rules.

Goals Our endeavor has multiple goals. First, we want to es-
tablish a firm data point of the performance of a state-of-the-art
GPU software rasterizer compared to the hardware pipeline. We
maintain that only a careful experiment will reveal the perfor-
mance difference, as without an actual implementation there are
too many unknown costs. Second, constructing a purely software-
based graphics pipeline opens the opportunity to augment it with
various extensions that are impossible or infeasible to fit in the
hardware pipeline (without hardware modifications, that is). For
example, programmable ROP calculations, trivial non-linear raster-
ization (e.g., [Gascuel et al. 2008]), fragment merging [Fatahalian
et al. 2010], stochastic rasterization [Akenine-Moller et al. 2007]
with decoupled sampling [Ragan-Kelley et al. 2011], etc., could be
implemented as part of the programmable pipeline.

Thirdly, by identifying the hot spots in our software pipeline, we
hope to illuminate future hardware that would be better suited for
fully programmable graphics. The complexity and versatility of the
hardware graphics pipeline does not come without costs in design
and testing. In an ideal situation, just a few hardware features tar-
geted at accelerating software-based graphics would be enough to
obtain decent performance, and the remaining gap would be closed
by faster time-to-market and reduced design costs.

2 Previous Work

The main use of GPUs is doing rasterization using the hardware
graphics pipeline. The steady increase in GPU programmability

has sparked research of more exciting rendering paradigms such as
ray tracing, first by painstakingly crafting the algorithms to fit the
hardware graphics pipeline (e.g., [Purcell et al. 2002]), and later
in less contrived ways through more direct programming interfaces
(e.g., [Aila and Laine 2009]). There are long-standing limitations in
the hardware rasterization pipeline, e.g., non-programmable blend-
ing, that restrict the set of algorithms that can benefit from hardware
acceleration. Despite this, there have been few attempts to perform
the entire rasterization process using a software graphics pipeline,
which would allow complete freedom in this sense.

FreePipe [Liu et al. 2010] is a software rasterization pipeline that
focuses on multi-fragment effects. Scheduling is very simple: each
thread processes one input triangle, determines its pixel coverage
and performs shading and blending sequentially for each pixel.
There are numerous limitations in this approach that make it un-
suitable for our purposes. Obviously, ordering cannot be retained
unless only one triangle is processed at a time, but this would waste
most of GPUs resources. Even if ordering constraints are dropped,
highly variable number of pixels in each triangle leads to poor
thread utilization. Finally, if the input consists of a handful of large
triangles, e.g., in a post-processing pass where the entire screen is
covered by two triangles, it is not possible to employ a large number
of threads.

Because of the way the frame buffer operations are implemented us-
ing global memory atomics, FreePipe can support only 32-bit wide
data on current GPUs. This means that all per-pixel data, i.e., both
color and depth, has to fit in the 32-bit value. Conflicting cases
where depth and color of two fragments are equal may be missed
due to a race condition.

The performance of FreePipe is excellent when there are many
small, fairly homogeneously sized triangles, and can even exceed
the performance of the hardware graphics pipeline in certain cases.
Despite this, our software pipeline is more capable than FreePipe,
and in most cases more efficient as well, as demonstrated in Sec-
tion 6.

Loop and Eisenacher [2009] describe a GPU software renderer for
parametric patches. In their system, patches are subdivided hier-
archically until a size threshold is reached, after which they are
binned into screen tiles using global memory atomics. After bin-
ning, patches are further subdivided into a grid of 4 x4 samples,
and the resulting quads are rasterized in a pixel-parallel fashion so
that each thread processes one pixel of the tile.

Larrabee [Seiler et al. 2008] is a hardware architecture that tar-
gets efficient software rasterization. Its sort-middle rasterization
pipeline is similar to ours, but the only performance results are from
synthetic simulations due to lack of physical hardware. The pa-
per explicitly mentions that the simulations measure computational
speed, unrestricted by memory bandwidth. This may cause inaccu-
racies in the results, as in a real-world situation the DRAM latency
and bandwidth are rarely negligible.

3 Design Considerations

Graphics workloads are non-trivial in many ways. Each incom-
ing triangle may produce a variable number of fragments, the exact
number of which is unknown before the rasterization is complete.
The number of fragments can vary wildly between different work-
loads, and also within a single batch of triangles. Approximately
half of incoming triangles are usually culled, producing no frag-
ments at all. Occasionally, a visible triangle may cross the near
clip plane or the guardband-extended side clip planes, necessitating
clipping that may produce between zero and seven sub-triangles.

Furthermore, the triangles need to be rasterized in the order they
arrive, as mandated by all current graphics APIs. The ordering re-
striction guarantees deterministic output in case of equal depth, and
enables algorithms such as alpha blending. It is possible to lift the
ordering constraints in certain specific situations, for example when
rendering a shadow map, but in most rendering modes the orderning
has to be preserved.

3.1 Target Platform

In this paper, we target NVIDIA Fermi architecture, and more
specifically the GTX 480 model that offers the highest computa-
tional power and memory bandwidth in the GeForce 400 series.
The GF100 Fermi GPU in GTX 480 has 15 SMs (streaming multi-
processors) that can each hold at most 48 warps, i.e., groups of 32
threads that are always mutually synchronized. The warps are log-
ically grouped into CTAs (cooperative thread arrays), i.e., thread
blocks. Each CTA can synchronize its warps efficiently, and all
its threads have access to a common shared memory storage, al-
lowing fast communication. For a more comprehensive description
of the execution model, we refer the reader to CUDA documenta-
tion [NVIDIA 2007].

In GF100, each SM has a local 64 KB SRAM bank that is used for
L1 cache and shared memory. Shared memory size can be config-
ured to either 16 KB or 48 KB, and the L1 cache occupies the rest
of the space. We use the 48 KB shared memory option, because this
maximizes the amount of fast memory available to the threads. The
L2 cache is 768 KB in size, and it is shared among all SMs. The
hardware graphics pipeline is able to pin portions of L2 memory
for use as on-chip queues between pipeline stages, but in compute
mode this is not possible.

Texture units are accessible in compute-mode programs, and they
can be used for performing generic memory fetch operations. The
texture cache is separate from L1 and L2 caches, and therefore per-
forming a portion of memory reads as texture fetches maximizes
the exploitable cache space. A texture fetch has longer latency than
a global memory read, but the texture unit is able to buffer more
requests than the rest of the memory hierarchy.

Atomic operations can be performed both in global memory and in
shared memory. As can be expected, global memory atomics have
significantly higher latency than shared memory atomics. In gen-
eral, shared memory accesses are more efficient than global mem-
ory accesses, which favors algorithms that can utilize a small, fast
local storage space. The graphics pipeline utilizes dedicated ROP
(raster operation) units that perform blend operations and frame
buffer caching, allowing SM to perform frame buffer writes in a
fire-and-forget fashion. In compute mode the ROP units are not
accessible, which forces us to carry out these operations in SM.

As in any massively parallel system, the best performance is ob-
tained by minimizing the amount of global memory traffic, by min-
imizing the amount of expensive synchronization operations, and
by ensuring that as many threads as possible are executable at any
given time, i.e., not disabled or pending synchronization or mem-
ory operation. In our target platform this translates to using shared
memory instead of global memory where possible, avoiding syn-
chronization across CTAs, and keeping as many threads active as
possible by avoiding execution divergence.

3.2 Buffering and Memory

The hardware graphics pipeline buffers as little data as possible and
keeps it in on-chip memories. This behavior cannot be replicated
in software as-is, because the graphics-specific buffer and queue

Triangle (Bin)

(T iangl)
riangle setup data rasterizer

Input data

Bin queues

) . (
Tile queues

Fine)

rasterizer

(" Coarse

i Fram ffer
rasterizer 2l b

)

'—*(CTAO) =

+(CTAO) (warp0)

o

—|-—* CTA 1
[l

[)| Authreads ([

f [;

»(cTA1 ——-‘

|
l,(Warp n <Ilﬂ]>Pixe|data

Warp 299

G
(.)

Vertices Indices

Clip [CTA 14] =
\) subtri j—‘l>
\

g J

g J g J

Figure 1: A high-level diagam of our software rasterization pipeline. The structure is discussed in detail in Sections 4 and 5. Triangle setup
stage processes the input triangles and produces one triangle data entry for each input triangle. Bin rasterizer CTAs read the entries in large
chunks and each CTA produces a queue of triangles for each bin to avoid synchronization when writing. These queues are merged in coarse
rasterizer, where each CTA processes one bin at a time and produces per-tile triangle queues. The per-tile queues are processed by the fine

rasterizer, where each warp processes one tile at a time.

management hardware is inaccessible, and emulating it in software
would be costly. In addition, launching different types of shaders
on-demand is not possible. Fortunately, the GPU memory architec-
ture is very efficient and offers a lot of bandwidth even to off-chip
DRAM. Therefore, as long as the amount of data being transferred
is not excessive, we can simply stream the inputs and outputs of
each pipeline stage through DRAM without devastating overhead.
This has the advantage of enabling a chunking, or sort-middle [Mol-
nar et al. 1994], architecture, where data locality is captured early
in the pipeline and exploited in later stages.

In a sort-middle architecture, the amount of frame buffer traffic is
minimal. After enough, optimally all, of the primitives touching a
screen-space tile are buffered beforehand, we can transfer the frame
buffer tile to on-chip memory once, perform the per-pixel opera-
tions, and submit the tile back into DRAM. In our implementation,
non-MSAA modes function like this, but with MSAA the amount
of data per tile is too large to be kept in on-chip memory and there
is therefore significantly more frame buffer traffic. Inaccessible to
us, the hardware ROP employs frame buffer compression to reduce
the amount of off-chip memory traffic. In cases where we trans-
fer the tile only once, we expect the benefits of compression to be
negligible.

To maximize the benefits of a sort-middle architecture, we execute
the entire pipeline from start to finish for as large portion of input
as possible, and store the entire intermediate buffers in DRAM. The
batch sizes can be maximized by grouping together draw calls for
the same render target, and choosing the shader in the fine rasterizer
stage based on a per-triangle shader ID. This avoids the need to
flush the pipeline except when absolutely necessary, for example
when binding a render target to a texture.

The worst-case output of a pipeline stage is usually so large com-
pared to average output that it does not make sense to allocate buffer
space for the worst-case situation. Instead, we detect when a buffer
runs out of space, so that the batch can be aborted and the data can
be submitted again in smaller batches. This is not a particularly el-
egant solution, but works very well in practice as the workload in
typical content rarely varies much from frame to frame. In addition,
by monitoring the data sizes, the overruns can usually be prevented
in advance.

3.3 Queues and Synchronization

To minimize the risk of execution stalls, we have decided to avoid
any inter-CTA synchronization when reading from and writing to
queues. This design choice has a large impact on the implemen-
tation of the pipeline. First of all, writing to any queue must be
performed by a single CTA that can synchronize efficiently inter-
nally. Furthermore, one CTA can only write to a limited number
of queues efficiently. To perform efficient parallel queue writes, we
need to use shared memory for collecting the elements to be writ-
ten to each queue and calculating an output offset for each element.
The amount of shared memory therefore limits the maximal data
expansion factor of a pipeline stage.

To utilize the available memory efficiently, we allocate memory dy-
namically to queues as they are written to, and each allocation un-
avoidably requires one globally atomic operation. To minimize the
number of allocations, our queues consist of segments which are
equally-sized, contiguous memory ranges, and a queue is a linked
list of references to these segments. Allocating memory is neces-
sary only when the last segment of a queue becomes full.

3.4 Rasterization

Fine rasterizer, i.e., the unit that determines which samples of a
small pixel stamp are covered by the triangle, is traditionally held
as one of the crown jewels of the hardware graphics pipeline. The
parallel evaluation of the edge functions at sampling points for mul-
tiple samples using custom ALUs is extremely area- and power-
efficient. However, if we consider all of the calculations that are
performed per-fragment, we can legitimately suspect that this is not
a major portion of the overall workload. Therefore, we shall not let
the lack of access to the hardware rasterizer dispirit us, and expect
that a properly optimized software rasterizer will provide sufficient
performance.

4 Pipeline Structure

In this section, we describe the high-level design of our pipeline.
We start with an overview, and continue by discussing in detail how
data is passed between stages and how each stage is parallelized.
The structure of the pipeline is illustrated in Figure 1.

Our pipeline consists of four stages: triangle setup, bin rasterizer,
coarse rasterizer, and fine rasterizer. Each stage is executed as a
separate CUDA kernel launch. We exclude the vertex shader from
consideration, as it can be trivially executed as a one-to-one mapped
CUDA kernel without any ordering constraints. Triangle setup per-
forms culling, clipping, snapping, and calculation of plane equa-
tions. Bin rasterizer and coarse rasterizer generate, for each screen-
space tile, a queue that stores the triangle IDs that overlap the tile.
The reasons for splitting this operation in two stages are discussed
below. The last stage, fine rasterizer, processes each frame buffer
tile, computing exact coverage for the overlapping triangles, exe-
cuting the shader, and performing ROP.

4.1 Dataflow

The input of triangle setup is a compact array of triangles. Likewise,
the output is an array of triangles, but there is no direct one-to-one
mapping between input and output. In the majority of cases, each
input triangle generates either zero or one output triangles due to
culling, and in rare cases the clipper may produce many output tri-
angles. We could either produce a continuous, compacted triangle
array as output, or artificially keep one-to-one relationship between
input and output, and compact/expand the output array of set-up
triangles as it is read into the next stage. Because at this point we
do not have any input parallelism, i.e., there is only one input ar-
ray, we have chosen to do the latter. This relieves us from ordering
concerns and allows us to trivially employ the entire GPU.

After triangle setup, culling, and clipping, each triangle may gen-
erate a variable amount of work. The trivial solution is to expand
each triangle directly to pixels and shade them immediately, which
is what FreePipe [Liu et al. 2010] does. Because of the numerous
problems related to this approach, as discussed in Section 2, we in-
stead turn to the standard sort-middle solution, which is to divide
the screen into tiles, and for each tile construct a queue of triangles
that overlap it. If we wish to keep the frame buffer content of a tile
in shared memory during shading, the tiles need to be fairly small.
In practice, this limits us to 8 x8 pixel tiles with 32-bit depth and
32-bit color in non-antialiased mode. Unfortunately, with this small
tiles, even a modestly sized viewport will contain many more tiles
than can be efficiently written to from a single CTA, for reasons that
were outlined in Section 3.3.

Our solution is to split this part of the pipeline into two stages, bin
rasterizer and coarse rasterizer. We first rasterize the triangles into
bins that contain 16x 16 tiles, i.e., 128 x 128 pixels, and after that
process each bin to produce per-tile queues. By restricting the view-
port size to 2048 x 2048 pixels, i.e., 16 16 bins, the expansion fac-
tor is limited to 256 in both stages. This is small enough to allow
efficient queue writes, as detailed in Section 5.2.

4.2 Parallelization

Let us now consider how to properly employ the entire GPU in
each stage. Triangle setup is trivial, because we enforce one-to-
one mapping and can therefore process the input without worrying
about ordering or compacting the output. The next stage, bin raster-
izer, is the most complicated to parallelize. Given that there is only
one input queue from the triangle setup, and the triangles in each
per-bin queue need to be in input order, the obvious choices are
either utilizing only one CTA or performing expensive inter-CTA
synchronization before every queue write to ensure ordering.

Neither of these options is attractive. Instead, our solution is to pro-
duce as many per-bin queues as we launch bin rasterizer CTAs, so
that every CTA writes to its own set of per-bin output queues. This
is similar to the approach taken by Seiler et al. [2008]. This removes

the need to synchronize between CTAs when writing, and each in-
dividual output queue is still internally in order. When reading the
per-bin queues, the coarse rasterizer has to merge from multiple
queues. The cost of merging is decreased by having the bin raster-
izer process the input in large, continuous chunks. This way, the
merging can be done on a per-segment basis instead of per triangle.

The coarse rasterizer can be easily parallelized by processing each
bin in a separate CTA with as many threads as possible. This avoids
conflicts among inputs and outputs between individual CTAs. The
number of nonempty bins is typically higher than the number of
concurrently executing CTAs, yielding fairly good utilization. The
fine rasterizer is also trivial to parallelize by processing each tile
in a single warp. As long as there are enough nonempty tiles in
a frame, the entire GPU is properly utilized and each warp has an
exclusive access to its inputs and outputs.

5 Pipeline Stages

We shall now examine each of the four pipeline stages in detail.
For the sake of clarity, queue memory management and overrun
detection are left out of the description, as well as several low-level
optimizations.

5.1 Triangle Setup

The triangle setup is executed using a standard CUDA launch, and
each thread is given the task of processing one triangle. Ordering is
implicitly preserved, because each set-up triangle is written to the
output array in the index corresponding to the input triangle.

Each input triangle is an index triplet that refers to vertex positions
that are stored in a separate array created by a previously executed
vertex shader. After reading the vertex positions, view frustum
culling is performed, after which the vertex positions are projected
into viewport and snapped to fixed-point coordinates. If any of the
vertices is outside the near or far clip plane, or the AABB (axis-
aligned bounding box) of the projected triangle is too large, the tri-
angle is processed by the clipper. In this case, each of the resulting
triangles is snapped and processed sequentially by the same thread,
and appended into a separate subtriangle array.

Multiple culling tests are performed for each triangle. If the triangle
is degenerate, i.e., has zero area, it is culled, as well as if the area
is negative and backface culling is enabled. If the AABB of the tri-
angle falls between the sample positions, we also cull the triangle.
This test is very effective in culling thin horizontal and vertical tri-
angles that often result when viewing distant axis-aligned geometry
in perspective. Finally, if the AABB is small enough to contain only
one or two samples, we calculate their coverage, and if no samples
are covered, we cull the triangle. This ensures that for densely tes-
sellated surfaces, we output at most one triangle per sample, which
can be much fewer than the number of input triangles.

If the triangle survives the culling tests, we compute screen-space
plane equations for (z/w), (u/w), (v/w), and (1/w), which are all
linear. We also separately store minimum (z/w) over all vertices
to enable hierarchical depth culling in the fine rasterizer stage.

Our implementation is optimized for the common case where the
triangle produces zero or one outputs due to culling. In these cases,
the output record is self-contained, and no dynamic memory allo-
cation is needed. If the triangle needs to be clipped, we insert the
resulting subtriangles in a separate array, and the output record con-
tains references to these. Each clipped triangle therefore requires
that we reserve space from the end of the subtriangle array by a
global memory atomic. However, this happens so infrequently that
the cost is negligible.

5.2 Bin Rasterizer

We execute one bin rasterizer CTA per SM, each containing 16
warps and therefore 512 threads, and keep these CTAs running un-
til all triangles are processed. We use persistent threads in a sim-
ilar fashion as Aila and Laine [2009] did in context of GPU ray
tracing, but for different reasons; our primary goal is to minimize
the total number of per-CTA queues. Each of the 15 CTAs works
independently, except when picking a batch of triangles to be pro-
cessed, which is performed using a global memory atomic. To re-
duce the number of atomic operations, the input is consumed in
large batches. The batch size is calculated based on the input size.

After acquiring an input batch, we enter the input phase where set-
up triangles are read from the batch. Each of the 512 threads reads
one triangle setup output record, which may correspond to 0-7 tri-
angles. A cumulative sum of triangles is calculated over all threads
to determine storage position for each subtriangle in a triangle ring
buffer that is stored in shared memory. This compacts away culled
triangles and spreads out the subtriangles produced by the clipper.
As long as the input batch is not exhausted and there are fewer than
512 triangles in the ring buffer, the input phase is repeated. Note
that the triangles are stored in the ring buffer in the same order they
are read from the input.

When we have collected 512 triangles, or the input batch is ex-
hausted, we switch to rasterization phase where each thread pro-
cesses one triangle. First, we determine which bins the triangle cov-
ers. Edge functions and an AABB are calculated from the snapped
fixed-point vertex coordinates, and each bin covered by the AABB
is checked for overlap by the triangle. If the AABB covers at most
2 %2 bins, which is the most common case, we skip the overlap tests
and edge function setup, and simply assume that the triangle over-
laps each bin. When the AABB coverageis 1 x1, 1x2, or 2x1 bins,
this is in fact the correct solution as the triangle must overlap each
of those bins, and in 22 case at least three bins are guaranteed to
be covered.

We tag the overlapped bins in a bit matrix in shared memory that
holds one bit per triangle per bin. With 512 triangles and a maxi-
mum of 16x 16 bins, this amounts to 16 KB, consuming one third
of the 48 KB available in shared memory. After the coverage of
all triangles has been resolved, we synchronize the CTA and cal-
culate the output indices for the triangles in each per-bin output
queue. Each thread is responsible for writing its own triangle, so it
needs to know the proper output index for each of the covered bins.
We calculate this by first tallying per-bin, per-warp write counts,
which are then cumulatively summed over to determine start in-
dex for each warp for each bin. When writing the triangles, the
threads in each warp calculate their own output indices within the
warp using intra-warp one-bit cumulative sums that are efficiently
supported by the hardware.

The calculation of output indices is performed in such an order that
the triangle IDs are stored in the output queues in the same order
they were read in. When the input batch is finished, we flush the
output queues by marking the last segments as full before proceed-
ing to grab the next input batch. This ensures that merging the
per-CTA queues on a per-segment basis, instead of per-triangle, is
sufficient in the coarse rasterizer stage, because each segment cor-
responds to a single, continuous part of the input.

5.3 Coarse Rasterizer

Similarly to bin rasterizer, we execute one coarse rasterizer CTA per
SM and keep them running until all input is processed. Each CTA
has 16 warps, again amounting to 512 threads per CTA. We sort the

start

tri

frag

(a) Input phase (b) Shading phase

Figure 2: Coverage calculation and fragment distribution in fine
rasterizer. (a) In the input phase, all threads in a warp calculate
coverage for one triangle, and the coverage masks are stored in a
ring buffer. Empty coverage masks are compacted away. To keep
track of the fragment count, a running total of fragments is also
stored for each triangle. (b) In the shading phase, each thread
marks the start of one triangle in a bitmask, based on fragment
counts. Because empty coverage masks have been culled, no con-
flicts can occur. Then, based on the bitmask, each thread can cal-
culate the indices of the triangle and the fragment it should shade.

bins from largest to smallest by each CTA, and process them in this
order to minimize end-of-launch underutilization.

At any given time, each CTA works on exactly one bin, and no two
CTAs can be processing the same bin. We therefore start by picking
a bin to process using a global memory atomic, and similarly to bin
rasterizer, enter the input phase. We read an entire segment at a
time, and each time need to determine which of the 15 input queues
from the bin rasterizer contains the next segment in input order.
This is easily done by looking at the triangle index of the next entry
of each queue, and choosing the smallest one.

When at least 512 triangles have been read, we enter the rasteriza-
tion phase where each thread processes one triangle. Similarly to
bin rasterizer, we determine which tiles of the bin each triangle cov-
ers, and tag these into a bit matrix in shared memory. The writing
of triangles into per-tile queues is performed differently, because
in coarse rasterizer there is much more variance in the number of
covered tiles between triangles.

Instead of writing one triangle from each thread, we calculate the
total number of writes the CTA has to perform, and distribute these
write tasks evenly to all 512 threads. To perform a write, the thread
has to find, based on the task index, which tile the write is targeted
for, which warp is responsible for it, and finally, which triangle is
in question. Each of these is implemented as a binary search over a
small domain. Even though each individual write is fairly compli-
cated, this balancing provides speedup over the simpler thread-per-
triangle approach used in bin rasterizer.

5.4 Fine Rasterizer

The work in fine rasterizer is divided on a per-warp basis, and there
is no communication between warps. We launch 20 warps per SM
and keep them running until the frame is finished. Each warp pro-
cesses its own tile, which is selected using a global memory atomic,
and has an exclusive access to it. We shall first discuss the non-
MSAA case, where we store the frame buffer tile in shared mem-
ory. If we are processing the first batch after a clear, we set up a
cleared frame buffer tile in shared memory. Otherwise, we read the
tile from DRAM. We can afford keeping per-pixel 32-bit RGBA
color and 32-bit depth in shared memory, amounting to 10 KB with
8% 8 pixel tiles and 20 warps.

0110111 LUT A [2][011]

(a) (b)
Figure 3: Our 8x8 pixel coverage calculation is based on look-
up tables. Based on relative positions of vertices, we swap/mirror
each coordinate so that the slope of the edge is between 0 and 1. (a)
We then determine the height of the edge at leftmost pixel column,
and for each column transition we determine if the edge ascends by
one pixel. This yields a string of 7 bits. (b) The coverage mask is
fetched in two pieces from a look-up table. The offset for the second
lookup is obtained by incrementing the first offset by the number
of set bits among the first four bits. With this technique, a 8x8
pixel coverage mask can be produced in 51 assembly instructions
per edge on GF100. The splitting of the look-up table is done to
shrink the memory usage to 6 KB, allowing us to store the table in
fast shared memory.

LUT B 2+2][111]

The fine rasterizer is divided into two phases, first of which is the
input phase (Figure 2a). We read 32 triangles in parallel from the
per-tile input queue, and calculate a 64-bit pixel coverage mask for
each triangle using a LUT-based approach (Figure 3). The trian-
gle index and coverage mask are stored in a triangle ring buffer
in shared memory. Triangles that cover no samples are compacted
away; this can happen when a triangle falls between samples or
merely grazes the tile.

We keep count of fragments, i.e., covered pixels, in the triangle
ring buffer, and as soon as at least 32 fragments are available, we
switch to the shading phase. We distribute the fragments to threads
so that each thread processes one fragment. The fragments may
come from different triangles, and the distribution is performed so
that all fragments of a later triangle are given to threads with higher
lane index than the fragments of earlier triangles, as illustrated in
Figure 2b. We first calculate depth using the (z/w) plane equation,
and kill the fragment if the depth test fails. The surviving threads
continue to execute the shader and ROP. The processed triangles
and fragments are removed from the ring buffer, and if fewer than
32 fragments are left, we enter the input phase again. When the
entire input is processed, we write the frame buffer tile into DRAM.

Let us now examine the key components of the fine rasterizer in
detail, and provide extensions to the basic scheme outlined here.

Shader We interpolate attributes based on barycentric coordi-
nates calculated from screen-space (u/w), (v/w) and (1/w) plane
equations that are constructed in the triangle setup stage. After eval-
uating the barycentric coordinates for the shading point, we fetch
the vertex attributes and interpolate them. This is a much more ex-
pensive process than what the hardware graphics pipeline uses; the
issue is discussed further in Section 6.1.

ROP The method of updating the frame buffer is chosen based on
the depth test and blend modes. If no depth test and no blending is
performed, we simply have each thread write its results into the tile
in shared memory. When there are shared memory write conflicts
within the warp, the write from a thread on a higher lane, therefore
containing a later triangle, will override a write from a thread on a
lower lane, containing an earlier triangle. The CUDA programming

guide explicitly leaves it undefined which thread will succeed in the
write, but at least on GF100 the behavior is consistent and can be
exploited. If this is changed in future hardware, we can fall back to
a slightly less efficient scheme based on shared memory atomics.

When depth test or blending is enabled, the lane ordering is reversed
to make the writes of an earlier triangle prevail over a later one
in conflicts, and each thread loops until its write succeeds. When
depth test is enabled, this is detected by reading back the depth
that was written into shared memory, and repeating as long as the
depth test succeeds. Because simultaneous writes from later frag-
ments override earlier ones in both color and depth, this somewhat
surprisingly yields correct results. When depth test is disabled but
blending is enabled, we use the index of the writing thread instead
of depth to detect when the write is successful.

Hierarchical Z A simple way to improve performance is to per-
form hierarchical depth kills [Greene et al. 1993] on a per-triangle
level. With the typical depth ordering, this is achieved by maintain-
ing Zmaaz, the farthest depth value found in the current frame buffer
tile. By comparing this against the minimum triangle depth, com-
puted in the triangle setup stage, we can discard triangles that are
entirely behind the surfaces already drawn in the tile. We calculate
Zmag in the fine rasterizer using warp-wide reduction whenever we
fetch a tile from DRAM or overwrite a depth value that equals the
current Zmag. This avoids having to store 2mag in off-chip memory
while minimizing the number of unnecessary updates.

Quad-pixel shading Performing a dependent mipmapped or
anisotropic texture fetch requires knowledge of the derivatives
of the texture coordinates. In hardware graphics pipeline, these
are calculated by grouping all shaded fragments into quads, i.e.,
aligned groups of 2x2 pixels, and the texture unit automatically
estimates the derivatives by subtracting the texture coordinates of
adjacent pixels in such group. Unfortunately, this functionality is
not available in compute mode, and we therefore need to do this
programmatically. If the fragment shader requires derivatives, we
expand the pixel coverage mask to include all pixels in even par-
tially covered 2x2 pixel quads, and therefore have 8 such quads
being shaded in a warp. Taking the derivatives is performed by
subtracting texture coordinates through shared memory. Note that
non-dependent texture fetches do not usually require quad-pixel
shading, as analytic derivatives of the texture coordinate attributes
can be evaluated directly based on the barycentric coordinate plane
equations.

MSAA In the hardware graphics pipeline, multisample anti-
aliasing [NVIDIA 2001] comes almost without extra cost. The ma-
jor burden is on rasterizer, which has to calculate coverage for mul-
tiple samples per pixel, and on ROP that has to perform blending
for multiple samples in case it is enabled. Both of these units are
implemented using dedicated hardware, and can therefore be well
optimized for these tasks.

In our software pipeline, we defer the per-sample coverage calcu-
lation as far in the pipeline as possible. We replace the evaluation
of coverage at the center of the pixel by a conservative triangle-vs-
pixel test. This allows us to avoid the processing of a pixel in case it
is not overlapped by the triangle at all. The early per-pixel depth test
is similarly replaced by a conservative depth test against per-pixel
zZmaz value that we keep in shared memory. For the surviving pix-
els, we determine the coverage of each sample and execute shader
if any of the samples are covered. Each thread then executes the
ROP for each sample sequentially. Having each thread process the
same sample ID at the same time makes it easy to detect conflicting
writes into the same sample.

STALKER, 11MB

S

SAN MIGUEL, 189MB JUAREZ, 24MB

CITY, 51MB BUDDHA, 29MB
5.44M tris, 25% visible 546K tris, 37% visible 349K tris, 41% visible 879K tris, 21% visible 1.09M tris, 32% visible
2.4 pixels / triangle 14.6 pixels / triangle 14.1 pixels / triangle 16.3 pixels / triangle 1.4 pixels / triangle

Figure 4: Top row: original test scenes with proper shading and textures. Bottom row: Gouraud-shaded versions used in the measurements.
The memory footprint numbers represent the size of the raw geometry data (32 bytes per vertex and 12 bytes per triangle). The percentage
of visible triangles accounts for the effects of backface culling and view frustum culling, and was computed as an average over 5 camera

positions. Screen-space triangle area is an average over the visible triangles in 1024 X768 resolution.

Unfortunately, we cannot any more store the entire tile in shared
memory, but are forced to execute the ROP directly on global mem-
ory. We still use shared memory for storing the per-pixel zmaqz that
is used for culling entire pixels. Also, we perform the serialization
of the writes in correct order by storing and reading back the writing
thread index in a per-pixel shared memory location.

6 Results and Discussion

We evaluated the performance of our software pipeline on GeForce
GTX 480 with 1.5 GB of RAM, installed in a PC with 2.80 GHz
Intel Core i7 CPU and 12 GB of RAM. The operating system was
Windows 7, and we used the public CUDA 3.2 driver. For com-
parison, we ran the same test cases on the hardware pipeline us-
ing OpenGL, as well as on our implementation of FreePipe [Liu
et al. 2010] optimized for the hardware used. For maximum perfor-
mance in FreePipe, we maintain only one 32-bit color/depth entry
per pixel.

Even though the total rendering time tends to be dominated by
the cost of vertex and fragment shading in modern real-time con-
tent, we are mainly interested in raw rasterization performance for
two reasons. First, the complexity of shader programs is highly
application-dependent, and choosing a representative set of suffi-
ciently complex shaders is hardly a trivial task. Second, shaders are
executed by the same hardware cores in both pipelines, so their per-
formance is essentially the same except that the hardware pipeline
is able to perform rasterization in parallel with shading. Thus, we
employ simple Gouraud shading, i.e., linear interpolation of vertex
colors, in our benchmarks, and assume that the input geometry has
already been processed by a vertex shader. The format of the in-
put data is the same for all comparison methods, and consists of
4-component floating point positions and colors per vertex accom-
panied by three 32-bit vertex indices per triangle. Backface culling
is enabled in all tests, and all results are averages over five different
camera positions.

Test scenes used in the measurements are shown in Figure 4. The
top row shows the scenes with proper shading and textures, while
the bottom row shows the Gouraud-shaded versions. Two of the
scenes, JUAREZ and STALKER, were chosen to represent game con-
tent. They were constructed from DirectX geometry captures from

Our FreePipe | SW:HW FP:SW
(SW) (FP) ratio ratio
512x384 | 537 7.82 130.14 1.46 16.65
SAN MIGUEL | 1024x768 |5.43 9.48 510.20 1.74 53.84
2048x1536 | 5.86 15.44 1652.52 2.64 107.06
512x384 |0.59 271 5.34 4.56 1.97

Scene Resolution | HW

JUAREZ 1024x768 |0.67 3.28 18.63 4.87 5.69
2048x1536 | 1.03 7.06 72.45 6.84 10.26

512x384 | 031 1.81 23.47 591 12.96

STALKER 1024x768 |0.39 231 92.73 5.96 40.14
20481536 | 0.67 5.41 386.07 8.10 71.36

512x384 | 093 2.16 64.56 2.32 29.88

CITY 1024x768 | 1.04 3.13 251.86 3.01 80.54
2048x1536| 142 6.79 1032.83 477 152.13

512x384 | 1.06 2.09 2.14 1.98 1.02

BUDDHA 1024x768 | 1.07 2.66 3.08 2.50 1.16

2048x1536 | 1.11 4.01 6.96 3.62 1.73

Table 1: Performance comparison between the hardware pipeline,
our software pipeline, and FreePipe. The values are in milliseconds
and represent the total rendering time, excluding vertex shader and
buffer swaps. The SW:HW ratio shows the hardware performance
compared to our pipeline (higher values mean that the hardware
is faster). Similarly, the FP:SW ratio shows the performance of
FreePipe compared to ours (higher values mean that our pipeline is
faster). All measurements were performed with depth test enabled,
without MSAA or blending.

Call of Juarez (Techland) and S.T.A.L.K.E.R.: Call of Pripyat (GSC
Game World). SAN MIGUEL is a test scene included in PBRT, and
includes a lot of vegetation that consists of very small triangles.

Table 1 compares the performance of the three pipelines in the non-
MSAA case, with depth test enabled and blending disabled. We
see that our pipeline is generally 1.5-8x slower than the hardware,
but in most cases a magnitude or two faster than FreePipe. The
hardware pipeline scales well with increasing resolution, which
indicates that per-triangle operations such as attribute fetch and
triangle setup are relatively costly compared to rasterization and
per-fragment operations. This is especially true for SAN MIGUEL
which places a high burden on triangle setup. Our performance is

Render mode l\r/lniAdeA H“S, ANSI\‘/[)‘;GUE tio | HW Jlé/;SEZ Ratio Statistic unit MSI(/?II}IEL JUAREZ STALKER CITY BUDDHA
1 543 948 1.74 | 0.67 3.28 4.87 Tri setup ms 4.79 0.77 0.47 0.93 1.16
Depth test, 2 5.55 1521 274 | 0.78 5.60 7.16 Bin raster ms 1.45 0.36 0.21 0.26 0.45
no blend 4 5.75 20.62 358 | 096 6.78 7.09 Coarse raster ms 1.46 0.76 0.63 0.76 0.56
8 6.28 2824 450 | 1.37 938 6.84 Fine raster ms 1.78 1.38 1.00 1.17 0.50
1 544 799 147 | 071 322 454 Tri data MB | 420.0 422 26.9 67.9 84.0
No depth test, 2 5.57 14.68 263 | 0.85 589 691 Bin queues MB 4.0 1.5 1.2 0.9 2.0
alpha blend 4 5.77 20.77 3.60 | 1.10 7.47 6.81 Tile queues MB 4.4 2.9 2.2 2.2 1.5
8 6.38 29.69 4.65 | 1.81 10.64 5.89 Outside frustum % 42.4 28.5 12.8 26.4 27.9
1 537 6.80 127 | 0.65 2.62 4.02 Backfacing % 323 34.2 46.2 52.9 40.0
Depth only, 2 546 1149 211 | 0.75 446 593 Between samples % 17.7 6.7 17.3 14.8 16.2
no color write 4 559 1624 291 | 091 549 6.06 Surviving % 1.1 30.5 23.6 5.9 15.9
8 598 2324 389 | 126 7.77 6.16 Tris / tile 71.0 42.4 25.8 24.0 60.4
Frags / tile 265.2 248.8 180.0 2274 77.0
Table 2: Effect of rendering and antialiasing modes. The values Hier. Z kill % 225 14.9 37.1 19.4 0.0
are frame times in milliseconds, and the Ratio column shows the Early Z kill % 37.6 48.5 40.8 39.7 0.0
hardware performance compared to ours. All measurements were ROP rounds 1.19 1.21 1.10 1.07 1.12

done in 1024 x 768 resolution.

40

35 p—

30

FreePipe
25 >

ns / triangle
N
o
|

Our pipeline

Hardware

0 + T T T T T T T]
0 5 10 15 20 25 30 35 40

Triangle size in pixels

Figure 5: Effect of triangle size on rendering time in a synthetic
test case with equally sized triangles. Horizontal axis is the triangle
area in pixels, and vertical axis is the average rendering time per
triangle in nanoseconds. The results are for flat-shaded triangles
without multisampling, depth test, or blending. Note that this is
the absolute best case for FreePipe, and its performance is often
reduced by variance in triangle sizes (see Table 1).

much more sensitive to resolution, which is explained by our lower
fill rate. FreePipe performs reasonably well in BUDDHA because
all triangles are of roughly the same size. However, mixing trian-
gles of different sizes quickly leads to serious underutilization of
the GPU due to the lack of load balancing.

To gain further insight into our performance with various triangle
sizes, we constructed a synthetic test case of equally-sized trian-
gles organized into multiple screen-sized layers. Figure 5 shows a
sweep of the average per-triangle cost as a function of triangle size.
With triangles covering 10 pixels, the average rendering rate is 470
Mtris/s for hardware, 130 Mtris/s for our pipeline, and 100 Mtris/s
for FreePipe. With very large triangles the pixel fill rates approach
12 Gpix/s, 3 Gpix/s, and 1 Gpix/s, respectively. Note that this test
case is ideal for FreePipe, since all threads perform exactly the same
amount of computation. For example, if the input consisted of inter-
leaved triangles of two different sizes, the performance of FreePipe
would be dictated by the larger ones.

Table 2 explores the effect of different rendering and antialiasing
modes in two of the test scenes. In the hardware pipeline, increasing

Table 3: Statistics from rendering the test scenes with our pipeline.
See the text for details.

the number of MSAA samples has more or less the same effect on
performance as increasing the resolution. Our performance drops
significantly as soon as MSAA is enabled because we can no longer
cache frame buffer tiles in shared memory. The slowdown when in-
creasing the number of samples is mainly explained by the increase
in frame buffer DRAM traffic. Unlike on hardware, disabling color
writes improves the performance of our pipeline by 20-30%. This
is because we can completely skip the barycentric plane equation
setup and attribute interpolation, both of which are relatively costly
in software.

Table 3 lists a number of statistics from rendering the test scenes
with our pipeline in 1024 x768 resolution with depth test enabled
and blending disabled, without MSAA. The first group of statis-
tics shows a breakdown of the total rendering time into individual
stages. As expected, SAN MIGUEL and BUDDHA are dominated
by triangle setup, which corresponds to 51% and 43% of the to-
tal rendering time, respectively. In scenes with larger triangles the
rendering time is dominated by the fine rasterizer.

The second group lists the total memory footprint of the interme-
diate buffers. Tri data is the size of the data array produced by the
triangle setup stage, which is approximately 1-3 times larger than
the raw scene data in our test cases. With higher number of vertex
attributes, this ratio would decrease because the output of the trian-
gle setup stage does not depend on the number of attributes. Bin
queues and Tile queues are the sizes of the triangle ID queues pro-
duced by bin and coarse rasterizer stages, respectively. Contrary to
what one might expect, these are almost negligible compared to the
scene data. This is because the majority of triangles tend to inter-
sect just one bin and only a handful of tiles, and we need to store
only a single 32-bit triangle index per entry.

The third group shows a breakdown of triangles culled by triangle
setup, and the fourth group lists a few interesting statistics for the
fine rasterizer stage. The culling of small triangles that fall between
sample positions is surprisingly effective in all of the test scenes. In
SAN MIGUEL, for example, the number of triangles passed down
the pipeline decreases by a factor of 3.3. The average number of
triangles per tile dictates the efficiency of the input phase of the fine
rasterizer. The triangles are consumed in batches of 32, and some
of the threads remain idle for batches that contain fewer triangles.
There is a similar relation between the number of fragments per tile
and the efficiency of the shading phase.

ms SAN MIGUEL JUAREZ

3
@

Coarse

Coarse

o =4 N W A OO N ®

Number of batches

Number of batches

Figure 6: The effect on execution time when input is split into
multiple equally-sized batches. The stacked area graphs show the
execution times of the four pipeline stages in SAN MIGUEL and
JUAREZ rendered with depth testing, no blending, and no MSAA in
1024 <768 resolution.

Hier. Z kill indicates the percentage of triangles culled by the hi-
erarchical Z test in the input phase, and Early Z kill indicates frag-
ments culled at the beginning of the shading phase. As expected,
both are relatively high in all test scenes except BUDDHA, which
lacks depth kills because the triangles happen to be drawn in back-
to-front order. Finally, ROP rounds indicates the average number
of times the ROP loop is executed for a single batch of 32 frag-
ments. Due to conflicting writes to the same pixel, the loop may get
iterated up to 32 times. However, conflicts are very rare in practice.

We can see that the number of triangles intersected by each tile is
relatively low even though we render the entire scene in a single
batch. It is therefore interesting to know how much our perfor-
mance depends on the batch size. Figure 6 shows a sweep of the
total rendering time in two test scenes with input split into various
numbers of equally-sized batches. As expected, processing the in-
put in small batches decreases performance because small batches
do not utilize the GPU as efficiently as large ones, and constant
per-batch costs are thus comparatively higher.

6.1 Scalability and Ideas for Hardware Extensions

Let us briefly consider how our implementation scales as vari-
ous parameters are modified. The viewport size is limited to
2048 %2048 pixels in our pipeline for two reasons. First, we can
only write to a limited number of queues per CTA in bin and coarse
rasterizers, and secondly, for higher resolutions we would need to
decrease the number of subpixel bits if we wish to keep using 32-
bit arithmetic. Even now, our subpixel resolution of 4 bits is lower
than in the hardware graphics pipeline (8 bits). To support larger
viewports without losing subpixel precision, many of the interme-
diate data structures, e.g., vertex positions and plane equation coef-
ficients, would need to use higher precision, and more importantly,
internal calculations in the rasterizers would need to performed us-
ing 64-bit arithmetic.

Attribute interpolation is one of our biggest weaknesses compared
to the hardware graphics pipeline. We need to programmati-
cally fetch vertex attributes and perform interpolation in the frag-
ment shader. The hardware pipeline avoids this by calculating at-
tribute plane equations in hardware before launching the fragment
shader [Lindholm et al. 2008]. Furthermore, dedicated hardware
is used for performing the interpolation arithmetic. Enabling simi-
lar performance in a software-based graphics pipeline is not trivial.
Enabling access to the interpolation hardware would not be enough,
as the fetching of data is also an a major source of inefficiency. To

what extent this could be battled by prefetching data in software is
an interesting question.

Discounting attribute interpolation, our shader performance should
be on par with the hardware graphics pipeline, as mostly the same
code is executed in both cases. We hypothesize that in cases where
the current hardware pipeline is particularly inefficient, we could
provide better performance through higher thread utilization. For
example, with a discard-heavy shader, the fine rasterizer could be
extended to compact the fragments after discards, and thereby ob-
tain better thread utilization for the shading computations. Also,
when the triangles are very small and quad derivatives are not re-
quired, we do not suffer from the unnecessary expansion to 2x2
pixel quads. This has been identified as a potentially major source
of inefficiency [Fatahalian et al. 2010]. In terms of triangle counts
our scalability is fairly good, and especially the culling of small
triangles is extremely efficient compared to the hardware graphics
pipeline.

There are a few hot spots in our software pipeline that would ben-
efit from fixed-function hardware acceleration. The pixel coverage
calculation currently takes approximately 160 instructions per trian-
gle, which corresponds to roughly 40% of the hardware rasterizer
throughput. If a coverage calculation unit were integrated with the
SM, we could effectively nullify this cost, bringing approximately
3-7% speedup. Another time-consuming operation is finding the
nth set bit in the coverage mask, which could be easily accelerated
with a custom instruction. This would provide approximately 2—4%
speedup with very little design effort.

Increasing the performance of shared memory atomics would help
almost all of our pipeline stages, and provide perhaps 5-10%
speedup. Even better, but much more involved, would be efficient
hardware support for queue read and write operations, because that
would eliminate most of the code in the bin and coarse rasterizers. It
is however unclear what the semantics should be, and how ordering
could be naturally maintained. A further extension to this would
be a queue-aware scheduler that natively supports the producer-
consumer model. This is what the hardware graphics pipeline effec-
tively has, and thus it would be possible to build a software-based
feed-forward pipeline instead of a sort-middle pipeline. Numerous
open questions remain related to configurability and design of such
scheduling unit.

Finally, exposing the current hardware ROP in compute mode
would provide a remarkable boost of up to 80%, depending on the
MSAA mode, to the overall rasterization performance with fairly
little hardware modifications required. Naturally, the freedom of
programmability would be lost when using the hardware ROP, but
there is no reason to neglect it when the blend function is one of the
hardware-supported ones.

6.2 Future Work

Our pipeline can be used as a basis for numerous techniques that
aim at reducing the shading workload. Among the simplest is the
compaction of shading requests after a discard phase, and avoid-
ing unnecessary quad expansion of pixels, as discussed above. Ex-
plicit cull programs [Hasselgren and Akenine-Moller 2007] could
be used for the former purpose. More sophisticated quad merg-
ing [Fatahalian et al. 2010] allows the use of derivatives but avoids
unnecessary work by merging neighboring pixels in quads even
when they do not originate from the same triangle. In stochastic
rasterization, shading can become very expensive unless decoupled
sampling [Ragan-Kelley et al. 2011] based on shading caches are
used. This is not possible to implement in the hardware graph-
ics pipeline, but could be experimented with in the programmable
pipeline. Unrestricted frame buffer access enables various multi-

fragment effects as discussed by Liu et al. [2010]. Finally, being
able to modify the pipeline structure itself enables many exciting
rendering paradigms, such as the combination of rasterization and
ray tracing, as explored by Sugerman et al. [2009].

Our current implementation requires a separate rendering pass for
each rendering state, but some workloads may require a more effi-
cient approach. Stateless rendering, where each input triangle car-
ries a state ID, is an attractive option and warrants further experi-
ments. Our choice of buffering intermediate data between stages in
large DRAM buffers, instead of locally executing different stages
on-demand, is an efficient but somewhat crude solution because of
having to resort to restarts in overflow situations. Dynamic schedul-
ing of stages would alleviate this problem, and it may also be nec-
essary in practice for pipelines that involve loops (e.g., ray tracing).
This provides a challenging avenue for future work.

Adapting the bin and tile sizes to viewport dimensions would most
likely be beneficial, but we have not experimented with this so far.
Optimizing these constants for particular kinds of content could
provide major speedups, especially when small viewports are used.
Furthermore, it is a concern that some workloads may place excep-
tionally high burden on a few bins, causing low GPU utilization in
the coarse rasterizer stage. We experimented with a scheme that al-
lows two coarse rasterizer CTAs to work on the same bin when this
happens, but found that the overall performance degraded except in
highly specialized test cases. Nonetheless, more sophisticated load
balancing schemes would deserve further research.

Our pipeline is roughly as fast as the hardware in processing culled
triangles, but it has a relatively high constant per-triangle cost in
other cases. This is because every non-culled triangle has to go
through the bin and coarse rasterizer stages even if it ends up cov-
ering only one pixel in the end. It would be possible to detect very
small triangles in the setup stage and implement a separate fast path
that bypasses the two stages for such triangles. However, maintain-
ing the correct rendering order is not trivial. In cases where the
ordering requirements are not necessary, such as depth-only ren-
dering, bypassing the stages could be a viable option for improving
the performance with small triangles.

So far we have adamantly respected the rasterization order, but in
some cases less strict ordering could be adequate. Whenever the
user guarantees that a rendering batch contains no intersecting ge-
ometry and no order-dependent blending mode is active, we could
rely on depth buffering producing the correct image. This kind of
ordering where each batch is internally unordered is not supported
by the current APIs or hardware, and it could enable new opportuni-
ties for optimization. Investigating how the pipeline could best ex-
ploit the relaxed ordering requirements, and quantifying how much
speedup it offers, is an interesting future task.

7 Conclusions

We have presented a complete software rasterization pipeline on
a modern GPU. Our results show that the performance of a thor-
oughly optimized, purely software-based pipeline is in many cases
of the same magnitude as the performance of the hardware graphics
pipeline on the same chip. Unlike the hardware pipeline, a software
pipeline can be specialized to suite particular rendering tasks. This
can involve both simplifications to gain better performance, and ex-
tensions to enable algorithms that the hardware graphics pipeline
cannot accommodate. Due to its performance, full programmabil-
ity, and strict adherence to central constraints imposed by the graph-
ics APIs, our pipeline is a natural springboard for further research
of programmable graphics on GPUs.

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency
of ray traversal on GPUs. In Proc. High-Performance Graphics
2009, 145-149.

AKENINE-MOLLER, T., MUNKBERG, J., AND HASSELGREN, J.
2007. Stochastic rasterization using time-continuous triangles.
In Proc. Graphics Hardware, 7-16.

FATAHALIAN, K., BOULOS, S., HEGARTY, J., AKELEY, K.,
MARK, W. R., MORETON, H., AND HANRAHAN, P. 2010.
Reducing shading on GPUs using quad-fragment merging. ACM
Trans. Graph. 29, 67:1-67:8.

GASCUEL, J.-D., HOLZSCHUCH, N., FOURNIER, G., AND PE-
ROCHE, B. 2008. Fast non-linear projections using graphics
hardware. In Proc. I3D, 107-114.

GREENE, N., KASS, M., AND MILLER, G. 1993. Hierarchical
z-buffer visibility. In Proc. SIGGRAPH ’93, 231-238.

HASSELGREN, J., AND AKENINE-MOLLER, T. 2007. PCU: The
programmable culling unit. ACM Trans. Graph. 26, 92:1-92:10.

LINDHOLM, E., NICKOLLS, J., OBERMAN, S., AND MONTRYM,
J. 2008. Nvidia Tesla: A unified graphics and computing archi-
tecture. IEEE Micro 28, 39-55.

Liu, F., HUANG, M.-C., Liu, X.-H., AND Wu, E.-H. 2010.
Freepipe: A programmable parallel rendering architecture for
efficient multi-fragment effects. In Proc. 13D, 75-82.

Loop, C., AND EISENACHER, C., 2009. Real-time patch-based
sort-middle rendering on massively parallel hardware. Microsoft
Research tech. rep., MSR-TR-2009-83.

MOLNAR, S., CoX, M., ELLSWORTH, D., AND FUCHS, H. 1994.
A sorting classification of parallel rendering. IEEE Comput.
Graph. Appl. 14,23-32.

NVIDIA, 2001. HRAA: High-resolution antialiasing through mul-
tisampling. Tech. rep.

NVIDIA, 2007. Cuda technology; http://www.nvidia.com/cuda.

PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P.
2002. Ray tracing on programmable graphics hardware. ACM
Trans. Graph. 21, 3, 703-712.

RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M.,
AND DURAND, F. 2011. Decoupled sampling for graphics
pipelines. ACM Trans. Graph. 30, 3, 17:1-17:17.

SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T.,
ABRASH, M., DUBEY, P., JUNKINS, S., LAKE, A., SUGER-
MAN, J., CAVIN, R., ESPASA, R., GROCHOWSKI, E., JUAN,
T., AND HANRAHAN, P. 2008. Larrabee: A many-core x86
architecture for visual computing. ACM Trans. Graph. 27, 18:1—
18:15.

SUGERMAN, J., FATAHALIAN, K., BOULOS, S., AKELEY, K.,
AND HANRAHAN, P. 2009. Gramps: A programming model for
graphics pipelines. ACM Trans. Graph. 28, 4:1-4:11.

