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The rendering of soft shadows is an important task in computer graphics. Soft shadows appear
when the light source is not modeled as a single point but as an object with nonzero surface
area. Obtaining correct physically-based shadows requires determining the amount of light that
flows from the light source to a receiving point on the surface being rendered. This is generally
computationally expensive, and efficient solution methods are needed for keeping the rendering
times on a tolerable level.

There is usually significant coherence in shadows among nearby receiving points, and nearby
parts of a light source also tend to contribute to the image in a similar fashion. Exploiting these
forms of coherence is the key element of modern soft shadow algorithms.

This thesis presents a novel physically-based soft shadow algorithm that attempts to exploit the
coherence as much as possible, solving the shadow relations in large chunks instead of consid-
ering single points in the emitting or receiving end. The computation of shadow relations is
performed hierarchically, and an efficient representation of shadow-casting geometry is main-
tained incrementally. The algorithm is a generic tool for the solving sets of visibility relations
in polygonal scenes, and may have uses in areas other than shadow computation as well.

In addition to presenting the novel algorithm in detail, several existing physically-based shadow
algorithms are analyzed and ranked according to their computational complexities. Experimen-
tal results are also presented for illustrating the applicability of the novel algorithm in different
kinds of rendering situations.
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Pehmeiden varjojen piirto on tärkeä tehtävä tietokonegrafiikassa. Pehmeitä varjoja muodostuu,
kun valonlähdettä ei esitetä pisteenä vaan pintana, jolla on nollasta poikkeava pinta-ala. Fy-
sikaalisesti oikeiden varjojen laskennassa pitää määrittää tarkasteltavan pinnan pisteeseen va-
lonlähteestä saapuvan valon määrä. Tämä on yleisesti laskennallisesti raskasta, ja tehokkaat
ratkaisumenetelmät ovat tarpeen, jotta kuvan muodostusaika pysyy siedettävänä.

Useimmiten lähekkäisten pisteiden vastaanottamat varjot ovat likimain samanlaisia, ja valon-
lähteen lähekkäiset osat myös vaikuttavat kuvaan enimmäkseen samalla tavalla. Modernit var-
joalgoritmit perustuvat näiden koherenssin muotojen hyödyntämiseen.

Tässä työssä esitellään uusi fysikaalisesti oikeiden pehmeiden varjojen laskenta-algoritmi, joka
pyrkii hyödyntämään koherenssia niin paljon kuin mahdollista laskemalla varjorelaatiot suuris-
sa ryhmissä sen sijaan, että tarkasteltaisiin yksittäisiä pisteitä valonlähteellä tai varjostettavalla
pinnalla. Varjorelaatioiden laskenta suoritetaan hierarkkisesti, ja tehokasta esitystä varjostavis-
ta pinnoista ylläpidetään inkrementaalisesti. Algoritmi on yleiskäyttöinen työkalu näkyvyys-
relaatiojoukkojen ratkaisemiseen, ja sillä voi olla muitakin käyttökohteita varjojen laskennan
lisäksi.

Uuden algoritmin yksityiskohtaisen kuvauksen lisäksi työssä analysoidaan useita olemassaole-
via fysikaalisesti oikeiden pehmeiden varjojen laskenta-algoritmeja ja luokitellaan ne algorit-
misten kompleksisuusluokkiensa perusteella. Työssä esitetään myös kokeellisia tuloksia, joiden
avulla voidaan arvioida algoritmin käyttökelpoisuutta erilaisissa laskentatilanteissa.
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Chapter 1

Introduction

1.1 Light and Shadows

The topic of this thesis is computing shadows and visibility. At a glance, these two phenomena may
seem fundamentally different, but in fact they are tightly connected. Since shadows appear in places
that light does not reach, computing shadows is conceptually equivalent to determining the visibility
between light sources and the surfaces to be shaded.

Shadows are an important feature in computer-generated images. Since shadows are always present
in real-life images, it has become natural for humans to interpret e.g. spatial relationships between
objects based on even then subtlest of shadows. Thus, in synthetic images the presence of correctly
computed shadows greatly increases the perceived realism of an image.

One might ask why we speak of computing shadows instead of computing light, since these two
seem to be simply inverted questions: to compute shadows is to compute the absence of light. The
reason is that it is easy to generate images without shadows by neglecting the possibility that a
surface point might not be visible from the light source, i.e. in shadow. In early computer graphics,
this was customary, and is so even today, since computing shadows is much harder than computing
lighting without shadows. Therefore, shadows are something that need to be explicitly added into
the image, and this justifies the current usage of terms.

From the visibility point of view, the case where a surface point is in light is a special case, since
this occurs only when there are no surfaces between the surface point and the light source. In
contrast, shadow appears when there are one or more surfaces between these two blocking the light.
We might speculate that in real-life situations the latter case is immensely more common than the
former, since e.g. in a room of a building, most of the light sources in other rooms do not contribute
to the perceived lighting because of the walls that prevent the flow of light.

Two main classes of shadows are hard shadows and soft shadows. Perfectly hard shadows do not
exist physically, but due to their much simpler mathematical nature, they are often used in computer
graphics. Hard shadows appear when the light source is a single point having no surface area or
volume. In this case, a surface point to be shaded is either completely lit or completely shadowed,
or in other words, the light source is either completely visible or completely occluded from the
surface point. The result is a binary shadow that often does not look realistic, but may suffice as
an approximation for a relatively small light source. Soft shadows emerge when the light source
is represented as a geometrical entity that is not a point. Usually the light sources are represented
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Introduction

as polygons, but spherical light sources, line segments, or other extended geometrical entities can
be used. Now the question whether a surface point is in light or in shadow is not binary any more,
since it is possible that a portion of the light source is visible to the surface point, and a portion is
occluded. This results in shadow boundaries with gradual falloff from fully shadowed to fully lit.
Soft shadows are much more realistic than hard shadows, but they are also more difficult to compute.
For soft shadows, is no more sufficient to determine a single visibility relation between each surface
point and light source. Instead, the correct solution requires integrating the visibility over the surface
of the area light source, or equivalently, over the spatial angle subtended by the light source as seen
from the receiver point. In practice, the integral is usually solved using Monte Carlo integration
techniques that rely on sampling the function inside the integral.

Two main classes of algorithms exist for soft shadow computations, and they are usually called
physically-based and approximative. Even though “physically-based” is not a particularly descrip-
tive term, in this context it means roughly that as the number of Monte Carlo samples used in solving
the visibility is increased, the result converges to the correct solution. In contrast to physically-based
algorithms, approximative algorithms often do not explicitly solve the visibility, at least not sepa-
rately for every point to be shaded, but approximate it with various heuristics. In many situations,
approximative algorithms produce plausible results, but it is generally hard to guarantee the applica-
bility of an approximative algorithm in different situations. Because of this, we shall concentrate
almost entirely on physically-based shadow algorithms in this thesis.

1.2 Common Approximations

A number of approximations is usually made in computer graphics, and even though they are often
not explicitly mentioned, it is worthwhile to enumerate the most important of them here.

First of all, practically every computer graphics algorithm assumes ray optics. Even though this
model of light is not physically accurate as it fails to model phenomena such as diffraction and
interference, it is most often sufficient for computing realistic images. Even algorithms that concep-
tually employ photons for light transport do not take interaction between photons into account, and
therefore effectively assume ray optics. The polarization of light is also usually ignored.

It is also assumed that no participating media exists in the “empty” space between surfaces, unless
explicitly mentioned.1 This means that a ray emanating from a surface always hits the surface in
the direction of the ray with zero probability of deviating from its path. If participating media
were present, a ray might scatter any number of times from particles in the medium, and end up in
any point reachable from the boundary of the medium with probability that depends on the shape
and optical characteristics of the medium. The computation of these probabilities is non-trivial,
and accounting for different possible scattering paths leads to computationally expensive integration
tasks.

Since photons generally move very fast, it is safe to assume that the light transport of a system is
always in a state of equilibrium. In this situation, the flow of light in any infinitesimal volume is
constant over time, and temporal effects of light transport can be ignored. In certain materials, tem-
poral effects may occur at a slower time scale due to phosphorescence, but these kind of phenomena
are usually not taken into account.

Many algorithms for computing soft shadows impose certain limitations for objects that cast shad-

1Despite this, the optical density of transparent materials is usually taken into account, giving rise to refractions in the
boundaries between materials. The interior of a solid glass ball, for instance, is therefore actually modeled as something like
“void with the optical density of glass”.
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ows. The most common limitation is that the shadow caster must be opaque, meaning that they block
the rays of light completely instead of passing some amount of light through. This requirement is
also made in the algorithm presented in this thesis.

It can also be counted as an approximation that integrals involved in light and shadow computations
are usually solved using Monte Carlo sampling instead of analytic methods. There are some notable
exceptions to this, but the vast majority of soft shadow algorithms, including the one presented in
this thesis, rely on sampling. One might claim that this approach is justified by the finite number of
photons present in real-world situations as well, but this is somewhat of a moot point because the
number of photons to be modeled is generally stupendously large.

1.3 Direct and Indirect Illumination

In computer graphics there are distinct classes of light transport phenomena that require different
algorithms to be solved efficiently. We now briefly consider three classes of illumination models that
all model different phenomena in light transport.

Local illumination. Local illumination models consider the transport of light at the surfaces. When
a ray of light hits a surface, it may be absorbed or scattered in different directions with a probability
associated with each outgoing direction. As an example, the simplest local illumination model is a
diffuse surface that scatters incoming light to all directions with equal probability. More complex
models are also frequently used. If only local illumination is taken into account when rendering an
image, no shadows will be present.

Direct illumination. Direct illumination considers the rays of light that emanate from a light source,
reflect once from a point to be shaded, and proceed directly to the virtual camera. Shadow algorithms
are needed for determining whether a ray from the light source to the surface is blocked or not.
The combination of local and direct illumination is currently perhaps the most popular solution in
rendering computer-generated images, since it is able to account for the most important shadow
features.

Global illumination. Local and direct illumination alone do not model the light transport com-
pletely, since a ray of light may be scattered and reflected multiple times before it reaches the virtual
camera. Global illumination algorithms take all types of light scattering paths into account, produc-
ing extremely realistic-looking images. Shadow algorithms can still be used for determining whether
a vertex on the light path is reached by light coming directly from the light source. However, comput-
ing global illumination is generally much more time-consuming than computing direct illumination
alone. Sometimes global illumination effects can be approximated by using direct illumination with
large light sources.

1.4 Scope of This Thesis

In this thesis, we develop an algorithm for computing shadows caused by direct illumination. The
algorithm can also be applied in solving other visibility problems.

To limit our study, several aspects critical to computer image generation are left out. Most notably,
we discuss global illumination only briefly. We do not present a full ray-tracing rendering pipeline,
since our focus is in the very specific part of it; computing the shadows.
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1.5 Contributions

In this thesis we present a novel incremental shaft subdivision algorithm for efficient computation of
physically-based soft shadows and visibility. Experimental results and analysis of the applicability
of the algorithm in different situations are given. We also examine several existing physically-based
soft shadow algorithms in detail, and qualitatively analyze their behavior as well as the behavior of
the new algorithm presented in this thesis.

1.6 Organization of This Thesis

The rest of this thesis is organized as follows. In the closing section of this chapter we lay ground
for further analysis and presentation of the novel algorithm by introducing the relevant key concepts.
In Chapter 2 we discuss previous methods for shadow and visibility computation. Chapter 3 con-
tains qualitative analysis of selected hard and soft shadow algorithms as well as discussion on the
properties of shadow computation algorithms in general. Chapter 4 describes the novel incremental
shaft subdivision algorithm in detail. In Chapter 5 we present experimental performance results for
the new algorithm. Finally, in Chapter 6 we discuss the strong and weak points of the presented
algorithm, and outline possible directions for future work.

1.7 Prerequisites

The reader is assumed to have basic knowledge of computer graphics and rendering, as well as
firm mental grasp of three-dimensional geometry. Familiarity with pseudocode representation of
algorithms is useful, as it is used extensively in Chapters 3 and 4.

1.8 Preliminaries

In the following, we introduce a set of key terms, concepts and conventions that will be used later in
this thesis.

Visibility function. Given the assumption that objects always block rays of light either completely
or not at all, visibility between two points is a binary function. We may formalize it as follows:
given two 3D points pa and pb, we define function V(pa, pb) so that V(pa, pb) = 1 if no surfaces
intersect the line segment pa → pb, excluding the endpoints, and V(pa, pb) = 0 if at least one
surface intersects the line segment. We also define V(pa, pb) = 1 if pa = pb.

Depth complexity. Another useful function connected to the visibility is the depth complexity func-
tion, which tells how many surfaces lie on a line segment. Formally, we define D(pa, pb), as the
number of surfaces that intersect the line segment between pa and pb, again excluding the endpoints.
Functions V and D are connected: V = 1 iff D = 0.

Receiver points. When computing shadows, we have a set of points where we are interested in
knowing the shadows. These are the receiver points, denoted ri, where i is an index. The receiver
points are typically determined by tracing rays from the camera through the pixels of the image.
Rasterization can also be used.

4
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(a)

(b)

Figure 1.1 Illustration of the conditions an edge E has to fulfill in order to be a silhouette edge
between regions S1 and S2. The front face is seen from all triangles. (a) E is a silhouette edge
between S1 and S2, because a line segment p1 → p2 intersects edge E, and the depth complexity
is discontinuous at D(p1, p2). The discontinuity of the depth complexity function is evident if we
consider e.g. moving p1 slightly up and down in the figure. (b) E is not a silhouette edge between S1

and S2, since whichever p1 and p2 we choose so that p1 → p2 intersects E (excluding the endpoints
of E), the depth complexity function is continuous around D(p1, p2).

Light samples. Since we use Monte Carlo methods for determining the visibility between the re-
ceiver points and the light sources, we need to represent the light sources as a set of light samples,
denoted lj , where j is an index. The light samples are distributed on the surfaces of the light sources
before computing the shadows. The number of light samples to be used is a quality parameter: ap-
proximating a light source with only a few samples results in visible artifacts, but as the number of
samples increases, the appearance of the shadows converges to the correct solution.

Visibility relations. Given receiver points ri and light samples lj , the shadow computation task can
be stated as determining V(ri, lj) for every i, j pair. A single i, j pair defines one visibility relation,
and if there are N receiver points and M light samples, there are N ×M visibility relations in total.

Silhouette edges. E is a silhouette edge between two spatial regions S1 and S2 iff the depth com-
plexity function is discontinuous (because of E) at some D(p1, p2), where p1 ∈ S1, p2 ∈ S2, and
line segment p1 → p2 intersects E (excluding the endpoints of E). Otherwise, if the depth com-
plexity function is continuous at every D(p1, p2) where p1 → p2 intersects E, or no line segment
with endpoints in S1 and S2 intersecting E exists, E is not a silhouette edge between S1 and S2

(see Figure 1.1). If E is not a silhouette edges, it causes no changes in depth complexity between
S1 and S2, and thus, it cannot cause changes in the visibility function either. Conversely, if there
is a change in the visibility function, it must be caused by a silhouette edge. This makes silhouette
edges particularly interesting in visibility computation. In Chapter 4, we will show how to discard
non-silhouette edges in order to reach an efficient representation of the shadow-casting geometry.
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Chapter 2

Previous Work

In this section, we review previous work on shadow and visibility algorithms. Our main focus is
on physically-based shadow algorithms that approximate the visibility only by sampling, thereby
guaranteeing the convergence towards correct result as the number of samples is increased. Ap-
proximative shadow algorithms will be discussed only quite briefly. Our primary emphasis is on
soft shadows, because of their great importance in off-line rendering and generally more interesting
nature.

Because the novel algorithm presented in this thesis is essentially a visibility algorithm, we also
survey previous work on visibility algorithms. On that subject, we concentrate on object-space
visibility algorithms and mostly skip image-space algorithms since they generally cannot be applied
in solving generic visibility problems. In addition, we focus on exact and conservative visibility
algorithms, because other kinds of visibility algorithms do not suit well for computing physically-
based shadows, as will be shown later in this chapter.

2.1 Hard Shadows

Hard shadows are commonly used in real-time applications, but avoided in high-quality off-line ren-
dering due to their unrealistic appearance. However, some hard shadow algorithms can be extended
to produce approximative soft shadows, and these are sometimes used in off-line rendering because
of their efficiency.

In the following, we discuss both approximative and physically-based hard shadows. Physically-
based hard shadow algorithms are essentially visibility algorithms that solve visibility relations from
multiple points to a single point, the light source.

2.1.1 Approximative hard shadows

Shadow mapping [74] is the predominant method for real-time hard shadow rendering, and it is
also commonly used in off-line production rendering due to its versatility and simplicity. A shadow
map is a depth buffer that is computed using the light source as the viewpoint. To determine if
a world-space point pW is in shadow, it is transformed to the image space of the shadow map,
and the depth of transformed point pT is compared against the value stored in the shadow map.
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If the depth of the point is greater than the value stored in the map, the point is in shadow, since
there is a surface closer to the light source, i.e. between point p and the light source. Shadow
mapping is an approximative algorithm only because of the discretization of the shadow map, and
hard shadows computed using shadow maps converge towards the correct result as the resolution of
the shadow map increases without bounds. With finite resolution, the transformed world-space query
points do not land at the centers of the pixels in the shadow map, where the depth is correct, and
various artifacts arise from this discrepancy. A number of techniques have been developed for coping
with this problem, including second-depth shadow mapping [72], and methods for distributing the
resolution of the shadow map unevenly. Manipulating the projection from world-space 3D to light-
space 2D in order to concentrate the shadow map resolution near the viewpoint was first proposed
by Stamminger and Drettakis [69], and novel projection matrix constructions were subsequently
presented by Wimmer et al. [75] and Martin and Tan [57]. Methods for subdividing the shadow map
into a number of tiles have been presented by Fernando et al. [30] and Arvo [7].

2.1.2 Physically-based hard shadows

Shadow mapping can be modified so that the shadow queries can be answered exactly, by first col-
lecting the query points and then constructing the shadow map using the transformed query points as
the sampling points for rasterization. This was independently discovered by Aila and Laine [2] and
Johnson et al. [46]. The irregular sampling results in a physically-based hard shadow algorithm, but
with the cost of losing the simplicity of rasterizing into a regular lattice of sampling points. In addi-
tion, the execution model of the algorithm is changed, since the query points must be gathered before
the shadow map can be constructed. Current graphics hardware does not support rasterization with
irregular sampling, but in off-line rendering there is no such limitation. Hardware for performing
irregular rasterization has also been proposed [45].

Projection shadows [15] can be applied if the surface that receives the shadows is planar. This
method is based on construction of a matrix that transforms the surface primitives (usually triangles)
from their world-space position projectively onto the plane of the shadow receiver. Conceptually,
the shadow-casting object is flattened into its own shadow. The construction of the projection matrix
is fairly straightforward; for a directional light source, equivalent to a point light at infinity, the
projection is essentially orthographic, whereas for usual point lights it is projective. The most critical
limitation of projection shadows is that only planar shadow receivers can be supported, making the
method unsuitable for general-purpose rendering.

The shadow volume algorithm [19] constructs the three-dimensional volumes that represent the shad-
owed regions, and tests whether the visible surfaces are inside these regions or not. The hardware-
accelerated version [41] is currently a popular method for rendering physically-based hard shadows
in real-time. It works by first rendering the scene with ambient lighting only, collecting the depths
of the visible surfaces in the depth buffer, and then rendering the boundaries of the shadow volumes
into a hardware stencil buffer. The rendering of shadow volume boundaries effectively counts the
number of times a view ray enters and exits the shadow volumes, and if the number of enter events
is greater than the number of exit events, the visible surface point is in shadow. The original shadow
volume algorithm, commonly dubbed as Z-pass shadow volumes, cannot handle cases where the
shadow volumes intersect the near plane of the view frustum. A small modification that solves this
problem, so-called Z-fail shadow volumes, was independently discovered by Bilodeau and Songy in
1999 and by Carmack in 2000, as explained by Everitt and Kilgard [29]. Recently, a method that
enables the original Z-pass method to handle the front-clip case was presented by Hornus et al. [43].

Shadow volume algorithms are often criticized for their excessive fill-rate consumption, and various
methods for alleviating this problem have been presented. Lengyel [52] bounds the pixel processing
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region by using scissor tests, and a similar bounding in depth direction can be obtained by using
depth bounds hardware extension [63]. Combining both scissor test and depth bounds was sug-
gested by Mcguire et al. [59]. Lloyd et al. [54] and Chan and Durand [16] present methods for
culling shadow volumes. Aila and Akenine-Möller [1] present a two-stage shadow volume ren-
dering algorithm that first identifies screen-space tiles that may contain a shadow boundary, and
then rasterizes shadow volume boundaries with full resolution only in the potential boundary tiles.
Their technique requires modifications in the hardware. Laine [49] introduces a heuristic method
that chooses between Z-pass and Z-fail shadow volumes on a per-tile basis, which reduces the fill-
rate requirements. This algorithm is also inapplicable with current hardware, though the required
hardware modifications are relatively small.

Ray casting [73] is a classical method for computing physically-based hard shadows in off-line ren-
dering. There is potential confusion in terms here, since ray-cast shadows are sometimes referred to
as “global illumination”, simply because they transcend the previous limitations of local illumination
alone. As explained in Section 1.3, in this thesis we reserve term global illumination for situations
where multiple bounces of light are taken into account, and speak of direct illumination when only
direct rays from light source to the point being shaded are taken into account. In this more modern
usage of terms, ray-cast shadows belong into the category of direct illumination.

In ray casting, determining whether a point p is in shadow is done by constructing a line segment
between p and the point light source. Then it is checked if there is a surface that intersects this line
segment. If such a surface exists, point p is in shadow, and otherwise it is in light. Generally, ray
casting can be used for obtaining values for the visibility function V(pa, pb) for any pair of points
pa, pb, and this operation is called visibility query, or more explicitly point-to-point visibility query.
Implementing this kind of visibility query is conceptually simple. A brute-force implementation
could loop over all triangles in the scene, checking for line segment vs. triangle intersections one by
one, but this yields a hopelessly inefficient algorithm. The standard method for performing the query
faster is to construct a spatial acceleration structure of shadow-casting geometry, which leads to sub-
linear computational cost with respect to the number of shadow-casting primitives. Performing
ray casts efficiently is a topic of great interest in computer graphics, and vast amount of research
has been devoted to it. We will not go into details here, but refer the reader to extensive surveys
on the topic [17, 6, 39] and an interesting analysis of worst-case and average-case complexity of
different methods by Szirmay-Kalos and Márton [70]. Optimizations specific to shadow rays, where
finding any surface that intersects the ray is sufficient, include shadow caching [34]. In shadow
caching, a list is maintained for primitives that have most recently succeeded in blocking shadow
rays. When casting a new shadow ray, it is first tested against the recently encountered occluders,
and if intersection is found, the test is finished. Shadow caching does not accelerate the visible
shadow ray casts.

It should be noted that all physically-based hard shadow algorithms—alias-free shadow maps, pro-
jection shadows, shadow volumes and ray casting—give identical results (up to numerical precision),
since the visibility is computed correctly. These algorithms do differ fundamentally in their inner
workings, which leads to different computational costs with respect to number of receiver points,
light samples and shadow-casting primitives. These issues will be discussed in Chapter 3.

2.2 Soft Shadows

Soft shadows arise when the light source is not considered to be a point, but as an object or surface
with nonzero area. Such light sources are usually referred to as area light sources, and we shall adopt
this term in this thesis as well. Generally, area light sources are objects that emit light, although most
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often simple polygonal light sources are used. It should be noted that even a volumetric light source
can be expressed using only its bounding surface as a light source, assuming that no shadow caster
or shadow-receiving surface is located inside the bounding surface.

It is worth the effort to plunge into some mathematical formulations of light transport at this point,
in order to illustrate what we exactly are computing when rendering soft shadows. This is the most
mathematical portion in this thesis, and if the reader feels uncomfortable with the formulas, it does
no major harm to skip them.

2.2.1 Mathematical Background

Soft shadows are fundamentally more difficult to compute than hard shadows, since the visibility
of an area light source to a point being shaded cannot be expressed simply as 0 or 1. A scalar
value that can assume values between 0 and 1 does not suffice either. We start developing the
equation for shadow computation from the good old rendering equation first formulated by Kajiya
in 1986 [47]. The rendering equation governs the light transport when full global illumination is
taken into account. Using slightly more modern notation than what was used in the original paper,
we write the rendering equation as follows:

(2.1) u(p→ ωout) = e(p→ ωout) +
∫
Ωp

fr(p, ωin → ωout)u(p← ωin)bnp · ωinc dωin .

Here, u(p → ωout) denotes the total radiance flowing from point p into outgoing direction ωout ,
and e(p → ωout) is the radiance emitted from point p towards ωout . Unless p is on a surface of a
light source, the emission term e(p → ωout) is zero. The integral is taken over the hemisphere Ωp

that is directed towards the normal vector np at p. Function fr(p, ωin → ωout) is the BRDF [61] of
the surface at p, and it tells how big portion of incident light coming from direction ωin to point p
is reflected towards outgoing direction ωout .1 Expression b·c, commonly used in computer graphics
texts, denotes the “clamp-to-zero” function max(·, 0).

As can be seen, the radiance function u appears both on the left hand side of the equation and also
inside the integral, making this a so-called Fredholm equation of the second kind. Since our goal here
is to compute direct illumination only, we must replace the radiance function u inside the integral by
emission function e, which greatly simplifies the situation.

In addition, we make a somewhat surprising twist at this point, and remove the emission term
e(p→ ωout) outside the integral. This makes the light sources invisible entities that emit light while
being invisible to the camera, which is often desirable. Most commercial graphics packages treat
area light sources in this way. This gives the artists freedom to e.g. place additional light sources be-
tween the camera and the objects visible in the scene, which is impossible in physical world without
showing the light sources in the image. If, on the other hand, it is desirable to see the light sources
in the image, it is customary to present the corresponding surfaces twice, once as a light source, and
once as plain geometry that may have an emissive material, but that does not act as a light source.
We thus get the following equation:

(2.2) u(p→ ωout) =
∫
Ωp

fr(p, ωin → ωout)e(p← ωin)bnp · ωinc dωin .

1The BRDF (bidirectional reflectance distribution function) of a surface depends on its material, and there are many
models for expressing it in analytical forms. Tabulated BRDFs that are measured from real materials are also becoming
popular. We will not discuss BRDFs further in this thesis, and merely note their vital role in creating realistic images.
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Applying this integral directly when computing soft shadows from direct illumination would be
impractical. This is mainly because e(p ← ωin) inside the integral is zero unless a light source is
visible from p in direction ωin . We may recast this equation into so-called area formulation [27] by
a change of integration variable. Assuming no participating media, the incoming radiance at p from
direction ωin is the same as outgoing radiance from point l in direction −ωin , where l is a point on
a light source visible from p in direction ωin , allowing us to state that e(p← ωin) = e(l → −ωin).
The differential solid angle dωin can be expressed in terms of differential area as follows [27]:

(2.3) dωin = bnl · −ωinc
dA

|l − p|2
.

Because of the visibility criterion, we must multiply the kernel of the integral by the visibility func-
tion V(p, l). This yields the following equation, where we integrate over the surface L of a light
source:

(2.4) u(p→ ωout) =
∫
L

fr(p, ωin → ωout)e(l→ −ωin)V(p, l)
bnp · ωincbnl · −ωinc

|l − p|2
dAl.

It is important to note that ωin now depends on the integration variable l and is not constant. Dissect-
ing the equation, we see that there are three functions inside the integral: BRDF, emission function
and visibility function. Furthermore, there are factors that account for the geometry of the situation:
bnp · ωinc converts the cross-sectional flow from the direction of ωin to flow per surface area at p,
and bnl · −ωinc does the same in reverse direction at the surface of the light source. Attenuation
factor 1/|l − p|2 accounts for distance between p and l.

Solving the integral in Equation 2.4 analytically is possible for certain types of BRDFs and visibility
functions, but even in these situations, it is often faster to solve the integral using Monte Carlo
sampling instead. Integral over an arbitrary function can be approximated by constructing a number
of uniform-density sampling points in the domain of integration, and averaging the values of the
function in these locations:

(2.5)
∫
D

f(x) dx ≈ 1
M

M−1∑
j=0

f(xj),

where xj (0 ≤ j < M ) are the sampling points placed in the domain D that we integrate over. If we
generate M uniform-density samples lj on the surface of the light source, we can thus approximate
Equation 2.4 with the following sum:

(2.6) u(p→ ωout) ≈
1
M

M−1∑
j=0

fr(p, ωin → ωout)e(lj → −ωin)V(p, lj)
bnp · ωincbnlj · −ωinc

|lj − p|2
.

In this formulation, computation is easy since we sample all the difficult functions in discrete points
only. As sample count M is increased, the approximation converges to the correct result, and if M is
too small, there will be visible noise in the shadows due to approximation errors. A typical value for
M would be around 200 in situations where a single, reasonably small light source illuminates the
scene, provided that the light samples lj are generated using a good low-discrepancy distribution.

The most difficult part in applying Equation 2.6 is computing the values of the visibility function
V(p, lj), as it depends on the entire scene, in contrast to BRDF and emission functions that are
purely local in nature. The classical method is to cast a separate shadow ray for each lj , which
inevitably gives linear performance with respect to the number of light samples M , regardless of
the computational complexity of casting a single shadow ray. Modern approaches attempt to solve
V(p, lj) for multiple j at once, and possibly for multiple p also. This applies the algorithm presented
in this thesis as well.
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2.2.2 Approximative Soft Shadows

In approximative soft shadow algorithms, many simplifications are usually made that steer the result
away from the correct result that would be obtained if Equation 2.6 were used. Such simplifications
include, but are not limited to:

• approximating the visibility function V ,

• evaluating the BRDF function fr only once, e.g. for the direction to the center of the light
source,

• assuming constant emission function e,

• assuming constant geometry terms bnp · ωinc, bnl · −ωinc and 1/|l − p|2 over the surface of
the light source.

Most approximative soft shadow algorithms merely modulate the (approximate) color of the light
illuminating the surface by an approximate scalar visibility factor, as in the following equation:

(2.7) u(p→ ωout) ≈ e(lc,−ωin c)fr(p, ωin → ωout)
bnp · ωin ccbnlc · −ωin cc

|lc − p|2

∫
L

V(p, l) dAl.

Here, the emission function e, BRDF function fr, and the geometry factors are computed only for
the center of the light source lc, and assumed to be constant over the surface of the light source,
allowing them to be moved outside the integral. Symbol ωin c denotes the direction from p to the
center of the light source. The approximation is reasonable if the light source is small compared to
the distance to the surface being shaded, and the BRDF of the surface is not exceedingly reflective.
When the light source is enlarged and moved closer to the receiving surface, the approximation error
rises rapidly.

It is sometimes claimed (e.g. by Hasenfratz et al. [36]) that a shadow algorithm that computes the
visibility integral

∫
L
V(p, l) dAl correctly gives physically-based shadows. Even though this may

hold sufficiently well in certain situations, it is evident that Equations 2.4 and 2.7 are different.
Therefore, in this thesis we shall not grant these algorithms the luxury of being characterized as
physically-based.

Even if we are happy with the approximation of Equation 2.7, the problem of evaluating the visibility
integral still remains, and if Monte Carlo integration is used for approximating it, no significant
gain in computation speed is obtained compared to using the correct Equation 2.6. Hence, various
forms of trickery are used for approximating the visibility integral without sampling, and how this
is exactly done depends on the algorithm in question. In addition to this approach, many techniques
(e.g. Reeves et al. [66]) compute soft shadows by simply filtering hard shadow boundaries.

In this section, we shall cover only a couple of approximative soft shadow algorithms that have
close resemblance to physically-based soft shadow algorithms. An extensive survey of real-time
soft shadow algorithms is given by Hasenfratz et al. [36]. The introductory part in Arvo’s PhD
thesis [8] also contains thorough treatment of many approximative soft shadow algorithms.

Approximative real-time soft shadow volumes [4, 9, 10] are based on construction of penumbra
wedges that are closed volumes containing the points where a single silhouette edge may cast penum-
bra. In these algorithms, the penumbra wedges are rasterized one by one using graphics hardware,
and occlusion coverage is collected to the screen-space pixels. The inherent approximations in these
techniques are:
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• silhouette edges are computed only for the center of the light source, and assumed to hold
from every point on the light source surface,

• depth complexity is assumed to be at most one for every ray between surface being shaded
and the light source,

• BRDF and geometry terms are assumed to remain constant.

However, the most recent of these algorithms [9] supports light source whose emission is not con-
stant over the light source surface. The depth complexity limitation is due to the fact the silhouette
edges are processed one at a time, and the occlusion coverage is stored as a scalar value. This single
scalar value is unable to contain information about which parts of the light source are occluded from
the point being shaded, and thus areas that are covered multiple times are not handled correctly.
To illustrate this, consider a point p from which only the top 50% of a square-shaped light source
is visible. If there is only one surface that blocks the bottom half, the algorithm works correctly.
However, if there are two such surfaces, the total occlusion is computed to be 100%, and the shadow
will be completely black, even when the top half of the light source remains unblocked.

The most appealing feature of soft shadow volumes is that only the silhouette edges need to be
taken into account, and the number of silhouette edges is typically a lot smaller than the number
of triangles [58]. Soft shadow volumes have been used in physically-based shadow computation as
well, and we shall return to this in the following section.

Cone tracing [5] approximates the visibility inside a circular cone, and this can be applied in soft
shadow computations. For shading a point, a cone is constructed so that the apex is at the point
being shaded, and the base covers the area light source. In practice, occlusion inside the cone has to
be modeled heuristically, since exact clipping of the cone easily leads to unbearable fragmentation
and complicated geometry because of the curved surface of the cone. Pencil tracing [68] operates
on a set of rays that lie inside a cone-shaped beam (with possibly non-circular base) so that in
certain situations only the central ray needs to be traced. Optical events such as transport, reflection
and refraction of the pencil are modeled using simple matrix algebra, which enables error analysis
related to the pencil-spread angle. Validating whether the destination of all rays in a pencil can be
derived from the central ray is non-trivial.

2.2.3 Physically-Based Soft Shadows

In physically-based soft shadow algorithms, as defined in a somewhat strict sense in this thesis,
the visibility is computed correctly and in a fashion that truly enables approximating the integral in
Equation 2.4.

Beam tracing [40] constructs a polygonal beam between the point to be shaded and the light source.
Occlusion inside the beam is correctly modeled by clipping the beam according to occluders. In
highly tessellated scenes, the beam geometry quickly becomes prohibitively complex, and the ben-
efits of using analytic geometrical representation instead of a set of rays is lost. Ghazanfarpour and
Hasenfratz [32] introduce a variant that subdivides the beam recursively until the entire beam is ei-
ther free of occluding geometry or blocked by a single triangle. Subdivision is also terminated when
a specified subdivision limit is reached. Clipping to occluder geometry is avoided in this approach,
but since connected surfaces cannot block the beam, the beam has to be subdivided all the way to
the limit when it contains an edge of a single occluding primitive.

Using soft shadow volumes for rendering physically-based shadows was presented by
Laine et al. [51]. In this algorithm, each potential silhouette edge is identified and a correspond-
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ing penumbra wedge is constructed for each of these in a pre-processing phase. During rendering,
the penumbra wedges containing the point p to be shaded are fetched from an acceleration structure,
and the set of corresponding potential silhouette edges is pruned to contain only the actual silhouette
edges as seen from p. Then the silhouette edges are projected onto the 2D surface of the light source,
and the depth complexities of individual light samples is determined by a variant of a polygon filling
algorithm. A number of limitations is imposed by the algorithm. Each planar light source polygon
must be processed separately because of the projection of silhouette edges into 2D. Furthermore, the
potential silhouette edge sets returned by the spatial acceleration structure quickly gets very conser-
vative when the spatial size of the scene is increased. Nevertheless, the algorithm gives impressive
speedups compared to traditional ray casting. The inner workings of the algorithm are discussed
further in Chapter 3.

Another approach for computing soft shadows, hierarchical penumbra casting [50], takes a com-
petely different stance on solving the visibility relations. Instead of processing every visibility re-
lation between receiver points and light samples separately, the algorithm keeps the status of all
visibility relations in memory, and processes each shadow-casting triangle of the scene separately.
The blocked visibility relations are identified hierarchically for the triangle being processed, and the
statuses of these visibility relations are updated. No restrictions on the positioning of the light sam-
ples or receiver points are imposed. The behavior of this algorithm is also analyzed in more detail in
Chapter 3.

For completeness, we mention classical ray casting [73] here also, since casting separate shadow
rays is still the most popular method for solving the values of the visibility function in Equation 2.6.
Shadow caching optimization [34] is applicable equally well in computing soft shadows as in com-
puting hard shadows.

Marks et al. [56] consider the common bounding volume of two quadrilateral patches, and note
that shadow rays between these patches can only be blocked by the shadow casters inside the vol-
ume. Thus, when casting the shadow rays, all other objects in the scene can be ignored. This idea
was extended to shaft culling [35, 33, 21] by considering the common bounding volume—called a
shaft—between two bounding volumes. Finding the objects inside the shaft again allows the shadow
rays to consider only those objects, leading to faster visibility queries. A method for bounding the
penumbrae cast by objects that can be approximated by spheres has been presented by Formella and
Łukaszewski [31]. Since conservative decomposition of arbitrary objects into spheres is a non-trivial
task, this algorithm has quite limited applicability.

2.3 Visibility

As has been already emphasized several times, computing shadows is intimately related to comput-
ing visibility. Therefore, we shall take a look at some of the visibility-related previous work.

2.3.1 Pre-computed Visibility

In real-time applications, pre-computed visibility data is often used for accelerating the rendering.
For static scenes, efficient occlusion culling is obtained through the use of pre-computed potentially
visible sets [3], or PVSs, that are simply lists of objects known to be visible from a number of
volumetric view cells in the scene. During run-time, the view cell containing the camera is identified,
and only the objects in the PVS of the cell in question are rendered. Obviously, the occluders used
when computing the PVSs cannot move or disappear during the display, since the pre-computed
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False visibility
No Yes

False Occlusion No exact conservative
Yes aggressive approximative

Table 2.1 Classification of visibility algorithms according to Nirenstein et al. [62].

occlusion data cannot be updated.

When there are relatively few pathways for visibility, as is typical in indoor scenes, portals [55] can
be used. Portals connect separate parts of the scene, and thus the entire scene needs to be represented
as a cell-and-portal decomposition. During rendering, visibility only through portals is considered.
An automatic portal placement algorithm is presented by Haumont et al. [37], although usually some
amount of manual work is needed to remove furniture and other “noisy” geometry from distracting
the algorithm. Since portals are not always applicable, e.g. in outdoor scenes, we will not consider
this approach further.

2.3.2 Generic Visibility

Let us now consider visibility algorithms that need no a priori visibility information about the scene.
First, we take a look at an abstract definition of a visibility algorithm, and then proceed by examining
different classes of visibility algorithms and their applicability in rendering shadows.

We begin by defining a visibility algorithm as an algorithm that returns a binary result indicating
the existence of a line of sight between two geometrical entities. Note that we do not yet consider
whether the answer given by the visibility algorithm is always correct. The act of calling a visibility
algorithm is commonly referred to as performing a visibility query. The two geometrical entities
may be e.g. points, objects or polygons. For two points, we may solve the visibility by casting a
shadow ray, making this a trivial case. As soon as we start operating on something else than points,
things get much more complicated.2

Different types of visibility algorithms can be classified in terms of the correctness of the answers
they give to visibility queries. Following the taxonomy of Cohen-Or et al. [18], as extended by
Nirenstein et al. [62], we discriminate between exact, aggressive, conservative and approximative
algorithms. The classification of a given visibility algorithm depends on whether it may report false
positive and/or false negative results for visibility queries. Table 2.1 illustrates the classification.
Exact algorithms always return the correct result, whereas conservative algorithms may overesti-
mate the visibility, giving a false positive answer to a visibility query. Aggressive algorithms may
underestimate the visibility and give a false negative answer to a visibility query, claiming that some
visibility relation is blocked when it actually is not. Finally, approximative algorithms may err in
either direction.

Generally, aggressive and approximative visibility algorithms are of little use in physically-based
shadow rendering, in contrast to exact and conservative ones. To illustrate this, let us consider a
situation where we would like to try solving all of the visibility relations in Equation 2.6 for a single
p at once. We may execute a visibility query asking whether the entire surface of the light source L
is occluded from point p. If a conservative or an exact visibility algorithm reports that L is entirely

2It is easy to see that volume-to-volume visibility can be trivially (although not necessarily efficiently) solved in terms of
area-to-area visibility between the bounding surfaces of the volumes. This is based on the observation that every line of sight
between two points in two non-overlapping volumes must pass through the bounding surfaces of both volumes. Hence, if the
bounding surfaces are mutually occluded, so are the volumes.

15



Previous Work

Query result
Visibility algorithm Visible Occluded
Exact continue break
Conservative continue break
Aggressive continue continue
Approximative continue continue

Table 2.2 The action we need to take when a visibility algorithm reports visibility or occlusion
between point p and the entire light source L. Only when exact or conservative visibility algorithm
is used, and it reports occlusion, we can safely terminate the computation and trust that V(p, l) = 0
for all point-to-point visibility relations between p and L.

occluded from p, we are done, since V(p, lj) = 0 for any lj we might place on L. If the answer is that
L is at least partially visible from p, there is a chance that some of our light samples lj are located
so that V(p, lj) = 1, and we must either cast shadow rays for each lj or proceed in some other
way. Now, consider a case where we apply an aggressive or an approximative visibility algorithm.
If such an algorithm reports that L is entirely occluded from p, we cannot trust this answer because
the algorithm may have underestimated the visibility and reported a false occlusion. Likewise, if
the result is that L is not entirely occluded from p, we still have no information that would help us
in avoiding any work; notice that this answer does not mean that all lj would be visible from p. In
conclusion, regardless of the answer given by an aggressive or an approximative visibility algorithm,
it provides no useful information for rendering soft shadows. Table 2.2 summarizes whether we need
to continue computation, based on the visibility algorithm and the answer it returns.

Another important basis for classification of visibility algorithms is whether they operate in object
space or in screen space. Screen-space visibility algorithms are used for accelerating the rendering
of complex scenes. These algorithms are typically conservative, since overestimating the visibility
does no harm because of hidden surface removal. A simplifying factor in all screen-space algorithms
is that one end of the visibility queries is always a point—the location of the camera—that stays the
same for all queries during the rendering of a frame. Because of this feature of screen-space visibility
algorithms they are generally not well suited for soft shadow computation or generic visibility com-
putation. However, screen-space algorithms may be of great aid in e.g. accelerating the construction
of shadow maps for rendering hard shadows. Because our focus is on soft shadows and generic
visibility computation, we shall not consider screen-space visibility algorithms further in this thesis,
but refer the reader to extensive surveys by Cohen-Or et al. [18] and Bittner and Wonka [14].

Numerous special-case algorithms have been developed for performing exact and conservative visi-
bility queries in e.g. 2D, 2.5D and even more esoteric [53] cases. Compared to generic 3D cases, the
lower dimensionality usually allows much simpler and faster solutions, and the topic is still under ac-
tive research (see e.g. [12]). Although slightly dated, Wonka’s PhD thesis [76] is still a good source
of information, especially considering 2.5D visibility. These special-case algorithms are outside the
scope of this thesis, as our focus is on general-purpose 3D visibility.

2.3.3 Exact Visibility Algorithms

The mathematical background for solving area-to-area visibility queries exactly was introduced by
Pocchiola and Vegter [65] in the form of visibility complex in 2D, a geometrical data structure
that stores all visibility events—possible changes in point-to-point visibility—between two surfaces.
Later, the visibility complex was extended to 3D by Durand [24], who also introduced visibility
skeleton [25], a much simpler graph structure that contains only the vertices and one-dimensional
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edges of the visibility complex. The crucial ingredient in most visibility structures (although not all,
see e.g. [42]) for generic 3D case is the six-dimensional projective dual space of the line space in
3D, the so-called Plücker space [64]. A thorough treatise on the nature of this dual space is beyond
the scope of this thesis, but excellent presentations are available in the literature [71, 23, 13]. In
the following, we will briefly consider the basics of how computations involving lines in 3D are
translated to computations involving points and hyperplanes in the 6D dual space.

The six Plücker coordinates of a directed line ` are denoted π0 . . . π5. The Plücker coordinates of a
line from point a to point b are given by the following equations [13]:

(2.8)
π0 = bx − ax π3 = aybz − azby

π1 = by − ay π4 = azbx − axbz

π2 = bz − az π5 = axby − aybx

Permutation of the Plücker coordinates gives a six-dimensional Plücker hyperplane with components
ω0 . . . ω5. The sign of the dot product between a dual-space representation of line `1 and the Plücker
hyperplane of line `2 tells whether line `1 passes line `2 in a clockwise or a counter-clockwise
manner.

Let us now consider the visibility between two convex polygons, P1 and P2. The criterion that
the visibility ray must intersect both these polygons is expressed by constructing a six-dimensional
polytope that is bounded by all Plücker hyperplanes defined by the edges of the polygon. Now only
the lines whose Plücker coordinates lie in this initial polytope have the quality that they pass all
edges of both P1 and P2 in a similar fashion, which is equivalent to intersecting both polygons.
The criterion of a ray intersecting a shadow caster between the polygons can be expressed in the
same fashion, yielding the occlusion polytope in which the rays are occluded. By subtracting the
occlusion polytopes from the initial polytope containing all valid lines, we can remove the sets of
occluded lines from the sets of allowed lines. If the polytope vanishes, no line of visibility exists
between P1 and P2, and we can conclude that P1 and P2 are mutually hidden. To be more precise, we
must note that only some 6-tuples π0 . . . π5 represent actual lines in 3D and all these 6D points lie on
a quadric four-dimensional surface embedded in the Plücker space, called the Plücker hypersurface
or Grassman manifold or Klein quadric [23]. Therefore, it is enough that the intersection between
the polytope and the Plücker hypersurface vanishes, in order to conclude mutual occlusion between
two polygons.

Exact visibility algorithms that operate in Plücker space have been presented, among others, by
Nirenstein et al. [62], Bittner [13], and more recently, by Haumont et al. [38]. All of these algorithms
rely on relatively simple but numerically somewhat fragile geometrical computations, where small
numerical inaccuracies can easily lead to wrong results. This issue is addressed by Duguet and
Drettakis [22], who consider the visibility of thick rays instead of infinitesimally thin ones.

The price for obtaining an exact answer for a visibility query is often quite high, and the execution
time for a single visibility query varies wildly depending on the situation (see e.g. the min/max
timings in the results table of [38]). Furthermore, when computing soft shadows using Equation 2.6,
we need to determine the visibility for a set of rays only. Using an exact visibility algorithm is
usually too slow for performing an early-exit test to determine whether the entire light source L
is hidden from a point p. As noted before, getting a conservative result for the visibility test does
not lead to erroneous results because of the fallback solution we need to apply whenever visibility
is reported. As conservative visibility algorithms are often much faster than exact ones, we shall
investigate those next.
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2.3.4 Conservative Visibility Algorithms

Conservative general-purpose 3D visibility algorithms are the most useful ones in context of soft
shadow computation. Shadow caching [34] can be classified as a conservative point-to-point vis-
ibility algorithm, since it never underestimates the visibility, but in some cases is able to quickly
determine that a shadow ray is occluded. For point-to-area and area-to-area visibility algorithms,
multiple solutions have been presented, and we shall investigate those next.

Hierarchical blocker trees, introduced by Hinkenjann and Müller [42], construct a hierarchical, dis-
cretized representation of occlusion between two surfaces. In this algorithm, occluding primitives
are treated as separate entities, and the aggregate occlusion of connected primitives is handled only
by subdividing the hierarchical representation until a specified limit is reached, quite similarly to the
beam tracer of Ghazanfarpour and Hasenfratz [32]. Therefore, an edge of a single blocking surface
in a shaft leads to false visibility—a hole in the blocker tree—if the tree is constructed so that it can
be guaranteed to give conservative instead of approximate visibility results.

The beam tracer of Ghazanfarpour and Hasenfratz [32] can be seen to contain a conservative visi-
bility algorithm, since it detects if there is a single occluding primitive that blocks the entire beam.
The algorithm is very conservative, since it is quite common that multiple connected primitives form
a surface that blocks the beam, but this case is not detected. As noted earlier in Section 2.2.3, this
leads to subdividing the beam to the maximum limit in such cases.

A more elaborate algorithm that finds shaft-blocking surfaces is presented by Navazo et al. [60].
Their algorithm detects most of the situations where a single surface blocks a shaft between two
bounding volumes. The algorithm is rather convoluted, and it does not detect all cases where a
single surface blocks the entire shaft (see Figure 4f in [60]).

A tremendously simpler algorithm that detects shaft-blocking surfaces was earlier presented by
Bernardini et al. [11] as a part of conservative occlusion simplification system. It is unclear whether
the algorithm they describe handles certain tricky occluders correctly—Section 4.6.4 contains an ex-
ample of one such occluder.3 The visibility test part of the incremental shaft subdivision algorithm
presented in this thesis is essentially similar to the algorithm presented by Bernardini et al. [11] with
certain modifications.

3The crucial question is how the test in line 20 of the pseudocode in Figure 6 in [11] works. The pseudocode reads
“if projection of boundary edges contains center of occluder . . .”, and it is not explained how this point-in-polygon test is
performed. With suitable implementation, corresponding to testing whether the winding number of boundary edges with
respect to occluder center is non-zero, the algorithm would function correctly. With another implementation, corresponding
to the more standard even-odd point-in-polygon test, the algorithm would fail with certain occluders.

18



Chapter 3

Further Analysis

In this chapter, we shall discuss the general aspects of physically-based soft shadow algorithms.
First, we address the question of evaluating the performance and quality of these algorithms. The
concept of execution model in shadow algorithms is discussed next, especially focusing on the im-
plications of the execution model on the computational complexity.

We then proceed by analyzing the operation of several existing physically-based soft shadow al-
gorithms in detail, as well as the novel algorithm presented in this thesis. The analysis is entirely
qualitative, and its purpose is to give the reader a general understanding of how the algorithms work,
and which parameters may affect the performance of each of the algorithms, rather than give explicit
quantitative performance analysis. This kind of quantitative analysis would be quite hard to do, be-
cause the geometrical situation generally affects the behavior of every shadow algorithm more than
factors like the number of triangles or receiver points.

3.1 Performance and Quality

The two main factors in analyzing a soft shadow algorithm are performance and quality. The per-
formance is usually thought of in terms of execution time and memory consumption in a given
rendering setup, i.e. scene geometry, lighting setup, image resolution and so on. To be able to char-
acterize the performance of a given algorithm, we must somehow choose the parameters in terms of
which the characterizations are formulated. We choose the following parameters that are also used
in previous research [50]:

• R: number of receiver points ri,

• L: number of light samples lj ,

• T: number of triangles in the scene.

This parameterization makes several simplifications. First of all, considering only the number of re-
ceiver points (points in which the shadows are computed), instead of their positions as well, neglects
their spatial arrangement completely. A shadow algorithm may be sensitive to the positioning of the
receiver points, but such behavior is impossible to characterize in terms of R alone. The same applies
to light samples: especially the spatial size of the light sources tends to affect the performance of
physically-based soft shadow algorithms [51, 50].
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Finally, the grossest of these simplifications is describing the scene geometry only in terms of triangle
count. It is intuitively very clear that there must be “easy” and “difficult” spatial arrangements
of shadow casters for practically every algorithm that deals with geometrical computations. For
example, if all triangles are located between the shadow-receiving surfaces and the light sources,
thus affecting the shadows, the situation is obviously more difficult than when the triangles are
situated somewhere else where they do not contribute to the shadows in the image. The soft shadow
volume algorithm [51], for example, is very sensitive to the number of silhouette edges of the shadow
casters. Now, if the triangles in the scene form a smooth connected surface, the number of silhouette
edges is tremendously smaller than when all triangles are disconnected and separate. Collapsing all
information about the triangles into the single number T hides these kind of details.

In this thesis, we shall firmly steer away from the problem of obtaining the exact complexity for-
mulas. This task would be generally extremely hard, and therefore we confine ourselves to merely
observing whether the complexity is linear or sub-linear. Furthermore, we shall neglect every com-
plexity measure that does not include every scene parameter: R and T for hard shadow algorithms,
and R, L and T for soft shadow algorithms. This excludes all pre-processing stages that process only
certain types of primitives, e.g. the triangles. Such pre-processing stages include building a triangle
BSP or building a spatial acceleration hierarchy for receiver points.

3.1.1 Quality vs. Performance

When we are dealing with physically-based soft shadow algorithms, we must remember that all
of them should give exactly identical results, ignoring the discrepancies that arise from numerical
round-off errors. The situation is entirely different from approximative soft shadow algorithms,
where both the quality and the performance vary, and it is generally much harder to evaluate quality
than performance.

With physically-based soft shadows, the notion of quality is still valid. It is quite legitimate to say
that images with better quality can be obtained by increasing the number of samples taken per pixel,
leading to better anti-aliasing. Also, increasing the resolution can be seen as improving the quality.
Considering the scene geometry, at least smooth surfaces appear more realistic when tessellated
using a large number of triangles, as opposed to a small number, where individual triangles might
remain visible. Finally, increasing the number of light samples decreases the approximation error in
shadow computation (Equation 2.6).

Increasing any of the three factors R, L or T can thus be seen as increasing the quality of the resulting
image. In general, this also leads to longer execution times and higher memory consumption for the
shadow computation algorithm. The converse is also true: decreasing the quality by using smaller
resolution, coarser geometry or fewer light samples leads to faster execution, as is natural to expect.
Therefore, we can trade quality for performance, and vice versa. Since every algorithm produces
the same quality in a given rendering setup, we end up in comparing only the performance. In other
words, an algorithm that executes faster gives better quality for runtime ratio, i.e. bigger bang for
buck, and can thus be deemed to be better in every sense than a slower algorithm.

If the computational complexity of an algorithm is sub-linear with respect to a parameter, it behaves
nicely when the quality is improved by increasing the value of the parameter in question. If the
execution time of an algorithm depends on, say, R according to O(R0.5), quadrupling the resolution
from 1024×768 to 2048×1536 only (approximately) doubles the execution time. But this works the
other way around, too. Decreasing the resolution to one-fourth of the original, 512×384, only halves
the execution time. Therefore, it is relatively slower to render e.g. a preview image using a small
resolution, compared to a linear-time algorithm with execution time complexity O(R). Now, let us
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for a moment imagine that we can choose between two algorithms with execution time complexities
of O(R0.5) and O(R), whose actual execution time, in seconds, is about the same in the 1024× 768
resolution, in a rendering setup we are working on. Which algorithm is better? It is obvious that the
O(R0.5) algorithm wins if we want to increase the resolution or the antialiasing quality in the future.
But, if it is more likely that the resolution requirements are going to drop, the O(R) algorithm would
be a better choice. This simple example illustrates that the asymptotical O(· · · ) notation does not
necessarily indicate the actual applicability of an algorithm, unless we make the bold assumption
that the quality requirements will increase without limit.

3.2 Execution Model and Its Implications on Complexity

Both soft and hard shadow algorithms differ from each other in their execution model: what data
the algorithm needs as immutable a priori information for pre-processing purposes, and what data
is looped over while executing the algorithm. The execution model profoundly affects the computa-
tional complexity of an algorithm, both for execution time and memory consumption.

3.2.1 Triangles

If an algorithm needs all triangles in the scene to be present in the pre-processing stage, it is able
to build a spatial acceleration structure for them, extract the silhouette edges, or perform other geo-
metrical tasks that require simultaneous knowledge of all triangles in the scene. An acceleration
structure enables searches to the triangles in sub-linear time with respect to T, and being able to use
silhouette edges instead of triangles themselves also reduces the execution time to sub-linear with
respect to T. But there are downsides in this approach as well.

When we speak of gathering all triangles in the scene, we are essentially referring to full scene cap-
ture, which is generally avoided in hardware-based systems because of unbounded memory usage.
Collecting the triangles in a pre-processing stage implies that the triangles (or at least the silhouette
edges) need to be stored in memory, and while this is not a problem in off-line rendering, it certainly
is a problem if the algorithm is intended to run in a predetermined amount of memory, which is
usually the case in hardware.

On the other hand, if the algorithm works so that it loops over the triangles one by one, its execution
time is inevitably linear with respect to T. The good side about this approach is that the memory
consumption of the algorithm is independent of T, indicating better feasibility for hardware imple-
mentation. In the context of both hard and soft shadow algorithms we analyze ones that employ the
approach of collecting the triangles in pre-processing stage, and ones that loop over the triangles.

3.2.2 Receiver Points

Collecting the receiver points at a pre-processing stage enables a shadow algorithm to execute in sub-
linear time with respect to R. This is a compelling property, since it essentially means that increasing
the resolution of the image affects the computational cost sub-linearly. This is also somewhat con-
troversial approach, since it imposes serious restrictions on the execution model of the algorithm.
The traditional shadow ray casting, for example, does not require receiver points to be gathered
beforehand, and is therefore easy to apply in various contexts.

Collecting the receiver points requires that, in principle, the image is first rendered without shadows,
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and only after that, the shadow computation may take place. This means that the user cannot e.g. see
the final image being formed, which may be a serious drawback in production rendering. Screen-
space adaptive anti-aliasing is also hard to implement, requiring that we first compute the image with
shadows using the initial sampling rate, then analyze the image for apparent discontinuities, and
finally perform another pass where extra samples are deposited in areas that require anti-aliasing.

Despite these inconveniences, a truly powerful soft shadow algorithm should be able to exploit the
coherence of shadows between nearby receiver points, and this requires that the receiver points are
collected beforehand. In the remainder of this chapter, we see both hard and soft shadow algorithms
that take this approach.

3.2.3 Light Samples

Even though light samples are conceptually similar to receiver points in the sense of evaluating
the visibility function, it is usually not a problem if the light samples need to be known in a pre-
processing stage. The coherence of shadows caused by nearby light samples is usually high, and the
potential drawbacks caused by using predetermined light sample configurations are often compen-
sated by significantly better execution time complexity.

With light samples, there is also an intermediate level of representation, employed by e.g. the soft
shadow volume algorithm by Laine et al. [51]. This algorithm requires that the light polygons are
known in a pre-processing stage, but the light samples themselves can be dynamically placed on the
light source when executing a shadow query, i.e. when the visibility between a single receiver point
and a set of light samples is computed. This is a nice property, since it allows generating custom
importance sampling-based light sample pattern for every individual shadow query.

Using the same set of light samples for computing the shadows to every receiver point has undesir-
able consequences. In this case, the soft shadows would be in fact just a combination of multiple
hard shadows, and unless an excessively high number of light samples is used, this causes banding
artifacts in the shadows. The banding artifacts can be easily removed by choosing a different set of
light samples for each receiver point, using the same random distribution every time. This converts
the banding to much less distracting noise. Soft shadow algorithms that require all light samples
to be determined before the shadow computation must still be somehow able to use different light
sample patterns for individual receiver points. A possible way of doing this is to require a number of
light sample patterns to be specified, and to choose randomly among them for each receiver point.
This approach is used by the hierarchical penumbra casting algorithm [50].

3.2.4 The Complexity Cube

We now introduce the complexity cube of soft shadow algorithms that is useful for mentally situating
the different algorithms in the context of execution time complexity. The execution time of a soft
shadow algorithm is either linear or sub-linear with respect to the number of receiver points R, light
samples L, and triangles T. We thus have eight combinations in total, considering the execution
time complexity with respect to three parameters. These eight combinations can be thought of as the
vertices of a cube, with axes corresponding to complexity with respect to one parameter.

Figure 3.1a illustrates the complexity cube of soft shadow algorithms. As we can see, every corner
of the cube except one is occupied by a shadow algorithm, and we shall analyze these algorithms
in more detail in the following sections. The red corners indicate algorithms that have already been
presented in the literature, or can be obtained by simple modifications to those algorithms. The
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Figure 3.1 The complexity cube of soft shadow algorithms. (a) Shadow algorithms placed in
their respective corners of the cube. Abbreviations: nRC = naive ray casting, RC = ray casting,
mAFSM = modified alias-free shadow maps, rmAFSM = reverse modified alias-free shadow maps,
SSV = soft shadow volumes, HPC = hierarchical penumbra casting, ISS = incremental shaft sub-
division. (b) Faces of the cube containing algorithms that are linear with respect to one parameter
correspond to certain characteristics of the algorithms.

green corner indicates the slot filled by the incremental shaft subdivision algorithm (ISS) that will
be presented in Chapter 4 of this thesis.

Based on the discussion in the previous section, we may identify certain characteristics of the algo-
rithms with the faces of the cube. Figure 3.1b illustrates these dependencies. For instance, algorithms
with linear complexity with respect to R do not need the receiver points to be collected in the pre-
processing stage, and thus exhibit the nice execution model where shadow queries can be issued on
the fly. Algorithms with linear complexity with respect to L are all actually hard shadow algorithms
that can be executed multiple times, once per each individual light sample. Finally, algorithms on
the bottom face of the cube process the triangles linearly, and their memory consumption does not
depend on T.

3.3 Analysis of Shadow Algorithms

In this section, we briefly discuss each of the algorithms that occupy the corners of the complexity
cube. Both hard and soft shadow algorithms are included, since soft shadow algorithms that operate
on each light sample separately can be derived trivially from hard shadow algorithms by looping over
the individual light samples. We make the assumption that every triangle casts shadows to avoid
cluttering the pseudocodes with unnecessary tests. A single light source is also assumed, unless
explicitly stated otherwise, as most of the algorithms can naturally handle only one light source.
With these shadow algorithms, multiple light sources must be handled by executing the algorithm
for each light source separately. To store the statuses of the visibility relations, we imagine having
an array V [i, j] where each element may have either value OCCLUDED or VISIBLE, corresponding to
the visibility between receiver point ri and light sample lj . This is done solely to unify the notation,
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NAIVE RAY CASTER
1 for each receiver point ri do
2 for each light sample lj do
3 V [i, j]← VISIBLE
4 for each triangle t do
5 if t intersects ray ri → lj then V [i, j]← OCCLUDED; break
6 end for
7 end for
8 end for

Figure 3.2 Pseudocode for the naive ray caster algorithm.

RAY CASTER
1 collect all triangles in the scene and build a spatial acceleration structure
2 for each receiver point ri do
3 for each light sample lj do
4 if IS-RAY-BLOCKED(ri → lj) then
5 V [i, j]← OCCLUDED
6 else
7 V [i, j]← VISIBLE
8 end if
9 end for
10 end for

Figure 3.3 Pseudocode for the ray caster algorithm.

and in practice many of the algorithms could be used so that the statuses of all visibility relations
would not need to be stored at any point of the computation.

3.3.1 Ray Casting

The most trivial and simple-minded shadow algorithm is here dubbed naive ray caster (nRC), and
its operation is easiest to describe using the pseudocode in Figure 3.2. The algorithm simply checks
every {receiver point , light sample , triangle} triplet for intersection, and notes when the triangle
blocks the ray between the receiver point and the light sample. This results in O(RLT) complexity,
even though the innermost loop can be exited if an intersection is found. The algorithm occupies
the worst corner of the complexity cube, and is included here only for the sake of completeness. In
practice, it is too slow to be useful in any realistic situation.

The key to making ray casting practical is to construct an acceleration structure for quickly determin-
ing if a ray between a receiver point and a light sample is blocked by a triangle. Popular acceleration
structures include axis-aligned BSP and regular grid. Constructing the acceleration structure must
be done before any rays can be cast, and it requires at least linear amount of memory with respect to
T. To summarize the operation, we give the pseudocode in Figure 3.3.

We will not go into details on how the subroutine IS-RAY-BLOCKED is implemented, since it de-
pends on the particular acceleration structure used. It suffices here to note that a single call can
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be performed in sub-linear time with respect to T. In fact, with common acceleration structures the
average-case execution time is at most logarithmic [70]. With two nested loops in which a sub-linear
time call is made, we end up with execution time complexity that is linear with respect to R and L,
and sub-linear with respect to T. We call this algorithm simply ray casting (RC).

3.3.2 Alias-Free Shadow Maps

The motivation for alias-free shadow maps [2] (AFSM) was to eliminate the resolution and bias
problems in traditional shadow maps used for rendering hard shadows. To achieve this, the receiver
points in the scene are first gathered, transformed into the view frustum of the light source, and
projected to the 2D plane corresponding to the image plane of the traditional shadow map. Then,
an axis-aligned BSP acceleration structure is constructed for these points. Triangles of the scene are
processed one at a time so that the points that the 2D projection of the triangle overlaps are identified,
and using depth comparison, marked as occluded when appropriate. Unlike with traditional shadow
maps, there is a one-to-one mapping between receiver points and shadow map sampling points, and
therefore it is not necessary to render the depth values of the occluding triangles for the sampling
points; instead, we can store the status of the visibility relation directly. As an optimization, it is
easy to maintain a bit per BSP node telling if all receiver points under the node have already been
marked as occluded. In such cases, the BSP traversal can always be terminated, since the status of
the receiver points can never change from occluded to visible. Computing soft shadows with the
AFSM algorithm requires that we loop over every light sample individually. Removing the banding
artifacts caused by using the same set of light samples for every receiver point is unfortunately not
possible with the AFSM algorithm.

This time, we use a slightly more detailed pseudocode to illustrate the algorithm, see Figure 3.4.
Analysis of the complexity of the algorithm is difficult because of the 2D projection under which
the BSP is constructed. Indeed, it cannot be easily said how it affects the quality of the acceleration
structure if one dimension is flattened down, and only two are considered when constructing the
structure and performing the hierarchical searches. Because of this, we modify the AFSM algorithm
slightly so that it constructs the axis-aligned BSP in three dimensions, taking not only the x and y
coordinates of the projected receiver points into account, but also the projected z coordinates. The
only changes to the pseudocode involve modifying the test on Line 11 in the PROCESS-TRIANGLE
subroutine (Figure 3.4) that checks if the triangle may affect the occlusion of the receiver points un-
der the node. Instead of just checking for 2D overlap, we need to verify that the bounding box of the
node—now having bounds for x, y and z coordinates—is at least partially behind the triangle being
processed. We shall not give the pseudocode for this modified alias-free shadow maps (mAFSM)
algorithm, since it would be almost the same as the one given in Figure 3.4.

Now that we have a full 3D hierarchy for the receiver points, we may analyze the complexity of the
algorithm. We begin by noting that a range query in a kd-tree can be executed in time O(n1−1/d+k),
where n is the number of points in the tree, d is the dimension of the tree, and k is the number of
points reported by the query [20]. A range query corresponds roughly to what we do when processing
the triangle hierarchically in the receiver point tree, and our axis-aligned BSP should be at least as
good an acceleration structure as a kd-tree, so we can take the complexity of finding the receiver
points affected by a single triangle to be O(R2/3 + k). Now, if we take into account that k, the
number of points under the triangle, generally increases linearly with respect to R, it seems that the
execution time of the triangle processing subroutine is linearly dependent on R. But this is actually
not the case, due to the effect of the optimization bits used for signaling when all receiver points
under a node are occluded.

If we did not want to enumerate the affected receiver points, but only find the nodes that are influ-
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ALIAS-FREE SHADOW MAPS
1 collect all receiver points
2 for each light sample lj do
3 project receiver points ri into the light space of lj and construct a 2D BSP for them
4 for each receiver point ri do V [i, j]← VISIBLE
5 for each triangle t do
6 tl ← projection of t in the light space of lj
7 PROCESS-TRIANGLE(root_node , tl, lj)
8 end for
9 end for

procedure PROCESS-TRIANGLE(BSP node n , projected triangle t, light sample lj)
10 if n.all_occluded then return
11 if t does not overlap n.bounding_rectangle then return
12 if n is a leaf node then
13 for each receiver point ri in n.points do
14 if (ri.x, ri.y) is inside t and ri.z > depth of t at (ri.x, ri.y) then V [i, j]← OCCLUDED
15 end for
16 if all ri in n.points have V [i, j] = OCCLUDED then n.all_occluded ← TRUE
17 else
18 PROCESS-TRIANGLE(n.left , t, lj)
19 PROCESS-TRIANGLE(n.right , t, lj)
20 n.all_occluded ← n.left .all_occluded and n.right .all_occluded
21 end if

Figure 3.4 Pseudocode for rendering soft shadows with the alias-free shadow maps algorithm.

enced by the triangle, this could be done in O(R2/3) time. After this node enumeration, we could
mark the occluded nodes using e.g. one bit per node, and later return to propagate these occlusion
bits down to the receiver points. This final propagation pass needs to be done only once, and its
complexity is thus independent of the number of triangles. With this kind of scheme, we would
therefore obtain triangle processing time that is sub-linear with respect to R.

Beginning with this idea, we may now consider the possibility of removing the final propagation
pass by performing the propagation immediately when a node becomes occluded, and tagging the
node as having already been propagated. Since the propagation has to be performed once anyway, it
does not make any difference if we do it immediately when the need arises, as long as we are careful
to avoid doing it more than once. Hence, the execution time is unaffected by this modification.
Comparing this approach with the one used in the AFSM algorithm, this is almost the same effect
that the all-occluded optimization bits achieve. The optimization bits are in fact even more powerful,
since by using them it is possible to detect when all receiver points under a node have been occluded
by separate triangles. Therefore, the algorithm with all-occluded optimization bits operates almost
in the same fashion as a node-enumerating algorithm that propagates the occlusion in a post-process
phase. Since the node-enumerating variant has triangle processing time that is sub-linear with respect
to R, the same holds for the modified AFSM algorithm as well. Consequently, the execution time
for the mAFSM algorithm is linear with respect to L and T, and sub-linear with respect to R.

We may also reverse the role of receiver points and light samples, ending up with reverse modified
alias-free shadow maps (rmAFSM) algorithm that occupies one corner of the complexity cube. The
execution time would then be linear with respect to R and T, and sub-linear with respect to L. Using
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Figure 3.5 The volumes associated with the three levels of the light sample hierarchy. In this illus-
tration, the light source consists of 16 light samples grouped into four light sample groups. (a) The
main penumbra volume VolL is defined by the bounding polygon ∆L of the light source and the
blocker triangle t. (b) For each light sample group Gk, a penumbra volume VolGk

is constructed
based on the bounding polygon ∆Gk

of the light sample group and the blocker triangle t. (c) For
each light sample lj , a hard shadow volume Vol lj is constructed, based on the location of lj and the
blocker triangle t. Figure and caption adapted from [50].

a different light sample pattern for each receiver point can be done trivially, unlike in AFSM or
mAFSM.

Using a 3D BSP instead of a 2D one is required to pull off the analysis above, but in practice, a
2D BSP often performs better. Ignoring the z coordinate when building the hierarchy does no harm
except when the receiver points form several depth layers as seen from the light source. Ignoring
such cases, the 2D BSP has better range query complexity of O(R1/2), which makes it quite efficient
in practice.

3.3.3 Hierarchical Penumbra Casting

We have now investigated the algorithms that occupy the corners of the complexity cube where the
execution time is sub-linear with respect to a single parameter. Hierarchical penumbra casting [50]
(HPC) is the first algorithm under examination that is sub-linear with respect to two parameters.

In the heart of the hierarchical penumbra casting is a three-level hierarchy of the light samples of
a single light source. This hierarchy, and its corresponding penumbra volumes are illustrated in
Figure 3.5. A penumbra volume consists of the separating planes between 1) the bounding polygon
of the light source or a light sample group, and 2) the triangle being processed. The penumbra
volume contains every point in space that may be at least partially shadowed by the triangle, and
therefore gives us the opportunity to efficiently determine if a set of receiver points is certainly
outside the influence of a triangle. In a sense, the penumbra volumes play the same role in the HPC
algorithm as the triangles themselves did in the AFSM algorithm, since they are used for guiding the
traversal in the receiver point hierarchy.

Much like the modified alias-free shadow maps algorithm, the HPC algorithm also constructs a
3D hierarchy of the receiver points, but in object space and without any projection. With the two
hierarchies—one for the light samples and one for the receiver points—the algorithm then proceeds
by processing one triangle at a time and marking the visibility relations it occludes. The pseudocode
of the basic HPC algorithm is given in Figure 3.6. We will not discuss the many optimizations and
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HIERARCHICAL PENUMBRA CASTING
1 collect all receiver points ri and build a 3D BSP for them
2 collect all light samples of a light source L and form the light sample groups Gk

3 for every ri, lj do V [i, j]← VISIBLE
4 for each triangle t do
5 VolL← MAKE-PENUMBRA-VOLUME(∆L, t)
6 for each light sample group Gk do VolGk

← MAKE-PENUMBRA-VOLUME(∆Gk
, t)

7 for each light sample lj do Vol lj ← MAKE-SHADOW-VOLUME(lj , t)
8 active_groups ← every Gk

9 PROCESS-TRIANGLE(receiver_hierarchy_root_node , active_groups)
10 end for

procedure PROCESS-TRIANGLE(receiver BSP node n , active_groups)
11 if not INTERSECTS(n.bounding_box , VolL) then return
12 active_groups ′ ← ∅
13 for each Gk in active_groups do
14 if INTERSECTS(n.bounding_box , VolGk

) then add Gk into active_groups ′

15 end for
16 if active_groups ′ = ∅ then return
17 if n is not a leaf node then
18 PROCESS-TRIANGLE(n.left , active_groups ′)
19 PROCESS-TRIANGLE(n.right , active_groups ′)
20 else
21 for each ri in n.points do
22 if not POINT-IN-VOLUME(ri, VolL) then continue
23 for each Gk in active_groups ′ do
24 if not POINT-IN-VOLUME(ri, VolGk

) then continue
25 for each lj in Gk do
26 if POINT-IN-VOLUME(ri, Vol lj ) then V [i, j]← OCCLUDED
27 end for
28 end for
29 end for
30 end if

Figure 3.6 Pseudocode for the hierarchical penumbra casting algorithm, adapted from [50].

extensions presented in the original paper, since that would lead us quite far from our main focus.

The traversal of the receiver point hierarchy is slightly more complicated than in the AFSM al-
gorithm, but not much. Hierarchical penumbra casting is, as stated in the original paper [50], an
extension of the alias-free shadow maps, so it is not too surprising that similarities can be found.
Firstly, Line 11 of the pseudocode tests if a receiver hierarchy node n is completely outside the main
penumbra volume defined by the entire light source and the triangle t being processed. If so, the tra-
versal is terminated, since no receiver point under n can be shadowed by the triangle. Then, the set
of active light sample groups is refined in Lines 12–15 of the pseudocode. This set contains the light
sample groups whose penumbra intersects with the BSP node being processed. In the refinement, the
node may be found to be outside the penumbra volume of some light sample group, which indicates
that the triangle cannot block any visibility relations between the light samples in that group and the
receiver points under the BSP node. In the leaf nodes of the receiver point hierarchy, the individual
receiver points are tested against the main penumbra volumes, the group penumbra volumes, and

28



3.3 Analysis of Shadow Algorithms

finally, the hard shadow volumes constructed for the individual light samples.

The HPC algorithm is able to avoid the banding artifacts that would be caused by using the same
light sample pattern for all receiver points. The trick is to generate a number of different light
sample patterns, and to consistently use one of these patterns when processing a single receiver
point. In practice, relatively few light sample patterns are needed for converting the banding to
unstructured noise. To ensure that the tests against penumbra volumes are still conservatively correct,
the bounding polygons for the light sample groups must be constructed so that they enclose the
corresponding light samples from all light sample patterns. In the final shadow test (Line 26), the
hard shadow volume from the light sample pattern for the receiver point is used for determining the
occlusion.

The main defect in the HPC algorithm is that the light sample hierarchy is processed in an ad-hoc
fashion, every level treated in a slightly different way. As an example, a list of active groups is
maintained for the light sample groups (middle layer), but this is not done for the individual light
samples for performance reasons. Furthermore, it is hard to justify the use of a fixed three-level
hierarchy, since, in theory, a full hierarchy with (log L) levels should be at least asymptotically better.
Nevertheless, the hierarchical approach yields sub-linear triangle processing time with respect to L,
and this is also demonstrated in the experimental results section of the original paper [50]. Because
the receiver points are processed hierarchically, sub-linear triangle processing time with respect to R
is achieved as well.1 The triangles are processed one at a time, so the total execution time complexity
is linear with respect to T, and sub-linear with respect to R and L.

3.3.4 Soft Shadow Volumes

The last algorithm we analyze in this chapter is the soft shadow volume (SSV) algorithm [51] that is
able to perform efficient shadow queries on the fly in off-line renderers. Its main advantage is that it
has a nice execution model that does not require collecting the receiver points beforehand, making
operations such as adaptive anti-aliasing or programmable shaders easier to implement. But, as we
have already pointed out, this inevitably comes with the cost of linear execution time with respect to
the number of receiver points.

Pseudocode of the soft shadow volumes algorithm is given in Figure 3.7. In a pre-processing phase,
all edges that are silhouettes from some point on the light source L are identified, penumbra wedges
are constructed for them, and the wedges are placed into an acceleration hierarchy for fast access
during the shadow queries (Lines 1–5). For each receiver point, we loop over all silhouette edges
between the receiver point and the light source, updating depth complexity counters for each light
sample. The potential silhouette edges fetched from the acceleration structure are validated to ensure
that they are actual silhouette edges from the receiver point being processed. Edges that pass the val-
idation test are projected onto the surface of the light source and the depth complexity counter array
is updated using appropriate integration rules (Lines 9–14). For details of the integration operation,
we refer the reader to the original paper [51]. When all silhouette edges have been processed, the
values in the depth complexity counters indicate the relative depth complexities between light sam-
ples, but the actual depth complexities remain unknown as only the silhouettes between the receiver
point and the light source have been accessed. Because of this, a single reference shadow ray is cast
to a light sample with smallest relative depth complexity. If this ray is blocked, all light samples are
occluded. Otherwise, the light samples that share the smallest relative depth complexity are visible
while all other light samples are occluded (Lines 16–19).

1This follows from a similar argument as was made with modified alias-free shadow maps algorithm. The all-occluded
bits are necessary, but they are included in the actual HPC algorithm that contains the optimizations we have not discussed
here.
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SOFT SHADOW VOLUMES
1 for each edge e in the scene do
2 if e is not a potential silhouette edge from L then continue
3 w← CONSTRUCT-PENUMBRA-WEDGE(e)
4 insert w into a spatial acceleration structure
5 end for
6 for each receiver point ri do
7 for each lj do D[j]← 0
8 W ← find potentially influencing wedges for ri from the acceleration structure
9 for each wedge w in W do

10 e← edge corresponding to w
11 if e is not a silhouette edge from ri then continue
12 project e onto the surface of the light source
13 integrate e into the array D using proper integration rules
14 end for
15 for each lj do V [i, j]← OCCLUDED
16 jmin ← arg minj D[j]
17 if not SHADOW-RAY-BLOCKED(ri, ljmin

) then
18 for each lj do if D[j] = D[jmin ] then V [i, j]← VISIBLE
19 end if
20 end for

Figure 3.7 Pseudocode for the soft shadow volumes algorithm [51].

The SSV algorithm requires that the light source geometry is known in advance, but it has the
remarkable property that the positions of the light samples, and even the number of light samples,
can be set freely for each receiver point individually. This makes it possible to avoid banding artifacts
and to use importance sampling-based light sample distributions.

As the SSV algorithm operates on the silhouette edges of the shadow casters, it performs the shadow
query for a single receiver point in sub-linear time with respect to T. The sub-linearity with respect
to L comes from an optimization in the integration phase. The idea is to avoid looping over every
light sample for every silhouette edge in the integration phase (Line 13), but we will not go into
details here. Obviously, as every receiver point is processed separately, the total execution time is
linear with respect to R.

3.3.5 Incremental Shaft Subdivision

The incremental shaft subdivision (ISS) algorithm that is to be presented in the next chapter of this
thesis is sub-linear with respect to all R, L and T, and it occupies the seemingly most prestigious
position in the complexity cube. But this corner is also outside all the “nice” sides shown in Fig-
ure 3.1b, meaning that it has an inconvenient execution model, it needs to capture the entire scene,
and it needs all light samples to be defined beforehand. Furthermore, as the experimental tests in
Chapter 5 show, the better execution time complexity does not come cheap; the constant factor in the
execution time is high, and benefits are obtained only in situations where the sub-linear operation
comes especially useful.
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3.3.6 The Empty Corner

Unlike with the modified alias-free shadow maps algorithm, it is impossible to swap the roles of
receiver points and light samples in the SSV algorithm in order to obtain an algorithm that would fill
the empty corner of the complexity cube. This is because the SSV algorithm requires that the light
source is planar, and while this is usually an acceptable limitation, it would be absurd to require that
the receiver points lie on a plane. The corner thus remains empty, but we can easily characterize the
algorithm that would fit there; the missing algorithm would need to be a hard shadow algorithm that
is sub-linear both with respect to R and T.
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Chapter 4

The Incremental Shaft Subdivision
Algorithm

This chapter presents the novel incremental shaft subdivision (ISS) algorithm for computing soft
shadows. As will turn out, the algorithm provides a generic method for computing all visibility rela-
tions between two point sets, with one addition specific to shadow computation, namely for removing
the banding artifacts. There are many possible extensions that would be very useful in performing
efficient shadow computations, related to e.g. importance sampling and back-face culling, but they
are left on the level on discussion, and treated in Chapter 6. Proper handling of these matters would
require further research.

We will try to keep the presentation on an appropriate level, investigating the details of the algo-
rithm thoroughly, but avoiding going into implementation-specific issues. To keep the amount of
pseudocode reasonably small, we often directly compute the results that would in reality be com-
puted in parts. For instance, detecting whether an edge intersects a shaft is done directly, whereas in
reality, we would first determine for each vertex if it is inside the shaft, and then use this information
for avoiding the more costly edge versus shaft intersection tests. The importance of proper imple-
mentation techniques is discussed briefly at the end of this chapter, where a couple of generic hints
are given. First, we shall give an overview of the algorithm, and then scrutinize the details of each
individual part in subsequent sections.

The figures in this chapter are drawn in 3D when absolutely necessary, but most often they are 2D
analogues of respective 3D situations. This is because, in most cases, a 2D illustration is less am-
biguous than what a 3D illustration would be; there is no chance of getting the wrong impression of
e.g. the relative depths of geometrical primitives. The primitives generally look different in 2D than
in 3D, and these differences may seem counterintuitive at first: triangles are drawn as line segments,
whereas edges that connect the triangles are represented by points. For a reader that is unaccus-
tomed to these kind of illustrations, the easiest point of view is to consider the 2D illustrations to be
cross-sections of 3D cases.

4.1 Overview of the Algorithm

As a preliminary to running the ISS algorithm, we prepare the mesh to remove certain common
degeneracies and to find the connectivity information between triangles (Section 4.2). The next stage
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is to gather all light samples and receiver points, and to construct 3D bounding volume hierarchies
for them (Section 4.3). With this information, we are ready to compute the shadows.

The shadow computation routine is recursive, and it takes as input one node of the receiver point
tree and one node of the light sample tree. From now on, we shall call these trees simply receiver
tree and light tree, and the associated nodes will be called receiver node and light node. The rou-
tine constructs a shaft between the bounding boxes of the receiver and light nodes, and tests if the
shaft is completely occluded or completely visible, considering only the geometry inside the shaft
(Section 4.4). This blocking test is done using an algorithm similar to the one presented by Bernar-
dini et al. [11] (Section 4.6). Now, if the entire shaft is blocked, we know that all visibility relations
between the receiver points under the receiver node and the light samples under the light node are
occluded, and the recursion can be terminated. Conversely, if the shaft is empty, we may in certain
cases conclude that all visibility relations are visible, but this is not always possible. If neither case
holds, we construct two new sub-shafts (Section 4.7), by advancing to the children of either the
receiver node or the light node. The choice between splitting the receiver node or the light node is
made using a heuristic (Section 4.9).

If the recursion reaches the leaf nodes of both receiver and light trees, the visibility relations between
the receiver points and the light samples in these nodes are solved by casting shadow rays. It is
possible to use a special kind of ray caster (Section 4.10) that only considers the geometry inside the
shaft under consideration, but it is not always faster than the standard ray caster, as was found in the
experimental performance measurements (Chapter 5).

This description does not convey the most important contribution of the ISS algorithm, namely that
it is incremental in constructing the sub-shafts from the parent shafts. This means that when the
sub-shafts are constructed, the geometry inside them is filtered from the parent shaft, so that the
entire scene does not need to be considered. An additional important contribution in the algorithm
is that the geometry inside the shaft is not represented using the triangles of the blocking geometry,
but using only the relevant edges that may form silhouettes between the endpoints of the shaft. As
was briefly noted in Section 1.8, only the silhouette edges are important for computing the visibility,
and thus we may safely dispose of every other edge inside the shaft. This is extremely advantageous,
since the number of silhouette edges is typically much smaller than the number of all edges in a mesh,
and most importantly, it is sub-linear with respect to the number of triangles. The shift from triangle-
based representation to an edge-based representation is not trivial, and handling the representation
of the geometry and filtering it down to sub-shafts constitutes the bulk of the algorithm.

4.2 Scene Storage and Preparation

The ISS algorithm requires that the connectivity between shadow-casting triangles in the scene is
solved. For this purpose, we need to perform the following mesh processing steps before starting the
shadow computation:

1. weld vertices, i.e. combine vertices with the same 3D position;

2. discard degenerate triangles that have two same vertices;

3. compute neighbors for every triangle;

4. assign an unique edge label for every edge.

We give the datatype definitions used for storing the scene as well as a pseudocode example for the
vertex welding routine in Figure 4.1. We consider all blocking geometry to form a single mesh,
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typedef Triangle
{

Vector3i vertices // three vertex indices
Vector3i neighbors // neighbor triangle indices for each edge
Vector3i edge_labels // edge label for each edge

}

typedef Mesh
{

Array〈Vector3f〉 vertex_pos // vertex positions
Array〈Triangle〉 triangles // triangles
Array〈bool〉 is_double_edge // double edge flag per edge label

}

procedure WELD-VERTICES(Mesh* mesh)
1 Array〈Vector3f〉 new_vertices
2 Map〈Vector3f→ int〉 vmap
3 for each triangle t in mesh.triangles do
4 for each i in {0, 1, 2} do
5 Vector3f v ← mesh.vertex_pos[t.vertices[i]]
6 if vmap contains v then
7 t .vertices[i]← vmap.get(v ) // re-use vertex
8 else
9 int vidx ← new_vertices.size // construct new vertex
10 add v at the end of new_vertices
11 insert (v → vidx ) into vmap
12 t .vertices[i]← vidx // set vertex index in triangle
13 end if
14 end for
15 end for
16 mesh.vertices ← new_vertices

Figure 4.1 Mesh datatypes and a pseudocode example for the vertex welding routine.

and do not distinguish between separate objects in the scene. The storage of this mesh is very
straightforward, as can be seen in the pseudocode.

The pseudocode format used in this chapter is slightly more detailed than what was used in the
previous chapter, especially the datatypes of variables are specified more often. To avoid confu-
sion between fixed-length vectors (Vector3f and Vector3i) and variable-length vectors, we use term
“array” to refer to the latter, even though in e.g. the STL library those are called vectors as well.
Vector3f is a datatype with three floating-point numbers, used for storing 3D points, and Vector3i
that contains three integers is used for containing various index triplets. We will not be too pedantic
about following strict typing conventions: for example, pointers are denoted with an asterisk (*), but
they are accessed using the dot notation just like pass-by-value variables. In addition the scene mesh
(variable mesh) is assumed to be available for every function as if it were a global variable—which it
most certainly would not be in any respectable implementation. These kind of notational shorthands
will hopefully always be clear from the context. We also use textual form to denote certain simple
operations, such as appending an element at the end of a variable-length array (see e.g. line 10 of
Figure 4.1).
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An important detail of the neighbor computation is that two triangles are considered to be neighbors
only if their facing is consistent over the joining edge. If the triangles have opposite facings, they will
not be neighbors, but instead two identical edges with different edge labels will be remain at the join,
one attached to each triangle. In the following, we shall call edges that are joined to two triangles
double edges, whereas edges that connect to one triangle are called single edges. Computing the
triangle neighbors is only needed for determining the edge labels, and they are not used in other
parts of the algorithm.

4.3 Receiver Point and Light Sample Trees

We construct lazily separate axis-aligned BSP trees for the receiver points and the light samples.
Since a tight bounding box is computed for every node, the data structure is more specifically a
bounding volume hierarchy, but the construction is nonetheless very similar to a BSP.

The data stored alongside with the positions of the points is independent of the tree. The tree operates
only on the positions of the points to be stored, and refers to the points themselves through indices.
This is because the receiver points and the light samples contain slightly different data: a light sample
has a normal and a vector indicating the color and intensity of emitted light, whereas a receiver point
has a normal and a vector for storing the accumulated incoming light.

The datatypes used for storing the point trees is given in Figure 4.2. In addition to the points, the
tree nodes contain information about the blocking geometry in the scene. Specifically, each node in
a tree has a list of scene triangles that intersect the parent node, but that do not intersect the node
itself (variable TreeNode.gone_triangles). This information will be needed later when constructing
the sub-shafts. Because the trees are constructed lazily, it is also necessary to maintain a list of all
intersecting triangles at the current leaf nodes of the tree.

The node splitting routine SPLIT-NODE shown in Figure 4.2 is fairly straightforward. A good split
position is found using the FIND-SPLIT-PLANE function, which employs suitable heuristics for
dividing the point set into two halves. In the prototype implementation, the operation of this function
is as follows. If there are many points in the node (over 1024), the split plane is placed so that it
divides the longest side of the bounding box of the node in half. If there are fewer points, a cost
metric is used and the optimal split plane according to the metric is sought for. The cost metric that
is minimized is cost = Nleft ∗ Aleft + Nright ∗ Aright , where Nleft and Nright are the number of
points in the two point sets, and Aleft and Aright are the surface areas of the bounding boxes for the
respective point sets. No significant amount of work has been put in trying out different cost metrics,
and better candidates may well exist. After the split plane has been found, the points are distributed
to the child nodes.

The handling of the scene triangles is also straightforward. The triangles that intersect the node
being split are checked against intersection for both children. If a triangle intersects a child node,
it is added to the list of intersecting triangles there. Otherwise, the triangle is added to the list of
triangles that have escaped the child node due to the split. After the split is complete, the point
and intersecting triangle lists of the node may be cleared in order to free the allocated memory. It
should be noted that variable TreeNode.is_leaf is necessary for distinguishing between a node that
is a real leaf of the hierarchy, not to be split anymore, and a temporary leaf that has not been split
yet. This variable is set to TRUE if the node contains few enough points (line 15). The maximum
allowed number of points in a leaf node is a free parameter in the ISS algorithm, and it can naturally
be different in the receiver and light trees.
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typedef TreeNode
{

Tree* tree // pointer to the containing tree
TreeNode* left , right // pointers to left and right child nodes
TreeNode* parent // pointer to parent node
AABB bounding_box // axis-aligned bounding box
Array〈int〉 points // indices to points contained
Array〈int〉 gone_triangles // triangles not in this node but in parent
Array〈int〉 inside_triangles // all scene triangles intersecting this node
bool is_leaf // is this a real leaf

}

typedef Tree
{

TreeNode* root_node // pointer to the root node of the tree
Array〈Vector3f〉* point_pos // point positions
int max_points_in_leaf // for terminating the subdivision

}

procedure SPLIT-NODE(TreeNode node)
1 if node.is_leaf then return // not to be split anymore
2 if node.left or node.right then return // already split
3 {split_axis, split_pos} ← FIND-SPLIT-PLANE(node.points)
4 INITIALIZE-NODE(node.left)
5 INITIALIZE-NODE(node.right)
6 for each pidx in node.points do // distribute points
7 if node.tree.point_pos[pidx ][split_axis] < split_pos then
8 add pidx at the end of node.left .points
9 else
10 add pidx at the end of node.right .points
11 end if
12 end for
13 for each child in {node.left ,node.right} do
14 COMPUTE-BOUNDING-BOX(child )
15 if child .points.size ≤ tree.max_points_in_leaf then child .is_leaf ← TRUE
16 for each tidx in node.inside_triangles do // process scene triangles
17 if INTERSECTS-AABB(mesh.triangles[tidx ], child .bounding_box ) then
18 add tidx at the end of child .inside_triangles
19 else
20 add tidx at the end of child .gone_triangles
21 end if
22 end for
23 end for
24 clear node.points // not needed anymore
25 clear node.inside_triangles // not needed anymore

Figure 4.2 Datatypes for storing the receiver and light trees, and the node splitting routine.
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Figure 4.3 An example of a shaft between two axis-aligned boxes. (a) The surface of the shaft is the
common convex hull of the boxes. (b) Because the shaft is constructed between axis-aligned boxes,
the construction can be done by considering the 2D convex hulls of the three 2D projections of the
situation separately. The dashed lines in the 2D projections correspond exactly to the oblique planes
of the shaft.

4.4 Shaft Data

At the core of the ISS algorithm is the concept of a shaft, the closed volume between a receiver node
and a light node that contains all possible rays of visibility between the nodes. In addition to the
geometry of the shaft itself, we need to store the blocking geometry inside the shaft, enabling us to
1) test if the geometry blocks every possible ray between the receiver node and the light node, and
2) construct the sub-shafts. The governing idea behind the ISS algorithm is that only the data that is
necessary for performing these two operations is stored. Thus, our goal is to represent the blocking
geometry in such a way that we have all the information we need, but nothing more. In the following,
we shall first discuss the construction and storage of the shaft geometry, and then the storage of the
blocking geometry inside the shaft. The construction of the representation of the blocking geometry
will be discussed later in Section 4.7.

4.4.1 Shaft Geometry

A shaft is the volume that contains all possible rays between two nodes, and it can be constructed
by taking the common convex hull of the two bounding boxes of the nodes. Since the bounding
boxes are axis-aligned, we do not need to use a full-fledged convex hull computation routine, but
may reduce the task into a number of 2D sub-tasks. Figure 4.3 shows an example of a shaft between
two axis-aligned boxes, and the orthogonal 2D projections of the same situation. The axis-aligned
planes of the shaft are simply those of the common bounding box of both nodes, whereas each of
the oblique planes of the shaft corresponds to one oblique line in a 2D convex hull of an orthogonal
projection (dashed lines in Figure 4.3b). As the shaft is convex, it can be conveniently expressed as
an intersection of half-spaces, and this is the representation we will use.
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typedef ShaftGeometry
{

Array〈Vector4f〉 planes // plane equations of the bounding planes
int main_axis // main axis of the shaft

}

Figure 4.4 Datatype for storing the shaft geometry.

receiver
node

light
node

receiver
node

light
node

(a) (b)

Figure 4.5 Difference between triangle-based and patch-based representations in 2D. (a) Individual
triangles and their normals shown. Blue triangles in the left branch consistently face the receiver
node, red triangles in the right branch face the light node, and the single green triangle in the bottom
has no consistent facing with respect to the rays between the receiver and light nodes. (b) Patches
constructed from these triangles. For solving the visibility between the nodes, this much simpler
representation gives identical results to the triangle-based representation in (a).

A related concept that is very important in the ISS algorithm is the main axis of the shaft. This is the
coordinate axis along which the two bounding boxes are separated. In the situation on Figure 4.3,
the only possible main axis is the x axis, but generally there are multiple possible choices for the
main axis. The main axis will be used when testing if the shaft is entirely blocked, and it also
plays a fundamental role in clipping of the blocker geometry, a tricky topic that will be addressed in
Section 4.5. No main axis can be determined if the boxes overlap, but in such cases we will not be
doing shaft computations anyway, since there is obviously always visibility between the overlapping
boxes. Furthermore, if we choose a main axis for a shaft, this same main axis will be valid for all
sub-shafts to be formed. This property will also be important in the blocker clipping. Figure 4.4
shows the datatype used for storing the shaft geometry.

4.4.2 Blockers Inside the Shaft

The representation of the blocking geometry inside the shaft consists of two main ingredients:
patches and surfaces. Following the terminology of Haumont et al. [38], we define a patch as a
piece of surface that has consistent facing with respect to rays between the bounding boxes of the
nodes that span the shaft. As an exception to this, a single triangle is always a valid patch even
when its facing is not consistent with respect to this set of rays. The joining edge of two neighbor
patches with the same consistent facing cannot be a silhouette edge, and this makes it possible to
merge multiple triangles into one (usually non-planar) patch. Since only the silhouette edges are
important for computing visibility, we do not need the information about the exact location of the
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Figure 4.6 Examples of geometry that can and cannot be used as blockers inside a shaft. The black
triangles can be used as blockers, since they intersect the shaft, but do not intersect the nodes. The
red triangles cannot be used as blockers, since they intersect at least one of the nodes.

surface inside the edge loop. Patches that consist of a single triangle with inconsistent facing are an
exception, and there we need to know the exact location of the surface. Patches with inconsistent
facing always contain exactly one triangle, and they cannot be merged with any other patches. For
an illustration about the difference between triangle-based and patch-based surface representations,
see Figure 4.5.

Only the triangles that reside inside the shaft but that do not intersect the bounding boxes of the
nodes can be used for occlusion. Therefore, if a triangle lies partially inside the bounding box of
either the receiver node or the light node it will not be a part of the blocking geometry. This is
illustrated in Figure 4.6. It is clear that the red triangles in the figure would not be useful as blockers
in any case, since they cannot be a part of a surface that blocks the visibility between the nodes—a
portion of a node would always remain on the wrong side of the surface.

The datatypes for patch data as well as some related helper functions are given in Figure 4.7. As
can be seen, there are two kinds of edge structures. The RawEdge type contains the endpoints of
an edge as well as pointers to the neighboring patches, and the Edge type is a kind of a proxy
for accessing the RawEdge instances, including a bit indicating if the edge being represented is
actually a flipped version of the RawEdge being referenced. This somewhat convoluted structure is
necessary, because we must identify each patch boundary edge with a real edge that knows of both
of the patches connected to it. Figure 4.8 illustrates the relationships between patches and edges.

The facing of a patch is one of the three symbolic constants: TOWARDS-RECEIVER, TOWARDS-
LIGHT and INCONSISTENT. The first constant TOWARDS-RECEIVER means that all possible rays
from the receiver node to the light node pierce the patch through its front face, i.e. the patch faces
towards the receiver node. The second constant TOWARDS-LIGHT is analogous, meaning that the
patch faces towards the light node. If neither condition is true, the facing of the patch is INCONSIS-
TENT, meaning that the direction in which a ray pierces the patch depends on which of the possible
rays we choose. We will examine how the facings of the patches are computed in Section 4.7.3.
Patches that do not have a consistent facing (facing = INCONSISTENT) will always consist of a
single triangle, and in these cases, we also store the triangle index of the generating triangle. This
information will be needed when the facing of a single-triangle patch is updated.

A surface is a collection of patches that are connected through edges that are at least partially inside
the shaft. Intuitively, a surface is the set of patches that can be reached by starting a traversal at some
patch, and traversing over connecting edges that are (at least partially) inside the shaft. Note that
the patches of the same surface need not have the same facing. Indeed, if we had two neighboring
patches with the same consistent facing, those would have been already merged to form a single
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// enumeration for expressing the facing of a patch
typedef Facing := enum {TOWARDS-RECEIVER, TOWARDS-LIGHT, INCONSISTENT}

typedef Vertex
{

Vector3f position // vertex position in 3D
}

typedef RawEdge
{

Vertex vertices[2 ] // vertices of the edge
Patch* neighbors[2 ] // neighbor patches
bool is_inside // is the edge at least partially inside shaft
int mesh_edge // mesh edge label

}

typedef Edge
{

RawEdge* raw_edge // pointer to the raw edge
bool is_flipped // is this a flipped version of the raw edge

}

typedef Patch
{

Array〈Edge〉 edges // boundary edges of the patch
Facing facing // facing of the patch
int mesh_triangle // triangle ID if facing = INCONSISTENT

}

function Edge FLIP-EDGE(Edge* e)
1 Edge fe
2 fe.raw_edge ← e.raw_edge
3 fe.is_flipped ← not e.is_flipped
4 return fe

function Vertex GET-VERTEX(Edge* e , int vidx ) // vidx in {0, 1}
5 if e.is_flipped then return e.raw_edge.vertices[vidx XOR 1]
6 else return e.raw_edge.vertices[vidx ]

function Patch* GET-NEIGHBOR(Edge* e)
7 if e.is_flipped then return e.raw_edge.neighbors[1]
8 else return e.raw_edge.neighbors[0]

function Patch* GET-OWNER(Edge* e)
9 if e.is_flipped then return e.raw_edge.neighbors[0]

10 else return e.raw_edge.neighbors[1]

Figure 4.7 Datatypes and a couple of helper functions related to representing the patches of
blocking geometry. Functions SET-NEIGHBOR and SET-OWNER are defined analogously to the
GET-functions shown above.
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P
Q

e1
e2

va
re

vb

RawEdge re
re.vertices[0] = va

re.vertices[1] = vb

re.neighbors[0] = Q
re.neighbors[1] = P

Edge e1, e2

e1.raw_edge = re; e1.is_flipped = FALSE
e2.raw_edge = re; e2.is_flipped = TRUE

Figure 4.8 Illustration of the relationship between patches, edges and raw edges. Patches P and
Q share one edge, and this is represented by one RawEdge instance re and two Edge instances e1

and e2. Patch P owns Edge e1, which is a non-flipped version of the RawEdge re. Patch Q owns
Edge e2, which is a flipped version of re. Function call GET-NEIGHBOR(e1) returns Q, whereas
GET-NEIGHBOR(e2) returns P . The direction of re does not play any role per se; an equally valid
representation of the same situation could be obtained by reversing the direction of re, swapping P
and Q in re.neighbors , and inverting the is_flipped bits of e1 and e2.

typedef Surface
{

Array〈Patch*〉 patches // the patches that form the surface
AABB bounding_box // bounding box of the surface
Array〈int〉 loose_edges // unconnected boundary edges

}

typedef Shaft
{

TreeNode* receiver_node // the receiver node
TreeNode* light_node // the light node
ShaftGeometry shaft_geometry // the geometry of the shaft
Array〈Surface〉 surfaces // the blocker geometry inside the shaft

}

Figure 4.9 Datatypes for storing surfaces and the shaft itself.

patch. Our goal is to have surfaces that are not composed of disjoint components, i.e. every patch
of a surface should be reachable from every other patch. During the sub-shaft construction, we
will temporarily have surfaces that do have disjoint components, as well as surfaces that should be
combined together since they have a common edge inside the shaft. How to handle this splitting and
combining of surfaces will be addressed later, in Sections 4.7.6 and 4.7.7.

A surface may have a set of loose edges. A loose edge is a double edge, i.e. an edge connected to
two triangles in the scene mesh, that resides at least partially inside the shaft, but is connected to
only one patch. These kind of edges act as hooks where new surface elements can be attached when
new geometry enters the shaft. New geometry may appear when the nodes that span the shaft are
split, as illustrated in Figure 4.10. We also compute and store the axis-aligned bounding box for
every surface. The datatypes for storing the surfaces and the shaft itself are given in Figure 4.9.
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Figure 4.10 An example of a loose edge. (a) The surface indicated by the solid black line has a
loose boundary edge marked as a red dot. This is because the edge at the red dot is also connected
to a triangle denoted by the dashed line, but the triangle cannot be used as a blocker. (b) After the
receiver node is split, the triangle that was originally invalid can now be used as a blocker. The loose
edge is connected, and after the connection, the patches may be fused to form a single large patch.

4.5 Clipping and Clamping of Blocker Geometry

The test we use for detecting if there is a surface that blocks every ray between the nodes that span
the shaft—the blocking test—requires that all blocking geometry lies between two clip planes as will
be discussed further in Section 4.6. The clip planes are axis-aligned planes that are perpendicular to
the main axis of the shaft, and they are located so that the entire shaft geometry is between them.
The clip planes thus define a range of coordinates along the main axis of the shaft, and we need to
be able to ensure that all geometry that the blocking test accesses is within this range.

Let us consider adding new blocker triangles into the shaft. To clip the triangles, we first test if they
are partially outside the region between the clip planes. If a triangle lies completely between the
clip planes, no clipping needs to be done. Otherwise, we construct new vertices on the clip planes,
which causes the triangle to form a polygon that may have more than three vertices. This is not
a problem, since every new triangle initially forms an unique patch, and the merging of patches is
done afterwards. For new edges that are created due to clipping, we set the mesh_edge field of the
corresponding RawEdge instance to symbolic constant CLIP-EDGE, since they do not correspond to
any edge of the mesh. These edges, which we shall call clip edges can obviously never be shared by
two patches.

It is somewhat of a subtle point that the clipping needs to be performed only once. Consider a situ-
ation where multiple triangles are clipped to a clip plane and patches are formed from the resulting
polygons. Then, the patches are merged to form a larger non-planar patch, and the internal edges
are forgotten. Now, suppose that the clip plane moves closer to the other clip plane, because the
shaft is shortened due to subdividing the node that originally defined the placement of the clip plane.
It seems that we need to re-clip the patch in order to ensure that all edges remain between the clip
planes. But how can we clip a non-planar polygon? There is no way of knowing where the surface
that the patch represents is actually located, and hence we cannot determine the new clip edges that
would be formed when this surface is clipped against the shifted clip plane.

There is a neat solution to this problem, and it is to clamp the edges of a patch when a clip plane
moves, instead of trying to clip the patch again. Consider an edge that lies partially inside and
partially outside the new clip plane. To clamp the edge, we compute the intersection point of the
edge with the new clip plane, and subdivide the edge into two parts. The endpoint of the edge that
is outside the new clip plane can then be projected orthogonally to the new clip plane. The main
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Figure 4.11 Clipping and clamping of blocker geometry. The clip plane is shown in yellow, and the
shaft is assumed to continue away from the reader. (a) A set of blocker triangles is inserted in the
shaft. The triangles need to be clipped, since they extend over the clip plane. The clip edges formed
are shown as dashed lines. (b) After the clipping is complete, we have a set of valid patches, one
patch per triangle. (c) If the facings of the patches match—as is assumed in this illustration—they
may be merged together. The internal structure of the surface is lost, but this does not lose any
important information; the internal edges of the surface could not be silhouette edges because of
the consistent facings of the patches. (d) A tricky situation arises when we later have a clip plane
other than with which the patch was originally clipped, and we need to somehow constrain the edges
according to the current clip plane for performing the blocking test. As the exact location of the
surface is unknown, the patch cannot be simply clipped again. (e) The situation can be handled
by projecting the parts of the edges that are outside the clip plane orthogonally onto the clip plane.
Edges that pierce the clip plane need to be split in two parts. (f) The resulting edge loop stays on the
correct side of the clip plane and it has the same occlusion characteristics as we would have obtained
by clipping the original triangle surface with the current clip plane in the first place.

advantage of this operation is that the clamping of the outside part of the edge cannot cause the edge
to intersect the bounding boxes of the nodes. The clamping needs to be done only in the blocking
test, since this test is the only operation that requires that all edges lie between the clip planes.
Figure 4.11 illustrates the clipping and clamping operations.

4.6 Testing If Shaft Is Blocked

Assuming that we have the blocker geometry inside the shaft represented as patches and surfaces,
the remaining problem is to determine if the shaft is blocked, i.e. if every possible ray between the
receiver and light nodes is occluded. Our approach is conservative, as we only detect the cases where
a single surface encloses the entire shaft by forming a continuous cover over it. There may be cases
where multiple disjoint surfaces together block the shaft, but those will not be detected by the ISS

44



4.6 Testing If Shaft Is Blocked

algorithm; in visibility computation terms, we do not perform any occluder fusion. Proper handling
of the aggregate occlusion of disjoint surfaces would generally require dual-space calculations that
were touched in Section 2.3.3.

Our blocking test is very similar to the one that Bernardini et al. [11] used in a larger visibility
pre-processing system. In contrast to their algorithm, we employ the patch-based representation of
the blocker geometry, which leads to faster execution time since the number of patches is generally
smaller than the number of triangles.

We perform the blocking test for each surface separately, since if there is a continuous cover blocking
the shaft, it must be formed by a single surface. As an early-exit test, we first determine if the
bounding box of the surface encloses the shaft. If it does not, the surface cannot enclose the shaft
either, and further processing of the surface can be avoided.

4.6.1 Boundary Edges

The first step of the blocking test is to extract the boundary edges of the surface. Extracting the
boundary edges is performed simply by enumerating all raw edges of the patches of a surface, and
discarding the edges that are connected to two patches. The remaining edges are the boundary edges
of a surface.

Now, if some of the boundary edges are inside the shaft, there must be a hole in the surface that
prevents the surface from forming a continuous cover over the shaft. This observation yields another
simple early-exit test for aborting the blocking test. Note that the boundary edges always form loops,
as there can be no boundary edge without other boundary edges connecting to both of its vertices.

4.6.2 Construction of the Test Line

If none of the boundary edges are inside the shaft, it is possible that the surface blocks the shaft.
Testing whether this is true is done by testing if the boundary edges form a loop that encloses a
single test line that goes through the shaft.

The test line must be chosen so that it passes through both nodes that span the shaft. In addition,
the test line must intersect the faces of the nodes that lie on the clip planes, i.e. the planes of the
shaft that are perpendicular to the main axis of the shaft. Now, if the boundary edge loop blocks the
chosen test line, it also blocks every other possible test line, since all boundary edges are known to
lie outside the shaft, and it is not possible to move the test line so that it would cross a boundary
edge. Note that without blocker geometry clipping, this would not hold in general, as illustrated in
Figure 4.12.

4.6.3 Testing if the Test Line is Blocked

Figure 4.13 shows a simple situation where a surface blocks the shaft. The boundary edges of the
surface are shown, and it is obvious that because of the geometrical configuration, there must be a
portion of the surface that forms a cover that blocks the shaft. The surface blocks the test line shown
in red, and we note that because it is impossible to move the test line (in the space of valid test lines)
so that it would end up outside the boundary edge loop of the surface, all test lines must be blocked.
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Figure 4.12 Why the blocker geometry needs to be clipped. (a) If the blocker geometry is not
clipped, the result of the blocking test may depend on the choice of test line. With the green test line,
correct result is obtained. With the red test line, both boundary edges (cyan dots) are on the same
side of the test line, and thus it would be determined that the shaft is not blocked. (b) By clipping the
blocker geometry to the shaft planes perpendicular to the main axis (vertical dashed line), the choice
of test line does not matter anymore as long as the test line goes through the faces of the nodes that
are on the clip planes. The boundary edges are always on different sides of a test line, since the shaft
is indeed blocked.

(a) (b)

Figure 4.13 Example of a boundary edge loop of a surface. (a) The boundary loop of the cyan
surface encloses the shaft. Because of blocker geometry clipping, we know that the surface cannot
bend behind the bounding boxes of the nodes, and therefore it must have a portion that intersects the
shaft so that it blocks all rays between the nodes. If the surface bent behind one of the nodes, we
would have two boundary edge loops canceling each other out. The test line is drawn in thick red.
(b) We can imagine transforming the boundary edges into 2D so that the test line gets projected to
a point. If the transformed boundary edges form a polygon that encloses the point representing the
test line, the boundary edge loop must also enclose the entire shaft. This is because all boundary
edges are known to reside outside the shaft.
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first test plane

second test plane
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Figure 4.14 Two test planes are constructed so that the test line lies at the intersection of the planes.
To count the winding number of an edge loop, each edge is first tested for intersection against the
first test plane (red dot). The second test plane is needed for detecting if the intersection point lies on
the correct half-plane. Classifying the vertices against two test planes is conceptually equivalent to
projecting them into 2D, and testing the intersection against the highlighted half-space is equivalent
to testing if the projected 2D edge intersects the positive half of x axis.

The remaining task is to test if the test line pierces the polygon formed by the boundary edges. In
Figure 4.13b, a suitable 2D projection is used so that the test line is mapped to a point, and we end up
with point-in-polygon test. This test is performed by counting the winding number of the projected
edge loop, counting intersections with ray from the test point to infinity, shown as dashed line. It
does not matter which ray we choose, since the resulting winding number is always the same.

In practice, we do not project the boundary edges into 2D explicitly, but rather perform the tests
in 3D in a manner that is analogous to operating on projected geometry. The ray from the test
line becomes a half-plane, and we simply need to detect when the boundary edges intersect this
half-plane, as illustrated in Figure 4.14. We will nonetheless use the analogue of performing a 2D
projection in many of the following illustrations.

4.6.4 Example Cases and Tricky Occluders

Figure 4.15 shows an example where a surface bends behind a node, forming a pouch that does not
block the shaft. Because of clipping, two boundary edge loops are formed, and the edge loops cancel
each other out in the point-in-polygon test. It is important to note that these boundary edge loops are
processed simultaneously, since they are formed by the same surface. Both of the loops would block
the shaft if they were processed separately, which would obviously give an incorrect result.

In a similar fashion, two opposite boundary edge loops are formed if the shaft passes through a torus
so that the hole remains inside the shaft, while the surface of the shaft slices the body of the torus in
two parts, as illustrated in Figure 4.16. The boundary edges are processed together, since the surface
connects them. The reader may imagine subdividing the shaft so that the hole of the torus is left
outside the shaft. In this case, the surface would split into two separate parts, and the boundary edge
loops would be processed separately. This is correct, since both of the surfaces would then block the
shaft.
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(a) (b)

Figure 4.15 Example of a clipped surface. (a) The original surface forms a pouch that does not block
the shaft. The far end of the surface is clipped away, and only the portion between the two loops
remains. As a consequence, the surface has a second boundary edge loop on the clip plane. The two
boundary edge loops have opposite windings. (b) In the point-in-polygon test, the point marking the
test line (not shown in the figure) is not inside the double polygon formed by the loops, since the
windings of the loops cancel each other out. Both loops are processed simultaneously, since they are
the boundary of the same surface. Note that if this surface were to be inserted as new geometry into
the shaft shown, it would be rejected altogether, since all surface primitives are outside the shaft.
Nonetheless, this kind of situation may occur when the shaft is subdivided and existing geometry is
left outside the shaft.

(a) (b)

Figure 4.16 Boundary edge loops of a torus. (a) An orthogonal view of a shaft going through a
torus. Only the hole of the torus is inside the shaft. (b) Side view of the surface that remains, when
geometry outside the shaft is removed. As can be seen, two edge loops are formed, both connected
to the same surface. The windings of the edge loops are opposite, and the blocking test thus decides
that the shaft is not blocked. In this sense, the situation is similar to the one shown in Figure 4.15.
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Figure 4.17 Certain tricky surfaces require that the winding number of boundary edge loops is
counted instead of just the number of intersections with the test half-plane. (a) A self-intersecting
surface that has two layers connected at the center, forming a double surface that has consistent
orientation but only one boundary loop. (b) The boundary edges as seen by a shaft that pierces
the surface. (c) The boundary edges form a loop that surrounds the test line twice, with the same
winding both times. The winding number is thus two, and the surface does indeed block the shaft. If
we used a crossing number point-in-polygon test, we would have concluded wrongly that the shaft
is not blocked. Even worse, the surface would be discarded after this test (as will be explained in
Section 4.7.8), since it would seem irrelevant for future calculations, and this would lead to missing
shadows.

Determining the winding number instead of just counting the number of intersections in the point-
in-polygon test is necessary in order to handle certain kinds of tricky occluders correctly. This is
illustrated in Figure 4.17. The resulting boundary edge loop encloses the test line twice, and if
we only counted the number of intersections with the dashed ray in Figure 4.17c, we could not
distinguish this situation from the one we have with torus or the pouch of Figure 4.15.

These two kinds of point-in-polygon tests are usually called crossing number and winding number
tests. The crossing number test simply determines if the number of intersections with a ray is even or
odd, and it works correctly with polygons that do not have self-intersections. The winding number
test takes the direction of the intersecting edges into account, and as we saw, it is necessary to do in
our case. In the blocking test of Bernardini et al. [11], it is not specified whether a crossing number
or a winding number test is used, and therefore it is unclear whether their algorithm would handle
surfaces like the one in Figure 4.17 correctly.

Figure 4.18 shows the pseudocode of the blocking test. The early exit tests on lines 1 and 3–7
determine if the bounding box of the surface may block the shaft and if there are boundary edges
inside the shaft. The call on line 2 collects all raw edges of the patches that form the surface, and
function CONSTRUCT-TEST-PLANES (line 8) constructs two test planes as illustrated in Figure 4.14.
Every raw edge is processed, and if an edge is a single edge, it is on the boundary of the surface
(line 11). For each raw boundary edge, a directed edge is constructed (lines 12–14). Function
CLAMP-AND-GET-VERTICES (line 15) performs the edge clamping (Section 4.5) that ensures that
all edges remain between the clip planes. This may cause an edge to be split into multiple parts over
which we need to loop (line 16). Geometrical tests (lines 19–27) test if the edge part intersects the
correct half-plane. If so, the winding counter is updated appropriately (lines 28–31). It is important
to handle the special case when one of the vertices lies on the half-plane (line 29), and the easiest way
to handle this is to count only a half of the update for these parts. line 30 checks in which direction
the edge pierces the half-plane, and sets the sign of the update to the winding counter accordingly.
Finally, after all boundary edges have been processed, the result of the test is determined simply by
checking if the winding number is nonzero (line 34).
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function bool BLOCKS-SHAFT(Surface surf , ShaftGeometry shaft_geometry)
1 if not CAN-BLOCK-SHAFT(surf .bounding_box , shaft_geometry) then return FALSE
2 Array〈RawEdge*〉 raw_edges ← COLLECT-RAW-EDGES(surf )
3 for each re in raw_edges do
4 if (re.neighbors[0] = NULL or re.neighbors[1] = NULL) and re.is_inside then
5 return FALSE // single edge inside shaft
6 end if
7 end for
8 {Vector4 pa, Vector4 pb} ← CONSTRUCT-TEST-PLANES(shaft_geometry)
9 float winding_counter ← 0
10 for each re in raw_edges do
11 if re.neighbors[0] 6= NULL and re.neighbors[1] 6= NULL then continue // double edge
12 Edge e // construct directed edge
13 e.raw_edge ← re
14 e.is_flipped ← (re.neighbors[0] = NULL) // ensure correct direction
15 Array〈Vector3〉 vertices ← CLAMP-AND-GET-VERTICES(e , shaft_geometry)
16 for each i in {0, . . . , vertices.size − 2]} do // loop over parts of edge
17 Vector3 v0 ← vertices[i] // get vertex positions for edge part
18 Vector3 v1 ← vertices[i + 1]
19 float d0 ← (v0 · pa) // classify against first test plane
20 float d1 ← (v1 · pa)
21 if SIGN(d0) = SIGN(d1) then continue // does not intersect first test plane
22 float f0 ← (v0 · pb) // classify against second test plane
23 float f1 ← (v1 · pb)
24 if f0 < 0 and f1 < 0 then continue // wrong side of second test plane
25 if (d0 < d1) = (d0f1 > d1f0) then
26 continue // intersects wrong side of first test plane
27 end if
28 int adjust ← 1 // adjustment to winding counter
29 if d0 = 0 or d1 = 0 then adjust ← 1

2 // handle special case
30 if d0 > d1 then adjust ← (−adjust) // take direction into account
31 winding_counter ← winding_counter + adjust
32 end for
33 end for
34 return (winding_counter 6= 0) // shaft is blocked if counter is nonzero

Figure 4.18 Pseudocode for the blocking test.

4.7 Sub-Shaft Construction

We now proceed by examining how a sub-shaft is constructed, assuming that we already have a
parent shaft with blocking geometry inside it. The construction of the initial shaft, i.e. when no
parent shaft is given, is discussed later in Section 4.8. The slightly counterintuitive section ordering
was chosen because most of the operations that are needed in constructing the initial shaft are the
same as the ones that are used when constructing a sub-shaft from a parent shaft.
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function Shaft CONSTRUCT-SUB-SHAFT(TreeNode* receiver_node , TreeNode* light_node
TreeNode* split_node , Shaft* parent)

1 Shaft sub ← new Shaft // construct a new shaft
2 sub.receiver_node ← receiver_node
3 sub.light_node ← light_node
4 sub.shaft_geometry ← CONSTRUCT-SHAFT-GEOMETRY(receiver_node , light_node)
5 sub.shaft_geometry .main_axis ← parent .shaft_geometry .main_axis
6 for each surf in parent .surfaces do // copy all surfaces of the parent shaft
7 Surface copy ← DUPLICATE-SURFACE(surf )
8 add copy at the end of sub.surfaces
9 end for

10 Surface new_tris ← CONSTRUCT-TRIANGLE-SURFACE(split_node.gone_triangles , sub)
11 add new_tris at the end of sub.surfaces // add the new blocker surface
12 Array〈Surface〉 temp_surfaces // for storing surfaces after splitting them
13 for each surf in sub.surfaces do
14 CLASSIFY-EDGES(surf , sub) // update is_inside of raw edges
15 UPDATE-PATCH-FACINGS(surf , sub) // recompute facings of patches
16 MERGE-PATCHES(surf ) // merge neighbors with same facing
17 SIMPLIFY-PATCHES(surf ) // remove extraneous vertices in patches
18 SPLIT-SURFACE(surf , temp_surfaces) // separate disjoint components of surface
19 end for
20 clear sub.surfaces // all data is now in temp_surfaces
21 for each surf in temp_surfaces do COMPUTE-LOOSE-EDGES(surf )
22 COMBINE-SURFACES(temp_surfaces , sub.surfaces)
23 for each surf in sub.surfaces do COMPUTE-BOUNDING-BOX(surf )
24 return sub

Figure 4.19 Pseudocode for constructing a sub-shaft.

When a receiver node or a light node is split and a sub-shaft is formed, some or all of the following
may happen:

• new blockers may enter the shaft,

• old blockers may exit the shaft,

• edges may move outside the shaft,

• facings of patches may change from INCONSISTENT to TOWARDS-RECEIVER or TOWARDS-
LIGHT, and this may enable merging of patches,

• surfaces may become combined if new blockers connect them,

• surfaces may be split into disjoint components if portions of them exit the shaft,

• it may become possible to simplify patches if some of their edges exit the shaft.

In the following sections, we will examine each of these operations separately. The generic proce-
dure for constructing the sub-shaft is illustrated in the pseudocode in Figure 4.19. The CONSTRUCT-
SUB-SHAFT function takes as input parameters the receiver and light nodes for the sub-shaft, the
parent shaft, and in addition, pointer to the point tree node that was split. Knowing which node
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was split is important when constructing the new blocker surface (line 10). First, the sub-shaft is
initialized with proper shaft geometry (lines 1–5). Note that the main axis is inherited from the
parent shaft. Then, the surfaces of the parent shaft are copied to the sub-shaft, and a new surface is
constructed for the blockers that enter the shaft (lines 6–11). An array for storing temporary surfaces
after splitting them is allocated on line 12. For every surface (including the newly created surface
for new blockers), we then classify whether its edges are inside or outside the shaft, update facings
of patches, merge neighboring patches with consistent facing, simplify the patches, and finally, split
the surfaces into their disjoint components (lines 13–19). The splitting procedure SPLIT-SURFACE
stores the separate components of the surface into the temporary surface array (line 18), and thus
after the loop we can clear the surface array of the sub-shaft (line 20). For each of the temporary
surfaces, we compute the loose edges (line 21), after which we combine the surfaces (line 22), stor-
ing the resulting surfaces back into the shaft itself. Finally, the bounding boxes of the surfaces are
computed (line 23).

4.7.1 Adding New Blockers

New blockers may enter the shaft due to the shrinking of nodes that span the shaft, as illustrated
in Figure 4.10. To find the triangles that potentially enter the shaft, we use the list of triangles that
intersected the parent node of the split node, but do not intersect the node itself. This is exactly
what we store in TreeNode.gone_triangles array (Figure 4.2), and enumerating the triangles in this
array is all we need to do. It must still be tested that the triangles intersect the shaft and that they
do not intersect the other node. The triangles are then clipped against the clip planes, and a new
patch is formed for each triangle. The neighbors of these patches are set based on the edge labels of
the mesh. It should be noted that the surface we construct for the new blockers may have disjoint
components, and therefore we must later split this surface using the procedure SPLIT-SURFACE
given in Section 4.7.6.

Figure 4.20 shows the pseudocode for constructing a new surface that has a separate patch for every
blocker triangle. Checking that the triangle is a valid blocker is performed on lines 6–8. A patch
is then constructed (lines 9–10) so that the triangle is clipped first, and the facing of the patch is
initialized to INCONSISTENT, to be determined correctly later using the mesh triangle index set on
line 11. Because we need to establish the neighborships between the new patches, and to ensure that
only one raw edge per mesh edge exists, we need to detect when an edge is already present in the
patches of the surface being constructed. For this purpose, we use the edge_map map for finding
already constructed edges based on the mesh edge label (line 3). If an edge and corresponding raw
edge have been already created, the test on line 15 succeeds, and in this case, the old raw edge is
used and the edge of the patch being processed is set to reference the old raw edge (lines 16–18).
Setting the owner of the new, flipped edge (line 18) sets the missing neighbor of the raw edge, and
enables the neighborship between patches. As a result, all edges in the patches of the constructed
surface will have correctly marked neighbors, and there will be only one raw edge for each mesh
edge.

4.7.2 Classifying Edges

When a sub-shaft is constructed from a parent shaft, some or all edges of a surface may end up being
outside the shaft. This must be detected, since edges inside the shaft act differently from the edges
that are outside the shaft. For instance, patches that are joined through an edge inside the shaft must
belong to the same surface, whereas edges outside the shaft are not considered to connect patches,
giving rise to the possibility of splitting a surface into multiple disjoint components. It is mandatory
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function Surface CONSTRUCT-TRIANGLE-SURFACE(Array〈int〉* triangles , Shaft* shaft)
1 Surface new_surface
2 ShaftGeometry* sgeom ← shaft .shaft_geometry
3 Map〈int→ Edge*〉 edge_map // maps mesh edge labels to our edges
4 for each tidx in triangles do
5 Triangle* t ← mesh.triangles[tidx ]
6 if not INTERSECTS-SHAFT(t , sgeom) then continue
7 if INTERSECTS-AABB(t , shaft .receiver_node.bounding_box ) then continue
8 if INTERSECTS-AABB(t , shaft .light_node.bounding_box ) then continue
9 Patch p ← CONSTRUCT-CLIPPED-PATCH(t) // make new patch with fresh RawEdges
10 p.facing ← INCONSISTENT // initial facing is always INCONSISTENT
11 p.mesh_triangle ← tidx // store mesh triangle index
12 for each e in p.edges do
13 int elabel ← e.raw_edge.mesh_edge
14 if elabel = CLIP-EDGE then continue // cannot have a neighbor
15 if edge_map contains elabel then // check if edge exists already
16 delete e.raw_edge // use existing RawEdge, delete this
17 e ← FLIP-EDGE(edge_map.get(elabel )) // make a flipped version of old edge
18 SET-OWNER(e , p) // establish neighborship between patches
19 else
20 insert (elabel → e) into edge_map // new edge, store for use by future triangles
21 end if
22 end for
23 add p at the end of new_surface.patches
24 end for
25 return new_surface

Figure 4.20 Pseudocode for constructing a new surface that has a separate patch for every new
blocker triangle.

procedure CLASSIFY-EDGES(Surface* surf , Shaft* shaft)
1 Array〈RawEdge*〉 raw_edges ← COLLECT-RAW-EDGES(surf )
2 for each re in raw_edges do
3 if not re.is_inside then continue // if edge was outside, it still is
4 LineSegment l ← {re.vertices[0].position, re.vertices[1].position}
5 re.is_inside ← INTERSECTS-SHAFT(l , shaft .shaft_geometry)
6 end for

Figure 4.21 Pseudocode for classifying the edges of a surface.

to be able to split surfaces when their connecting edges fall outside the shaft, for example to detect
when a torus starts blocking a shaft as discussed in Section 4.6.4.

Pseudocode for classifying the edges is given in Figure 4.21. It can be seen that the operation is
conceptually very simple; every raw edge is processed, and if it intersects the shaft, it is marked to
be inside the shaft (lines 2–6). To optimize the process a bit, we observe that if an edge was outside
the parent shaft, it must be outside the sub-shaft as well, and its status cannot therefore change
(line 3).
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4.7.3 Computing Patch Facings

As was already discussed in Section 4.4.2, the facing of a patch may be either TOWARDS-RECEIVER,
TOWARDS-LIGHT or INCONSISTENT. Only patches that have the same consistent facing, i.e. other
than INCONSISTENT, may be safely merged together, since their joining edges cannot be silhouette
edges between the nodes that span the shaft.

The most critical observation in computing the facings is that we never need to update the facing
of a patch that has consistent facing. The reason is trivial: if a patch has a facing, say TOWARDS-
RECEIVER, it means that all rays from the receiver node to the light node pierce the piece of surface
represented by the patch by hitting its front face. Now, if we split a node, this same condition trivially
holds for the reduced set of possible rays. Therefore, our only problem is to determine the facing
for the patches whose facing is INCONSISTENT, and since these patches are not joined to any other
patches, they always consist of a single triangle. This, in turn, causes these patches to be always
planar. The remaining task is to determine if the plane of the patch is such that all rays between the
nodes pierce it in the same direction. This can be done simply by checking if the bounding boxes of
the nodes are in front of or behind the plane, or if they intersect the plane.

Assuming that we have a function that classifies an axis-aligned bounding box with respect to a
plane, we can summarize the facing of the patch as shown in Table 4.1. As can be seen, the facing
of the patch is inconsistent only when both of the nodes intersect the plane. Note that certain combi-
nations are impossible; both the receiver and the light node cannot be on the same side of the plane,
since the patch that defines the plane is located inside the shaft.

Pseudocode that updates the facings of the patches in a surface is given in Figure 4.22. Function
CLASSIFY-AABB-PLANE returns one of the three symbolic constants FRONT, BACK and INTER-
SECTS depending on whether the box is in front of, behind, or intersecting the plane, respectively
(lines 6–7). Based on the classification of the receiver and light nodes, the facing is updated accord-
ingly (lines 8–18).

4.7.4 Merging Patches

The patch-based blocker representation will not be of much use unless we are able to merge multiple
triangles into one patch. Once we know the facings of the patches with respect to the receiver and
light nodes, we only need the simple rule: if two neighboring patches have the same consistent
facing, the edge that joins them cannot be a silhouette edge, and the patches can be merged together.

The pseudocode for merging the patches in a surface is given in Figure 4.23. The routine is a
bit lengthy, but not difficult to understand. We start a traversal from every patch of the surface,
and terminate immediately if the patch has been already processed (lines 4, 5). The patches to be
traversed are kept in traversal_stack , and all patches visited during traversal are collected to set

Light node vs. plane
FRONT BACK INTERSECTS

Receiver FRONT impossible TOWARDS-RECEIVER TOWARDS-RECEIVER
node vs. BACK TOWARDS-LIGHT impossible TOWARDS-LIGHT

plane INTERSECTS TOWARDS-LIGHT TOWARDS-RECEIVER INCONSISTENT

Table 4.1 Determining the facing of a planar patch based on the classification of the bounding boxes
of the receiver and light nodes with respect to the plane of the patch.
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// enumeration for expressing the result of AABB vs plane classification
typedef BoxPlaneResult := enum {FRONT, BACK, INTERSECTS}

procedure UPDATE-PATCH-FACINGS(Surface* surf , Shaft* shaft)
1 AABB receiver_aabb ← shaft .receiver_node.bounding_box
2 AABB light_aabb ← shaft .light_node.bounding_box
3 for each patch in surf .patches do
4 if patch.facing 6= INCONSISTENT then continue
5 Vector4f pl ← GET-TRIANGLE-PLANE(patch.mesh_triangle)
6 BoxPlaneResult receiver_result ← CLASSIFY-AABB-PLANE(receiver_aabb, pl )
7 BoxPlaneResult light_result ← CLASSIFY-AABB-PLANE(light_aabb, pl )
8 if receiver_result = FRONT then
9 patch.facing ← TOWARDS-RECEIVER
10 else if receiver_result = BACK then
11 patch.facing ← TOWARDS-LIGHT
12 else if light_result = FRONT then
13 patch.facing ← TOWARDS-LIGHT
14 else if light_result = BACK then
15 patch.facing ← TOWARDS-RECEIVER
16 else
17 patch.facing ← INCONSISTENT
18 end if
19 end for

Figure 4.22 Pseudocode for updating the facings of patches.

merge_patches (lines 6, 7). The traversal continues to all neighboring patches that have the same
consistent facing as the seed patch, and where the connecting edge is inside the shaft (lines 12–
21). After the traversal terminates, we have all the patches that can be merged with the seed patch
collected in set merge_patches . A new patch is then constructed (line 23), and initialized with the
same facing and mesh triangle index as the seed patch (lines 24, 25). All edges in the patches to
be merged are looped over (lines 26, 28), and edges that are on the boundary of the new patch,
i.e. not connected to two patches being merged together, are duplicated and added to the new patch
(lines 30, 31). After all patches have been merged, the old patches of the surface are deleted and
replaced with the new ones (lines 36, 37). Care must be taken to appropriately update the neighbor
pointers in the raw edges that were duplicated from the original patches. For this purpose, we
construct map remap_patches that remaps the pointers to the old patches to pointers to the new ones
(lines 3, 27). It should be noted that due to merging, multiple old patches may become remapped to
a single new patch. To fix the neighbor pointers in the raw edges, we simply remap them to point to
the new patches (lines 38–43), after which the merging is complete and the surface is in consistent
state.

4.7.5 Simplifying Patches

Since the sub-shaft is smaller than the parent shaft, some of blocking geometry usually exits the shaft.
In order to reduce the amount of data representing the blockers accordingly, we need a method for
removing the parts of the blockers that are no longer inside the shaft. To accomplish this, we simplify
every patch by repeatedly collapsing adjacent edges that are outside the shaft, see Figure 4.24a. This
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procedure MERGE-PATCHES(Surface* surf )
1 Array〈Patch*〉 new_patches // stores the merged patches
2 Set〈Patch*〉 patches_processed // already processed patches
3 Map〈Patch*→ Patch*〉 patch_remap // for remapping neighbor pointers
4 for each seed_patch in surf .patches do // start traversal from every patch
5 if patches_processed contains seed_patch then continue
6 Set〈Patch*〉 merge_patches // set of patches to be merged
7 Stack〈Patch*〉 traversal_stack // patches yet to be traversed
8 push seed_patch into traversal_stack // initialize traversal
9 while traversal_stack is not empty do
10 Patch* patch ← pop from traversal_stack
11 insert patch into patches_processed
12 for each e in patch.edges do // peek over every edge of the patch
13 Patch* neighbor ← GET-NEIGHBOR(e) // get the neighbor patch over the edge
14 if (e.is_inside) and (neighbor 6= NULL) and
15 (merge_patches does not contain neighbor) and
16 (patch.facing 6= INCONSISTENT and neighbor .facing 6= INCONSISTENT) and
17 (patch.facing = neighbor .facing) then
18 add neighbor into merge_patches // mark among patches to be merged
19 push neighbor into traversal_stack // continue traversal there
20 end if
21 end for
22 end while
23 Patch* new_patch ← new Patch // construct the new patch
24 new_patch.facing ← seed_patch.facing
25 new_patch.mesh_triangle ← seed_patch.mesh_triangle
26 for each patch in merge_patches do // loop over all patches being merged
27 insert (patch → new_patch) into patch_remap
28 for each e in patch.edges do // loop over all edges
29 // skip edges that are not on the boundary of the new patch
30 if merge_patches contains GET-NEIGHBOR(e) then continue
31 add DUPLICATE-EDGE(e) at the end of new_patch.edges
32 end for
33 end for
34 add new_patch at the end of new_patches
35 end for
36 for each old_patch in surf .patches do delete old_patch // delete all old patches
37 surf .patches ← new_patches // replace with the new ones
38 Array〈RawEdge*〉 raw_edges ← COLLECT-RAW-EDGES(surf )
39 // the neighbor pointers point now to the old patches—make them point to new patches
40 for each re in raw_edges do
41 if re.neighbors[0] 6= NULL then re.neighbors[0]← patch_remap.get(re.neighbors[0])
42 if re.neighbors[1] 6= NULL then re.neighbors[1]← patch_remap.get(re.neighbors[1])
43 end for

Figure 4.23 Pseudocode for merging the patches in a surface.
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(a)

(b)

Figure 4.24 Illustration of patch simplification. In this figure, the gray square represents a cross–
section of the shaft that does not intersect the nodes that span the shaft. (a) The patch shown in
the leftmost figure is simplified. A possible simplification sequence is shown on the right. In each
step, two adjacent edges that are outside the shaft are collapsed to one edge. (b) An example of a
more tricky situation that leads to wrong results unless we explicitly avoid changing the occlusion
characteristics of a patch. The patch on the left is simplified, and if we do not check that the triangle
formed by the two removed edges and the new one does not intersect the shaft, we end up in situation
shown on the right. The occlusion of the patch is different from the original situation, resulting in
wrong shadows. This kind of failure cannot occur if we check that the triangles shown in red do not
intersect the shaft.

is somewhat similar to the well-known “ear-clipping” polygon tessellation algorithm [28]. It must
be noted that edge collapsing is not always a valid operation; if the collapsing results in patch with
different occlusion characteristics than the original one, we end up with false representation of the
blocking geometry. Figure 4.24b illustrates this problem.

We do not give the pseudocode for the simplification routine, since it is fairly straightforward but
quite lengthy. The main idea is to maintain a circular linked list of edges, where adjacent edges are
next to each other. It is possible that there are multiple edge loops (i.e. when patch has a hole), and in
this case each edge loop is processed separately. For each pair of adjacent edges outside the shaft, we
check if the triangle formed by the edges intersects the shaft. If not, we collapse the edges into one
edge and update the edge list accordingly. If the collapsed edges were connected to other patches,
we also detach the patch being simplified from them in order to maintain consistent neighborship
information.

This patch simplification procedure does not necessarily end up with patch having the optimal
(smallest possible) number of vertices. However, the resulting patches are usually optimal or very
close to it. Finding the optimal set of edges is a hard problem, and solving it would probably slow
down the overall performance.

An important aspect of the patch simplification is that it may cause the patch to vanish altogether if
the patch lies completely outside the shaft. In this situation, we delete the patch and remove it from
the containing surface. This is not the only means for removing obsolete blocker geometry from the
shaft; another method that removes entire surfaces is given in Section 4.7.8.
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procedure SPLIT-SURFACE(Surface* surf , Array〈Surface〉* target_surfaces)
1 Set〈Patch*〉 patches_processed // already processed patches
2 for each seed_patch in surf .patches do // start traversal from every patch
3 if patches_processed contains seed_patch then continue
4 Set〈Patch*〉 component_patches // set of patches in the component
5 Stack〈Patch*〉 traversal_stack // patches yet to be traversed
6 push seed_patch into traversal_stack // initialize traversal
7 while traversal_stack is not empty do
8 Patch* patch ← pop from traversal_stack
9 insert patch into patches_processed
10 for each e in patch.edges do // peek over every edge of the patch
11 Patch* neighbor ← GET-NEIGHBOR(e) // get the neighbor patch over the edge
12 if (e.is_inside) and (neighbor 6= NULL) and
13 (component_patches does not contain neighbor) then
14 add neighbor into component_patches // mark among patches in the component
15 push neighbor into traversal_stack // continue traversal there
16 end if
17 end for
18 end while
19 Surface component_surface
20 for each patch in component_patches do
21 add patch at the end of component_surface.patches
22 for each eidx in {0, . . . , patch.edges.size − 1} do
23 Edge* edge ← patch.edges[eidx ]
24 Patch* neighbor ← GET-NEIGHBOR(edge)
25 if (neighbor 6= NULL) and (component_patches does not contain neighbor) then
26 Edge our_edge ← DUPLICATE-EDGE(edge)
27 SET-OWNER(edge , NULL) // detach us from the old edge
28 SET-NEIGHBOR(our_edge , NULL) // detach neighbor from our edge
29 patch.edges[eidx ]← our_edge // replace the edge in patch being processed
30 end if
31 end for
32 end for
33 add component_surface at the end of target_surfaces
34 end for

Figure 4.25 Pseudocode for splitting a surface into its disjoint components.

4.7.6 Splitting Surfaces

To split surfaces that consist of multiple separate components, we perform a traversal that is similar
to what was used for finding the patches to be merged together. It is almost enough to just move the
patches that are found during a traversal to a new surface. The only special case to be taken into
account concerns edges that are outside the shaft and join two patches that do not belong to the same
connected set of patches.

The pseudocode for splitting a surface into its disjoint components is given in Figure 4.25. The
traversal that finds patches that are connected through edges inside the shaft (lines 3–18) is quite
similar to the traversal in MERGE-PATCHES shown in Figure 4.23, and we will not go into details
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procedure COMPUTE-LOOSE-EDGES(Surface* surf )
1 clear surf .loose_edges
2 for each patch in surf .patches do
3 for each edge in patch.edges do
4 int edge_label ← edge.raw_edge.mesh_edge
5 if mesh.is_double_edge[edge_label ] = FALSE then continue
6 if (edge.is_inside) and (GET-NEIGHBOR(edge) = NULL) then
7 add edge_label at the end of surf .loose_edges
8 end if
9 end for
10 end for

Figure 4.26 Pseudocode for finding the loose edges of a surface.

again here. The only difference is that the facings of the patches are not taken into account when
deciding whether to continue the traversal to neighboring patches (lines 12–13). A new surface is
constructed for the patches found (line 19), and the patches are added to it (line 21). All edges of the
patches in the component are looped over, and the edges that join two patches so that the neighboring
patch is not part of the component being formed (line 25) are handled separately. For these edges,
we construct a duplicate edge, and disconnect the patches from each other (lines 26–28). To be
specific, we remove the patch of the component from the edge that we leave otherwise untouched,
and correspondingly remove the neighbor from the duplicate edge that replaces the original one in
the patch of the component (line 29). Finally, we add the component surface into the target surface
array (line 33).

4.7.7 Computing Loose Edges and Combining Surfaces

In constructing the sub-shaft, new blockers may enter the shaft. These blockers initially form their
own surface (computed by CONSTRUCT-TRIANGLE-SURFACE in Figure 4.20), and this surface is
subsequently split into its connected components. In order to increase the occlusion power of the
surfaces, we must then combine the neighboring surfaces together, effectively gluing the incoming
blockers with the ones that are already inside the shaft.

To quickly find the surfaces that are to be combined together, we first find the set of loose edges
for every surface. A loose edge is an edge that is connected to two triangles in the scene mesh, lies
inside the shaft, and is a boundary edge of a surface. The loose edges are identified by their mesh
edge labels, and thus two surfaces are to be combined if they both have the same loose edge.

Pseudocode in Figure 4.26 computes the loose edges for a surface. All edges of all patches are
looped over, and the edges that are not double edges in the mesh, i.e. not connected to two triangles,
are discarded (line 5). For remaining edges, we test that they are inside the shaft and that they do not
have a neighboring patch, meaning that they are indeed boundary edges of the surface (line 6). The
mesh edge labels of such edges are added into the loose edge array (line 7).

After we have the loose edges computed for all surfaces, we may begin finding the surfaces to
be combined together. For this purpose, we use the union-find data structure (see e.g. [67]) for
representing and joining sets of surfaces. We first initialize the union-find structure with each surface
being in its own set, and then join the sets with common loose edges. After this, we enumerate the
distinct sets, and combine the surfaces in each set.

59



The Incremental Shaft Subdivision Algorithm

procedure COMBINE-SURFACES(Array〈Surface〉* input_surfaces ,
Array〈Surface〉* target_surfaces)

1 Map〈int→ Surface*〉 loose_edge_map // map from edge labels to surfaces
2 UnionFind〈Surface*〉 combine_union // maintain sets of surfaces to be combined
3 for each surf in input_surfaces do
4 for each elabel in surf .loose_edges do
5 if loose_edge_map contains elabel then // edge label seen already?
6 Surface* other_surf ← loose_edge_map.get(elabel )
7 join surf and other_surf in combine_union
8 else
9 insert (elabel → surf ) into loose_edge_map

10 end if
11 end for
12 end for
13 for each set S in combine_union do // enumerate surface sets
14 Array〈Surface*〉 set_surfaces ← S // collect surfaces in a set into an array
15 if set_surfaces.size = 1 then // special case if only one surface
16 add set_surfaces[0] at the end of target_surfaces
17 else
18 Surface new_surface ← CONSTRUCT-COMBINED-SURFACE(set_surfaces)
19 MERGE-PATCHES(new_surface) // merging may be possible after combining
20 SIMPLIFY-PATCHES(new_surface) // same with simplifying
21 add new_surface at the end of target_surfaces
22 end if
23 end for

Figure 4.27 Pseudocode for combining connected surfaces.

The pseudocode for combining connected surfaces is given in Figure 4.27. We maintain a mapping
from mesh edge labels to surfaces (line 1) and a union-find data structure that represents the sets of
surfaces to be combined (line 2). Each loose edge in every surface is considered, and if it exists in
the loose edge map already, we join the corresponding surfaces in the union-find structure (lines 6–
7). Otherwise, the surface of the loose edge is placed into the map so that subsequent occurrences
of the same edge may find it there (line 9). After all loose edges have been processed, we have
the sets of surfaces that should be combined in the union-find structure. Congratulations, you have
found the Easter egg. These sets are looped over, and a new combined surface is constructed for
each of them. If a surface is not to be combined with any other surface, we can simply copy the
old surface (line 16). Otherwise, we call function CONSTRUCT-COMBINED-SURFACE that creates
a new combined surface (line 18), after which we merge the patches in the new surface and simplify
them (lines 19–20). Finally, the combined surface is added into the target surface array (line 21).

As can be seen from the pseudocode, function CONSTRUCT-COMBINED-SURFACE (pseudocode
omitted) takes an array of surfaces as its input and produces a single surface that contains the patches
of all the input surfaces. Every pair of edges that join the patches between surfaces to be combined
is connected to a single raw edge, and the neighbor information is computed accordingly. The only
tricky part in the construction of the combined surface is handling clipped vs. non-clipped edges
correctly.

Figure 4.28 illustrates a situation where we end up in combining patches from two separate surfaces
so that the joining edge is clipped in one patch, but not clipped in the other one. This kind of
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(a)
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Figure 4.28 Two patches added at different times may have their common edge represented in dif-
ferent ways. Only one end of the shaft is shown, and the shaft extends away from the reader as
indicated by the dashed lines. The main axis is chosen so that the yellow side of the node bounding
box defines the clip plane. (a) Patch P does not need to be clipped, since it does not intersect the clip
plane implied by the yellow face. Non-clipped edge e1 is constructed. (b) Patch Q is added later,
when the shaft is shortened so that the triangle of Q does not intersect the node any more. But now,
the edge common with P intersects the clip plane and therefore needs to be clipped. As a result,
edges e1 and e2 have one common vertex, but the other vertices of the edges are different. Both e1

and e2 refer to the same mesh edge, making them matching loose edges, and the surfaces containing
P and Q are thus combined. The same situation could also occur simultaneously at the other clip
plane, leading to a joining edge where neither of the vertices match.

situation may occur when the patches are added into the shaft in different stages. In the figure,
an edge is shared by patches P and Q, where it is referenced through edges e1 and e2, respectively.
Patch P is added into the shaft at a point when the edge does not intersect the clip planes, resulting in
e1 added as a non-clipped edge (Figure 4.28a). Then, the shaft is subdivided some number of times,
and patch Q becomes possible to be added into the shaft. Now, it is possible that a clip plane has
moved so that the joining edge needs to be clipped, giving rise to a clipped edge e2 (Figure 4.28b).
In this case, both e1 and e2 refer to the same mesh edge, but have different raw edges because they
belong to different surfaces. Both raw edges have the same mesh edge label, which means that the
surfaces become combined, but they do not both point to same vertices.

The situation can be fixed by adding a glue edge to one of the patches, as illustrated in Figure 4.29.
The glue edge connects the clipped and non-clipped vertices of the joining edge together, allowing
us to unify the joining edges in separate patches into one raw edge. At most two glue edges are
needed, one for each end of the edge, and it does not matter in which patch we add the glue edges. It
should be noted that glue edges are needed only when combining the surfaces, as the edges between
new blocker triangles (Section 4.7.1) always match each other because they are constructed using
the same clip planes.

4.7.8 Removing Redundant Surfaces

In addition to patch simplification, we apply a second method for removing the excess blocker
geometry from the shaft. First, we note that if all edges of a surface are outside the shaft, they will
remain there no matter how the shaft gets subdivided later. Consequently, the topology of the surface
is guaranteed not to change with respect to the shaft, i.e. edges cannot move from one side of the
shaft to another. Let us consider a surface with all edges outside the shaft. Now, if this surface does
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Figure 4.29 Combining patches that share the same mesh edge, not clipped in one patch but clipped
in the other (see Figure 4.28). In patch P , the edge (va, vb) is not clipped, while in patch Q, the edge
(va, vc) is clipped. (a) Non-clipped edge e1 in patch P is connected to vertices va and vb, and clipped
edge e2 in patch Q is connected to vertices va and vc. Edges e1 and e2 should be merged, but this
is impossible because vertices vb and vc are different. (b) Patch Q is modified so that e2 is forced
to match e1. To retain closedness, a glue edge eg is added between vertices vb and vc. Note that in
actuality, the clip vertex vc lies on the edge (va, vb), and is here placed outside it for illustrational
purposes only. (c) After the modification of patch Q, the edges can be unified into a single raw edge
with appropriate neighbor information. We could have equally well modified patch P analogously
by splitting e1 in two parts (va, vc) and (vc, vb). In a general situation, there could also be a vertex
mismatch at the other end of the edge, and in this case a second glue edge would be needed.

not block the shaft, we can conclude that it cannot block any of the sub-shafts either. In this situation,
we may remove the entire surface from further consideration in sub-shafts. This test cannot be done
before the blocking test, since it is of course possible that the surface does block the shaft when all
of its edges have just exited the shaft.

4.7.9 Postponing the Refinement of Surfaces

In certain cases, it can be assumed that a surface is not going to block the shaft anytime soon, and
that its edges are not probably not exiting the shaft. In these cases, we may skip the refinement tasks
for that surface, namely the edge classification, updating patch facings, merging patches, simplifying
patches and splitting the surface into disjoint parts. Instead, we may just copy the surface from the
parent shaft and leave the statuses of its edges and patches as they are, which may save a lot of
resources. In sub-shaft construction pseudocode (Figure 4.19), this would involve making the block
of refinement function calls in lines 14–18 conditional.

Figure 4.30 illustrates such a situation. Performing the refinement tasks for surface B in the figure is
likely to be mostly redundant work, since the geometry of B is not exiting the shaft, and the potential
simplification in the geometry could come from patch merging only. Surface A, in contrast, should
be refined, as postponing the refinement to sub-shafts would be a short-sighted optimization. If we
refined the surface A e.g. in both sub-shafts of the current shaft, we would process the edges twice,
and the situation gets even worse if the work gets postponed further. Therefore, we are better off by
removing the redundant geometry already in the current shaft.

We employ a simple heuristic for detecting the cases where surface refinement is likely to gain us
very little. This involves computing the vertex center, which is the mean of the vertex positions of
those vertices that lie inside the parent shaft. If the vertex center is located inside the current shaft,
we may guess that less than half of the vertices currently classified being inside the shaft would
exit the shaft. In this case, we skip the refinement of the surface. On the other hand, if the vertex
center is outside the shaft, we re-classify the edges and perform other refinement tasks, including the
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Figure 4.30 Sometimes is can be assumed that refining a surface is likely not going to be beneficial.
Surface A, inherited from the parent shaft, clearly needs to be processed, i.e. its edges re-classified,
patches merged etc. even though it cannot block the shaft yet. If we postponed all such work to
sub-shafts, we would lose the benefits of hierarchical processing. Performing the refinement tasks
for surface B, on the other hand, is probably not going to yield any significant progress, since its
edges are not exiting the shaft and hence the blocker geometry could become simplified only through
patch merging. In this case, we may postpone the refinement of surface B to sub-shafts.

computation of a new vertex center. Also, when the bounding box of the surface blocks the shaft,
indicating that the surface could block the shaft, we always refine the surface in order to be able to
perform the blocking test.

This is a very crude heuristic, and there are cases where it postpones surface refinement even when
it is a sub-optimal choice considering the whole computation. In total, the refinement postponing
heuristic decreases the overall processing time by only 1–10%, but it has never resulted in a longer
running time. Thus, it seems that it is sensible to postpone the refinement in some situations, and
better speedups could probably be obtained by using some more elaborate and accurate way of
estimating the usefulness of the refinement in the current shaft. The most obvious case when the
heuristic helps is when there are many small, disjoint blockers in the scene, e.g. the branches and
leaves of a tree. These kind of small blockers are usually not going to block the shaft, and without
some sort of refinement postponing heuristic a lot of processing power would be used in vain.

It should be noted that we never postpone combining the surfaces. This is because our main goal is
to be able to block the shaft, and combining the surfaces is often necessary for constructing a single
surface that could block the shaft.

4.8 Initial Shaft Construction

Constructing the initial shaft, i.e. the shaft where the subdivision begins, is quite similar to con-
structing a sub-shaft with no patch geometry inherited from a parent shaft. Figure 4.31 shows the
pseudocode for constructing the initial shaft, which is mostly a stripped-down version of the sub-
shaft construction function (Figure 4.19). Instead of taking a parent shaft as an input parameter, the
function requires an array of triangle indices for triangles that may intersect the shaft being con-
structed. This array could include all triangles in the scene, but in practice it is better to maintain a
set of potentially intersecting triangles hierarchically, as will be discussed in the following section.
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function Shaft CONSTRUCT-INITIAL-SHAFT(TreeNode* receiver_node ,
TreeNode* light_node ,
Array〈int〉* triangles)

1 Shaft shaft ← new Shaft // construct a new shaft
2 shaft .receiver_node ← receiver_node
3 shaft .light_node ← light_node
4 shaft .shaft_geometry ← CONSTRUCT-SHAFT-GEOMETRY(receiver_node , light_node)
5 Surface surf ← CONSTRUCT-TRIANGLE-SURFACE(triangles , shaft)
6 CLASSIFY-EDGES(surf , shaft) // update is_inside of raw edges
7 UPDATE-PATCH-FACINGS(surf , shaft) // recompute facings of patches
8 MERGE-PATCHES(surf ) // merge neighbors with same facing
9 SIMPLIFY-PATCHES(surf ) // remove extraneous vertices in patches
10 SPLIT-SURFACE(surf , shaft .surfaces) // separate disjoint components of surface
11 for each surf in shaft .surfaces do COMPUTE-BOUNDING-BOX(surf )
12 return shaft

Figure 4.31 Pseudocode for constructing the initial shaft.

4.9 Tree Traversal Algorithm

We have now introduced functions for constructing the receiver point and light sample trees, con-
structing the shafts and testing if the shaft is blocked. The remaining task is to put all of these
together and perform the recursive traversal of the point trees for computing the shadows.

There are two stages in the tree traversal. The first stage is the part of the traversal when the bounding
boxes of the receiver node and light node still intersect. In this stage, there is no point in constructing
the shafts with blocker geometry, since the shaft could not be blocked. In addition, no main axis can
be determined for the shaft, which makes clipping and clamping of the shaft geometry impossible.
It may of course happen that the light and receiver nodes are non-intersecting from the beginning,
and in this case, the second stage is entered immediately.

Pseudocodes for the traversal initialization routine (COMPUTE-SHADOWS) and routine for perform-
ing the first stage of the tree traversal (PRE-TRAVERSE) are given in Figure 4.32. We maintain an
array of triangles that intersect the shaft while proceeding down in the receiver and light trees. The
triangle array is initialized to contain all triangles in the scene (line 2), and this array is passed to the
first traversal step that begins from the root nodes of the receiver and light trees (line 3).

In the PRE-TRAVERSE routine, we first check if the bounding boxes of the nodes have been separated
(line 4), and if so, we construct the initial shaft and jump to the actual shaft traversal stage (lines 5–
6). Otherwise, we prune the array of intersecting triangles by removing triangles that do not intersect
the shaft (lines 10–14). Next, we use a simple heuristic that determines whether we split the receiver
node or the light node. The diagonal length of the bounding boxes of the nodes are computed, and
the node with longer diagonal is split, unless one of the nodes node is a leaf node in which case we
are forced to split the other node (lines 17, 21). In either case, we continue the traversal (lines 18–20,
22–24). Sometimes, when there are receiver points and light samples very close to each other, it may
happen that even at the leaf nodes the bounding boxes still intersect. In this case, the traversal cannot
be continued, and we revert to ray-casting the relations between the nodes (line 26).

In the second stage of tree traversal, implemented in procedure SHAFT-TRAVERSE in Figure 4.33,
we construct the sub-shafts while proceeding down in receiver and light trees. The first step of the
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procedure COMPUTE-SHADOWS(TreeNode* receiver_tree_root ,
TreeNode* light_tree_root)

1 Array〈int〉 triangles
2 for each tidx in {0, . . . ,mesh.triangles.size − 1} do add tidx at the end of triangles
3 PRE-TRAVERSE(receiver_tree_root , light_tree_root , triangles)

procedure PRE-TRAVERSE(TreeNode* receiver_node , TreeNode* light_node ,
Array〈int〉 triangles)

4 if not INTERSECTS(receiver_node.bounding_box , light_node.bounding_box ) then
5 Shaft* shaft ← CONSTRUCT-INITIAL-SHAFT(receiver_node , light_node , triangles)
6 SHAFT-TRAVERSE(receiver_node , light_node , shaft)
7 return
8 end if
9 ShaftGeometry sgeom ← CONSTRUCT-SHAFT-GEOMETRY(receiver_node , light_node)

10 Array〈int〉 new_triangles // gather triangles that still intersect
11 for each tidx in triangles do
12 Triangle* t← mesh.triangles[tidx ]
13 if INTERSECTS-SHAFT(t, sgeom) then add tidx at the end of new_triangles
14 end for
15 float r_diag ← receiver_node.bounding_box .diagonal_length
16 float l_diag ← light_node.bounding_box .diagonal_length
17 if (not receiver_node.is_leaf ) and (r_diag > l_diag or light_node.is_leaf ) then
18 SPLIT-NODE(receiver_node) // lazy tree construction
19 PRE-TRAVERSE(receiver_node.left , light_node , new_triangles)
20 PRE-TRAVERSE(receiver_node.right , light_node , new_triangles)
21 else if (not light_node.is_leaf ) and (l_diag > r_diag or receiver_node.is_leaf ) then
22 SPLIT-NODE(light_node) // lazy tree construction
23 PRE-TRAVERSE(receiver_node , light_node.left , new_triangles)
24 PRE-TRAVERSE(receiver_node , light_node.right , new_triangles)
25 else // both nodes are leaves, cannot continue
26 CAST-SHADOW-RAYS(receiver_node , light_node)
27 end if

Figure 4.32 Pseudocode for top-level shadow computation routine and first stage of tree traversal.

traversal is checking if the shaft happens to be blocked (line 2). If so, the traversal can be terminated,
since no light transport can occur between nodes below the current receiver and light nodes. In the
same loop, we remove the surfaces whose edges are outside the shaft and that did not block the
shaft, as discussed in Section 4.7.8 (line 3). If receiver and light nodes are both leaf nodes, we revert
to solving the individual relations by ray-casting (lines 5–8). Otherwise, we need to choose which
node to split. If either node is a leaf node, we are forced to split the other node (lines 10–14), and if
neither node is a leaf node, we call function CHOOSE-SPLIT (pseudocode omitted) that determines
the node to be split (line 15). We shall return to this function in a moment. After the split strategy is
chosen, we proceed by constructing the sub-shafts and continuing the traversal (lines 17–29).

It is quite important to choose wisely which node to split for continuing the traversal. This is because
the volume of the shaft does not split into two non-overlapping volumes when the subdivision is
done. Instead, the sub-shafts often overlap considerably. The issue is illustrated in Figure 4.34,
where one split strategy leads to no simplification of blocker geometry, while the other split strategy
leads to simplified situation in sub-shafts.
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// enumeration for expressing the desired split strategy
typedef SplitMode := enum {SPLIT-RECEIVER, SPLIT-LIGHT}

procedure SHAFT-TRAVERSE(TreeNode* receiver_node , TreeNode* light_node ,
Shaft* shaft)

1 for each surf in shaft .surfaces do
2 if IS-BLOCKED(surf , shaft .shaft_geometry) then return
3 if ALL-EDGES-OUTSIDE(surf ) then remove surf from shaft .surfaces
4 end for
5 if receiver_node.is_leaf and light_node.is_leaf then
6 CAST-SHADOW-RAYS(receiver_node , light_node)
7 return
8 end if
9 SplitMode split_mode
10 if receiver_node.is_leaf then
11 split_mode ← SPLIT-LIGHT
12 else if light_node.is_leaf then
13 split_mode ← SPLIT-RECEIVER
14 else
15 split_mode ← CHOOSE-SPLIT(receiver_node , light_node , shaft .vertex_center )
16 end if
17 if split_mode = SPLIT-RECEIVER then
18 SPLIT-NODE(receiver_node) // lazy tree construction
19 Shaft sub_left ← CONSTRUCT-SUB-SHAFT(receiver_node.left , light_node ,

receiver_node.left , shaft)
20 Shaft sub_right ← CONSTRUCT-SUB-SHAFT(receiver_node.right , light_node ,

receiver_node.right , shaft)
21 SHAFT-TRAVERSE(receiver_node.left , light_node , sub_left)
22 SHAFT-TRAVERSE(receiver_node.right , light_node , sub_right)
23 else
24 SPLIT-NODE(light_node) // lazy tree construction
25 Shaft sub_left ← CONSTRUCT-SUB-SHAFT(receiver_node , light_node.left ,

light_node.left , shaft)
26 Shaft sub_right ← CONSTRUCT-SUB-SHAFT(receiver_node , light_node.right ,

light_node.right , shaft)
27 SHAFT-TRAVERSE(receiver_node , light_node.left , sub_left)
28 SHAFT-TRAVERSE(receiver_node , light_node.right , sub_right)
29 end if

Figure 4.33 Pseudocode for the second stage of tree traversal.

The heuristic that is used by function CHOOSE-SPLIT is quite simple. We compute the combined
vertex center of all surfaces in the shaft (for the definition of vertex center, see Section 4.7.9) and
check which split strategy leads to this vertex center moving closer to the boundaries of the sub-
shafts. More specifically, we construct the sub-shaft geometry for both possible split strategies,
leading to four sub-shafts in total, and measure the distance from the vertex center to the boundaries
of the sub-shafts. We then choose the split strategy where the average distance from the vertex center
to the boundaries of the sub-shafts is smaller.

There are many possible heuristics for choosing the split strategy, and the one that was chosen seems
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(a)

(b)

Figure 4.34 Choosing which node to split depends on the contents of the shaft. (a) Blockers in
the shaft are located near the bottom node, and splitting the top node does not help the situation
at all. Both sub-shafts contain as complicated blocker geometry as the parent shaft, although some
simplification may occur due to patch merging. (b) Splitting the bottom node is much better, since
now the blocker almost exits one of the sub-shafts. Considering the rest of the recursion, this is the
right way to go at this point.

to work quite well despite its simplicity. Other heuristics that were tested included:

• always splitting the node with larger volume,

• always splitting the node with larger surface area,

• always splitting the node that has more points under it in the point tree,

• alternating splits between receiver and light nodes.

None of these performed as well as the vertex center-based heuristic. The importance of the heuristic
was quite significant, as it reduced the execution time almost by an order of magnitude, compared to
alternating splits between receiver and light nodes.

4.10 Custom Ray Caster

Both the PRE-TRAVERSE and SHAFT-TRAVERSE functions rely on function CAST-SHADOW-RAYS
to solve the visibility relations when leaf nodes of receiver and light hierarchies are reached. This
function casts shadow rays for each {receiver point , light sample} pair, and when the shadow ray is
not blocked, accumulates the correct amount of light at the receiver point.

Any function that performs this action can be used in conjunction with the ISS algorithm. In the
initial tests, a standard ray caster was used, but in some situations it performs rather poorly. After
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Figure 4.35 The custom ray caster is a variant of the BLOCKS-SHAFT function. Since this procedure
does not take into account blockers that overlap the bounding boxes of the nodes, we need to test the
shadow rays against these blockers separately. In the figure, the black blockers inside the shaft are
processed using the variant of the BLOCKS-SHAFT test, while the red ones are not inside the shaft
and need to be handled separately.

all, only the geometry inside the shaft may block the shadow rays, and therefore it is sufficient to
consider this geometry only when determining the visibility of the shadow rays. For this purpose, a
custom ray caster was developed.

First of all, we notice that the BLOCKS-SHAFT test (Figure 4.18) can be modified to solve the
visibility of a shadow ray. We may conceptually shrink the bounding boxes of the nodes that span
the shaft to points that are located exactly at the endpoints of the shadow ray to be cast. This results
in every edge in the blocker geometry to fall outside the shaft, and BLOCKS-SHAFT test can be
directly used. However, we do not need to do this explicitly, as it is enough to simply consider every
edge to be outside the shaft, and to place the test line between the endpoints of the shadow ray.

Modifying the BLOCKS-SHAFT function in Figure 4.18 to function BLOCKS-RAY is therefore quite
trivial. First, we need to remove lines 1–7, allowing the test to proceed regardless of the position of
the edges relative to the geometry of the shaft. In addition, we need a modified version of function
CONSTRUCT-TEST-PLANES (called in line 8) so that it constructs the test line between the endpoints
of the given shadow ray. Finally, we modify function CLAMP-AND-GET-VERTICES (line 15) so that
it places the clip planes at the minimum and maximum coordinates of the given shadow ray along
the main axis of the shaft.

These modifications to the BLOCKS-SHAFT function effectively make it perform as if the shaft was
shrunk to a line segment fitting the shadow ray exactly. But if we did really shrink the shaft using
the standard sub-shaft construction procedure, we could end up adding new blockers in the shaft, as
the bounding boxes of the nodes become smaller. Because we do not do this, we need to take these
triangles into account explicitly. As both the receiver and light nodes are always leaf nodes when
the ray caster is called, we have the triangles inside them in their TreeNode.inside_triangles arrays,
and it is enough to intersect the shadow rays against these triangles. This is illustrated in Figure 4.35.

There are both positive and negative aspects in using the custom ray caster. It is a nice property that
only the geometry inside the shaft is considered, and that the ray casts are done against the patches,
not the individual triangles. However, we lose the hierarchical processing of geometry inside the
shaft, as we need to process every edge of the blocker patches for a shadow ray in the worst case. As
will be seen in Chapter 5, using the custom ray caster is feasible in a large scene where the shadow
rays generally span only a small range compared to the entire scene. In contrast, when the scene
is simple and the shadow rays range from one end of the scene to another, the standard ray caster
performs better.
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4.11 Removing the Banding Artifacts

If the same set of light samples is used for computing the shadows to every receiver point, so-
called banding artifacts are often visible in the image. Fortunately, it is usually easy to avoid these
artifacts. With traditional ray-casting methods, the common solution is to generate a separate light
sample pattern for each receiver point, and this converts the banding to less distracting noise.

With the ISS algorithm, we use a similar method for suppressing the banding artifacts. It is not
possible to use a different light sample pattern for every receiver point, since the computation is
performed hierarchically. However, we can use a different subset of light samples for separate
receiver points, as this choice can be deferred until the final ray-casting operations.

Our solution is to use a set of jitter points for each light sample, and to randomly choose one of these
jitter points as the target for each shadow ray. In practice, four jitter points per light sample was
found to be enough for eliminating the banding artifacts. This way, the geometry for a light sample
is actually not a point in space, but a small axis-aligned jitter box that contains the four jitter points.
The approach is quite non-intrusive, since it requires only two small modifications to the algorithm:

• when constructing the light sample tree, we compute the bounding boxes of the nodes based
on the jitter boxes,

• when performing the ray casts, we choose the target for the shadow ray among the jitter points
allocated for the light sample in question.

We can use the centers of the jitter boxes for computing the tree node splits (procedure SPLIT-NODE
in Figure 4.2), and it is only the computation of the bounding box of the node that needs to be aware
of the jitter boxes. The only drawback of this solution is that the bounding boxes of the light nodes
are slightly enlarged. However, this is necessary in order to guarantee that if the shaft is blocked,
so are the visibility relations between the receiver points and all possible jitter points of the light
samples.

4.12 Empty Shaft Optimization

To enhance the performance of the algorithm in cases where no occlusion is present between light
node and receiver node, we also detect the situations where the shaft is completely empty, i.e. con-
tains no blocker surfaces. In this case, it is sometimes possible to decide that every visibility relation
between the receiver points under the receiver node and the light samples under the light node is
visible.

Care must be taken to account for the triangles that may intersect the receiver and light nodes,
however. As we must be able to guarantee that even the triangles in the nodes cannot block the
visibility relations, we must require that the nodes do not contain any triangles. This can be done
by adding a bit to the tree nodes indicating whether any of the triangles in the scene intersects the
node. The bit can be set when constructing the node, and its sole purpose is to remember whether
the TreeNode.inside_triangles array was empty or not, as the array itself is cleared to conserve
memory when the node is split.

Unfortunately, this optimization works only in a limited number of cases. Consider a set of receiver
points placed on a floor that is not exactly horizontal but somewhat sloped, and a light source above
the floor. Also assume that there are no shadow casters between the floor and the light source.
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Now, because of the slope of the floor, every axis-aligned bounding box for the receiver points
intersects the geometry of the floor, and thus we cannot deduce that the visibility between light
samples and receiver points is guaranteed. In this case, the empty shaft optimization fails to terminate
the traversal. The situation is not as bad as it might sound, since the shaft and all its sub-shafts remain
empty, and continuing the traversal all the way to the leaf nodes is extremely fast.

4.13 Implementation Issues

As our intention has been to keep the presentation of the algorithm on a civilized level, corners have
been cut in various places of the pseudocode. If an implementation would be made directly from the
pseudocode, severe performance problems should be expected.

Most notably, the handling of data structures in the pseudocode has been quite unrefined. When tun-
ing up the real implementation, most of the optimization work was related to avoiding data copying
and memory allocation/deallocation. The importance of these measures should not be underesti-
mated; the execution times were dropped to about seventh of the first version (that the pseudocode
in fact reflects quite well) by careful and diligent engineering alone. Performing as much of the
computation in-place was also one of the key elements for obtaining good performance. We shall
not go into details about these kind of optimizations, since they are completely dependent on the
implementation and the personal bag of tricks that the programmer has at his/her disposal. However,
here are a couple of general guidelines that should help in writing an efficient implementation:

• compute as much as possible in-place,

• avoid copying data around,

• use arrays in place of sets and maps where appropriate,

• use pointers instead of indices to avoid index remapping when items are removed from arrays,

• shove pointers around instead of copying the objects, keep good note of ownerships of objects,

• do early exits and avoid computation as much as possible (example: in patch merging, only
consider the patches whose facing was changed in facing update phase),

• store and re-use the results of geometrical tests (e.g. vertex inside/outside shaft) where appro-
priate,

• use a custom pool-based memory manager for data structures that are allocated and deallo-
cated often.

The optimization process almost inevitably leads to the data structures being a tangled web of point-
ers, indices and ownerships. Regardless of the level of optimization, it is advisable to write a func-
tion that verifies the internal consistency of all data structures, checking e.g. that patch edges actually
form loops. Calling this function after every non-trivial operation is an easy way of finding bugs in
data structure updates. A custom memory manager is also very helpful in finding memory leaks. In
order to know where to optimize, accurate profiling information is needed.

Despite the hardships in getting the algorithm to work efficiently, the prototype implementation
was found to be very stable and robust after the last bugs were dealt with. Numerical imprecision in
floating-point arithmetic posed no problems in any of the geometrical computations, which is mostly
due to the fact that there are no situations where the round-off errors could accumulate. The only
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geometrical operation where new 3D points are constructed are the clipping and clamping of blocker
geometry, and as every triangle is clipped at most once, no errors can accumulate there. Clamping
the patch edges requires computing the intersection point between an edge and a clip plane, but as
the clamping is done from scratch every time (i.e. we always clamp the original edges, not already
clamped ones), errors remain at a tolerable level.

The prototype implementation, written in C++, amounts to about 7000 lines of code, which does
not include the memory manager, vector/matrix library, implementation of the data structures, and
the standard ray caster. It would be an overstatement to say that the pseudocode presented in this
chapter is just the tip of an iceberg, but nonetheless, substantial amount of code lurks in the routines
that were not spelled out in pseudocode.
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Chapter 5

Experimental Results

This chapter presents the results of the benchmark runs that were performed using both the ISS
algorithm and the standard ray caster with shadow cache as the comparison method. First, we
describe the test setup, and then proceed by giving detailed descriptions of the test scenes used.
After this, the execution times and other measured data is presented and analyzed, after which we
briefly take a look at the execution time breakdown in two of the test cases.

5.1 Test Setup

The tests were run on a laptop with 1.6 GHz Pentium M processor and one gigabyte of memory. Only
the time for computing the shadows, i.e. computing the visibility relations between receiver points
and light samples, was taken into account. Most importantly, tracing the primary rays, constructing
the ray caster BSP and loading the scene into memory was not accounted for. In total, these tasks
constituted only a tiny fraction of the total execution time.

We compared the ISS algorithm against a ray caster with shadow cache optimization [34]. Three
image resolutions were used, 512 × 384, 1024 × 768 and 2048 × 1536, and additional tests were
made with larger area light sources (where applicable) and higher light sample counts, using the
medium resolution of 1024 × 768. Both the standard ray caster with shadow cache and the custom
ray caster (Section 4.10) were tried as the final relation solver methods in the ISS algorithm, and the
one which resulted in faster execution times was used for computing the final results.

The memory consumption was measured only for the ISS algorithm, and the figures do not include
the scene data and ray caster BSP, since this data would be required anyway for tracing the primary
rays.

As the ISS algorithm uses the ray caster for computing the visibility relations when leaf nodes are
reached in both receiver and light trees, its performance depends on the number of points in these
leaf nodes. The leaf node point counts were set manually, using a couple of test runs to find good
values, and admittedly, this is something that should be performed automatically by the algorithm.
However, the performance of the ISS algorithm was found to remain quite consistent when the leaf
node point counts were deviated slightly from these empirically obtained values. Therefore, the
performance is apparently not excessively sensitive to these parameters. It should be noted that the
leaf node point counts are the only parameters that need to be set manually.
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scene max light samples max receiver points
in light tree leaf in receiver tree leaf

COLUMNS 4 64
BUNNY 16 256
TREE 16 256
SODA 16 16

Table 5.1 The maximum light sample and receiver point counts in the light and receiver trees used in
the four test scenes. The same parameters were used in all test runs, including different resolutions,
light sample counts and light source sizes.

5.1.1 Test Scenes

We used four test scenes for assessing the performance of the ISS algorithm. Three of them were
simple object-on-a-plane scenes (images in Table 5.2), and it was expected that the ISS algorithm
would not perform too well in these scenes. The first scene, COLUMNS, contains 2522 triangles
and one rectangular light source with 256 light samples, and it is an example of a simple scene with
complex shadows. The second scene, BUNNY, features the standard Stanford bunny lit by a number
of light sources from different directions, giving rise to quite complex shadows. In this scene, there
are ∼70000 triangles and 10 rectangular light sources, each represented by 36 light samples. The
third scene, TREE, contains very complex shadows cast by a tree with∼16500 triangles and 10 light
sources. The lighting is similar to the BUNNY scene, and 36 light samples are used for each light
source.

The fourth and final test scene, SODA, is a large architectural model of the Soda Hall at Berkeley
campus, furnished with a number of sofas, desks and plants, and lit by 389 rectangular light sources
placed at ceilings and small desk lamps (images in Table 5.3). There were slightly over 2.3 million
triangles in this scene, and each light source was represented by 64 light samples, giving a total of
about 25000 light samples. The ISS algorithm was expected to perform well with this kind of scene,
since there is a lot of occlusion and there are generally not many light sources visible to any single
receiver point. With this scene, we also determined which light sources actually contributed to the
rendered images, and performed second runs with only these light sources enabled. This process
is something that could, in principle, be done by an artist when performing the renderings, and we
wanted to see how much this kind of manual pre-processing would benefit the ISS algorithm and the
comparison method. It should be noted that while manual culling of light sources would be quite
easy for rendering still images, it would become quite tedious if we were rendering e.g. an animation
sequence where the camera moves around inside the building.

The custom ray caster (Section 4.10) was found to be faster in COLUMNS and SODA scenes, while
the standard ray caster was faster in BUNNY and TREE. Both the Stanford bunny and the tree model
consist of many small triangles, which is likely the reason why custom ray caster was less efficient
than the traditional one in these scenes. The maximum leaf node point counts used in the test scenes
are shown in Table 5.1.

5.1.2 Back-Face Culling

Because the ISS algorithm currently cannot perform back-face culling of receiver points or light
samples, it was decided not to use back-face culling in the comparison ray caster either. This is
of course an unrealistic situation, since if a ray caster were used for computing the shadows, back-
facing tests would be an obvious way to increase the performance. However, in the simple test scenes
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(COLUMNS, BUNNY and TREE), this would not help much, since most of the receiver points face
towards the light sources, and practically all light samples face towards the receiving surfaces. In the
SODA scene, enabling the back-face culling for the comparison method would cause the rendering
times to depend mainly on which floor of the building the camera is located—light sources on lower
floors would be mostly back-facing, and the ones on current and upper floors would be mostly front-
facing.

5.2 Results in Simple Test Scenes

The benchmark results for scenes COLUMNS, BUNNY and TREE are summarized in Table 5.2. As
could be expected due to relatively low amount of occlusion, the relative performance of the ISS
algorithm is not too brilliant, ranging from 1.02 in TREE scene to 4.71 in COLUMNS. However, it can
be seen that the performance ratio always rises when the number of relations is grown as long as the
light source areas are not altered. Since the comparison method behaves almost linearly with respect
to the number of relations, this shows that the running time of the ISS algorithm is indeed sub-linear
with respect to the number of receiver points and light samples. Furthermore, the execution times
for large resolution (4× receiver points) with the original number of light samples, and for medium
resolution with fourfold number of light samples are quite close to each other. Thus, the increase
in the number of receiver points or light samples affects the execution time almost identically. This
confirms that the ISS algorithm behaves symmetrically with respect to the receiver points and light
samples. The execution time for other shadow computation methods, such as the soft shadow volume
algorithm [51], would vary very differently when the number of relations grows due to increasing
the number of receiver points as opposed to increasing the number of light samples. Increasing the
spatial size of the light sources can be seen to lower the performance of the ISS algorithm. This is
also something to be expected, since as the shafts become larger due to sparser distribution of light
samples, they contain more geometry and it becomes less probable that the shafts are blocked or
empty.

The number of relations whose status cannot be determined directly from the shaft being blocked
or empty is quite large in all of the three simpler test scenes (28.5–69.9 %). Therefore, many of
the relations need to be ultimately solved by ray-casting, and this in part explains the relatively low
performance of the ISS algorithm. It can be concluded that in these kind of scenes, the ISS algorithm
is likely not going to be faster than other modern methods, e.g. the soft shadow volume algorithm.

5.3 Results in Soda Hall Scene

Table 5.3 summarizes the benchmark results in the SODA scene, where three viewpoints were used
for obtaining results in different kinds of rendering situations. In this scene, there is a lot of occlusion
between the light sources and the receiver points, and the performance of the ISS algorithm is much
better than in the simpler test scenes. The benchmarks were run for each viewpoint twice. First,
every light source was enabled (top three sections of Table 5.3), and second, only the light sources
that actually contributed to the image were enabled (bottom three sections). This “pre-culling” of
light sources was done in order to see how much the performance of the ISS algorithm is affected by
removing the redundant light sources.

Perhaps the most notable feature of the benchmark results for SODA scene is that only a tiny fraction
(0.25–0.72 %)of the visibility relations were solved by ray-casting. In other words, the ISS algorithm
was able to solve most of the relations by detecting blocked or empty shafts. Again, the relative
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COLUMNS, original light source BUNNY, original light sources TREE, original light sources

COLUMNS, enlarged light source BUNNY, enlarged light sources TREE, enlarged light sources

scene output relations % blocked ISS % relations mem comp. performance
resolution (M) relations time ray-cast peak time ratio

512× 384 28.9 57.9 11.5 66.9 1.1 29.1 2.53
COLUMNS 1024× 768 115.6 57.9 29.9 49.6 4.3 105.8 3.54

2048× 1536 462.6 57.9 93.8 39.3 18.7 397.9 4.24
4×smp 1024× 768 462.6 57.9 83.7 36.6 4.3 394.5 4.71
4×area 1024× 768 102.6 58.3 43.2 69.9 4.1 99.7 2.31

512× 384 45.7 30.0 57.6 38.7 8.6 66.1 1.15
BUNNY 1024× 768 182.8 30.0 167.3 ∗ 33.2 10.2 243.8 1.46

2048× 1536 731.3 30.0 556.2 29.7 22.7 921.9 1.66
4×smp 1024× 768 731.3 30.0 524.4 28.5 10.2 905.3 1.73
4×area 1024× 768 178.4 28.9 226.4 40.9 12.2 254.5 1.10

512× 384 46.9 28.8 79.5 64.2 3.0 81.3 1.02
TREE 1024× 768 187.8 28.7 281.5 61.3 5.4 305.9 1.09

2048× 1536 751.2 28.8 1020.5 59.3 22.2 1172.7 1.15
4×smp 1024× 768 751.1 28.7 988.5 56.6 5.4 1123.8 1.14
4×area 1024× 768 181.6 27.2 308.6 66.3 5.3 315.2 1.02

∗ Breakdown of execution time available in Section 5.4.

Table 5.2 Test renderings and performance statistics in scenes COLUMNS, BUNNY and TREE. All
times are in seconds, and the peak memory usage is given in megabytes. For both scenes, five ren-
derings were made using the ISS algorithm and the comparison method. Three different resolutions
were used with the original light sample counts and light source sizes. In addition, measurements
were made with larger number of light samples (rows 4×smp) and enlarged light sources (rows
4×area) using the medium resolution. Column relations gives the total number of visibility rela-
tions in millions. The next column shows the fraction of visibility relations that were blocked, i.e.
in shadow. Column ISS time shows the total shadow computation time using the ISS algorithm,
including the lazy construction of the receiver and light trees. Column relations ray-cast gives the
fraction of the visibility relations that were ultimately solved using the ray caster when leaf nodes
were reached in both receiver and light trees. Column mem peak shows the peak memory usage of
the ISS algorithm in megabytes. Columns comp. time gives the shadow computation time using the
comparison method, and the performance ratio is the ratio of the shadow computation times between
the comparison method and the ISS algorithm.
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SODA 1 SODA 2 SODA 3

scene output relations % blocked ISS % relations mem comp. performance
resolution (M) relations time ray-cast peak time ratio

512× 384 4892.9 98.58 273.9 0.72 121.5 1698.2 6.20
SODA 1 1024× 768 19571.5 98.58 540.5 0.64 128.2 6073.8 11.24

2048× 1536 78285.8 98.58 1260.8 0.59 139.5 22614.0 17.94
4×smp 1024× 768 78286.1 98.58 788.7 0.45 145.6 23089.3 29.27

512× 384 4750.6 99.73 41.6 0.41 95.2 1375.6 33.10
SODA 2 1024× 768 19001.7 99.73 83.0 ∗ 0.38 96.0 4730.0 56.96

2048× 1536 76007.5 99.73 237.5 0.36 98.7 17228.2 72.53
4×smp 1024× 768 76006.9 99.73 168.7 0.28 106.3 17917.5 106.21

512× 384 4697.0 98.96 226.8 0.51 133.4 1434.6 6.32
SODA 3 1024× 768 18789.2 98.96 368.2 0.50 135.1 5108.3 13.87

2048× 1536 75158.5 98.96 813.2 0.47 150.5 19119.0 23.51
4×smp 1024× 768 75156.7 98.96 506.5 0.25 139.7 19440.6 38.38

SODA 1 512× 384 440.2 84.25 50.6 6.71 37.9 479.4 9.48
pre-culled 1024× 768 1760.9 84.25 126.2 6.09 42.8 1846.9 14.64
35 lights 2048× 1536 7043.7 84.25 386.4 5.63 61.3 7233.7 18.72
4×smp 1024× 768 7043.7 84.25 280.5 4.46 42.7 7157.1 25.51

SODA 2 512× 384 97.7 87.05 13.7 12.05 34.3 70.2 5.13
pre-culled 1024× 768 390.8 87.05 38.8 11.19 38.7 267.1 6.89

8 lights 2048× 1536 1563.1 87.05 131.6 10.49 59.7 1043.9 7.93
4×smp 1024× 768 1563.1 87.03 81.8 7.81 38.7 1010.7 12.35

SODA 3 512× 384 555.4 91.17 35.3 4.45 41.4 357.8 10.13
pre-culled 1024× 768 2221.9 91.17 102.8 4.16 47.0 1361.1 13.24
46 lights 2048× 1536 8887.6 91.17 304.6 3.89 67.3 5315.3 17.45
4×smp 1024× 768 8887.4 91.17 160.1 2.13 48.2 5237.9 32.72

∗ Breakdown of execution time available in Section 5.4.

Table 5.3 Test renderings and performance statistics in the SODA scene with three different view-
points. The formatting of the table is identical to Table 5.2. The upper three sections of the table
show the results in runs where all light sources were enabled, and the lower three sections give re-
sults in runs where only the light sources affecting the image were enabled. For the three viewpoints
used, the number of affecting lights was quite different, ranging from 8 light sources in the second
viewpoint to 46 in the third one.

performance of the ISS algorithm grows as the number of visibility relations is increased, as could
be expected. However, in the SODA scene the ISS algorithm does not behave as symmetrically as
in the simpler test scenes, since increasing the number of light samples yields better execution times
than increasing the number of receiver points. This is most likely because the blockers are usually
located closer to the receiving surfaces than the light sources, and thus there is more coherence
between the light samples than between the receiver points.

The memory usage of the ISS algorithm is much higher in the SODA scene than in the three simpler
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BUNNY SODA 2

Shaft operations 16.07 % 56.44 %
Ray casting 83.93 % 43.56 %

Tree construction 4.93 % 13.38 %
Shaft geometry construction 0.40 % 2.05 %
Triangle surface construction 8.88 % 16.30 %
Copying surfaces 14.12 % 5.84 %
Classifying edges 9.66 % 10.83 %
Updating patch facings 3.93 % 0.83 %
Merging patches 19.13 % 9.69 %
Simplifying patches 16.63 % 13.12 %
Splitting surfaces 4.37 % 1.36 %
Combining surfaces 1.01 % 0.33 %
Computing loose edges 1.33 % 1.09 %
Computing surface AABBs 7.38 % 4.43 %
Blocking tests 0.24 % 2.38 %
Miscellaneous 7.98 % 18.36 %

Table 5.4 Execution time breakdowns for scenes BUNNY and SODA viewpoint two. Resolution of
1024× 768 was used with the original number of light samples. The top two rows show the general
ratio between shaft processing and ray-casting. The bottom section of the table shows the execution
times for different shaft operations relative to the total time spent in shaft processing.

test scenes. This is mostly due to high triangle count of the scene, and in fact, the memory consump-
tion peak was always met in the very beginning of the computation. Quite intuitively, the amount of
blocker geometry in a shaft is at its largest when the shafts are very large, and it decreases rapidly as
the shafts become smaller. It would therefore be possible to limit the memory usage of the algorithm
by continuing the first stage of traversal (see Section 4.9) where the blocker geometry is not inserted
into the shaft until the amount of geometry becomes small enough.

The bottom three sections of the table show the benchmark results for runs where only the light
sources that affected the rendered image were enabled. It could be expected that the relative per-
formance of the ISS algorithm would diminish, since culling sets of occluded visibility relations
efficiently is its most valuable feature in this scene. As there are less blocked relations, the com-
parison method should gain some advantage in this sense. Surprisingly, the relative performance of
the ISS algorithm was found to be better in several situations when the redundant light sources were
pre-culled, especially when many light sources were needed for obtaining the correct image. In the
second viewpoint, where only eight light sources had to be enabled, the pre-culling did decrease the
relative performance of the ISS algorithm significantly. As can be seen from the high percentage of
blocked visibility relations, there is still a lot of occlusion between the light sources and the different
parts of the receiver point sets even when redundant light sources are removed from the scene. What
this means is that the affecting light sources are typically visible to only a small number of receiver
points, and it is still very beneficial to be able to efficiently decide the status of large sets of visibility
relations using the shaft computations.

5.4 Execution Time Breakdowns

Table 5.4 gives the execution time breakdowns in two of the test runs. In the BUNNY scene, most
of the time (83.93 %) is spent in ray casting, and only 16.07 % goes to shaft processing operations.
This may seem a bit paradoxical, since as it is shown in Table 5.2, only 33.2 % of the relations are
solved by ray-casts in this test case. The reason behind this apparent discrepancy is that the rays
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Figure 5.1 Breakdown of execution time in shaft operations in BUNNY scene.
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Figure 5.2 Breakdown of execution time in shaft operations in SODA scene, viewpoint two.

cast by the ISS algorithm are generally much more expensive than an average ray. Remembering
that the rays are cast only when the shaft subdivision ends so that shaft is not blocked or empty,
the remaining rays are always located close to the silhouette of the bunny, resulting in a lot of BSP
traversal and many triangle intersection tests in the ray caster. In the SODA scene (viewpoint two),
the majority of the time is spent in shaft operations, but this time the discrepancy between time spent
in ray-casts (43.56 %) and the fraction of relations solved using ray-casts (0.38 %) is even greater.

Based on the large amount of time taken for performing a relatively small number of ray casts,
it might seem that it would be a good idea to continue the shaft subdivision even further, thereby
reducing the number of relations solved by ray casting. This could be done by specifying that the
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leaf nodes of the receiver and light trees could contain fewer points than what were used in the test
runs (Table 5.1). Unfortunately, this was found to be of no help, since the fraction of relations solved
by detecting blocked or empty shafts did not grow enough to balance the computation time spent in
subdividing the shafts even further. It should be emphasized that the execution time did not increase
much if e.g. the maximum point counts in both light and receiver trees were halved—generally this
resulted in only about 2–5 % increase in execution times.

In both test cases, most of the shaft processing time is spent in constructing the light and receiver
trees (Section 4.3), constructing the triangle surfaces (Section 4.7.1), copying surfaces from the
parent shaft, classifying edges (Section 4.7.2), merging patches (Section 4.7.4), simplifying patches
(Section 4.7.5), and computing the bounding boxes for the surfaces. A lot of time was also spent
in miscellaneous operations, consisting mostly of memory management tasks such as allocating and
deallocating edges, patches and surfaces.

It is somewhat amusing to note that performing the shaft blocking tests took only a tiny fraction of
the total shaft processing time, even though being able to perform this test is the only reason for
doing any shaft computation at all. It can be concluded that managing the blocking surfaces inside
the shaft is currently the bottleneck of the shaft processing part of the ISS algorithm.
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Chapter 6

Discussion and Future Work

The ISS algorithm is currently the only shadow computation algorithm that computes the shadows
in sub-linear time with respect to all three parameters describing the complexity of the scene: the
number of light samples, the number of receiver points and the number of triangles. The sub-linearity
with respect to the first two is obtained through hierarchical processing of light and receiver trees,
and the sub-linearity with respect to triangle count follows from the use of silhouette edges in the
blocker representation. In the following, we discuss the strong and weak points of the ISS algorithm.
After that, we take a look at possible directions for future work.

6.1 Strengths of the ISS Algorithm

Efficient culling of redundant light sources. As was shown by the experimental results in Chap-
ter 5, the ISS algorithm is able to cull redundant light sources very efficiently. In the Soda Hall test
scene, where only a small fraction of visibility relations were unoccluded, the ISS algorithm gave
significant speedups over the traditional ray casting-based method. This is a very desirable property
in large scenes, although in the simple object-on-a-plane scenes it is of no use.

Sub-linear complexity with reasonable memory usage. One of the advantages of the classical
shadow ray casting is that it does not require allocating memory for the visibility relations. This is in
stark contrast with e.g. the hierarchical penumbra casting algorithm [50] that needs to reserve mem-
ory for every visibility relation in the worst case. The memory consumption of the ISS algorithm
is limited to storing the light and receiver trees and the blocker geometry inside the current shaft
and its parent shafts. As was mentioned in Chapter 5, the memory consumption peaks in the ISS
algorithm were caused by the large shafts near the beginning of the recursion, as these shafts contain
a lot of blocker geometry. It could be expected that bounding the memory usage by postponing the
insertion of the geometry to smaller shafts would result in quite minor performance hit. Validating
this hypothesis would require additional research.

Symmetry. The ISS algorithm is the only shadow algorithm, aside from the classical ray casting,
that considers receiver points and light samples to be exactly alike.1 In other words, it does not

1There is the difference that light samples are actually represented as small boxes containing the jitter samples (Sec-
tion 4.11), whereas the receiver points are just points. We could easily extend the jittered representation to receiver points as
well, which would again make the algorithm perfectly symmetric. This would be of no use in computing direct lighting, but
might serve as a variance reduction technique for computing global illumination.
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matter whether we ask the ISS algorithm to compute the visibility from the receiver points to the
light samples or vice versa—the resulting computation is the same in both cases. Conceptually,
the symmetry is a property one might expect to see in an algorithm designed to solve a symmetrical
problem such as visibility. Still, none of the modern shadow computation algorithms presented so far
have had this property. This is by no means a symptom of flawed design in those algorithms, since
it can also be argued that they take advantage of the usually very asymmetric role of light samples
and receiver points. For instance, the number of light samples is generally much smaller than the
number of receiver points, and their placement can often be expected to be somehow constrained.
However, if we consider extending a shadow algorithm towards computing global illumination, the
assumptions made about asymmetry and/or positioning of the light samples are obviously a major
burden. In this sense, the ISS algorithm is a good platform upon which a visibility solver for global
illumination might be built.

6.2 Weaknesses of the ISS Algorithm

Back-facing visibility relations. The ISS algorithm in its current form computes the visibility be-
tween two point clouds, and the points are assumed to be completely defined by their positions. In
shadow computation, the receiver points and light samples are actually used for sampling continuous
surfaces, and therefore they represent infinitesimally small surface patches that have normals. Com-
puting the flow of light requires that we take the normals of the light samples and receiver points
into account, as was discussed in Section 2.2.1. An obvious consequence is that if a receiver point
and a light sample do not face towards each other, the flow of light between them is always zero, and
computing the visibility is not needed at all. Exploiting this fact is a very simple way of reducing
the number of visibility relations when solving the visibility relations one by one, but currently the
ISS algorithm is unable to take advantage of this. Possible ways of overcoming this limitation are
discussed in Section 6.3.

Importance sampling of light sources. Light samples that are far away from receiver points gen-
erally do not contribute much in the rendered image. The same is true for cases where the ray from
a light sample to a receiver point makes large angles with surface normals. Nonetheless, the ISS
algorithm computes all of these visibility relations. It would be much smarter to represent a far away
or otherwise only slightly contributing light source with fewer light samples, and to scale the result
appropriately to get an estimate of the flow of light. Currently, the ISS algorithm does not support
this kind of importance sampling. It is well known that contribution-based importance sampling is
an effective way of accelerating shadow rendering, and implementing it in the classical ray-casting
algorithm is trivial. Consequently, there is a definite need for extending the ISS algorithm so that it
could support importance sampling.

Importance sampling of receiving surfaces. Consider two close-by receiver points that are lit by
a light source. If the occlusion between the light source and the receiver points is similar, the flow
of light could be approximated quite well by e.g. solving the visibility from only one of the receiver
points, and assuming this information to hold for the other receiver point as well. This approach
is similar to importance sampling of light sources, but now applied to receiver points. Describing
and approximating the nature of occlusion is a non-trivial issue, but recent research on frequency-
based analysis of light transport [26] has already given interesting insights into this area. In some
situations, no approximations in the receiving end can be afforded, and it is a nice property of the
ISS algorithm that none need to be made. Still, it must be considered as a drawback that even when
approximations could be justified, they cannot be exploited.

Detection of empty shafts in special cases only. As was discussed in Section 4.12, the ISS al-
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gorithm is not generally able to detect the condition where every light sample in the light node is
guaranteed to be visible to every receiver point in the receiver node. In special cases, e.g. when
receiver points and light samples lie on axis-aligned planes, this is usually possible, and even when
it is not, no major performance hit is incurred. As long as no approximations are made, and every
visibility relation is solved, the situation is thus not that severe, but if we consider making some kind
of approximations in computing the flow of light between two mutually visible surfaces, it would be
very useful to detect the full visibility in more general cases.

6.3 Future Work

Several directions for future work are already given by the weak points of the ISS algorithm. Perhaps
the most important of these is the lack of importance sampling. It is quite obvious that solving every
visibility relation is not the smartest thing to do, and the issue with back-facing receiver points and
light samples is just an example of this. In the following, we discuss ways of overcoming this
limitation, and other possible enhancements to the ISS algorithm.

6.3.1 Importance Sampling

For truly efficient importance sampling (both of light sources and receiving surfaces), we would need
to collect aggregate information about the groups of receiver points and light samples as present in
the tree nodes. For instance, somehow representing the set of directions where the points in a node
face would enable back-facing relations to be culled in groups. The test would naturally need to
be conservative, so even a single relation that is not back-facing would prevent the culling from
happening. The directions in which the points in a node face does not only give us information for
performing the back-face culling, but also establishes bounds for the cosine factors in the reflectance
equation (Equation 2.6). This, combined with the shortest distance between nodes, could be used for
deriving importance bounds for the particular group of relations, and ultimately to solve the visibility
using fewer light samples or receiver points.

Implications on tree construction. Constructing any kind of aggregate data from groups of re-
ceiver points or light samples makes it hard to construct the point trees lazily. This is because such
aggregate information would be most natural to propagate upwards from the leaves, and if we do not
perform the subdivision all the way to the leaves in the first place, we end up computing the infor-
mation from scratch on all levels of the hierarchy. On the other hand, the tree subdivision criteria
could also utilize the aggregate information, which would require employing a top-down approach
anyway. In this case, the lazy construction would not cause additional problems. It must be noted
that the aggregate information in one node only is less useful than aggregate information in both light
and receiver nodes, since it is the pair of nodes between which the importance bounds are needed.
Therefore, if the node splitting strategy depends on the other node as well, the situation is quite
complex. It is unclear whether it is enough to split a node only once, according to the assumptions
that were valid when the node was first reached, or if it would make sense to reconsider the split
strategy if e.g. a receiver node is entered again but this time with different light node in the other
end. The simple strategy currently employed in the ISS algorithm node (Section 4.3) evades all of
these questions, but it is certainly not the optimal one if we have more information at our disposal
than just the positions of the points.
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6.3.2 Detecting Full Visibility

Another disappointing property of the ISS algorithm is its inability of detecting the full visibility
in other but special cases. As was discussed in Section 4.12, the problem stems from geometry
remaining in the receiver and light nodes, which prevents us from guaranteeing full visibility. This
problem could be tackled by computing, for each node, a set of directions where no occlusion inside
the node takes place. A possible implementation for this would be a cubical bit mask filled using
conservative rasterization. Then, it would be possible to check that the mutual position of the nodes
is such that the shaft extends towards unoccluded directions in both nodes. Better detection of full
visibility is not necessary in the current form of the ISS algorithm, as the traversal to the nodes of
the light and receiver trees is anyway very fast when no blocker geometry is in the shaft, but in
conjunction with other extensions it might become important.

6.3.3 Supporting Non-Opaque Shadow Casters

Another possible improvement to the ISS algorithm is supporting other than opaque shadow casters.
This is perhaps not that exciting extension theoretically, but in practice, it would make the algorithm
usable in a wide variety of real situations, as transparent surfaces and alpha-matte textures are often
used in production rendering. These kind of surfaces cannot be used for blocking the shaft, but they
could be simply left out of the set of potential blockers.

6.3.4 Solving the Remaining Visibility Relations

Currently, ray casting is used as a fall-back solution for solving the visibility relations when the
shaft computations fail to show that all relations are blocked or visible. The point where ray casting
is reverted to is currently determined by the maximum leaf node point counts in light and receiver
trees, and these must be set manually, which is a clear weakness in the algorithm. It should be
possible to automatically detect when ray casting is more feasible approach than continuing with the
shaft computation, and this decision should probably depend on more detailed information than just
the number of visibility relations remaining. The amount and nature of blocking geometry inside
the shaft, for instance, should give relevant clues about how costly the ray casting is likely to be,
and it would of course be possible to measure the time taken by ray casting and adjust the fall-back
criterion depending on the results.

Furthermore, ray casting is definitely not the only possible option for solving the remaining visibility
relations. In fact, it seems quite silly to revert straight to the simplest of all methods, when more effi-
cient shadow computation methods have been presented in the scientific literature. The soft shadow
volume algorithm [51] is a bit problematic as a fall-back solution, since it requires that the light
samples lie on a plane. On the other hand, the hierarchical penumbra casting (HPC) algorithm [50]
is quite an interesting candidate for being an efficient fall-back solution in the ISS algorithm. First
of all, we note that shadows caused by many small, disjoint triangles is a nightmare for the ISS
algorithm, as no completely blocked shafts are encountered. For the HPC algorithm, this would be a
piece of cake, especially when the shadows are relatively concentrated as in the Soda Hall scene in
Chapter 5. Secondly, the HPC algorithm can also be applied in the reverse direction. For instance, if
we have a number of small triangles right in front of a light source, the solution is much cheaper to
compute from the reverse direction, spanning the penumbra volumes from receiver points towards
the light source.

Incorporating the HPC algorithm as the fall-back solution for the ISS algorithm would certainly
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be interesting, and it might result in much better execution times than with the current version.
Naturally, if a faster fall-back solution is obtained, it will also become more feasible to revert to
using it, which in turn reduces the amount of time spent in shaft computations.

6.3.5 Global Illumination

Computing visibility between points constitutes a significant portion of global illumination computa-
tions. The ISS algorithm, being completely symmetrical, could be used for solving these visibilities
efficiently. Consider a variant of radiosity algorithm that represents each surface patch as a single
point. Now, the transport of light occurs only between these points, and to compute one bounce of
light transport requires solving the visibility relations between every pair of points. This approach is
similar to the instant radiosity algorithm [48], where the illumination to receiver points is calculated
effectively using photons in a photon map [44] as light sources, but extended so that all bounces of
the global illuminated are computed this way.

It would be possible to use the ISS algorithm in its current state for computing the light transport
between the points, but it is quite likely that the resulting algorithm would be inefficient because
of the current limitations of the algorithm. If some form of sophisticated importance sampling—
including the total culling of back-facing relations—were possible in both ends of the shaft, the
ability of the ISS algorithm to cull visibility relations in large groups could yield an efficient method
for solving global illumination.
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