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Abstract

Diffusion models currently dominate the field of data-
driven image synthesis with their unparalleled scaling to
large datasets. In this paper, we identify and rectify several
causes for uneven and ineffective training in the popular
ADM diffusion model architecture, without altering its high-
level structure. Observing uncontrolled magnitude changes
and imbalances in both the network activations and weights
over the course of training, we redesign the network layers
to preserve activation, weight, and update magnitudes on ex-
pectation. We find that systematic application of this philoso-
phy eliminates the observed drifts and imbalances, resulting
in considerably better networks at equal computational com-
plexity. Our modifications improve the previous record FID
of 2.41 in ImageNet-512 synthesis to 1.81, achieved using
fast deterministic sampling.

As an independent contribution, we present a method for
setting the exponential moving average (EMA) parameters
post-hoc, i.e., after completing the training run. This allows
precise tuning of EMA length without the cost of performing
several training runs, and reveals its surprising interactions
with network architecture, training time, and guidance.

1. Introduction

High-quality image synthesis based on text prompts, ex-
ample images, or other forms of input has become widely
popular thanks to advances in denoising diffusion mod-
els [23, 55, 75–78, 85]. Diffusion-based approaches pro-
duce high-quality images while offering versatile controls
[10, 19, 22, 53, 92] and convenient ways to introduce novel
subjects [14, 68], and they also extend to other modalities
such as audio [42, 61], video [7, 24, 26], and 3D shapes
[49, 60, 63, 74]. A recent survey of methods and applica-
tions is given by Yang et al. [87].

On a high level, diffusion models convert an image of
pure noise to a novel generated image through repeated
application of image denoising. Mathematically, each de-
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Figure 1. Our contributions significantly improve the quality of
results w.r.t. model complexity, surpassing the previous state-of-the-
art with a 5× smaller model. In this plot, we use gigaflops per single
model evaluation as a measure of a model’s intrinsic computational
complexity; a similar advantage holds in terms of parameter count,
as well as training and sampling cost (see Appendix A).

noising step can be understood through the lens of score
matching [29], and it is typically implemented using a U-Net
[23, 67] equipped with self-attention [84] layers. Since we
do not contribute to the theory behind diffusion models, we
refer the interested reader to the seminal works of Sohl-
Dickstein et al. [75], Song and Ermon [77], and Ho et al.
[23], as well as to Karras et al. [37], who frame various
mathematical frameworks in a common context.

Despite the seemingly frictionless scaling to very large
datasets and models, the training dynamics of diffusion mod-
els remain challenging due to the highly stochastic loss func-
tion. The final image quality is dictated by faint image
details predicted throughout the sampling chain, and small
mistakes at intermediate steps can have snowball effects in
subsequent iterations. The network must accurately estimate
the average clean image across a vast range of noise levels,
Gaussian noise realizations, and conditioning inputs. Learn-
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ing to do so is difficult given the chaotic training signal that
is randomized over all of these aspects.

To learn efficiently in such a noisy training environment,
the network should ideally have a predictable and even re-
sponse to parameter updates. We argue that this ideal is not
met in current state-of-the-art designs, hurting the quality
of the models and making it difficult to improve them due
to complex interactions between hyperparameters, network
design, and training setups.

Our overarching goal is to understand the sometimes
subtle ways in which the training dynamics of the score net-
work can become imbalanced by unintended phenomena,
and to remove these effects one by one. At the heart of
our approach are the expected magnitudes of weights, ac-
tivations, gradients, and weight updates, all of which have
been identified as important factors in previous work (e.g.,
[1, 3, 8, 9, 11, 41, 43, 46, 47, 71, 89, 91]). Our approach is,
roughly speaking, to standardize all magnitudes through a
clean set of design choices that address their interdependen-
cies in a unified manner.

Concretely, we present a series of modifications to the
ADM [13] U-Net architecture without changing its overall
structure, and show considerable quality improvement along
the way (Section 2). The final network is a drop-in replace-
ment for ADM. It sets new record FIDs of 1.81 and 1.91 for
ImageNet-512 image synthesis with and without guidance,
respectively, where the previous state-of-the-art FIDs were
2.41 and 2.99. It performs particularly well with respect
to model complexity (Figure 1), and achieves these results
using fast deterministic sampling instead of the much slower
stochastic sampling used in previous methods.

As an independent contribution, we present a method
for setting the exponential moving average (EMA) param-
eters post hoc, i.e., after the training run has completed
(Section 3). Model averaging [30, 59, 69, 82, 88] is an
indispensable technique in all high-quality image synthe-
sis methods [2, 13, 25, 32, 34, 37, 55, 58, 66, 73, 76, 78].
Unfortunately, the EMA decay constant is a cumbersome
hyperparameter to tune because the effects of small changes
become apparent only when the training is nearly converged.
Our post-hoc EMA allows accurate and efficient reconstruc-
tion of networks with arbitrary EMA profiles based on pre-
integrated weight snapshots stored during training. It also
enables many kinds of exploration that have not been com-
putationally feasible before (Section 3.3).

Our implementation and pre-trained models are available
at https://github.com/NVlabs/edm2

2. Improving the training dynamics
Let us now proceed to study and eliminate effects related
to various imbalances in the training dynamics of a score
network. As our baseline, we take the ADM [13] network
as implemented in the EDM [37] framework. The architec-

Training configurations, ImageNet-512 FID ↓ Mparams Gflops
A EDM baseline 8.00 295.9 110.4
B + Minor improvements 7.24 291.8 100.4
C + Architectural streamlining 6.96 277.8 100.3
D + Magnitude-preserving learned layers 3.75 277.8 101.2
E + Control effective learning rate 3.02 277.8 101.2
F + Remove group normalizations 2.71 280.2 102.1
G + Magnitude-preserving fixed-function layers 2.56 280.2 102.2

Table 1. Effect of our changes evaluated on ImageNet-512. We
report Fréchet inception distance (FID, lower is better) [20] without
guidance, computed between 50,000 randomly generated images
and the entire training set. Each number represents the minimum
of three independent evaluations using the same model.

ture combines a U-Net [67] with self-attention [84] layers
(Figure 2a,b), and its variants have been widely adopted in
large-scale diffusion models, including Imagen [70], Sta-
ble Diffusion [66], eDiff-I [2], DALL-E 2 [56, 64], and
DALL-E 3 [5]. Our training and sampling setups are based
on the EDM formulation with constant learning rate and 32
deterministic 2nd order sampling steps.

We use the class-conditional ImageNet [12] 512×512
dataset for evaluation, and, like most high-resolution dif-
fusion models, operate in the latent space of a pre-trained
decoder [66] that performs 8× spatial upsampling. Thus,
our output is 64×64×4 prior to decoding. During explo-
ration, we use a modestly sized network configuration with
approx. 300M trainable parameters, with results for scaled-
up networks presented later in Section 4. The training is
done for 2147M (= 231) images in batches of 2048, which
is sufficient for these models to reach their optimal FID.

We will build our improved architecture and training pro-
cedure in several steps. Our exposition focuses on funda-
mental principles and the associated changes to the network.
For comprehensive details of each architectural step, along
with the related equations, see Appendix B.

Baseline (CONFIG A). As the original EDM configuration
is targeted for RGB images, we increase the output channel
count to 4 and replace the training dataset with 64×64×4
latent representations of ImageNet-512 images, standardized
globally to zero mean and standard deviation σdata = 0.5. In
this setup, we obtain a baseline FID of 8.00 (see Table 1).

2.1. Preliminary changes

Improved baseline (CONFIG B). We first tune the hyper-
parameters (learning rate, EMA length, training noise level
distribution, etc.) to optimize the performance of the baseline
model. We also disable self-attention at 32×32 resolution,
similar to many prior works [23, 28, 55].

We then address a shortcoming in the original EDM train-
ing setup: While the loss weighting in EDM standardizes
loss magnitude to 1.0 for all noise levels at initialization,
this situation no longer holds as the training progresses. The
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(a) Overall view (b) ADM architecture blocks by Dhariwal and Nichol [13] (CONFIG B) (c) Our magnitude-preserving (MP) variant (CONFIG G)

Figure 2. The widely used ADM architecture [13] for image denoising is structured as a U-Net [67]. (a) The encoder blocks are connected
to decoder blocks using skip connections, and an auxiliary embedding network conditions the U-Net with noise level and class label. (b) The
original building blocks follow the pre-activation design of ResNets [17]. Residual blocks accumulate contributions to the main path (bold).
Explicit normalizations in the residual paths try to keep magnitudes under control, but nothing prevents them from growing in the main path.
(c) We update all of the operations (e.g., convolutions, activations, concatenation, summation) to maintain magnitudes on expectation.

magnitude of the gradient feedback then varies between
noise levels, re-weighting their relative contribution in an
uncontrolled manner.

To counteract this effect, we adopt a continuous general-
ization of the multi-task loss proposed by Kendall et al. [38].
Effectively, we track the raw loss value as a function of the
noise level, and scale the training loss by its reciprocal. See
Appendix B.2 for further details and reasoning. Together,
these changes decrease the FID from 8.00 to 7.24.

Architectural streamlining (CONFIG C). To facilitate the
analysis of training dynamics, we proceed to streamline
and stabilize the architecture. To avoid having to deal with
multiple different types of trainable parameters, we remove
the additive biases from all convolutional and linear layers,
as well as from the conditioning pathway. To restore the
capability of the network to offset the data, we concatenate
an additional channel of constant 1 to the network’s input.
We further unify the initialization of all weights using He’s
uniform init [16], switch from ADM’s original positional
encoding scheme to the more standard Fourier features [81],
and simplify the group normalization layers by removing
their mean subtraction and learned scaling.

Finally, we observe that the attention maps often end up
in a brittle and spiky configuration due to magnitude growth
of the key and query vectors over the course of training.
We rectify this by switching to cosine attention [15, 51, 54]
that normalizes the vectors prior to computing the dot prod-
ucts. As a practical benefit, this allows using 16-bit floating
point math throughout the network, improving efficiency.
Together, these changes reduce the FID from 7.24 to 6.96.

2.2. Standardizing activation magnitudes

With the architecture simplified, we now turn to fixing the
first problem in training dynamics: activation magnitudes.
As illustrated in the first row of Figure 3, the activation
magnitudes grow uncontrollably in CONFIG C as training
progresses, despite the use of group normalizations within
each block. Notably, the growth shows no signs of tapering
off or stabilizing towards the end of the training run.

Looking at the architecture in Figure 2b, the growth is
perhaps not too surprising: Due to the residual structure of
encoder, decoder, and self-attention blocks, ADM networks
contain long signal paths without any normalizations. These
paths accumulate contributions from residual branches and
can amplify their activations through repeated convolutions.
We hypothesize that this unabated growth of activation mag-
nitudes is detrimental to training by keeping the network in
a perpetually unconverged and unoptimal state.

We tried introducing group normalization layers to the
main path as well, but this caused a significant deterioration
of result quality. This may be related to previous findings
regarding StyleGAN [34], where the network’s capabilities
were impaired by excessive normalization, to the extent that
the layers learned to bypass it via contrived image artifacts.
Inspired by the solutions adopted in StyleGAN2 [35] and
other works that have sought alternatives to explicit normal-
ization [1, 8, 41], we choose to modify the network so that
individual layers and pathways preserve the activation mag-
nitudes on expectation, with the goal of removing or at least
reducing the need for data-dependent normalization.
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Magnitude-preserving learned layers (CONFIG D). To
preserve expected activation magnitudes, we divide the out-
put of each layer by the expected scaling of activation magni-
tudes caused by that layer without looking at the activations
themselves. We first apply this to all learned layers (convo-
lutions and fully-connected) in every part of the model.

Given that we seek a scheme that is agnostic to the ac-
tual content of the incoming activations, we have to make
some statistical assumptions about them. For simplicity, we
will assume that the pixels and feature maps are mutually
uncorrelated and of equal standard deviation σact. Both fully
connected and convolutional layers can be thought of as con-
sisting of stacked units, one per output channel. Each unit
effectively applies a dot product of a weight vector wi ∈ Rn

on some subset of the input activations to produce each out-
put element. Under our assumptions, the standard deviation
of the output features of the ith channel becomes ∥wi∥2 σact.
To restore the input activation magnitude, we thus divide by
∥wi∥2 channel-wise.1

We can equally well think of the scalar division as apply-
ing to wi itself. As long as gradients are propagated through
the computation of the norm, this scheme is equivalent to
weight normalization [71] without the learned output scale;
we will use this term hereafter. As the overall weight magni-
tudes no longer have an effect on activations, we initialize
all weights by drawing from the unit Gaussian distribution.

This modification removes any direct means the network
has for learning to change the overall activation magnitudes,
and as shown in Figure 3 (CONFIG D), the magnitude drift is
successfully eliminated. The FID also improves significantly,
from 6.96 to 3.75.

2.3. Standardizing weights and updates

With activations standardized, we turn our attention to net-
work weights and learning rate. As seen in Figure 3, there is
a clear tendency of network weights to grow in CONFIG D,
even more so than in CONFIG C. The mechanism causing
this is well known [71]: Normalization of weights before use
forces loss gradients to be perpendicular to the weight vector,
and taking a step along this direction always lands on a point
further away from the origin. Even with gradient magnitudes
standardized by the Adam optimizer, the net effect is that
the effective learning rate, i.e., the relative size of the update
to network weights, decays as the training progresses.

While it has been suggested that this decay of effective
learning rate is a desirable effect [71], we argue for explicit
control over it rather than having it drift uncontrollably and
unequally between layers. Hence, we treat this as another
imbalance in training dynamics that we seek to remedy. Note
that initializing all weights to unit Gaussian ensures uniform
effective learning rate at initialization, but not afterwards.

1The primary goal is to sever the direct link from weight to activation
magnitude; for this, the statistical assumptions do not need to hold exactly.
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Figure 3. Training-time evolution of activation and weight mag-
nitudes over different depths of the network; see Appendix A for
further details. Top: In CONFIG C, the magnitudes of both acti-
vations and weights grow without bound over training. Middle:
The magnitude-preserving design introduced in CONFIG D curbs
activation magnitude growth, but leads to even starker growth in
weights. Bottom: The forced weight normalization in CONFIG E
ensures that both activations and weights remain bounded.

Controlling effective learning rate (CONFIG E). We pro-
pose to address the weight growth with forced weight normal-
ization, where we explicitly normalize every weight vector
wi to unit variance before each training step. Importantly,
we still apply the “standard” weight normalization on top of
this during training, i.e., normalize the weight vectors upon
use. This has the effect of projecting the training gradients
onto the tangent plane of the now unit-magnitude hyper-
sphere where wi lies (see Appendix B.4 for a derivation).
This ensures that Adam’s variance estimates are computed
for the actual tangent plane steps and are not corrupted by
the to-be erased normal component of the gradient vector.
With both weight and gradient magnitudes now equalized
across the network, we have unified the effective learning
rate as well. Assuming no correlation between weights and
gradients, each Adam step now replaces an approximately
fixed proportion of the weights with the gradients. Some
optimizers [3, 43, 89] explicitly implement a similar effect
by data-dependent re-scaling of the gradient.

We now have direct control over the effective learning
rate. A constant learning rate no longer induces convergence,
and thus we introduce an inverse square root learning rate
decay schedule as advocated by Kingma and Ba [40]. Con-
cretely, we define α(t) = αref/

√
max(t/tref, 1), where t is

the current training iteration and αref and tref are hyperpa-
rameters (see Appendix D for implementation details). As
shown in Figure 3, the resulting CONFIG E successfully pre-
serves both activation and weight magnitudes throughout the
training. As a result, the FID improves from 3.75 to 3.02.
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2.4. Removing group normalizations (CONFIG F)

With activation, weight, and update magnitudes under con-
trol, we are now ready to remove the data-dependent group
normalization layers that operate across pixels with poten-
tially detrimental results [35]. Although the network trains
successfully without any normalization layers, we find that
there is still a small benefit from introducing much weaker
pixel normalization [33] layers to the encoder main path.
Our hypothesis is that pixel normalization helps by coun-
teracting correlations that violate the statistical assumptions
behind our standardization efforts in CONFIG D. We thus
remove all group normalization layers and replace them with
1/4 as many pixel normalization layers. We also remove
the second linear layer from the embedding network and
the nonlinearity from the network output, and combine the
resampling operations in the residual blocks onto the main
path. The FID improves from 3.02 to 2.71.

2.5. Magnitude-preserving fixed-function layers
(CONFIG G)

For the sake of completeness, we note that the network still
has layers that do not preserve activation magnitudes. First,
the sine and cosine functions of the Fourier features do not
have unit variance, which we rectify by scaling them up
by
√
2. Second, the SiLU [18] nonlinearities attenuate the

expected unit-variance distribution of activations unless this
is compensated for. Accordingly, we modify them to divide
the output by Ex∼N (0,1)[ silu(x)

2 ]1/2 ≈ 0.596.
Third, we consider instances where two network branches

join, either through addition or concatenation. In previous
configurations, the contribution from each branch to the out-
put depended on uncontrolled activation magnitudes. By
now we can expect these to be standardized, and thus the bal-
ance between the branches is exposed as a meaningfully con-
trollable parameter [9]. We switch the addition operations to
weighted sums, and observe experimentally that a fixed resid-
ual path weight of 30% worked best in encoder and decoder
blocks, and 50% in the embedding. We divide the output by
the expected standard deviation of this weighted sum.

The concatenation of the U-Net skips in the decoder is
already magnitude-preserving, as we can expect similar mag-
nitudes from both branches. However, the relative contribu-
tion of the two inputs in subsequent layers is proportional
to their respective channel counts, which we consider to be
an unwanted and unintuitive dependence between encoder
and decoder hyperparameters. We remove this dependency
by scaling the inputs such that the overall magnitude of the
concatenated result remains unchanged, but the contributions
of the inputs become equal.

With the standardization completed, we identify two spe-
cific places where it is still necessary to scale activations by
a learned amount. First, we add a learned, zero-initialized
scalar gain (i.e., scaling) at the very end of the network,

as we cannot expect the desired output to always have unit
variance. Second, we apply a similar learned gain to the
conditioning signal within each residual block, so that the
conditioning is disabled at initialization and its strength in
each encoder/decoder block becomes a learned parameter.
At this point we can disable dropout [21, 79] during training
with no ill effects, which has not been previously possible.

Figure 2c illustrates our final design that is significantly
simpler and easier to reason about than the baseline. The
resulting FID of 2.56 is highly competitive with the current
state of the art, especially considering the modest computa-
tional complexity of our exploration architecture.

3. Post-hoc EMA
It is well known that exponential moving average (EMA) of
model weights plays an important role in generative image
synthesis [55, 78], and that the choice of its decay parameter
has a significant impact on results [32, 55].

Despite its known importance, little is known about the
relationships between the decay parameter and other aspects
of training and sampling. To analyze these questions, we
develop a method for choosing the EMA profile post hoc, i.e.,
without the need to specify it before the training. This allows
us to sample the length of EMA densely and plot its effect
on quality, revealing interesting interactions with network
architecture, training time, and classifier-free guidance.

Further details, derivations, and discussion on the equa-
tions and methods in this section are included in Appendix C.

3.1. Power function EMA profile

Traditional EMA maintains a running weighted average θ̂β
of the network parameters alongside the parameters θ that are
being trained. At each training step, the average is updated
by θ̂β(t) = β θ̂β(t−1) + (1−β) θ(t), where t indicates the
current training step, yielding an exponential decay profile in
the contributions of earlier training steps. The rate of decay
is determined by the constant β that is typically close to one.

For two reasons, we propose using a slightly altered aver-
aging profile based on power functions instead of exponential
decay. First, our architectural modifications tend to favor
longer averages; yet, very long exponential EMA puts non-
negligible weight on initial stages of training where network
parameters are mostly random. Second, we have observed
a clear trend that longer training runs benefit from longer
EMA decay, and thus the averaging profile should ideally
scale automatically with training time.

Both of the above requirements are fulfilled by power
functions. We define the averaged parameters at time t as

θ̂γ(t) =

∫ t

0
τγθ(τ) dτ∫ t

0
τγ dτ

=
γ + 1

tγ+1

∫ t

0

τγθ(τ) dτ , (1)

where the constant γ controls the sharpness of the profile.
With this formulation, the weight of θt=0 is always zero.
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This is desirable, as the random initialization should have no
effect in the average. The resulting averaging profile is also
scale-independent: doubling the training time automatically
stretches the profile by the same factor.

To compute θ̂γ(t) in practice, we perform an incremental
update after each training step as follows:

θ̂γ(t) = βγ(t) θ̂γ(t− 1) +
(
1− βγ(t)

)
θ(t)

where βγ(t) = (1− 1/t)γ+1.
(2)

The update is thus similar to traditional EMA, but with the
exception that β depends on the current training time.2

Finally, while parameter γ is mathematically straight-
forward, it has a somewhat unintuitive effect on the shape
of the averaging profile. Therefore, we prefer to pa-
rameterize the profile via its relative standard deviation
σrel, i.e., the “width” of its peak relative to training time:
σrel = (γ + 1)1/2(γ + 2)−1(γ + 3)−1/2. Thus, when re-
porting, say, EMA length of 10%, we refer to a profile with
σrel = 0.10 (equiv. γ ≈ 6.94).

3.2. Synthesizing novel EMA profiles after training

Our goal is to allow choosing γ, or equivalently σrel, freely
after training. To achieve this, we maintain two averaged
parameter vectors θ̂γ1

and θ̂γ2
during training, with constants

γ1 = 16.97 and γ2 = 6.94, corresponding to σrel of 0.05 and
0.10, respectively. These averaged parameter vectors are
stored periodically in snapshots saved during the training
run. In all our experiments, we store a snapshot once every
∼8 million training images, i.e., once every 4096 training
steps with batch size of 2048.

To reconstruct an approximate θ̂ corresponding to an ar-
bitrary EMA profile at any point during or after training,
we find the least-squares optimal fit between the EMA pro-
files of the stored θ̂γi

and the desired EMA profile, and take
the corresponding linear combination of the stored θ̂γi

. See
Figure 4 for an illustration.

We note that post-hoc EMA reconstruction is not limited
to power function averaging profiles, or to using the same
types of profiles for snapshots and the reconstruction. Fur-
thermore, it can be done even from a single stored θ̂ per
snapshot, albeit with much lower accuracy than with two
stored θ̂. This opens the possibility of revisiting previous
training runs that were not run with post-hoc EMA in mind,
and experimenting with novel averaging profiles, as long as
a sufficient number of training snapshots are available.

3.3. Analysis

Armed with the post-hoc EMA technique, we now analyze
the effect of different EMA lengths in various setups.

2Technically, calling this an “EMA profile” is a misnomer, as the weight
decay is not exponential. However, given that it serves the same purpose as
traditional EMA, we feel that coining a new term here would be misleading.
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Figure 4. Top: To simulate EMA with arbitrary length after train-
ing, we store a number of averaged network parameter snapshots
during training. Each shaded area corresponds to a weighted aver-
age of network parameters. Here, two averages with different power
function EMA profiles (Section 3.1) are maintained during training
and stored at 8 snapshots. Bottom: The dashed line shows an exam-
ple post-hoc EMA to be synthesized, and the purple area shows the
least-squares optimal approximation based on the stored snapshots.
With two averaged parameter vectors stored per snapshot, the mean
squared error of the reconstructed weighting profile decreases ex-
tremely rapidly as the number of snapshots n increases, experimen-
tally in the order of O(1/n4). In practice, a few dozen snapshots
is more than sufficient for a virtually perfect EMA reconstruction.

Figure 5a shows how FID varies based on EMA length
in configurations B–G of Table 1. We can see that the opti-
mal EMA length differs considerably between the configs.
Moreover, the optimum becomes narrower as we approach
the final config G, which might initially seem alarming.

However, as illustrated in Figure 5b, the narrowness of
the optimum seems to be explained by the model becoming
more uniform in terms of which EMA length is “preferred”
by each weight tensor. In this test, we first select a subset
of weight tensors from different parts of the network. Then,
separately for each chosen tensor, we perform a sweep where
only the chosen tensor’s EMA is changed, while all others
remain at the global optimum. The results, shown as one
line per tensor, reveal surprisingly large effects on FID. In-
terestingly, while it seems obvious that one weight tensor
being out-of-sync with the others can be harmful, we observe
that in CONFIG B, FID can improve as much as 10%, from
7.24 to ∼6.5. In one instance, this is achieved using a very
short per-tensor EMA, and in another, a very long one. We
hypothesize that these different preferences mean that any
global choice is an uneasy compromise. For our final CON-
FIG G, this effect disappears and the optimum is sharper: no
significant improvement in FID can be seen, and the tensors
now agree about the optimal EMA. While post-hoc EMA
allows choosing the EMA length on a per-tensor basis, we
have not explored this opportunity outside this experiment.

Finally, Figure 5c illustrates the evolution of the optimal
EMA length over the course of training. Even though our
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Figure 5. (a) FID vs. EMA length for our training configs on ImageNet-512. CONFIG A uses traditional EMA, and thus only a single point
is shown. The shaded regions indicate the min/max FID over 3 evaluations. (b) The orange CONFIG B is fairly insensitive to the exact EMA
length (x-axis) because the network’s weight tensors disagree about the optimal EMA length. We elucidate this by letting the EMA length
vary for one tensor at a time (faint lines), while using the globally optimal EMA length of 9% for the others. This has a strong effect on FID
and, remarkably, sometimes improves it. In the green CONFIG G, the situation is different; per-tensor sweeping has a much smaller effect,
and deviating from the common optimum of 13% is detrimental. (c) Evolution of the EMA curve for CONFIG G over the course of training.

definition of EMA length is already relative to the length of
training, we observe that the optimum slowly shifts towards
relatively longer EMA as the training progresses.

4. Results
We use ImageNet [12] in 512×512 resolution as our main
dataset. Table 2 summarizes FIDs for various model sizes
using our method, as well as several earlier techniques.

Let us first consider FID without guidance [22], where the
best previous method is VDM++ [39] with FID of 2.99. Even
our small model EDM2-S that was used for the architecture
exploration in Section 2 beats this with FID of 2.56. Scaling
our model up further improves FID to 1.91, surpassing the
previous record by a considerable margin. As shown in
Figure 1, our results are even more significant in terms of
model complexity.

We have found that enabling dropout [21, 79] improves
our results in cases that exhibit overfitting, i.e., when the
training loss continues to decrease but validation loss and
FID start increasing. We thus enable dropout in our larger
configurations (M–XXL) that show signs of overfitting,
while disabling it in the smaller configurations (XS, S) where
it is harmful.

Additional quantitative results, example images, and de-
tailed comparisons for this section are given in Appendix A.

Guidance. It is interesting to note that several earlier meth-
ods [13, 58] report competitive results only when classifier-
free guidance [22] is used. While guidance remains an in-
valuable tool for controlling the balance between the percep-
tual quality of individual result images and the coverage of
the generated distribution, it should not be necessary when

ImageNet-512 FID ↓ Model size
no CFG w/CFG Mparams Gflops NFE

ADM [13] 23.24 7.72 559 1983 250
DiT-XL/2 [58] 12.03 3.04 675 525 250
ADM-U [13] 9.96 3.85 730 2813 250
RIN [31] 3.95 – 320 415 1000
U-ViT, L [28] 3.54 3.02 2455 555∗ 256
VDM++ [39] 2.99 2.65 2455 555∗ 256
StyleGAN-XL [73] – 2.41 168∗ 2067∗ 1
EDM2-XS 3.53 2.91 125 46 63
EDM2-S 2.56 2.23 280 102 63
EDM2-M 2.25 2.01 498 181 63
EDM2-L 2.06 1.88 777 282 63
EDM2-XL 1.96 1.85 1119 406 63
EDM2-XXL 1.91 1.81 1523 552 63

Table 2. Results on ImageNet-512. “EDM2-S” is the same as
CONFIG G in Table 1. The “w/CFG” and “no CFG” columns show
the lowest FID obtained with and without classifier-free guidance,
respectively. NFE tells how many times the score function is eval-
uated when generating an image. All diffusion models above the
horizontal line use stochastic sampling, whereas our models below
the line use deterministic sampling. Whether stochastic sampling
would improve our results further is left for future work. Aster-
isks (∗) indicate values that could not be determined from primary
sources, and have been approximated to within ∼10% accuracy.

the goal is to simply match image distributions.
Figure 6 plots the FID for our small model (EDM2-S)

using a variety of guidance strengths as a function of EMA
length. The surprising takeaway is that the optimal EMA
length depends very strongly on the guidance strength. These
kinds of studies are extremely expensive without post-hoc
EMA, and we therefore postulate that the large discrepancy
between vanilla and guidance results in some prior art may
be partially an artifact of using non-optimal EMA parameters.
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Figure 6. Interaction between EMA length and guidance strength
using EDM2-S on ImageNet-512.

With our largest model, a modest amount of guidance (1.2)
further improves the ImageNet-512 FID from 1.91 to 1.81,
setting a new record for this dataset.

Low-cost guidance. The standard way of implementing
classifier-free guidance is to train a single model to support
both conditional and unconditional generation [22]. While
conceptually simple, this makes the implicit assumption that
a similarly complex model is needed for both tasks. However,
this does not seem to be the case: In our tests, the smallest
(XS) unconditional model was found to be sufficient for
guiding even the largest (XXL) conditional model — using a
larger unconditional model did not improve the results at all.

Our results in Table 2 are computed using an XS-sized
unconditional model for all of our configurations. Using a
small unconditional model can greatly reduce the typical 2×
computational overhead of guidance.

ImageNet-64. To demonstrate that our method is not lim-
ited to latent diffusion, we provide results for RGB-space
diffusion in ImageNet-64. Table 3 shows that our results are
superior to earlier methods that use deterministic sampling.
The previous record FID of 2.22 set by EDM [37] improves
to 1.58 at similar model complexity, and further to 1.33 via
scaling. The L-sized model is able to saturate this dataset.

This result is close to the record FID of 1.23 achieved
by RIN using stochastic sampling. Stochastic sampling can
correct for the inaccuracies of the denoising network, but
this comes at a considerable tuning effort and computational
cost (e.g., 1000 vs. 63 NFE), making stochastic sampling
unattractive for large-scale systems. It is likely that our
results could be improved further using stochastic sampling,
but we leave that as future work.

Post-hoc EMA observations. Besides the interactions dis-
cussed in preceding sections, we have made two preliminary
findings related to EMA length. We present them here as
anecdotal, and leave a detailed study for future work.

ImageNet-64 Deterministic Stochastic Model size
FID ↓ NFE FID ↓ NFE Mparams Gflops

ADM [13] – – 2.07 250 296 110
+ EDM sampling [37] 2.66 79 1.57 511 296 110
+ EDM training [37] 2.22 79 1.36 511 296 110
VDM++ [39] – – 1.43 511 296 110
RIN [31] – – 1.23 1000 281 106
EDM2-S 1.58 63 – – 280 102
EDM2-M 1.43 63 – – 498 181
EDM2-L 1.33 63 – – 777 282
EDM2-XL 1.33 63 – – 1119 406

Table 3. Results on ImageNet-64.

First, we observed that the optimal EMA length goes
down when learning rate is increased, and vice versa, roughly
according to σrel ∝ 1/(α2

ref tref). The resulting FID also re-
mains relatively stable over a perhaps 2× range of tref. In
practice, setting αref and tref within the right ballpark thus
seems to be sufficient, which reduces the need to tune these
hyperparameters carefully.

Second, we observed that the optimal EMA length tends
to go down when the model capacity is increased, and also
when the complexity of the dataset is decreased. This seems
to imply that simpler problems warrant a shorter EMA.

5. Discussion and future work

Our improved denoiser architecture was designed to be a
drop-in replacement for the widely used ADM network, and
thus we hope it will find widespread use in large-scale image
generators. With various aspects of the training now much
less entangled, it becomes easier to make local modifications
to the architecture without something breaking elsewhere.
This should allow further studies to the structure and balance
of the U-Net, among other things.

An interesting question is whether similar methodology
would be equally beneficial for other diffusion architectures
such as RIN [31] and DiT [58], as well as other application
areas besides diffusion models. It would seem this sort of
magnitude-focusing work has attracted relatively little atten-
tion outside the specific topic of ImageNet classifiers [8, 9].

We believe that post-hoc EMA will enable a range of
interesting studies that have been infeasible before. Some of
our plots would have taken a thousand GPU-years to produce
without it; they now took only a GPU-month instead. We
hope that the cheap-to-produce EMA data will enable new
breakthroughs in understanding the precise role of EMA in
diffusion models and finding principled ways to set the EMA
length — possibly on a per-layer or per-parameter basis.
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A. Additional results

A.1. Generated images

Figure 7 shows hand-selected images generated using our
largest (XXL) ImageNet-512 model without classifier-free
guidance. Figures 25–27 show uncurated images from the
same model for various ImageNet classes, with guidance
strength selected per class.

A.2. Quality vs. compute

Figure 1 in the main paper quantifies the model’s cost using
gigaflops per evaluation, but this is just one possible option.
We could equally well consider several alternative definitions
for the model’s cost.

Figure 8 shows that the efficiency improvement observed
in Figure 1 is retained when the model’s cost is quantified
using the number of trainable parameters instead. Figure 9
plots the same with respect to the sampling cost per im-
age, demonstrating even greater improvements due to our
low number of score function evaluations (NFE). Finally,
Figure 10 plots the training cost of the model. According
to all of these metrics, our model reaches the same quality
much quicker, and proceeds to improve the achievable result
quality significantly.

Figure 11a shows the convergence of our different config-
urations as a function of wall clock time; the early cleanup
done in CONFIG B improves both convergence and execution
speed in addition to providing a cleaner starting point for ex-
perimentation. During the project we tracked various quality
metrics in addition to FID, including Inception score [72],
KID [6] and Recall [45]. We standardized to FID because
of its popularity and because the other metrics were largely
consistent with it — see Figure 11b,c compared to Figure 5a.

Figure 12 shows post-hoc EMA sweeps for a set of snap-
shots for our XXL-sized ImageNet-512 model with and with-
out dropout. We observe that in this large model, overfit-
ting starts to compromise the results without dropout, while
a 10% dropout allows steady convergence. Figure 10 further
shows the convergence of different model sizes as a function
of training cost with and without dropout. For the smaller
models (XS, S) dropout is detrimental, but for the larger
models it clearly helps, albeit at a cost of slightly slower
initial convergence.

A.3. Guidance vs. unconditional model capacity

Table 4 shows quantitatively that using a large unconditional
model is not useful in classifier-free guidance. Using a
very small unconditional model for guiding the conditional
model reduces the computational cost of guided diffusion
by almost 50%. The EMA lengths in the table apply to both
conditional and unconditional model; it is typical that very
short EMAs yield best results when sampling with guidance.

Unconditional FID ↓ Total capacity Sampling cost EMA length
model (Gparams) (Tflops)
XS 1.81 1.65 38.9 1.5%
S 1.80 1.80 42.5 1.5%
M 1.80 2.02 47.4 1.5%
L 1.86 2.30 53.8 2.0%
XL 1.82 2.64 61.6 2.0%
XXL 1.85 3.05 70.8 2.0%

Table 4. Effect of the unconditional model’s size in guiding our
XXL-sized ImageNet-512 model. The total capacity and sampling
cost refer to the combined cost of the XXL-sized conditional model
and the chosen unconditional model. Guidance strength of 1.2 was
used in this test.

A.4. Learning rate vs. EMA length
Figure 13 visualizes the interaction between EMA length
and learning rate. While a sweet spot for the learning rate
decay parameter still exists (tref = 70k in this case), the
possibility of sweeping over the EMA lengths post hoc dras-
tically reduces the importance of this exact choice. A wide
bracket of learning rate decays tref ∈ [30k, 160k] yields FIDs
within 10% of the optimum using post-hoc EMA.

In contrast, if the EMA length was fixed at 13%, varying
tref would increase FID much more, at worst by 72% in the
tested range.

A.5. Fréchet distances using DINOv2

The DINOv2 feature space [57] has been observed to align
much better with human preferences compared to the widely
used InceptionV3 feature space [80]. We provide a version of
Table 2 using the Fréchet distance computed in the DINOv2
space (FDDINOv2) in Table 5 to facilitate future comparisons.

We use the publicly available implementation2 by Stein
et al. [80] for computing FDDINOv2. We use 50,000 generated
images and all 1,281,167 available real images, following the
established best practices in FID computation. Class labels
for the 50k generated samples are drawn from a uniform
distribution. We evaluate FD only once per 50k sample as
we observe little random variation between runs.

Figure 14 compares FID and FDDINOv2 as a function of
EMA length. We can make three interesting observations.
First, without guidance, the optima of the two CONFIG G
curves (green) are in a clearly different place, with FDDINOv2
preferring longer EMA. The disagreement between the two
metrics is quite significant: FID considers FDDINOv2’s opti-
mum (19%) to be a poor choice, and vice versa.

Second, with guidance strength 1.4 (the optimal choice
for FID according to Figure 6) the curves are astonishingly
different. While both metrics agree that a modest amount of
guidance is helpful, their preferred EMA lengths are totally
different (2% vs 14%). FID considers FDDINOv2’s optimum
(14%) to be a terrible choice and vice versa. Based on a

2https://github.com/layer6ai-labs/dgm-eval
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Figure 7. Selected images generated using our largest (XXL) ImageNet-512 model without guidance.
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Figure 8. FID vs. model capacity on ImageNet-512. For our
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the XS-sized unconditional model.

cursory assessment of the generated images, it seems that
FDDINOv2 prefers images with better global coherency, which
often maps to higher perceptual quality, corroborating the
conclusions of Stein et al. [80]. The significant differences in
the optimal EMA length highlight the importance of search-
ing the optimum specifically for the chosen quality metric.

Third, FDDINOv2 prefers higher guidance strength than
FID (1.9 vs 1.4). FID considers 1.9 clearly excessive.

The figure furthermore shows that our changes (CONFIG
B vs G) yield an improvement in FDDINOv2 that is at least as
significant as the drop we observed using FID.

A.6. Activation and weight magnitudes

Figure 15 shows an extended version of Figure 3, including
activation and weight magnitude plots for CONFIG B–G mea-
sured using both max and mean aggregation over each reso-
lution bucket. The details of the computation are as follows.

We first identify all trainable weight tensors within the
U-Net encoder/decoder blocks of each resolution, including
those in the associated self-attention layers. This yields a
set of tensors for each of the eight resolution buckets iden-
tified in the legend, i.e., {Enc, Dec}×{8×8, . . ., 64×64}.
The analyzed activations are the immediate outputs of the
operations involving these tensors before any nonlinearity,
and the analyzed weights are the tensors themselves.

In CONFIG B, we do not include trainable biases in the
weight analysis, but the activations are measured after apply-
ing the biases. In CONFIG G, we exclude the learned scalar
gains from the weight analysis, but measure the activations
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Figure 9. FID vs. sampling cost on ImageNet-512. For latent
diffusion models (DiT-XL/2 and ours), we include the cost of
running the VAE decoder at the end (1260.9 gigaflops per image).

after the gains have been applied.

Activations. The activation magnitudes are computed as
an expectation over 4096 training samples. Ignoring the
minibatch axis for clarity, most activations are shaped
N×H×W where N is the number of feature maps and
H and W are the spatial dimensions. For the purposes of
analysis, we reshape these to N×M where M = HW . The
outputs of the linear transformation of the class embedding
vector are considered to have shape N×1.

Given a potentially reshaped activation tensor h ∈ RN×M ,
we compute the magnitudes of the individual features hi as

M[hi] =

√√√√ 1

M

M∑
j=1

h2
i,j . (3)

The result contains the per-feature L2 norms of the activa-
tions in tensor h, scaled such that unit-normal distributed
activations yield an expected magnitude of 1 regardless of
their dimensions.

All of these per-feature scalar magnitudes within a reso-
lution bucket are aggregated into a single number by taking
either their maximum or their mean. Taking the maximum
magnitude (Figure 3 and Figure 15, left half) ensures that
potential extreme behavior is not missed, whereas the mean
magnitude (Figure 15, right half) is a closer indicator of
average behavior. Regardless of the choice, the qualitative
behavior is similar.
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Weights. All weight tensors under analysis are of shape
N× · · · where N is the number of output features. We thus
reshape them all into N×M and compute the per-output-
feature magnitudes using Equation 3. Similar to activations,
this ensures that unit-normal distributed weights have an ex-
pected magnitude of 1 regardless of degree or dimensions of
the weight tensor. We again aggregate all magnitudes within
a resolution bucket into a single number by taking either the
maximum or the mean. Figure 3 displays maximum magni-
tudes, whereas the extended version in Figure 15 shows both
maximum and mean magnitudes.

B. Architecture details
In this section, we present comprehensive details for the
architectural changes introduced in Section 2. Figures 16–22
illustrate the architecture diagram corresponding to each
configuration, along with the associated hyperparameters. In
order to observe the individual changes, we invite the reader
to flip through the figures in digital form.

B.1. EDM baseline (CONFIG A)

Our baseline corresponds to the ADM [13] network as
implemented in the EDM [37] framework, operating in
the latent space of a pre-trained variational autoencoder
(VAE) [66]. We train the network for 219 training iterations
with batch size 4096, i.e., 2147.5 million images, using the
same hyperparameter choices that were previously used for

ImageNet-512 FDDINOv2 ↓ Model size
no CFG w/CFG Mparams Gflops NFE

EDM2-XS 103.39 79.94 125 46 63
EDM2-S 68.64 52.32 280 102 63
EDM2-M 58.44 41.98 498 181 63
EDM2-L 52.25 38.20 777 282 63
EDM2-XL 45.96 35.67 1119 406 63
EDM2-XXL 42.84 33.09 1523 552 63

Table 5. Version of Table 2 using FDDINOv2 instead of FID on
ImageNet-512. The “w/CFG” and “no CFG” columns show the
lowest FID obtained with and without classifier-free guidance, re-
spectively. NFE tells how many times the score function is evalu-
ated when generating an image.

ImageNet-64 by Karras et al. [37]. In this configuration, we
use traditional EMA with a half-life of 50M images, i.e., 12k
training iterations, which translates to σrel ≈ 0.034 at the
end of the training. The architecture and hyperparameters as
summarized in Figure 16.

Preconditioning. Following the EDM framework, the net-
work implements denoiser ŷ = Dθ(x;σ, c), where x is a
noisy input image, σ is the corresponding noise level, c is
a one-hot class label, and ŷ is the resulting denoised im-
age; in the following, we will omit c for conciseness. The
framework further breaks down the denoiser as

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ

(
cin(σ)x; cnoise(σ)

)
(4)

cskip(σ) = σ2
data /

(
σ2 + σ2

data

)
(5)

cout(σ) = (σ · σdata)
/√

σ2 + σ2
data (6)

cin(σ) = 1
/√

σ2 + σ2
data (7)

cnoise(σ) = 1
4 ln(σ), (8)

where the inputs and outputs of the raw network layers Fθ are
preconditioned according to cin, cout, cskip, and cnoise. σdata
is the expected standard deviation of the training data. The
preconditioning is reflected in Figure 16 by the blue boxes
around the main inputs and outputs.

Latent diffusion. For ImageNet-512, we follow Peebles
and Xie [58] by preprocessing each 512×512×3 image in
the dataset with a pre-trained off-the-shelf VAE encoder from
Stable Diffusion3 and postprocessing each generated image
with the correspoding decoder. For a given input image, the
encoder produces a 4-channel latent at 8×8 times lower res-
olution than the original, yielding a dimension of 64×64×4
for x and ŷ. The mapping between images and latents is
not strictly bijective: The encoder turns a given image into
a distribution of latents, where each channel c of each pixel
(x, y) is drawn independently fromN (µx,y,c, σ

2
x,y,c). When

preprocessing the dataset, we store the values of µx,y,c and

3https://huggingface.co/stabilityai/sd-vae-ft-mse
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Figure 11. CONFIG A–G on ImageNet-512. (a) Convergence in wall-clock time for equal-length training runs. (b, c) Additional metrics.

σx,y,c as 32-bit floating point, and draw a novel sample each
time we encounter a given image during training.

The EDM formulation in Equation 4 makes relatively
strong assumptions about the mean and standard deviation
of the training data. We choose to normalize the training
data globally to satisfy these assumptions — as opposed to,
e.g., changing the value of σdata, which might have far-
reaching consequences in terms of the other hyperparam-
eters. We thus keep σdata at its default value 0.5, subtract
[5.81, 3.25, 0.12,−2.15] from the latents during dataset pre-
processing to make them zero mean, and multiply them by
0.5 / [4.17, 4.62, 3.71, 3.28] to make their standard devia-
tion agree with σdata. When generating images, we undo this
normalization before running the VAE decoder.

Architecture walkthrough. The ADM [13] network starts
by feeding the noisy input image, multiplied by cnoise,
through an input block (“In”) to expand it to 192 channels.
It then processes the resulting activation tensor through a
series of encoder and decoder blocks, organized as a U-Net
structure [67] and connected to each other via skip connec-
tions (faint curved arrows). At the end, the activation tensor
is contracted back to 4 channels by an output block (“Out”),
and the final denoised image is obtained using cout and cskip
as defined by Equation 4. The encoder gradually decreases
the resolution from 64×64 to 32×32, 16×16, and 8×8 by a
set of downsampling blocks (“EncD”), and the channel count
is simultaneously increased from 192 to 384, 576, and 768.
The decoder implements the same progression in reverse
using corresponding upsampling blocks (“DecU”).

The operation of the encoder and decoder blocks is con-
ditioned by a 768-dimensional embedding vector, obtained
by feeding the noise level σ and class label c through a
separate embedding network (“Embedding”). The value
of cnoise(σ) is fed through a sinusoidal timestep embedding

layer4,5(“PosEmb”) to turn it into a 192-dimensional feature
vector. The result is then processed by two fully-connected
layers with SiLU nonlinearity [18], defined as

silu(x) =
x

1 + e−x
, (9)

adding in a learned per-class embedding before the second
nonlinearity.

The encoder and decoder blocks follow the standard pre-
activation design of ResNets [17]. The main path (bold
line) undergoes minimal processing: It includes an optional
2×2 upsampling or downsampling using box filter if the
resolution changes, and an 1×1 convolution if the number
of channels changes. The residual path employs two 3×3
convolutions, preceded by group normalization and SiLU
nonlinearity. The group normalization computes empirical
statistics for each group of 32 channels, normalizes them
to zero mean and unit variance, and then applies learned
per-group scaling and bias. Between the convolutions, each
channel is further scaled and biased based on the value of the
embedding vector, processed by a per-block fully-connected
layer. The ADM architecture further employs dropout before
the second convolution, setting individual elements of the
activation tensor to zero with 10% probability during training.
The U-Net skip connections originate from the outputs of
the encoder blocks, and they are concatenated to the inputs
of the corresponding decoder blocks.

Most of the encoder and decoder blocks operating at
32×32 resolution and below (“EncA” and “DecA”) further
employ self-attention after the residual branch. The imple-
mentation follows the standard multi-head scaled dot product
attention [84], where each pixel of the incoming activation
tensor is treated as a separate token. For a single attention

4https://github.com/openai/guided-diffusion/blob/22e0
df8183507e13a7813f8d38d51b072ca1e67c/guided_diffusion/n
n.py#L103

5https://github.com/NVlabs/edm/blob/62072d2612c7da051
65d6233d13d17d71f213fee/training/networks.py#L193
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head, the operation is defined as

A = softmax(W)V (10)

W =
1√
Nc

QK⊤, (11)

where Q = [q1, . . .]
⊤, K = [k1, . . .]

⊤, and V = [v1, . . .]
⊤

are matrices containing the query, key, and value vectors for
each token, derived from the incoming activations using a
1×1 convolution. The dimensionality of the query and key
vectors is denoted by Nc.

The elements of the weight matrix in Equation 11 can
equivalently be expressed as dot products between the indi-
vidual query and key vectors:

wi,j =
1√
Nc

〈
qi,kj

〉
. (12)

Equation 10 is repeated for each attention head, after
which the resulting tokens A are concatenated, transformed
by a 1×1 convolution, and added back to the main path. The
number of heads Nh is determined by the incoming channel
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Figure 14. FID and FDDINOv2 as a function of EMA length using
S-sized models on ImageNet-512. CONFIGS B and G illustrate
the improvement from our changes. We also show two guidance
strengths: FID’s optimum (1.4) and FDDINOv2’s optimum (1.9).

count so that there is one head for each set of 64 channels.
The dot product and softmax operations are executed using
32-bit floating point to avoid overflows, even though the rest
of the network uses 16-bit floating point.

The weights of almost every convolution and fully-
connected layer are initialized using He’s uniform init [16],
and the corresponding biases are also drawn from the same
distribution. There are two exceptions, however: The per-
class embedding vectors are initialized to N (0, 1), and the
weights and biases of the last convolution of the residual
blocks, self-attention blocks, and the final output block are
initialized to zero (dark green). This has the effect that
Dθ(x, σ) = cskip(σ)x after initialization.
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Figure 15. Training-time evolution of the maximum and mean dimension-weighted L2 norms of activations and weights over different
depths of the the EMA-averaged score network. As discussed in Section 2, our architectural modifications aim to standardize the activation
magnitudes in CONFIG D and weight magnitudes in CONFIG E. Details of the computation are discussed in Appendix A.6.

Training loss. Following EDM [37], the denoising score
matching loss for denoiser Dθ on noise level σ is given by

L(Dθ;σ) = Ey,n

[∥∥Dθ(y + n;σ)− y
∥∥2
2

]
, (13)

where y ∼ pdata is a clean image sampled from the training
set and n ∼ N

(
0, σ2I

)
is i.i.d. Gaussian noise.

The overall training loss is defined [37] as a weighted
expectation of L(Dθ;σ) over the noise levels:

L(Dθ) = Eσ

[
λ(σ)L(Dθ;σ)

]
(14)

λ(σ) =
(
σ2 + σ2

data

)
/ (σ · σdata)

2 (15)

ln(σ) ∼ N
(
Pmean, P

2
std

)
, (16)

where the distribution of noise levels is controlled by hyper-
parameters Pmean and Pstd. The weighting function λ(σ) in
Equation 15 ensures that λ(σ)L(Dθ;σ) = 1 at the begin-
ning of the training, effectively equalizing the contribution
of each noise level with respect to∇θL(Dθ).

B.2. Minor improvements (CONFIG B)

Since the baseline configuration (CONFIG A) was not orig-
inally targeted for latent diffusion, we re-examined the
hyperparameter choices to obtain an improved baseline
(CONFIG B). Our new hyperparameters are summarized in
Figure 17.

In order to speed up convergence, we found it beneficial
to halve the batch size (2048 instead of 4096) while doubling
the learning rate (αref = 0.0002 instead of 0.0001), and to
significantly reduce Adam’s response time to changes in
gradient magnitudes (β2 = 0.99 instead of 0.999). These
changes had the largest impact towards the beginning of the
training, where the network reconfigures itself for the task at
hand, but they also helped somewhat towards the end. Fur-
thermore, we found the self-attention layers at 32×32 resolu-
tion to be somewhat harmful; removing them improved the
overall stability while also speeding up the training. In CON-
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Figure 16. Full architecture diagram and hyperparameters for CONFIG A (EDM baseline).

FIG B, we also switch from traditional EMA to our power
function averaging profile (Section 3.1), with two averages
stored per snapshot for high-quality post-hoc reconstruction
(Section 3.2).

Loss weighting. With the EDM training loss (Equation 14),
the quality of the resulting distribution tends to be quite sen-
sitive to the choice of Pmean, Pstd, and λ(σ). The role of
Pmean and Pstd is to focus the training effort on the most
important noise levels, whereas λ(σ) aims to ensure that the
gradients originating from each noise level are roughly of
the same magnitude. Referring to Figure 5a of Karras et al.
[37], the value of L(Dθ;σ) behaves somewhat unevenly
over the course of training: It remains largely unchanged
for the lowest and highest noise levels, but drops quickly for
the ones in between. Karras et al. [37] suggest setting Pmean
and Pstd so that the resulting log-normal distribution (Equa-
tion 16) roughly matches the location of this in-between
region. When operating with VAE latents, we have observed
that the in-between region has shifted considerably toward
higher noise levels compared to RGB images. We thus set
Pmean = −0.4 and Pstd = 1.0 instead of −1.2 and 1.2, re-
spectively, to roughly match its location.

While the choice of λ(σ) defined by Equation 15 is
enough to ensure that the gradient magnitudes are balanced
at initialization, this is no longer true as the training pro-
gresses. To compensate for the changes in L(Dθ;σ) that
happen over time, no static choice of λ(σ) is sufficient — the
weighting function must be able to adapt its shape dynam-
ically. To achieve this, we treat the integration over noise
levels in L(Dθ) as a form of multi-task learning. In the
following, we will first summarize the uncertainty-based
weighting approach proposed by Kendall et al. [38], defined
over a finite number of tasks, and then generalize it over a
continuous set of tasks to replace Equation 14.

Uncertainty-based multi-task learning. In a traditional
multi-task setting, the model is simultaneously being trained
to perform multiple tasks corresponding to loss terms
{L1,L2, . . .}. The naive way to define the overall loss is
to take a weighted sum over these individual losses, i.e.,
L =

∑
i wiLi. The outcome of the training, however, tends

to be very sensitive to the choice of weights wi. This choice
can become particularly challenging if the balance between
the loss terms changes considerably over time. Kendall
et al. [38] propose a principled approach for choosing the
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Figure 17. Full architecture diagram and hyperparameters for CONFIG B (Minor improvements).

weights dynamically, based on the idea of treating the model
outputs as probability distributions and maximizing the re-
sulting likelihood. For isotropic Gaussians, this boils down
to associating each loss term Li with an additional train-
able parameter σi > 0, i.e., homoscedastic uncertainty, and
defining the overall loss as

L =
∑
i

[
1

2σ2
i

Li + lnσi

]
(17)

=
1

2

∑
i

[
Li

σ2
i

+ lnσ2
i

]
. (18)

Intuitively, the contribution of Li is weighted down if the
model is uncertain about task i, i.e., if σi is high. At the same
time, the model is penalized for this uncertainty, encouraging
σi to be as low as possible.

In practice, it can be quite challenging for typical opti-
mizers — such as Adam — to handle σi directly due to the
logarithm and the requirement that σi > 0. A more conve-
nient formula [38] is obtained by rewriting Equation 18 in

terms of log variance ui = lnσ2
i :

L =
1

2

∑
i

[
Li

eui
+ ui

]
(19)

∝
∑
i

[
Li

eui
+ ui

]
, (20)

where we have dropped the constant multiplier 1/2, as it has
no effect on the optimum.

Continuous generalization. For the purpose of applying
Equation 20 to the EDM loss in Equation 14, we consider
each noise level σ to represent a different task. This means
that instead of a discrete number of tasks, we are faced with
an infinite continuum of tasks 0 < σ <∞. In accordance to
Equation 14, we consider the loss corresponding to task σ to
be λ(σ)L(Dθ;σ), leading to the following overall loss:

L(Dθ, u) = Eσ

[
λ(σ)

eu(σ)
L(Dθ;σ) + u(σ)

]
, (21)

where we employ a continuous uncertainty function u(σ)
instead of a discrete set of scalars {ui}.

20



Encoder block

Decoder block

Noisy
image

cskip

+

Denoised
image

GrpNorm

Conv 3×3

SiLU

642×192

GrpNorm

SiLU

Conv 3×3

×

Down 2×2

SiLU

Dropout

Conv 3×3

+1

Linear Conv 1×1

Down 2×2

Rin×Cin

Rout×Cout

Rout×Cout

GrpNorm

SiLU

Conv 3×3

×

Up 2×2

SiLU

Dropout

Conv 3×3

+1

Linear Conv 1×1

Up 2×2

Rin×(Cin+Cskip)

Rout×Cout

Rin×(Cin+Cskip)

Rout×Cout

Concat

1

Linear

SiLU

Linear

Linear+

SiLU

192

768

GrpNorm

GrpNorm

768

642×4

Conv 3×3

642×192

Concat 1

642×4

Fourier

Reshape

Matmul

×

Softmax

Matmul

Reshape

Conv 1×1

PixNorm

+

Rin×(Cin×3)

Rin×Nh×Nc×3

Q K V

Rin×Cin

Input

Output

Split

Conv 1×1

Config C: Architectural streamlining

To encoder and 
decoder blocks

In

Out

Attention

Embedding

Noise
level

Class
label

1000

× 1000

Rin
2×Nh

Rin
2×Nh

Fixed-function

Learned

Not always present

Cout

Cout

cnoise

cout

cin

DecA DecA DecA DecA

Dec Dec Dec

Enc Enc

Enc Enc EncEncD

EncA EncA EncAEncD

EncA EncA EncAEncD

DecA DecA DecA DecA

Dec Dec Dec Dec

642×192

322×192

162×384

82×576

Dec

DecU

DecU

DecU

DecA

642×192 642×192 642×192

322×384 322×384 322×384

162×576 162×576 162×576

82×768 82×768 82×768 82×768

82×76882×76882×76882×76882×768

162×768162×576162×576162×576162×576

322×576322×384322×384322×384322×384

642×384642×192642×192642×192
642×192

In

Out

Enc

Dec

642×4

642×4

768

Embedding

768

Embedding

+
Attention

Output

+

Output Skip

Attention

SkipInput

Rin×Cin

Rin×Cin

Input

642×4

642×4

Nh = Cin / Nc

Nc = 64

1

Nc

Rin×Nh×Nc

Number of GPUs 32 Learning rate max (αref) 0.0002 Adam β1 0.9 FID 6.96
Minibatch size 2048 Learning rate decay (tref) ∞ Adam β2 0.99 EMA length (σrel) 0.075
Duration (Mimg) 2147.5 Learning rate rampup (Mimg) 10 Loss scaling 100 Model capacity (Mparams) 277.8
Mixed-precision (FP16) full Noise distribution mean (Pmean) −0.4 Attention res. 16, 8 Model complexity (Gflops) 100.3
Dropout probability 10% Noise distribution std. (Pstd) 1.0 Attention blocks 15 Sampling cost (Tflops) 7.58

Figure 18. Full architecture diagram and hyperparameters for CONFIG C (Architectural streamlining).

In practice, we implement u(σ) as a simple one-layer
MLP (not shown in Figure 17) that is trained alongside
the main denoiser network and discarded afterwards. The
MLP evaluates cnoise(σ) as defined by Equation 8, com-
putes Fourier features for the resulting scalar (see Ap-
pendix B.3), and feeds the resulting feature vector through
a fully-connected layer that outputs one scalar. All practi-
cal details of the MLP, including initialization, magnitude-
preserving scaling, and forced weight normalization, fol-
low the choices made in our training configurations (Appen-
dices B.2–B.7).

Intuitive interpretation. To gain further insight onto the
meaning of Equation 21, let us solve for the minimum of
L(Dθ, u) by setting its derivative to zero with respect to
u(σ):

0 =
dL(Dθ, u)

du(σ)
(22)

=
d

du(σ)

[
λ(σ)

eu(σ)
L(Dθ;σ) + u(σ)

]
(23)

= − λ(σ)

eu(σ)
L(Dθ;σ) + 1, (24)

which leads to

eu(σ) = λ(σ)L(Dθ;σ) (25)

u(σ) = lnL(Dθ;σ) + lnλ(σ). (26)

In other words, u(σ) effectively keeps track of howL(Dθ;σ)
evolves over time. Plugging Equation 25 back into Equa-
tion 21, we arrive at an alternative interpretation of the over-
all training loss:

L(Dθ, u) = Eσ

(
λ(σ)L(Dθ;σ)[
λ(σ)L(Dθ;σ)

] +
[
u(σ)

])
(27)

= Eσ
L(Dθ;σ)[
L(Dθ;σ)

] +
[
Eσu(σ)

]
, (28)

where the bracketed expressions are treated as constants
when computing ∇θL(Dθ, u). In other words, Equation 21
effectively scales the gradients originating from noise level σ
by the reciprocal of L(Dθ;σ), equalizing their contribution
between noise levels and over time.

Note that the optimum of Equations 21 and 28 with re-
spect to θ does not depend on the choice of λ(σ). In theory,
we could thus drop λ(σ) altogether, i.e., set λ(σ) = 1. We

21



Encoder block

Decoder block

1

768 Embedding

1000

GrpNorm

SiLU

Conv 3×3

×

Down 2×2

SiLU

Dropout

Conv 3×3

+1

Linear Conv 1×1

Down 2×2

Rin×Cin

Rout×Cout

Rout×Cout

GrpNorm

SiLU

Conv 3×3

×

Up 2×2

SiLU

Dropout

Conv 3×3

+1

Linear Conv 1×1

Up 2×2

Rin×(Cin+Cskip)

Rout×Cout

Rin×(Cin+Cskip)

Rout×Cout

Concat

Linear

SiLU

Linear

Linear+

SiLU

192

GrpNorm

GrpNorm

Fourier

Reshape

Matmul

×

Softmax

Matmul

Reshape

Conv 1×1

PixNorm

+

Rin×(Cin×3)

Q K V

Rin×Cin

Input

Output

Split

Conv 1×1

Config D: Magnitude-preserving learned layers

To encoder and 
decoder blocks

Attention

Noise
level

Class
label

Rin
2×Nh

Rin
2×Nh

Fixed-function

Learned

Not always present

Learned,

weight norm.

Cout

Cout

cnoise × 1000

Noisy
image

cskip

+

Denoised
image

GrpNorm

Conv 3×3

SiLU

642×192

642×4 Out

cout

cin

DecA DecA DecA DecA

Dec Dec Dec

Enc Enc

Enc Enc EncEncD

EncA EncA EncAEncD

EncA EncA EncAEncD

DecA DecA DecA DecA

Dec Dec Dec Dec

642×192

322×192

162×384

82×576

Dec

DecU

DecU

DecU

DecA

642×192 642×192 642×192

322×384 322×384 322×384

162×576 162×576 162×576

82×768 82×768 82×768 82×768

82×76882×76882×76882×76882×768

162×768162×576162×576162×576162×576

322×576322×384322×384322×384322×384

642×384642×192642×192642×192
642×192

In

Out

Enc

Dec

642×4

642×4

768

Embedding

768

Embedding

+
Attention

Output

+

Output Skip

Attention

SkipInput

Rin×Cin

Rin×Cin

Input

642×4

642×4

768

Conv 3×3

642×192

Concat 1

642×4 In

Nh = Cin / Nc

Nc = 64

Rin×Nh×Nc×3

1

Nc

Rin×Nh×Nc

Number of GPUs 32 Learning rate max (αref) 0.0100 Adam β1 0.9 FID 3.75
Minibatch size 2048 Learning rate decay (tref) ∞ Adam β2 0.99 EMA length (σrel) 0.225
Duration (Mimg) 2147.5 Learning rate rampup (Mimg) 10 Loss scaling 1 Model capacity (Mparams) 277.8
Mixed-precision (FP16) full Noise distribution mean (Pmean) −0.4 Attention res. 16, 8 Model complexity (Gflops) 101.2
Dropout probability 10% Noise distribution std. (Pstd) 1.0 Attention blocks 15 Sampling cost (Tflops) 7.64

Figure 19. Full architecture diagram and hyperparameters for CONFIG D (Magnitude-preserving learned layers).

have tested this in practice and found virtually no impact on
the resulting FID or convergence speed. However, we choose
to keep λ(σ) defined according to Equation 15 as a practical
safety precaution; Equation 28 only becomes effective once
u(σ) has converged reasonably close to the optimum, so
the choice of λ(σ) is still relevant at the beginning of the
training.

B.3. Architectural streamlining (CONFIG C)

The network architecture of CONFIG B contains several dif-
ferent types of trainable parameters that each behave in a
slightly different way: weights and biases of three kinds
(uniform-initialized, zero-initialized, and self-attention) as
well as group normalization scaling parameters and class
embeddings. Our goal in CONFIG C is eliminate these differ-
ences and make all the remaining parameters behave more
or less identically. To this end, we make several changes to
the architecture that can be seen by comparing Figures 17
and 18.

Biases and group normalizations. We have found that
we can simply remove all biases with no ill effects. We do
this for all convolutions, fully-connected layers, and group

normalization layers in the denoiser network as well as in
the loss weighting MLP (Equation 21). In theory, this could
potentially lead to reduced expressive power of the network,
especially when sensing the overall scale of the input values.
Even though we have not seen this to be an issue in practice,
we mitigate the danger by concatenating an additional chan-
nel of constant 1 to the incoming noisy image in the input
block (“In”).

Furthermore, we remove all other bias-like constructs for
consistency; namely, the dynamic conditioning offset de-
rived from the embedding vector in the encoder and decoder
blocks and the subtraction of the empirical mean in group
normalization. We further simplify the group normalization
layers by removing their learned scale parameter. After these
changes, the operation becomes

bx,y,c,g =
ax,y,c,g√

1
NxNyNc

∑
i,j,ka

2
i,j,k,g + ϵ

, (29)

where ax,y,c,g and bx,y,c,g denote the incoming and outgoing
activations, respectively, for pixel (x, y), channel c, and
group g, and Nx, Ny, and Nc indicate their corresponding
dimensions. We set ϵ = 10−4.
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Figure 20. Full architecture diagram and hyperparameters for CONFIG E (Control effective learning rate).

Cosine attention. The 1×1 convolutions responsible for
producing the query and key vectors for self-attention behave
somewhat differently compared to the other convolutions.
This is because the resulting values of wi,j (Equation 12)
scale quadratically with respect to the overall magnitude
of the convolution weights, as opposed to linear scaling
in other convolutions. We eliminate this discrepancy by
utilizing cosine attention [15, 51, 54]. In practice, we do
this by replacing the group normalization, executed right
before the convolution, with pixelwise feature vector nor-
malization [33] (“PixelNorm”), executed right after it. This
operation is defined as

bx,y,c =
ax,y,c√

1
Nc

∑
ia

2
x,y,i + ϵ

, (30)

where we use ϵ = 10−4, similar to Equation 29.
To gain further insight regarding the effect of this nor-

malization, we note that, ignoring ϵ, Equation 30 can be
equivalently written as

bx,y =
√
Nc

ax,y
∥ax,y∥2

. (31)

Let us denote the normalized query and key vectors by
q̂i and k̂j , respectively. Substituting Equation 31 into Equa-
tion 12 gives

wi,j =
1√
Nc

〈
q̂i, k̂j

〉
(32)

=
1√
Nc

〈√
Nc

qi

∥qi∥2
,
√

Nc
kj

∥kj∥2

〉
(33)

=
√

Nc cos(ϕi,j) , (34)

where ϕi,j denotes the angle between qi and kj . In other
words, the attention weights are now determined exclusively
by the directions of the query and key vectors, and their
lengths no longer have any effect. This curbs the uncon-
trolled growth of wi,j during training and enables using 16-
bit floating point throughout the entire self-attention block.

Other changes. To unify the behavior of the remaining
trainable parameters, we change the zero-initialized layers
(dark green) and the class embeddings to use the same uni-
form initialization as the rest of the layers. In order to retain
the same overall magnitude after the class embedding layer,
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Figure 21. Full architecture diagram and hyperparameters for CONFIG F (Remove group normalizations).

we scale the incoming one-hot class labels by
√
N so that

the result is of unit variance, i.e., 1
N

∑
i a

2
i = 1.

Finally, we replace ADM’s original timestep embedding
layer with the more standard Fourier features [81]. Con-
cretely, we compute feature vector b based on the incoming
scalar a = cnoise(σ) as

b =


cos

(
2π(f1 a+ φ1)

)
cos

(
2π(f2 a+ φ2)

)
...

cos
(
2π(fNa+ φN )

)
 , (35)

where fi ∼ N (0, 1) and φi ∼ U(0, 1). (36)

After initialization, we treat the frequencies {fi} and
phases {φi} as constants.

B.4. Magnitude-preserving learned layers
(CONFIG D)

In CONFIG D, we modify all learned layers according to our
magnitude-preserving design principle as shown in Figure 19.
Let us consider a fully-connected layer with input activations

a = [aj ]
⊤ and output activations b = [bi]

⊤. The operation
of the layer is

b = Wa , (37)

where W = [wi] is a trainable weight matrix. We can equiv-
alently write this in terms of a single output element:

bi = wi a. (38)

The same definition extends to convolutional layers by
applying Equation 38 independently to each output element.
In this case, the elements of a correspond to the activations
of each input pixel within the support for the convolution
kernel, i.e., dim(a) = Nj = Nc k

2, where Nc is the number
of input channels and k is the size of the convolution kernel.

Our goal is to modify Equation 38 so that it preserves the
overall magnitude of the input activations, without looking at
their actual contents. Let us start by calculating the standard
deviation of bi, assuming that {ai} are mutually uncorrelated
and of equal standard deviation σa:

σbi =
√

Var[bi] (39)

=
√
Var[wi a] (40)
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Figure 22. Full architecture diagram and hyperparameters for CONFIG G (Magnitude-preserving fixed-function layers).

=

√∑
j
w2

ij Var[aj ] (41)

=

√∑
j
w2

ij σ
2
a (42)

= ∥wi∥2 σa. (43)

To make Equation 38 magnitude-preserving, we scale its
output so that it has the same standard deviation as the input:

b̂i =
σa

σbi

bi (44)

=
σa

∥wi∥2 σa
wi a (45)

=
wi

∥wi∥2︸ ︷︷ ︸
=: ŵi

a. (46)

In other words, we simply normalize each wi to unit length
before use. In practice, we introduce ϵ = 10−4 to avoid
numerical issues, similar to Equations 29 and 30:

ŵi =
wi

∥wi∥2 + ϵ
. (47)

Given that b̂i is now agnostic to the scale of wi, we ini-
tialize wi,j ∼ N (0, 1) so that the weights of all layers are
roughly of the same magnitude. This implies that in the
early stages of training, when the weights remain close to
their initial magnitude, the updates performed by Adam [40]
will also have roughly equal impact across the entire model,
similar to the concept of equalized learning rate [33]. Since
the weights are now larger in magnitude, we have to increase
the learning rate as well. We therefore set αref = 0.0100
instead of 0.0002.

Comparison to previous work. Our approach is closely
related to weight normalization [71] and weight standardiza-
tion [62]. Reusing the notation from Equation 46, Salimans
and Kingma [71] define weight normalization as

ŵi =
gi
∥wi∥2

wi, (48)

where gi is a learned per-channel scaling factor that is ini-
tialized to one. The original motivation of Equation 48 is to
reparameterize the weight tensor in order to speed up con-
vergence, without affecting its expressive power. As such,
the value of gi is free to drift over the course of training,
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potentially leading to imbalances in the overall activation
magnitudes. Our motivation, on the other hand, is to explic-
itly avoid such imbalances by removing any direct means for
the optimization to change the magnitude of b̂i.

Qiao et al. [62], on the other hand, define weight stan-
dardization as

ŵi =
wi − µi

σi
, where (49)

µi =
1

N

∑
j
wi,j (50)

σi =

√
1

N

∑
j
w2

i,j − µ2
i + ϵ , (51)

intended to serve as a replacement for batch normalization in
the context of micro-batch training. In practice, we suspect
that Equation 49 would probably work just as well as Equa-
tion 46 for our purposes. However, we prefer to keep the
formula as simple as possible with no unnecessary moving
parts.

Effect on the gradients. One particularly useful property
of Equation 46 is that it projects the gradient of wi to be
perpedicular to wi itself. Let us derive a formula for the
gradient of loss L with respect to wi:

∇wi
L = ∇wi

ŵi · ∇ŵi
L (52)

= ∇wi

[
wi

∥wi∥2

]
∇ŵiL. (53)

We will proceed using the quotient rule[
f

g

]′
=

f ′g − fg′

g2
, (54)

where

f = wi, f ′ = ∇wi
wi = I (55)

g = ∥wi∥2 , g′ = ∇wi ∥wi∥2 =
w⊤

i

∥wi∥2
. (56)

Plugging this back into Equation 53 gives us

∇wi
L =

[
f ′g − fg′

g2

]
∇ŵi
L (57)

=

I ∥wi∥2 −wi
w⊤

i

∥wi∥2

∥wi∥22

∇ŵiL (58)

=
1

∥wi∥2

[
I− wiw

⊤
i

∥wi∥22

]
∇ŵiL. (59)

The bracketed expression in Equation 59 corresponds
to a projection matrix that keeps the incoming vector oth-
erwise unchanged, but forces it to be perpendicular to wi,
i.e.,

〈
wi,∇wiL

〉
= 0. In other words, gradient descent

optimization will not attempt to modify the length of wi

directly. However, the length of wi can still change due to
discretization errors resulting from finite step size.

B.5. Controlling effective learning rate (CONFIG E)

In CONFIG D, we have effectively constrained all weight
vectors of our model to lie on the unit hypersphere, i.e.,
∥ŵi∥2 = 1, as far as evaluating Dθ(x;σ) is concerned.
However, the magnitudes of the raw weight vectors, i.e.,
∥wi∥2, are still relevant during training due to their effect on
∇wi
L (Equation 59). Even though we have initialized wi so

that these magnitudes are initially balanced across the layers,
there is nothing to prevent them from drifting away from this
ideal over the course of training. This is problematic since
the relative impact of optimizer updates, i.e., the effective
learning rate, can vary uncontrollably across the layers and
over time. In CONFIG E, we eliminate this drift through
forced weight normalization as shown in Figure 20, and gain
explicit control over the effective learning rate.

Growth of weight magnitudes. As noted by Salimans and
Kingma [71], Equations 46 and 59 have the side effect that
they cause the norm of wi to increase monotonically after
each training step. As an example, let us consider standard
gradient descent with learning rate α. The update rule is
defined as

w′
i = wi − α∇wi

L (60)
wi ← w′

i. (61)

We can use the Pythagorean theorem to calculate the
norm of the updated weight vector w′

i:∥∥w′
i

∥∥2
2
=

∥∥wi − α∇wi
L
∥∥2
2

(62)

=
∥∥wi

∥∥2
2
+ α2

∥∥∇wi
L
∥∥2
2
− 2α

〈
wi,∇wi

L
〉︸ ︷︷ ︸

=0

(63)

=
∥∥wi

∥∥2
2
+ α2

∥∥∇wi
L
∥∥2
2

(64)

≥
∥∥wi

∥∥2
2
. (65)

In other words, the norm of wi will necessarily increase at
each step unless∇wi

L = 0. A similar phenomenon has been
observed with optimizers like Adam [40], whose updates
do not maintain strict orthogonality, as well as in numerous
scenarios that do not obey Equation 46 exactly. The effect is
apparent in our CONFIG C (Figure 3) as well.

Forced weight normalization. Given that the normaliza-
tion and initialization discussed in Appendix B.4 are already
geared towards constraining the weight vectors to a hyper-
sphere, we take this idea to its logical conclusion and perform
the entire optimization strictly under such a constraint.

Concretely, we require ∥wi∥2 =
√

Nj to be true for each
layer after each training step, where Nj is the dimension of
wi, i.e., the fan-in. Equation 59 already constrains∇wiL to
lie on the tangent plane with respect to this constraint; the
only missing piece is to guarantee that the constraint itself is
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Algorithm 1 PyTorch code for forced weight normalization.

def normalize(x, eps=1e−4):
dim = list(range(1, x.ndim))

n = torch.linalg.vector_norm(x, dim=dim, keepdim=True)

alpha = np.sqrt(n.numel() / x.numel())

return x / torch.add(eps, n, alpha=alpha)

class Conv2d(torch.nn.Module):

def __init__(self, C_in, C_out, k):

super().__init__()

w = torch.randn(C_out, C_in, k, k)

self.weight = torch.nn.Parameter(w)

def forward(self, x):

if self.training:

with torch.no_grad():

self.weight.copy_(normalize(self.weight))

fan_in = self.weight[0].numel()

w = normalize(self.weight) / np.sqrt(fan_in)

x = torch.nn.functional.conv2d(x, w, padding=’same’)

return x

satisfied by Equation 61. To do this, we modify the formula
to forcefully re-normalize w′

i before assigning it back to wi:

wi ←
√
Nj

w′
i

∥w′
i∥2

. (66)

Note that Equation 66 is agnostic to the exact definition
of w′

i, so it is readily compatible with most of the commonly
used optimizers. In theory, it makes no difference whether
the normalization is done before or after the actual training
step. In practice, however, the former leads to a very simple
and concise PyTorch implementation, shown in Algorithm 1.

Learning rate decay. Let us step back and consider CON-
FIG D again for a moment, focusing on the overall effect
that ∥wi∥2 had on the training dynamics. Networks where
magnitudes of weights have no effect on activations have
previously been studied by, e.g., van Laarhoven [46]. In
these networks, the only meaningful progress is made in
the angular direction of weight vectors. This has two con-
sequences for training dynamics: First, the gradients seen
by the optimizer are inversely proportional to the weight
magnitude. Second, the loss changes slower at larger mag-
nitudes, as more distance needs to be covered for the same
angular change. Effectively, both of these phenomena can
be interpreted as downscaling the effective learning rate as
a function of the weight magnitude. Adam [40] counteracts
the first effect by approximately normalizing the gradient
magnitudes, but it does not address the second.

From this perspective, we can consider CONFIG D to have
effectively employed an implicit learning rate decay: The
larger the weights have grown (Figure 3), the smaller the
effective learning rate. In general, learning rate decay is
considered desirable in the sense that it enables the training
to converge closer and closer to the optimum despite the

(a) Forced WN only (b) Forced + standard WN

Figure 23. Illustration of the importance of performing “standard”
weight normalization in addition to forcing the weights to a prede-
fined norm. The dashed circle illustrates Adam’s target variance for
updates — the proportions are greatly exaggerated and the effects of
momentum are ignored. (a) Forced weight normalization without
the standard weight normalization. The raw weight vector wi is up-
dated by adding the gradient ∇wi after being scaled by Adam, after
which the result is normalized back to the hypersphere (solid arc)
yielding new weight vector w′

i. Adam’s variance estimate includes
the non-tangent component of the gradient, and the resulting weight
update is significantly smaller than intended. (b) With standard
weight normalization, the gradient ∇wi is obtained by projecting
the raw gradient ∇ŵi onto the tangent plane perpendicular to wi.
Adam’s variance estimate now considers this projected gradient,
resulting in the correct step size; the effect of normalization after
update is close to negligible from a single step’s perspective.

stochastic nature of the gradients [40, 71]. However, we ar-
gue that the implicit form of learning rate decay imposed by
Equation 65 is not ideal, because it can lead to uncontrollable
and unequal drift between layers.

With forced weight normalization in CONFIG E and on-
wards, the drift is eliminated and the effective learning rate
is directly proportional to the specified learning rate α. Thus,
in order to have the learning rate decay, we have to explicitly
modify the value of α over time. We choose to use the com-
monly advocated inverse square root decay schedule [40]:

α(t) =
αref√

max(t/tref, 1)
, (67)

where the learning rate initially stays at αref and then starts
decaying after tref training iterations. The constant learning
rate schedule of CONFIGS A–D can be seen as a special case
of Equation 67 with tref =∞.

In the context of Table 1, we use αref = 0.0100 and
tref = 70000. We have, however, found that the optimal
choices depend heavily on the capacity of the network as
well as the dataset (see Table 6).

Discussion. It is worth noticing that we normalize the
weight vectors twice during each training step: first to obtain
ŵi in Equation 46 and then to constrain w′

i in Equation 66.
This is also reflected by the two calls to normalize() in
Algorithm 1.

The reason why Equation 46 is still necessary despite
Equation 66 is that it ensures that Adam’s variance esti-
mates are computed for the actual tangent plane steps. In
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other words, Equation 46 lets Adam “know” that it is sup-
posed to operate under the fixed-magnitude constraint. If we
used Equation 66 alone, without Equation 46, the variance
estimates would be corrupted by the to-be erased normal
component of the raw gradient vectors, leading to consid-
erably smaller updates of an uncontrolled magnitude. See
Figure 23 for an illustration.

Furthermore, we intentionally force the raw weights wi

to have the norm
√
Nj , while weight normalization further

scales them to norm 1. The reason for this subtle but im-
portant difference is, again, compatibility with the Adam
optimizer. Adam approximately normalizes the gradient up-
dates so that they are proportional to

√
Nj . We normalize

the weights to the same scale, so that the relative magnitude
of the update becomes independent of Nj . This eliminates
an implicit dependence between the learning rate and the
layer size. Optimizers like LARS [89] and Fromage [3] build
on a similar motivation, and explicitly scale the norm of the
gradient updates to a fixed fraction of the weight norm.

Finally, Equation 46 is also quite convenient due to its
positive interaction with EMA. Even though the raw values
of wi are normalized at each training step by Equation 66,
their weighted averages are not. To correctly account for our
fixed-magnitude constraint, the averaging must also happen
along the surface of the corresponding hypersphere. How-
ever, we do not actually need to change the averaging itself
in any way, because this is already taken care of by Equa-
tion 46: Even if the magnitudes of the weight vectors change
considerably as a result of averaging, they are automatically
re-normalized upon use.

Previous work. Several previous works have analyzed
the consequences of weight magnitude growth under dif-
ferent settings and proposed various remedies. Weight de-
cay has often been identified as a solution for keeping the
magnitudes in check, and its interplay with different nor-
malization schemes and optimizers has been studied exten-
sively [27, 44, 46–48, 65, 86, 91]. Cho and Lee [11] and
van Laarhoven [46] consider more direct approaches where
the weights are directly constrained to remain in the unit
norm hypersphere, eliminating the growth altogether. Arpit
et al. [1] also normalize the weights directly, motivated by
a desire to reduce the parameter space. Various optimiz-
ers [3, 4, 50, 89, 90] also aim for similar effects through
weight-relative scaling of the gradient updates.

As highlighted by the above discussion, the success of
these approaches can depend heavily on various small but
important nuances that may not be immediately evident. As
such, we leave a detailed comparison of these approaches as
future work.

B.6. Removing group normalizations (CONFIG F)

In CONFIG F, our goal is to remove the group normalization
layers that may negatively impact the results due to the fact
that they operate across the entire image. We also make a
few minor simplifications to the architecture. These changes
can be seen by comparing Figures 20 and 21.

Dangers of global normalization. As has been previously
noted [35, 36], global normalization that operates across the
entire image should be used cautiously. It is firmly at odds
with the desire for the model to behave consistently across
geometric transformations [36, 83] or when synthesizing
objects in different contexts. Such consistency is easiest
to achieve if the internal representations of the image con-
tents are capable of being as localized as they need to be,
but global normalization entangles the representations of ev-
ery part of the image by eliminating the first-order statistics
across the image. Notably, while attention allows the repre-
sentations to communicate with each other in a way that best
fits the task, global normalization forces communication to
occur, with no way for individual features to avoid it.

This phenomenon has been linked to concrete image arti-
facts in the context of GANs. Karras et al. [35] found that
the AdaIN operation used in StyleGAN was destroying vital
information, namely the relative scales of different feature
maps, which the model counteracted by creating strong lo-
calized spikes in the activations. These spikes manifested
as artifacts, and were successfully eliminated by remov-
ing global normalization operations. In a different context,
Brock et al. [9] show that normalization is not necessary for
obtaining high-quality results in image classification. We
see no reason why it should be necessary or even beneficial
in diffusion models, either.

Our approach. Having removed the drift in activation
magnitudes, we find that we can simply remove all group
normalization layers with no obvious downsides. In particu-
lar, doing this for the decoder improves the FID considerably,
which we suspect to be related to the fact that the absolute
scale of the individual output pixels is quite important for
the training loss (Equation 13). The network has to start
preparing the correct scales towards the end of the U-Net,
and explicit normalization is likely to make this more chal-
lenging.

Even though explicit normalization is no longer strictly
necessary, we have found that we can further improve the
results slightly through pixelwise feature vector normaliza-
tion (Equation 30). Our hypothesis is that a small amount
of normalization helps by counteracting correlations that
would otherwise violate the independence assumption be-
hind Equation 43. We find that the best results are obtained
by normalizing the incoming activations at the beginning of
each encoder block. This guarantees that the magnitudes on
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the main path remain standardized despite the series of cu-
mulative adjustments made by the residual and self-attention
blocks. Furthermore, this also appears to help in terms of
standardizing the magnitudes of the decoder — presumably
due to the presence of the U-Net skip connections.

Architectural simplifications. In addition to reworking
the normalizations, we make four minor simplifications to
other parts of the architecture:

1. Unify the upsampling and downsampling operations of
the encoder and decoder blocks by placing them onto the
main path.

2. Slightly increase the expressive power of the encoder
blocks by moving the 1×1 convolution to the beginning
of the main path.

3. Remove the SiLU activation in the final output block.

4. Remove the second fully-connected layer in the embed-
ding network.

These changes are more or less neutral in terms of the FID,
but we find it valuable to keep the network as simple as
possible considering future work.

B.7. Magnitude-preserving fixed-function layers
(CONFIG G)

In CONFIG G, we complete the effort that we started in
CONFIG D by extending our magnitude-preserving design
principle to cover the remaining fixed-function layers in
addition to the learned ones. The exact set of changes can
be seen by comparing Figures 21 and 22.

We will build upon the concept of expected magnitude
that we define by generalizing Equation 3 for multivariate
random variable a:

M[a] =

√√√√ 1

Na

Na∑
i=1

E
[
a2i
]
. (68)

If the elements of a have zero mean and equal variance,
we have M[a]2 = Var[ai]. If a is non-random, Equa-
tion 68 simplifies to M[a] = ∥a∥2 /

√
Na. We say that a

is standardized iffM[a] = 1.
Concretely, we aim to achieve two things: First, every

input to the network should be standardized, and second,
every operation in the network should be such that if its
input is standardized, the output is standardized as well. If
these two requirements are met, it follows that all activations
throughout the entire network are standardized.

Similar to Appendix B.4, we wish to avoid having to look
at the actual values of activations, which necessitates making
certain simplifying statistical assumptions about them. Even
though these assumptions are not strictly true in practice, we

find that the end result is surprisingly close to our ideal, as
can be seen in the “Activations (mean)” plot for CONFIG G
in Figure 15.

Fourier features. Considering the inputs to our network,
the noisy image and the class label are already standardized
by virtue of having been scaled by cin(σ) (Equation 7) and√
N (Appendix B.3), respectively. The Fourier features (Ap-

pendix B.3), however, are not. Let us compute the expected
magnitude of b (Equation 35) with respect to the frequencies
and phases (Equation 36):

M[b]2 =
1

Nb

Nb∑
i=1

E
[(

cos
(
2π(fia+ φi)

))2
]

(69)

= E
[(

cos
(
2π(f1a+ φ1)

))2
]

(70)

= E
[(
cos(2πφ1)

)2]
(71)

= E
[
1
2

(
1 + cos(4πφ1)

)]
(72)

= 1
2 + 1

2 E
[
cos(4πφ1)

]︸ ︷︷ ︸
=0

(73)

= 1
2 . (74)

To standardize the output, we thus scale Equation 35 by
1/M[b] =

√
2:

MP-Fourier(a) =


√
2 cos

(
2π(f1 a+ φ1)

)
√
2 cos

(
2π(f2 a+ φ2)

)
...√

2 cos
(
2π(fNa+ φN )

)
 .

(75)

SiLU. Similar reasoning applies to the SiLU nonlinearity
(Equation 9) as well, used throughout the network. Assum-
ing that a ∼ N (0, I):

M
[
silu(a)

]2
=

1

Na

Na∑
i=1

E
[(
silu(ai)

)2]
(76)

= E

[(
a1

1 + e−a1

)2
]

(77)

=

∫ ∞

−∞

N (x; 0, 1)x2

(1 + e−x)2
dx (78)

≈ 0.3558 (79)

M
[
silu(a)

]
≈
√
0.3558 ≈ 0.596. (80)

Dividing the output accordingly, we obtain

MP-SiLU(a) =
silu(a)

0.596
=

[
ai

0.596 · (1 + e−ai)

]
. (81)
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Sum. Let us consider the weighted sum of two random
vectors, i.e., c = waa+ wbb. We assume that the elements
within each vector have equal expected magnitude and that
E[aibi] = 0 for every i. Now,

M[c]2 =
1

Nc

Nc∑
i=1

E
[
(waai + wbbi)

2
]

(82)

=
1

Nc

Nc∑
i=1

E
[
w2

aa
2
i + w2

bb
2
i + 2wawbaibi

]
(83)

=
1

Nc

Nc∑
i=1

[
w2

aE
[
a2i
]︸ ︷︷ ︸

=M[a]2

+w2
b E

[
b2i
]︸ ︷︷ ︸

=M[b]2

+2wawb E
[
aibi

]︸ ︷︷ ︸
=0

]
(84)

=
1

Nc

Nc∑
i=1

[
w2

aM[a]2 + w2
bM[b]2

]
(85)

= w2
aM[a]2 + w2

bM[b]2. (86)

If the inputs are standardized, Equation 86 further simpli-
fies toM[c] =

√
w2

a + w2
b . A standardized version of c is

then given by

ĉ =
c

M[c]
=

waa+ wbb√
w2

a + w2
b

. (87)

Note that Equation 87 is agnostic to the scale of wa and
wb. Thus, we can conveniently define them in terms of blend
factor t ∈ [0, 1] that can be adjusted on a case-by-case basis.
Setting wa = (1 − t) and wb = t, we arrive at our final
definition:

MP-Sum(a,b, t) =
(1− t)a+ tb√
(1− t)2 + t2

. (88)

We have found that the best results are obtained by setting
t = 0.3 in the encoder, decoder, and self-attention blocks,
so that the residual path contributes 30% to the result while
the main path contributes 70%. In the embedding network
t = 0.5 seems to work well, leading to equal contribution
between the noise level and the class label.

Concatenation. Next, let us consider the concatenation of
two random vectors a and b, scaled by constants wa and wb,
respectively. The result is given by c = waa⊕ wbb, which
implies that

M[c]2 =

∑Nc

i=1 E
[
c2i
]

Nc
(89)

=

∑Na

i=1 E
[
w2

aa
2
i

]
+
∑Nb

i=1 E
[
w2

bb
2
i

]
Na +Nb

(90)

=
w2

aNaM[a]2 + w2
bNbM[b]2

Na +Nb
. (91)

Note that the contribution of a and b in Equation 91
is proportional to Na and Nb, respectively. If Na ≫ Nb,
for example, the result will be dominated by a while the
contribution of b is largely ignored. In our architecture
(Figure 22), this situation can arise at the beginning of the
decoder blocks when the U-Net skip connection is concate-
nated into the main path. We argue that the balance between
the two branches should be treated as an independent hy-
perparameter, as opposed to being tied to their respective
channel counts.

We first consider the case where we require the two inputs
to contribute equally, i.e.,

w2
aNaM[a]2 = w2

bNbM[b]2 = C2, (92)

where C is an arbitrary constant. Solving for wa and wb:

wa =
C

M[a]
· 1√

Na

(93)

wb =
C

M[b]
· 1√

Nb

(94)

Next, we introduce blend factor t ∈ [0, 1] to allow adjusting
the balance between a and b on a case-by-case basis, similar
to Equation 88:

ŵa = wa (1− t) =
C

M[a]
· 1− t√

Na

(95)

ŵb = wb t =
C

M[b]
· t√

Nb

. (96)

If the inputs are standardized, i.e.,M[a] =M[b] = 1,
we can solve for the value of C that leads to the output being
standardized as well:

1 = M[c]2 (97)

=
ŵ2

aNaM[a]2 + ŵ2
bNbM[b]2

Na +Nb
(98)

=
ŵ2

aNa + ŵ2
bNb

Na +Nb
(99)

=

[
C2 (1−t)2

Na

]
Na +

[
C2 t2

Nb

]
Nb

Na +Nb
(100)

= C2 (1− t)2 + t2

Na +Nb
, (101)

which yields

C =

√
Na +Nb

(1− t)2 + t2
. (102)

Combining Equation 102 with Equations 95 and 96, we
arrive at our final definition:

MP-Cat(a,b, t) =

√
Na +Nb

(1− t)2 + t2
·

[
1− t√
Na

a⊕ t√
Nb

b

]
.

(103)

30



In practice, we have found that the behavior of the model
is quite sensitive to the choice of t and that the best results are
obtained using t = 0.5. We hope that the flexibility offered
by Equation 103 may prove useful in the future, especially
in terms of exploring alternative network architectures.

Learned gain. While our goal of standardizing activations
throughout the network is beneficial for the training dynam-
ics, it can also be harmful in cases where it is necessary to
haveM[a] ̸= 1 in order to satisfy the training loss.

We identify two such instances in our network: the raw
pixels (Fθ) produced by the final output block (“Out”), and
the learned per-channel scaling in the encoder and decoder
blocks. In order to allowM[a] to deviate from 1, we intro-
duce a simple learned scaling layer at these points:

Gain(a) = g a, (104)

where g is a learned scalar that is initialized to 0. We have not
found it necessary to introduce multiple scaling factors on
a per-channel, per-noise-level, or per-class basis. Note that
g = 0 implies Fθ(x;σ) = 0, meaning that Dθ(x;σ) = x at
initialization, similar to CONFIGS A–B (see Appendix B.1).

C. Post-hoc EMA details

As discussed in Section 3, our goal is to be able to select the
EMA length, or more generally, the model averaging profile,
after a training run has completed. This is achieved by stor-
ing a number of pre-averaged models during training, after
which these pre-averaged models can be linearly combined
to obtain a model whose averaging profile has the desired
shape and length.

As a related contribution, we present the power function
EMA profile that automatically scales according to training
time and has zero contribution at t = 0.

In this section, we first derive the formulae related to
the traditional exponential EMA from first principles, after
which we do the same for the power function EMA. We then
discuss how to determine the appropriate linear combination
of pre-averaged models stored in training snapshots in order
to match a given averaging profile, and specifically, to match
the power function EMA with a given length.

C.1. Definitions

Let us denote the weights of the network as a function of
training time by θ(t), so that θ(0) corresponds to the ini-
tial state and θ(tc) corresponds to the most recent state. tc
indicates the current training time in arbitrary units, e.g.,
number of training iterations. As always, the training itself
is performed using θ(tc), but evaluation and other down-
stream tasks use a weighted average instead, denoted by
θ̂(tc). This average is typically defined as a sum over the

training iterations:

θ̂(tc) =

tc∑
t=0

ptc(t) θ(t), (105)

where ptc is a time-dependent response function that sums
to one, i.e.,

∑
t ptc(t) = 1.

Instead of operating with discretized time steps, we sim-
plify the derivation by treating θ, θ̂, and ptc as continuous
functions defined over t ∈ R≥0. A convenient way to gen-
eralize Equation 105 to this case is to interpret ptc as a
continuous probability distribution and define θ̂(tc) as the
expectation of θ(tc) with respect to that distribution:

θ̂(tc) = Et∼ptc(t)

[
θ(t)

]
. (106)

Considering the definition of ptc(t), we can express a
large class of practically relevant response functions in terms
of a canonical response function f(t):

ptc(t) =

{
f(t) / g(tc) if 0 ≤ t ≤ tc

0 otherwise
, (107)

where g(tc) =

∫ tc

0

f(t) dt. (108)

To characterize the properties, e.g., length, of a given re-
sponse function, we consider its standard distribution statis-
tics:

µtc = E[t] and σtc =
√

Var[t] for t ∼ ptc(t). (109)

These two quantities have intuitive interpretations: µtc indi-
cates the average delay imposed by the response function,
while σtc correlates with the length of the time period that is
averaged over.

C.2. Traditional EMA profile

The standard choice for the response function is the ex-
ponential moving average (EMA) where ptc decays expo-
nentially as t moves farther away from tc into the past, of-
ten parameterized by EMA half-life λ. In the context of
Equation 107, we can express such exponential decay as
ptc(t) = f(t)/g(tc), where

f(t) =

{
2t/λ if t > 0
λ

ln 2 δ(t) otherwise
(110)

g(tc) =
λ 2tc/λ

ln 2
, (111)

and δ(t) is the Dirac delta function.
The second row of Equation 110 highlights an inconve-

nient aspect about the traditional EMA. The exponential
response function is infinite in the sense that it expects to be
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able to consult historical values of θ infinitely far in the past,
even though the training starts at t = 0. Consistent with pre-
vious work, we thus deposit the probability mass that would
otherwise appear at t < 0 onto t = 0 instead, corresponding
to the standard practice of initializing the accumulated EMA
weights to network’s initial weights.

This implies that unless λ≪ tc, the averaged weights
θ̂(tc) end up receiving a considerable contribution from the
initial state θ(0) that is, by definition, not meaningful for the
task that the model is being trained for.

C.3. Tracking the averaged weights during training

In practice, the value of θ̂(tc) is computed during training as
follows. Suppose that we are currently at time tc and know
the current θ̂(tc). We then run one training iteration to arrive
at tn = tc + ∆t so that the updated weights are given by
θ(tn). Here ∆t denotes the length of the training step in
whatever units are being used for t.

To define θ(t) for all values of t, we consider it to be a
piecewise constant function so that θ(t) = θ(tn) for every
tc < t ≤ tn. Let us now write the formula for θ̂(tn) in terms
of Equations 106 and 107:

θ̂(tn) = Et∼ptn(t)

[
θ(t)

]
(112)

=

∫ ∞

−∞
ptn(t) θ(t) dt (113)

=

∫ tn

0

f(t)

g(tn)
θ(t) dt (114)

=

∫ tc

0

f(t)

g(tn)
θ(t) dt+

∫ tn

tc

f(t)

g(tn)
θ(t) dt (115)

=
g(tc)

g(tn)︸ ︷︷ ︸
=: β(tn)

∫ tc

0

f(t)

g(tc)
θ(t)dt︸ ︷︷ ︸

= θ̂(tc)

+
θ(tn)

g(tn)

∫ tn

tc

f(t)dt︸ ︷︷ ︸
= g(tn)−g(tc)

(116)

= β(tn) θ̂(tc) +
θ(tn)

g(tn)

(
g(tn)− g(tc)

)
(117)

= β(tn) θ̂(tc) +

[
1− g(tc)

g(tn)︸ ︷︷ ︸
= β(tn)

]
θ(tn) (118)

= β(tn) θ̂(tc) +
(
1− β(tn)

)
θ(tn). (119)

Thus, after each training iteration, we must linearly interpo-
late θ̂ toward θ by β(tn). In the case of exponential EMA,
β(tn) is constant and, consulting Equation 111, given by

β(tn) =
g(tc)

g(tn)
=

2tc/λ

2tn/λ
= 2−∆t/λ. (120)

C.4. Power function EMA profile

In Section 2, we make two observations that highlight the
problematic aspects of the exponential EMA profile. First, it

t = 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

f(t)
σrel = 0.25, γ = 0.72

σrel = 0.20, γ = 1.83

σrel = 0.15, γ = 3.56

σrel = 0.10, γ = 6.94

σrel = 0.05, γ = 16.97

Figure 24. Examples of the canonical response function of our
power function EMA profile (Equation 121). Each curve corre-
sponds to a particular choice for the relative standard deviation σrel;
the corresponding exponent γ is calculated using Algorithm 2.

is generally beneficial to employ unconventionally long av-
erages, to the point where λ≪ tc is no longer true. Second,
the length of the response function should increase over the
course of training proportional to tc. As such, the definition
of f(t) in Equation 110 is not optimal for our purposes.

The most natural requirement for f(t) is that it should
be self-similar over different timescales, i.e., f(c t) ∝ f(t)
for any positive stretching factor c. This implies that the
response functions for different values of tc will also be
stretched versions of each other; if tc doubles, so does
σtc . Furthermore, we also require that f(0) = 0 to avoid
meaningless contribution from θ(0). These requirements are
uniquely satisfied, up to constant scaling, by the family of
power functions ptc(t) = f(t)/g(tc), where

f(t) = tγ and g(tc) =
tγ+1
c

γ + 1
. (121)

The constant γ > 0 controls the overall amount of averaging
as illustrated in Figure 24.

Considering the distribution statistics of our response
function, we notice that ptc is equal to the beta distribution
with α = γ + 1 and β = 1, stretched along the t-axis by tc.
The relative mean and standard deviation with respect to tc
are thus given by

µrel =
µtc

tc
=

γ + 1

γ + 2
(122)

σrel =
σtc

tc
=

√
γ + 1

(γ + 2)2 (γ + 3)
. (123)

In our experiments, we choose to use σrel as the primary
way of defining and reporting the amount of averaging, in-
cluding the EDM baseline (CONFIG A) that employs the
traditional EMA (Equation 110). Given σrel, we can obtain
the value of γ to be used with Equation 121 by solving a 3rd
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Algorithm 2 NumPy code for converting σrel to γ.

def sigma_rel_to_gamma(sigma_rel):

t = sigma_rel ** −2
gamma = np.roots([1, 7, 16 − t, 12 − t]).real.max()
return gamma

order polynomial equation and taking the unique positive
root

γ + 1

(γ + 2)2 (γ + 3)
= σ2

rel (124)

(γ + 2)2 (γ + 3)− (γ + 1)σ−2
rel = 0 (125)

γ3 + 7γ2 +
(
16− σ−2

rel

)
γ +

(
12− σ−2

rel

)
= 0, (126)

which can be done using NumPy as shown in Algorithm 2.
The requirement γ > 0 implies that σrel < 12−0.5 ≈ 0.2886,
setting an upper bound for the relative standard deviation.

Finally, to compute θ̂ efficiently during training, we note
that the derivation of Equation 119 does not depend on any
particular properties of functions f or g. Thus, the update for-
mula remains the same, and we only need to determine β(tn)
corresponding to our response function (Equation 121):

β(tn) =
g(tc)

g(tn)
=

(
tc
tn

)γ+1

=

(
1− ∆t

tn

)γ+1

. (127)

The only practical difference to traditional EMA is thus that
β(tn) is no longer constant but depends on tn.

C.5. Synthesizing novel EMA profiles after training

Using Equation 119, it is possible to track the averaged
weights for an arbitrary set of pre-defined EMA profiles
during training. However, the number of EMA profiles
that can be handled this way is limited in practice by the
associated memory and storage costs. Furthermore, it can be
challenging to select the correct profiles beforehand, given
how much the optimal EMA length tends to vary between
different configurations; see Figure 5a, for example. To
overcome these challenges, we will now describe a way to
synthesize novel EMA profiles after the training.

Problem definition. Suppose that we have stored a num-
ber of snapshots Θ̂ = {θ̂1, θ̂2, . . . , θ̂N} during training, each
of them corresponding to a different response function pi(t).
We can do this, for example, by tracking θ̂ for a couple of
different choices of γ (Equation 121) and saving them at reg-
ular intervals. In this case, each snapshot θ̂i will correspond
to a pair (ti, γi) so that pi(t) = pti,γi

(t).
Let pr(t) denote a novel response function that we wish

to synthesize. The corresponding averaged weights are given
by Equation 106:

θ̂r = Et∼pr(t)

[
θ(t)

]
. (128)

However, we cannot hope to calculate the precise value
of θ̂r based on Θ̂ alone. Instead, we will approximate it by
θ̂∗r that we define as a weighted average over the snapshots:

θ̂∗r =
∑

i
xi θ̂i (129)

=
∑

i
xi Et∼pi(t)

[
θ(t)

]
(130)

=
∑

i
xi

∫ ∞

−∞
pi(t) θ(t) dt (131)

=

∫ ∞

−∞
θ(t)

∑
i
pi(t)xi︸ ︷︷ ︸

=: p∗
r(t)

dt, (132)

where the contribution of each θ̂i is weighted by xi ∈ R, re-
sulting in the corresponding approximate response function
p∗r(t). Our goal is to select {xi} so that p∗r(t) matches the
desired response function pr(t) as closely as possible.

For notational convenience, we will denote weights by
column vector x = [x1, x2, . . . , xN ]⊤ ∈ RN and the snap-
shot response functions by p = [p1, p2, . . . , pN ] so that
p(t) maps to the row vector [p1(t), p2(t), . . . , pN (t)] ∈ RN .
This allows us to express the approximate response function
as an inner product:

p∗r(t) = p(t)x. (133)

Least-squares solution. To find the value of x, we choose
to minimize the L2 distance between p∗r(t) and pr(t):

L(x) =
∥∥p∗r(t)− pr(t)

∥∥2
2
=

∫ ∞

−∞

(
p∗r(t)− pr(t)

)2
dt.

(134)
Let us solve for the minimum of L(x) by setting its gradient
with respect to x to zero:

0 = ∇xL(x) (135)

= ∇x

[ ∫ ∞

−∞

(
p(t)x− pr(t)

)2
dt

]
(136)

=

∫ ∞

−∞
∇x

[(
p(t)x− pr(t)

)2]
dt (137)

=

∫ ∞

−∞

(
p(t)x− pr(t)

)
∇x

[
p(t)x− pr(t)

]
dt (138)

=

∫ ∞

−∞

(
p(t)x− pr(t)

)
p(t)⊤ dt (139)

=

∫ ∞

−∞

(
p(t)⊤p(t)x− p(t)⊤pr(t)

)
dt (140)

=

∫ ∞

−∞
p(t)⊤p(t) dt︸ ︷︷ ︸

=:A

x−
∫ ∞

−∞
p(t)⊤pr(t) dt︸ ︷︷ ︸

=:b

(141)

where we denote the values of the two integrals by matrix
A ∈ RN×N and column vector b ∈ RN , respectively. We
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are thus faced with a standard matrix equation Ax− b = 0,
from which we obtain the solution x = A−1 b.

Based on Equation 141, we can express the individual
elements of A and b as inner products between their corre-
sponding response functions:

A = [aij ], aij =
〈
pi, pj

〉
(142)

b = [bi]
⊤, bi =

〈
pi, pr

〉
, (143)

where
〈
f, g

〉
=

∫ ∞

−∞
f(x) g(x) dx. (144)

In practice, these inner products can be computed for arbi-
trary EMA profiles using standard numerical methods, such
as Monte Carlo integration.

Analytical formulas for power function EMA profile. If
we assume that {pi} and pr are all defined according to our
power function EMA profile (Equation 121), we can derive
an accurate analytical formula for the inner products (Equa-
tion 144). Compared to Monte Carlo integration, this leads
to a considerably faster and more accurate implementation.
In this case, each response function is uniquely defined by
its associated (t, γ). In other words, pi(t) = pti,γi

(t) and
pr(t) = ptr,γr

(t).
Let us consider the inner product between two such re-

sponse functions, i.e.,
〈
pta,γa

, ptb,γb

〉
. Without loss of gen-

erality, we will assume that ta ≤ tb. If this is not the case,
we can simply flip their definitions, i.e., (ta, γa)↔ (tb, γb).
Now, 〈

pta,γa
, ptb,γb

〉
(145)

=

∫ ∞

−∞
pta,γa

(t) ptb,γb
(t) dt (146)

=

∫ ta

0

fγa
(t)

gγa(ta)
· fγb

(t)

gγb
(tb)

dt (147)

=
1

gγa(ta) gγb
(tb)

∫ ta

0

fγa
(t) fγb

(t) dt (148)

=
(γa + 1) (γb + 1)

tγa+1
a tγb+1

b

∫ ta

0

tγa+γb dt (149)

=
(γa + 1) (γb + 1)

tγa+1
a tγb+1

b

· tγa+γb+1
a

γa + γb + 1
(150)

=
(γa + 1) (γb + 1) (ta/tb)

γb

(γa + γb + 1) tb
. (151)

Note that Equation 151 is numerically robust because the
exponentiation by γb is done for the ratio ta/tb instead of be-
ing done directly for either ta or tb. If we used Equation 150
instead, we would risk floating point overflows even with
64-bit floating point numbers.

Solving the weights {xi} thus boils down to first populat-
ing the elements of A and b using Equation 151 and then

Algorithm 3 NumPy code for solving post-hoc EMA weights.

def p_dot_p(t_a, gamma_a, t_b, gamma_b):

t_ratio = t_a / t_b

t_exp = np.where(t_a < t_b, gamma_b, −gamma_a)
t_max = np.maximum(t_a, t_b)

num = (gamma_a + 1) * (gamma_b + 1) * t_ratio ** t_exp
den = (gamma_a + gamma_b + 1) * t_max
return num / den

def solve_weights(t_i, gamma_i, t_r, gamma_r):

rv = lambda x: np.float64(x).reshape(−1, 1)
cv = lambda x: np.float64(x).reshape(1, −1)
A = p_dot_p(rv(t_i), rv(gamma_i), cv(t_i), cv(gamma_i))

B = p_dot_p(rv(t_i), rv(gamma_i), cv(t_r), cv(gamma_r))

X = np.linalg.solve(A, B)

return X

solving the matrix equation Ax = b. Algorithm 3 illus-
trates doing this simultaneously for multiple target response
functions using NumPy. It accepts a list of {ti} and {γi},
corresponding to the input snapshots, as well as a list of {tr}
and {γr}, corresponding to the desired target responses. The
return value is a matrix whose columns represent the targets
while the rows represent the snapshots.

Practical considerations. In all of our training runs, we
track two weighted averages θ̂1 and θ̂2 that correspond to
σrel = 0.05 and σrel = 0.10, respectively. We take a snap-
shot of each average once every 8 million training images,
i.e., between 4096 training iterations with batch size 2048,
and store it using 16-bit floating point to conserve disk space.
The duration of our training runs ranges between 671–2147
million training images, and thus the number of pre-averaged
models stored in the snapshots ranges between 160–512. We
find that these choices lead to nearly perfect reconstruction
in the range σrel ∈ [0.015, 0.250]. Detailed study of the as-
sociated cost vs. accuracy tradeoffs is left as future work.

D. Implementation details
We implemented our techniques on top of the publicly avail-
able EDM [37] codebase.6 We performed our experiments
on NVIDIA A100-SXM4-80GB GPUs using Python 3.9.16,
PyTorch 2.0.0, CUDA 11.8, and CuDNN 8.9.4. We used
32 GPUs (4 DGX A100 nodes) for each training run, and 8
GPUs (1 node) for each evaluation run.

Table 6 lists the full details of our main models featured
in Table 2 and Table 3. Our implementation and pre-trained
models are available at https://github.com/NVlabs/edm2

D.1. Sampling

We used the 2nd order deterministic sampler from EDM
(i.e., Algorithm 1 in [37]) in all experiments with σ(t) = t
and s(t) = 1. We used the default settings σmin = 0.002,

6https://github.com/NVlabs/edm
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Model details ImageNet-512 ImageNet-64
XS S M L XL XXL S M L XL

Number of GPUs 32 32 32 32 32 32 32 32 32 32
Minibatch size 2048 2048 2048 2048 2048 2048 2048 2048 2048 2048
Duration (Mimg) 2147.5 2147.5 2147.5 1879.0 1342.2 939.5 1073.7 2147.5 1073.7 671.1
Channel multiplier 128 192 256 320 384 448 192 256 320 384
Dropout probability 0% 0% 10% 10% 10% 10% 0% 10% 10% 10%
Learning rate max (αref) 0.0120 0.0100 0.0090 0.0080 0.0070 0.0065 0.0100 0.0090 0.0080 0.0070
Learning rate decay (tref) 70000 70000 70000 70000 70000 70000 35000 35000 35000 35000
Noise distribution mean (Pmean) −0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.8 −0.8 −0.8 −0.8
Noise distribution std. (Pstd) 1.0 1.0 1.0 1.0 1.0 1.0 1.6 1.6 1.6 1.6

Model size and training cost
Model capacity (Mparams) 124.7 280.2 497.8 777.5 1119.3 1523.2 280.2 497.8 777.5 1119.3
Model complexity (gigaflops) 45.5 102.2 180.8 282.2 405.9 552.1 101.9 180.8 282.1 405.9
Training cost (zettaflops) 0.29 0.66 1.16 1.59 1.63 1.56 0.33 1.16 0.91 0.82
Training speed (images/sec) 8265 4717 3205 2137 1597 1189 4808 3185 2155 1597
Training time (days) 3.0 5.3 7.8 10.2 9.7 9.1 2.6 7.8 5.8 4.9
Training energy (MWh) 1.2 2.2 3.2 4.2 4.0 3.8 1.1 3.2 2.4 2.0

Sampling without guidance, FID
FID 3.53 2.56 2.25 2.06 1.96 1.91 1.58 1.43 1.33 1.33
EMA length (σrel) 0.135 0.130 0.100 0.085 0.085 0.070 0.075 0.060 0.040 0.040
Sampling cost (teraflops) 4.13 7.70 12.65 19.04 26.83 36.04 6.42 11.39 17.77 25.57
Sampling speed (images/sec/GPU) 8.9 6.4 4.8 3.7 2.9 2.3 10.1 6.6 4.6 3.5
Sampling energy (mWh/image) 17 23 31 41 51 65 15 22 32 43

Sampling with guidance, FID
FID 2.91 2.23 2.01 1.88 1.85 1.81 – – – –
EMA length (σrel) 0.045 0.025 0.030 0.015 0.020 0.015 – – – –
Guidance strength 1.4 1.4 1.2 1.2 1.2 1.2 – – – –
Sampling cost (teraflops) 6.99 10.57 15.52 21.91 29.70 38.91 – – – –
Sampling speed (images/sec/GPU) 6.0 4.7 3.8 3.0 2.5 2.0 – – – –
Sampling energy (mWh/image) 25 32 39 49 59 73 – – – –
Sampling without guidance, FDDINOv2
FDDINOv2 103.39 68.64 58.44 52.25 45.96 42.84 – – – –
EMA length (σrel) 0.200 0.190 0.155 0.155 0.155 0.150 – – – –
Sampling with guidance, FDDINOv2
FDDINOv2 79.94 52.32 41.98 38.20 35.67 33.09 – – – –
EMA length (σrel) 0.150 0.085 0.015 0.035 0.030 0.015 – – – –
Guidance strength 1.7 1.9 2.0 1.7 1.7 1.7 – – – –

Table 6. Details of all models discussed in Section 4. For ImageNet-512, EDM2-S is the same as CONFIG G in Figure 22.

σmax = 80, and ρ = 7. While we did not perform extensive
sweeps over the number of sampling steps N , we found
N = 32 to yield sufficiently high-quality results for both
ImageNet-512 and ImageNet-64.

In terms of guidance, we follow the convention used
by Imagen [70]. Concretely, we define a new denoiser D̂
based on the primary conditional model Dθ and a secondary
unconditional model Du:

D̂(x;σ, c) = wDθ(x;σ, c) + (1− w)Du(x;σ), (152)

where w is the guidance weight. Setting w = 1 disables
guidance, i.e., D̂ = Dθ, while increasing w > 1 strengthens
the effect. The corresponding ODE is then given by

dx =
x− D̂(x;σ, c)

σ
dσ. (153)

In Table 2 and Table 3, we define NFE as the total number
of times that D̂ is evaluated during sampling. In other words,

we do not consider the number of model evaluations to be
affected by the choice of w.

D.2. Mixed-precision training

In order to utilize the high-performance tensor cores avail-
able in NVIDIA Ampere GPUs, we use mixed-precision
training in all of our training runs. Concretely, we store
all trainable parameters as 32-bit floating point (FP32) but
temporarily cast them to 16-bit floating point (FP16) before
evaluating the model. We store and process all activation
tensors as FP16, except for the embedding network and the
associated per-block linear layers, where we opt for FP32
due to the low computational cost. In CONFIGS A–B, our
baseline architecture uses FP32 in the self-attention blocks
as well, as explained in Appendix B.1.

We have found that our models train with FP16 just
as well as with FP32, as long as the loss function is
scaled with an appropriate constant (see “Loss scaling” in
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Figures 16–22). In some rare cases, however, we have en-
countered occasional FP16 overflows that can lead to a col-
lapse in the training dynamics unless they are properly dealt
with. As a safety measure, we force the gradients computed
in each training iteration to be finite by replacing NaN and
Inf values with 0. We also clamp the activation tensors to
range [−256,+256] at the end of each encoder and decoder
block. This range is large enough to contain all practically
relevant variation (see Figure 15).

D.3. Training data

We preprocess the ImageNet dataset exactly as in the ADM
implementation7 by Dhariwal and Nichol [13] to ensure a
fair comparison. The training images are mostly non-square
at varying resolutions. To obtain image data in square aspect
ratio at the desired training resolution, the raw images are
processed as follows:
1. Resize the shorter edge to the desired training resolution

using bicubic interpolation.
2. Center crop.
During training, we do not use horizontal flips or any other
kinds of data augmentation.

D.4. FID calculation

We calculate FID [20] following the protocol used in
EDM [37]: We use 50,000 generated images and all available
real images, without any augmentation such as horizontal
flips. To reduce the impact of random variation, typically
in the order of ±2%, we compute FID three times in each
experiment and report the minimum. The shaded regions
in FID plots show the range of variation among the three
evaluations.

We use the pre-trained Inception-v3 model8 provided
with StyleGAN3 [36], which is a direct PyTorch translation
of the original TensorFlow-based model.9

D.5. Model complexity estimation

Model complexity (Gflops) was estimated using a PyTorch
script that runs the model through torch.jit.trace to
collect the exact tensor operations used in model evaluation.
This list of aten::* ops and tensor input and output sizes
was run through an estimator that outputs the number of
floating point operations required for a single evaluation of
the model.

In practice, a small set of operations dominate the cost
of evaluating a model. In the case of our largest (XXL)

7https://github.com/openai/guided-diffusion/blob/22e0
df8183507e13a7813f8d38d51b072ca1e67c/guided_diffusion/i
mage_datasets.py#L126

8https://api.ngc.nvidia.com/v2/models/nvidia/research
/stylegan3/versions/1/files/metrics/inception-2015-12-0
5.pkl

9http://download.tensorflow.org/models/image/imagenet
/inception-2015-12-05.tgz

ImageNet-512 model, the topmost gigaflops producing ops
are distributed as follows:

• aten::_convolution 545.50 Gflops
• aten::mul 1.68 Gflops
• aten::div 1.62 Gflops
• aten::linalg_vector_norm 1.54 Gflops
• aten::matmul 1.43 Gflops

Where available, results for previous work listed in Ta-
ble 2 were obtained from their respective publications. In
cases where model complexity was not publicly available,
we used our PyTorch estimator to compute a best effort esti-
mate. We believe our estimations are accurate to within 10%
accuracy.

D.6. Per-layer sensitivity to EMA length

List of layers included in the sweeps of Figure 5b in the
main paper are listed below. The analysis only includes
weight tensors — not biases, group norm scale factors, or
affine layers’ learned gains.

• enc-64x64-block0-affine
• enc-64x64-block0-conv0
• enc-64x64-block0-conv1
• enc-64x64-conv
• enc-32x32-block0-conv0
• enc-32x32-block0-skip
• enc-16x16-block0-affine
• enc-16x16-block0-conv0
• enc-16x16-block2-conv0
• enc-8x8-block0-affine
• enc-8x8-block0-skip
• enc-8x8-block1-conv0
• enc-8x8-block2-conv0
• dec-8x8-block0-conv0
• dec-8x8-block2-skip
• dec-8x8-in0-affine
• dec-16x16-block0-affine
• dec-16x16-block0-conv1
• dec-16x16-block0-skip
• dec-32x32-block0-conv1
• dec-32x32-block0-skip
• dec-32x32-up-affine
• dec-64x64-block0-conv1
• dec-64x64-block0-skip
• dec-64x64-block3-skip
• dec-64x64-up-affine
• map-label
• map-layer0

E. Negative societal impacts
Large-scale image generators such as DALL·E 3, Stable Dif-
fusion XL, or MidJourney can have various negative societal
effects, including types of disinformation or emphasizing
sterotypes and harmful biases [52]. Our advances to the
result quality can potentially further amplify some of these
issues. Even with our efficiency improvements, the training
and sampling of diffusion models continue to require a lot
of electricity, potentially contributing to wider issues such
as climate change.
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Figure 25. Uncurated images generated using our largest (XXL) ImageNet-512 model.

37



C
la

ss
89

(c
oc

ka
to

o)
,g

ui
da

nc
e

3.
0

C
la

ss
98

0
(v

ol
ca

no
),

gu
id

an
ce

1.
2

C
la

ss
33

(l
og

ge
rh

ea
d)

,g
ui

da
nc

e
2.

0

Figure 26. Uncurated images generated using our largest (XXL) ImageNet-512 model.
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Figure 27. Uncurated images generated using our largest (XXL) ImageNet-512 model.
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