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Summary

A method for modeling room acoustics and auralizing the results in real time with a moving listener is presented.
The acoustics modeling is based on the acoustic radiance transfer technique which is capable of modeling ar-
bitrary reflection properties of different materials. The novel idea of implementing this technique in frequency
domain allows modeling of all frequencies at once as the time domain technique requires separate runs for each
frequency band. Since the auralization of the results requires scaling, adding, and delaying responses as well
as convolving them with head-related impulse responses, the massive parallel computation capacity of modern
graphics hardware is utilized. Thus, realistic interactive walkthroughs are possible in typical room models with a

stationary source.

PACS no. 43.55.Ka, 43.58.Ta

1. Introduction

Interactive simulation of sound propagation in a complex
space is important for creating realistic virtual environ-
ments. The methods used for room acoustics modeling to-
day are either offline algorithms, use simplified reflection
models, or enable realtime walkthrough using a percep-
tual model without a rigid physical basis. In this paper,
a technique for interactive physically-based simulation of
sound propagation in virtual environments with arbitrary
reflection properties is presented. Figure 1 illustrates this
technique.

The proposed algorithm is based on a previously in-
troduced acoustic radiance transfer method which pro-
duces results that are validated against real-life measured
data [1]. The output of this method is a complete room
impulse response, and not only the early part containing
low-order specular reflections. The high performance is
achived by utilizing the fact that the time-consuming part
of the method can be pre-computed and only the last phase
of the method must be run in realtime when the listener
moves.

Previously, the acoustic radiance transfer method has
been implemented in the time domain and responses for
different frequencies had to be modelled separately. The
new method works in the frequency domain and allows
the responses for the full spectrum to be modelled at once.
This simplifies the use of complex frequency-dependent
reflection models.
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The trend in recent years has been that the pure comput-
ing power of graphics hardware has increased at a faster
pace than that of central processing units. This massive
parallel computing hardware has not yet been widely used
for auralization purposes, although the nature of the prob-
lem is ideal for parallellism. Thus, the presented imple-
mentation utilizes the graphics hardware for processing
the responses during the realtime computation.

The main contributions of the paper are the following:
e Realtime auralization in rooms with arbitrary reflection

properties for a moving listener.

e Frequency domain computation of the acoustic radi-
ance transfer.

e Utilization of the massive parallellism available on
graphics hardware for realtime auralization.

The presented system enables dynamic realtime auraliza-

tion of, e.g., a concert hall model. Such a tool would be

of great help for acoustic consultants. They can give their

clients a free walk in the virtual concert hall, and in addi-

tion to an impressive visualization, the clients can listen to

the designed acoustics in any place of a virtual model.

The most relevant related work is briefly reviewed in the
next section. Then, the concept of acoustic radiance trans-
fer is introduced and it is shown how it can be utilized in a
method for modeling room acoustics. It is shown that the
operators required in this method can also be applied in the
frequency domain, and the fourth section covers the design
of the novel implementation of the acoustic radiance trans-
fer algorithm. This description includes a brief explanation
of the pre-computation part and a more detailed discussion
of the runtime computation and especially the effective use
of graphics hardware. Eventually, the algorithm is run with
four test models and the results are given, the limitations
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Figure 1. The acoustics of a concert hall model is simulated with the acoustic radiance transfer method. The results from all the surface
patches are convolved in realtime with an anechoic stimulus to create a binaural interactive auralization.

of the method are listed and the possible future improve-
ments are suggested.

2. Related Work

This section briefly reviews works that are related to real-
time auralization, head-related transfer functions, and uti-
lization of graphics procesing unit (GPU) in handling au-
dio signals. Covering the numerous methods for computa-
tional acoustics modeling is out of the scope of this paper
(an interested reader may consult the survey by [2]). Only
the work most directly related to the presented work is re-
ferred to.
In sound rendering [3] the acoustic modeling results are
made audible, i.e. auralized [4] by convolving the room
impulse response with a dry audio signal. A straightfor-
ward method is to apply the impulse responses directly
in convolution, but this approach is problematic when the
listener moves and the impulse response varies over the
space. For dynamic rendering it is more convenient to use
the parametric room impulse response rendering technique
in which each reflection path is processed separately [5, 6].
In that case only a limited number of early reflections can
be processed, and an artificial reverberation algorithm has
to be used to fill in the remaining part of the response.
However, the novel approach of the presented work is to
model the complete impulse response even for a moving
listener.
Head-related transfer functions model the effects caused
by the listener’s head, shoulders, and pinnae, and how they
modify the sound signals coming from different directions
[7]. These functions are needed when making spatialized
sound for headphones. In practice, auralization can be per-
formed by convolving a dry signal with a head-related im-
pulse response (HRIR) filters corresponding to the incom-
ing direction of the sound, thus modeling the signal arriv-
ing at the eardrums of the listener. An alternative approach
would be to use finite impulse response (FIR) or infinite
impulse response (IIR) filters [8]. In the presented work,
the FIR filtering approach is chosen for the direct sound,
since it has to be processed in the time domain, for the
reasons explained later, and the convolution would be too
costly.

On the other hand, the reflections which are handled in
the frequency domain can more easily utilize the convo-
lution approach. When measured data is used, a discrete

sampling of directions around the listener results in hun-
dreds of HRTF filters for both ears to cover the whole
space sufficiently well. Utilizing this kind of data, e.g. with
linear interpolation, is impractical when the amount of
memory is limited, and thus reduced models of the HRTF
have been suggested.

There are techniques based on relatively simple mod-
els which try to emulate the characteristics of human
pinna [9, 10]. The employed models, however, are quite
crude approximations. Another technique that has been
suggested models the external ear as a multisensor broand-
band beamformer [11], but the computational burden and
the numerical instability become difficult issues when
modeling wide solid angles.

One way to save memory is to compress a measured
HRTF database by means of principal component analy-
sis (PCA) [12, 13, 14]. The interaural time delay is sepa-
rated and a minimum phase HRTF is represented as a lin-
ear combination of the principal components. A relatively
small number of components are required to suppress the
error to a reasonable level. Due to the minimum phase as-
sumption the measured phase behaviour is lost.

Chen et al. propose using complex valued HRTFs which
are expressed as a combination of a set of eigentrans-
fer functions (EFs) [15]. The EFs are orthogonal set of
frequency-dependent functions and they are obtained by a
discrete Karhunen-Logve expansion procedure. The num-
ber of EFs required to produce good quality HRTFs can
be even smaller than the number of PCA components, and
the measured phase is also taken into account. The HRTFs
are also continuous unlike in some cases in the PCA tech-
nique.

Yet another similar compression technique is based on
spherical harmonics (SH) [16]. The produced HRTFs are
continuous. The SHs are hierarchical and they have a
known structure so that adding more coeffients increases
the accuracy in a predictable way. However, more SH com-
ponents and coefficients are needed to accurately represent
the HRTF, because the components are not adapted to the
specific HRTF modelled, unlike in the PCA components
or EFs.

Since the decomposition into components saves mem-
ory, it is suitable for the presented work which does com-
putation on the GPU, where the memory is limited. In ad-
dition the reconstruction of the HRTFs on the GPU does
not significantly increase the computational cost as long
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as the number of components is low. In the SH decompo-
sition, the number of components required is unnecessar-
ily high. The PCA approach was chosen for its simplicity
and robustness, although the technique based on EFs could
have produced better quality.
Using the GPUs in acoustic computations is a step to-
wards interactive acoustics modeling. Gallo and Tsingos
explained how to implement two typical signal processing
tasks on the GPU: variable delay-line and simple filtering.
They compare the performance of the GPU implementa-
tion to a CPU implementation, concluding that GPU could
accelerate audio rendering by 20% back in 2004 and that
the latest graphics architectures would improve the GPU
performance significantly [17]. Recently, Tsingos et al.
showed how to utilize the GPU in computing the first order
scattering effects modeled with the Helmholtz-Kirchhoff
integral theorem and the Kirchhoff approximation [18].
Rober et al. used an energy-based formulation of the
sound propagation and utilized a GPU-based ray tracer
to compute the reflection paths [19], which were then
rendered audible. Their work is similar to the presented
work, but instead of the ray tracing technique and frequen-
cy-band-based approach, the frequency domain radiance
transfer technique is used, which allows general reflec-
tion models, much longer responses, and more accurate
frequency-dependent effects.
The acoustic radiance transfer is a recently presented
acoustic modeling technique based on progressive radios-
ity and arbitrary reflection models [1]. The acoustic energy
is shot from the sound source to the surfaces of the model
which have been divided into patches. Then, the propa-
gation of the energy is followed from patch to patch and
the intermediate results are stored on the patches. Finally,
when the desired accuracy is achieved, the energy is col-
lected from the patches to the listener. The details of the
technique are discussed later in this paper. However, the
original method is only an off-line algorithm. In this paper,
the algorithm is modified to perform the acoustic radiance
transfer in the frequency domain. This approach, in addi-
tion to the usage of the GPUs, makes it possible to run the
final gathering and sound rendering in realtime thus en-
abling interactive walkthroughs in environments with ar-
bitrary reflection properties.

3. Acoustic Energy Transfer

The acoustic radiance propagation in an enclosure can be
written in the form of the room acoustic rendering equa-
tion:

2(x', Q) = y(x', Q) + J R(x,x', Q) &(x,T) dx, (1)
g

where the outgoing time-dependent radiance, &(x', Q),
from a surface point x’ in direction Q is written as a sum
of two terms: the radiance emitted by the surface itself,
&y(x', Q), and the radiance from all the other surfaces re-
flected via the surface point x. The latter term is an integral

108

Siltanen et al.: Radiance transfer for auralization

Figure 2. A single reflection from point x via point x’ in direction
Q. I' is the direction of the radiance leaving point x and © is the
direction is which the radiance arrives at point x’. The directions
are two-dimensional quantities which can be expressed, e.g. with
elevation and azimuth angles. The surface normals are n, at point
x and n,s at point x'.

over G C R3 which is the set of all surface points in the en-
closure. The radiance from one of these points, x, towards
point x’ is denoted as €(x, "), where T is the direction of
the radiance. Since only a fraction of the radiance leaving
point x actually reaches point x', the radiance is multiplied
by

R(x,x', Q) =V(x,.x) p(x',0,Q) g(x, x), 2)

where V(x, x") accounts for the occlusion, p(x’, ©, Q) is
the bi-directional reflectance distribution funtion (BRDF)
which describes the portion of the radiance arriving at
point x’ from direction © reflected at direction €, and
g(x, x") is a function taking into account the attenuation
by distance, the angles between the surfaces, and the prop-
agation delay, since the speed of sound is finite and this
causes temporal spreading of the radiance. These variables
are described in detail in [1], but for the following discus-
sion it is sufficient to note that this kind of relationship can
be written for the transfer of radiance between two surface
points. Figure 2 shows the relevant geometry in the case of
a single reflection.

A similar relationship can be written between two con-
vex surface areas, i.e. patches. If the patches are small
enough compared to their distance, the propagation delay
and directional properties of the radiance from one patch
to the other patch remain approximately constant over all
points on the patches. Then the fraction of the radiance
leaving patch A and arriving at patch A’ is called the form
factor, F(A, A').

F(A, A") can be evaluated by computing integrals over
both of the patches for the function g(x, x’), i.e. comput-
ing the polygon-to-polygon form factor. But, to simplify
the evaluation, it is possible to compute the portion of ra-
diance from the centroid of the emitting patch arriving at
the receiving patch, i.e. the point-to-polygon form factor.
In addition, the direction-dependency of the outgoing ra-
diance can be taken into account by using the directional
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point-to-polygon form factor

cos(y) cos(8)

F(x,F,A’,@):J VY(x,T, x, ©) dx’, (3)
A/

b = xP

where x is the centroid of the emitting patch, I" is the solid
angle through which the radiance is leaving that patch, A’
is the receiving patch, © is the solid angle through which
the radiance is received, and y and 6 are single incoming
angles inside solid angles I" and O, respectively. The visi-
bility term V(x, ", x’, ®) equals one when the line from x
to x’ is unobstructed and inside solid angle I" on the emit-
ting patch and inside solid angle ® on the receiving patch,
and zero otherwise.

3.1. Acoustic Radiance Transfer Method

Based on this formulation of acoustic energy transfer, a
computational acoustic modeling method has been devel-
oped [1]. This acoustic radiance transfer technique models
the transfer of acoustic energy in an enclosure. The geo-
metric model of the room is divided into patches. Since
it is possible to compute the energy transfer between two
patches, the total energy transfer can be computed as fol-
lows.

First, the acoustic energy is shot from the sound sour-
ce(s) to all unoccluded patches. The energy is weighted
by the directional form factor and reflected at each patch
according to the reflectance pattern of their material repre-
sented as a BRDF. The outgoing energy from each patch is
stored on the patch for each direction (a set of directional
slots is used).

Then, the patch with the highest undistributed energy
is chosen and the energy stored on that patch is shot for-
ward as if it were a sound source. The energy on that patch
is marked distributed and the next patch with the highest
undistributed energy is chosen. The process is repeated un-
til the undistributed energy has fallen below a very small
threshold value. The result of this phase is that the acoustic
energy has been distributed on the surfaces of the room ac-
cording to the geometry and the reflection properties of the
materials. All the patches have stored the time-dependent
outgoing energy in each direction.

The last phase of the technique is the final gathering,
where the energy is collected from each unoccluded patch
to the listener. This phase must be repeated every time the
listener moves, while the previous phases can be precom-
puted.

3.2. Frequency Domain Operations

Since the acoustic radiance varies over time, the energy re-
sponses on the patches must be represented as functions of
time. The main idea of the presented new method is to per-
form all the computations in the frequency domain. The
time domain responses in the acoustic radiance transfer
method can be replaced by frequency domain responses
represented as discrete Fourier transform (DFT) coeffi-
cients ai, where k € [0, N — 1] for response length N. The
coefficients are complex numbers, a; = x+yi = re'®. The
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absolute value r of a coefficient corresponds to the mag-
nitude of the frequency component while ¢ is the phase
angle.

In the initial shooting the impulse originating from the
source is a Dirac delta function. Conveniently, its DFT is
very simple and all the coeffients of the initial response are
equal to one.

To be able to perform the computation in the frequency
domain, the frequency domain operations corresponding
to the time domain operations utilized by the method must
be found. The linearity of the Fourier transform assures
that scalar multiplication and addition can be performed
similarly to the time domain operations. The scalar mul-
tiplication is required for scaling the responses according
to the form factors and BRDFs, and the addition is used
in accumulation of the contributions of several responses
into one response. In addition, time shifting is needed to
implement the propagation delays. The relations between
the required time domain and frequency domain operators
are as follows:

F
5[n] «— 1 (4)

ax[n] + by[n] «<— aX(e'®) + bY (e'*) (5)
x[n = ny] «— e x(el?). (6)

3.3. Response Representations

For auralization purposes all the energy responses must
be converted into equivalent impulse responses [20]. The
samples in the energy response correspond to the intensity,
which is proportional to the squre of the pressure, arriving
at a certain area within a short interval determined by the
length of the sample. The samples in the impulse response
represent the pressure at a certain point and in a certain
moment of time.

By making the same assumptions as when defining the
form factor, a relationship can be derived between these
two types of responses. The wavefronts arriving from one
patch at another patch are then approximately planar, and
the acoustic intensity can be written as

I =pu=—, @)

where u is the particle velocity, p is the density of air, and
¢ is the speed of sound. When examining the constant-
length intervals of time, i.e. the sample length, it becomes
apparent that the samples in the energy response are pro-
portional to the square of the samples in the equivalent
impulse response. Since DFT is linear, the same relation
also holds in the frequency domain. A reasonable approx-
imation of the equivalent impulse response to an energy
response can be constructed by taking the square root of
the magnitude of each sample and keeping the phases un-
changed.
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Figure 3. The simulation system for realtime auralization.
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Figure 4. In the pre-computation phase, frequency domain direc-
tional responses to all the patches are computed.

4. Implementation

The presented novel auralization system consists of a pre-
computation phase and a runtime computation phase, as
illustrated in Figure 3. The acoustic radiance transfer is
performed completely in the frequency domain, and the
signals are transformed to the time domain only for final
sound reproduction.

4.1. Pre-computation

In the pre-computation phase, shown in detail in Figure 4,
the geometric model is subdivided into patches, the reflec-
tion models for all the materials are constructed, and the
acoustic radiance transfer method is run to obtain the di-
rectional energy responses for all the patches.

4.1.1. Subdivision into patches

It is required that the 3-dimensional polygonal model of
the room is split into patches. The simplest technique to
make the subdivision into patches is to choose planes regu-
larly along each coordinate axis and then cut the polygons
by these planes. The patches do not have to be equal sized,
but this is usually preferable so that the iterative propaga-
tion will converge faster. The run time of the precalcula-
tion phase is quadratically proportional to the number of
patches, and thus very fine subdivisions may lead to ex-
cessively long execution times.
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4.1.2. Reflection model construction

The effect of a boundary material on a sound wave is a
complex one. Both the temporal and spectral behavior of
reflected sound are functions of incident angle. However,
in practice boundary materials are described only with
plain absorption and diffusion coefficients at quite coarse
frequency resolution, usually in octave bands. For these
reasons, simplified angle-independent reflection models
are usually applied in room acoustics modeling.

The obtained BRDFs are presented as frequency do-
main responses for incoming-outgoing direction pairs. The
implementation with complex values enables even incor-
poration of phase behaviour into the reflection models, if
such data would be available.

In the acoustic radiance transfer method the reflection
directions can be represented as a hemisphere which is dis-
cretized into solid angles such that there is one frequency
response in each solid angle. In the presented implemen-
tation, the discretization is quite coarse; the hemishpere is
divided into 18 solid angles. Based on available absorp-
tion and diffusion data, the reflection models (BRDFs) are
designed for energies, following the approach in [1].

4.1.3. Frequency domain acoustic radiance transfer

The acoustic radiance transfer, explained in Section 3.1,
can be performed in the frequency domain by using the
frequency domain operators for the responses. In the ini-
tial shooting an energy impulse, according to equation (4),
is spread to all the visible patches. Then, as the energy is
iteratively propagated between patches, the responses are
scaled with form factors, utilizing equation (5), and time-
shifted using the operator in equation (6). The frequency-
dependent absorption by the materials and air can be di-
rectly applied to the samples in the frequency domain re-
sponses corresponding to the desired frequencies.

The results of the frequency domain computation, i.e.
after the inverse DFT, are exactly the same as with the time
domain computation [1] if the responses in the frequency
domain computation use full resolution responses and not
the compressed ones which are described below.

4.1.4. Compressed responses

With current hardware the length of the responses at
patches has to be limited since the memory required
for storing them is directly proportional to the response
length. On the other hand, the quality of the response
depends on its length. In the presented implementation,
a compromise between the performance and quality was
found with a response length of 1024.

Although, the pre-computed results are stored as vec-
tors of 1024 samples, longer responses are needed for the
computation. The inverse DFT of the 1024 samples long
frequency domain response would produce the correct re-
sponse in the time domain for a very low sampling rate or
for a very short interval of time. For a sampling rate of 48
kHz a response of 65536 samples would be able to repre-
sent approximately a 1.4 s reverberation which is consid-
ered sufficient for this implementation.
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Figure 5. For the overlap-add convolution all the patch responses
are upsampled from 1 k samples to 64 k samples. The original 1k
response is in the middle. On top is a 64k response constructed
by repeating the 1k response 64 times, and on bottom is a 64
response constructed by stretching the samples in the 1k response
64 samples wide.

There are several approaches to transform a 1024-
sample response into a 65536-sample response. Simple
interpolation would be possible by zero-padding the cen-
tre of the frequency domain response, but that would
effectively remove the high frequencies, allowing only
modelling of low frequencies, although the time struc-
ture would be correct. On the other hand, preserving the
frequency content by upsampling the response in the fre-
quency domain would destroy the time structure.

Thus the responses are upsampled using the upper one
of techniques shown in Figure 5. Repeating the low-
resolution response to fill the entire high-resolution re-
sponse, preserves the time structure and produces the cor-
rect solution for low frequencies while the higher frequen-
cies in the response are incorrect. However, the phase in
the high frequencies will be incorrect in any case, since the
dicretized patches are much larger than the wavelength and
thus the phase can change dramatically over the surface of
a patch, although only one phase value is used in the mod-
eling process. According to informal listening tests, the au-
ralized results still sound good, because the time structure
is correct.

4.2. Run-time Computation

The run-time computation, outlined in Figure 6, consists
of computation of parameters on the CPU, final gather-
ing, including directional filtering, on the GPU, and finally
convolution with a dry signal on the CPU. The final gather-
ing, which constructs the filters for the convolution phase,
is described in detail in the next section, but the CPU com-
putation and the approach chosen for the HRTF filtering
are covered in this section.

Source position &
orientation (static)

Listener position &
orientation (dynamic)

CPU

A A 4 Compute
propagation delay, gain, |

Visibility
computation air absorption, and
interpolated HRTF weights

Parameters for each patch

Parameters for
direct sound

GPU A4

e
responses —p| and” Accumulate
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cPu
Dry A

audio »| FFT |—> Multiplication |—> Inverse :(
FFT %

stream

» Output
audio
streams

U

Reflected sound processing

v Direct sound processing
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x filtering filtering

¥ ¥
o I |

direct sound

Figure 6. In the run-time processing, all the reflections are pro-
cessed in the frequency domain while the direct sound is handled
in the time domain.

All the signal processing is performed in the frequency
domain, except for the direct sound which is handled in
the time domain on the CPU. In the presented implemen-
tation only headphone reproduction is considered, but the
algorithm can be tailored for any multichannel reproduc-
tion system, e.g., vector base amplitude panning [21] or
Ambisonics [22].

The parameter computation and the final gathering must
be performed each time the listener moves. It is obvious
that the achieved update rate depends on the complexity
of the geometry.

4.2.1. Parameter computation

The first step is to find all the patches visible relative to
the listener using a kd-tree structure, a hierarchical spa-
tial data structure which can significantly accelerate the
search process [23]. In the second step parameters such
as the propagation delay and the attenuation factor (gain)
are computed based on the distance from the patch. The air
absorption is also included in the computation of the atten-
uation factor by using appropriate analytical formulations
[24]. In addition, the incoming direction of the radiance
from the patch to the listener is needed in directional fil-
tering with HRTFs. Not the direction itself, but the inter-
polated HRTF weights (explained later) for each patch are
given as parameters to the final gathering phase.

All these computations are also performed for the direct
sound in a similar way than for the patches, but the param-
eters are passed directly to the direct sound computation
on the CPU and not to the GPU.

4.2.2. Directional filtering for binaural output

Directional filtering is implemented by separating the in-
teraural time delay (ITD) and the minimum-phase HRTFs
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for 710 measured directions [25]. The ITDs can be added
to the propagation delays already in the parameter com-
putation phase. On the other hand, the direction dependent
filters must be convolved with the responses of the patches.
This can be done as a multiplication in the frequency do-
main.

Since a full measured HRTF filter database would
take a large amount of space and they should preferably
fit into the GPU memory, the database must be com-
pressed. For that purpose, principal component analysis
(PCA) is applied to the linear amplitudes of the minimum-
phase HRTFs in the frequency domain [13]. Seven prin-
cipal components account for 94% of the variance in the
database, and using only them is considered a reasonable
approximation. Thus, only seven responses are required to
upload in the GPU memory in addition to the weighting
factors for the measured directions.

Since the database contains ITDs and the coefficients
for the PCA-components only for a limited number of di-
rections, these parameters are interpolated bilinearly to get
values for other directions. This results in smooth transi-
tions. The interpolation is performed already on the CPU
in the parameter computation phase and only the result-
ing weighting coefficients are passed as parameters to the
GPU kernel.

In run-time, the interpolated coefficients are used for
constructing the HRTF filters for the desired directions by
simply summing up the weighted PCA components. Then,
the processed response is multiplied with this filter in the
frequency domain.

4.2.3. Convolution with the audio stream and final out-
put

The method must be able to handle streaming input signal.
Thus, the overlap-add method is used [26]. The stream is
processed as overlapping segments, one segment at a time.
Each segment is weighted by a windowing function. The
overlapping windowing functions sum up to one, so that
when the weighted segments are combined together after
processing, the result is the same as if the whole original
signal was processed at once.

The processing is performed such that the discrete
Fourier transform (DFT) is taken of the weighted segment,
thus producing the frequency domain segment. Then the
result is multiplied by the filter produced in the final gath-
ering phase. This modified segment is transformed back to
time domain by the inverse DFT. The result is the original
weighted signal convolved with the filter.

Care must be taken when combining the segments back
together to produce the filtered output stream. The Black-
man window, which requires overlap of % of the segment
length, is used. So at each processing step the stream pro-
gresses by % of the segment length. Since the length of the
result of the convolution is actually Ly + L, — 1 samples,
where L is the segment length and L is the filter length,
the rest of the result (that is after taking off the first % of
the segment length) must be stored and summed together
with the result of the next step. This final part of the result
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is called the overlap. The overlap must be carried through
the process and updated at each step to correctly construct
the final output.

The choice of the windowing function is crucial to
the quality of the output signal. Since the frequency do-
main scaling of the low-sampling-rate responses into high-
sampling-rate responses works properly only for periodic
signals, and the input signal is aperiodic in general, there
is an issue to solve. A sudden jump will occur, as after the
last sample of the segment, the first sample of the next pe-
riod is assumed to follow and that is exactly the first sam-
ple of the current segment. When approximating a sudden
jump with a finite number of frequencies, as in the DFT,
the so called Gibb’s phenomenon appears, which means
that there will be unwanted ripples near the jump no matter
how many frequencies are used, as long as the number is
finite. Thus, the first and last part of the segment are deteri-
orated by these ripples. A solution is to window the signal
so that the apparent periodic signal does not contain any
sudden jumps. That can be done by forcing the derivative
of the signal to be continuous at the first and last sample
of the segment. Since the derivative of the signal

g'(s) = fi(s)w(s) + f(s)W'(s), ¥

and the input function f(s) can be arbitrary, both the win-
dowing function w(s) and its derivative w’'(s) must be zero
at the end points of the segment. The Blackman-window,

l—a 1 2rn a 4rn
w(s)____COS<N—1>+§COS(N—1)’ 9

satisfies these conditions.

There are a few implementation details which set limits
to what can be achieved. First, the FFT block size greatly
affects the running time. In the presented implementation,
a size of 2! = 65536 samples was chosen since with
this length it was still possible to perform the FFTs in
real time while the length of the response is still sufficient
for 1.4 s of sound at 48 kHz. This is sufficient assuming
that the reverberation is insignificant after 1.4 s. For small
rooms with faster sound decay, an even shorter FFT block
could be used but for more reverberant spaces this length
is the minimum requirement. Secondly, the window size,
L, affects the delay introduced before output. A small
size is desirable, thus 8192 samples were used. Since the
windows are overlapped, the maximum delay between a
change in the parameters and the corresponding effect in
the output is } L,. The playback rate is 48 kHz, thus a de-
lay of (8192/3)/48kHz ~ 56.9ms is caused. A smaller
window size could be used, but even now the 64 kB FFT
must be performed 48000/(8192/3) = 17.58 times per
second, and the number of FFT executions is inversely
proportional to the window size.

4.2.4. Direct Sound

As mentioned earlier, the direct sound needs special treat-
ment. The overlap-add convolution does not fit perfectly
for a dynamic scenario where, e.g., the listener moves. In
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practice, moving the listener with the overlap-add tech-
nique results in clearly audible distortion in the output
signal. This is due to the fact that propagation delay
changes only at the rate corresponding to third of the size
of the window applied in convolution, whereas it should
be changed on a per-sample basis to gain distortion-free
output. The problem could be reduced by using an even
smaller window and bigger overlap. This turns out to
be computationally too expensive, and a separate time-
domain processing for the direct sound is implemented.

Movements are implemented with a fractionally ad-
dressable delay-line, and the HRTF’s are implemented as
minimum-phase FIR filters with separate delay-lines for
ITD. The approach is exactly the same as in the DIVA sys-
tem [5]. Based on informal listening experiences, it is suf-
ficient to process only the direct sound separately, and the
distortion in dynamic reflections is not audible.

4.3. Parallel Computation with Graphics Hardware

The run-time final gathering implementation is built on the
CUDA-library by NVIDIA [27]. Other approaches would
be possible, but since a suitable application programming
interface is available for hiding the device-specific de-
tails, that is utilized. The computational model is based on
threads which work in parallel, although in reality some of
the computation might be sequential if there are not suffi-
ciently many multiprocessors available. A multiprocessor
consists of a set of processors executing the same set of in-
structions but with different data. One multiprocessor can
run even hundreds of threads concurrently and there can be
several multiprocessors on a graphics card. The details de-
pend on the specific device used, but the number of threads
is large enough to call the processing massively parallel.
The threads are grouped into blocks in which they can
be synchronized and which can share some variables. Syn-
chronization between the blocks is not possible and data
sharing can happen only through global memory. One

block consists typically of a few hundred threads. In the
presented implementation the block size is 256 threads.

4.3.1. GPU vs. CPU processing

In the presented implementation most of the final gath-
ering [1] process is performed on the GPU. The initial
shooting and iterative propagation phases are precomputed
on the CPU. The input of the GPU algorithm consists of
the responses on the patches and the parameters which tell
which of them are visible, what is the delay of sound trav-
eling from the patch to the listener, what is the attenua-
tion by the distance and what are the direction-dependent
weighting factors for the head-related transfer functions.
The output consist only of the filters for both left and right
channel. These filters are then convolved with a dry audio
stream on the CPU to produce the final output singals.

It should be noted that the whole process in performed
in the frequency domain to allow fast convolutions (im-
plemented as multiplications on the GPU). Only the final
signals are constructed on the CPU by taking a fast inverse
Fourier transform of the output signals.

4.3.2. Memory arrangements

To be able to write efficient code for the GPU, it must be
taken into account that there are different types of mem-
ories on the GPU. Each processor of the multiprocessor
may have a set of registers. These can be used for the local
variables in the GPU kernel code. The reads and writes are
very fast. Then some of the memory can be shared among
the processors working on the same block of threads.
However, syncronization is required at this level to avoid
overlapping reads and writes, which results in slower ac-
cess times in some cases.

Some of the memory is read-only, i.e. it cannot be writ-
ten by the processors. This memory can be cached and
it is often used for storing textures in graphics applica-
tions. Thus, the spatial locality in two dimensions affects
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the access time, since the cache entries are read in two di-
mensional blocks of “texture”. Global memory is memory
which the processors can both read and write, but at very
slow speed, typically hundreds of times slower than op-
erating on the local memory. Figure 7 shows the memory
arrangements on the GPU.

Optimizing memory accesses

The global memory is used for the 64k output filters for
each channel, since that is the only memory all the threads
can write. To avoid accesses to this slow memory, the fil-
ters are constructed in blocks of 256 samples which are
written to the output at once and only once. Before writing
out the block, the temporary storage for each 256-sample
block is in the shared memory.

The shared memory is accessed by multiple threads so
that each thread operates on a different sample to avoid
conflicts. Each thread is assigned to a patch. First, each
thread adds the effects from their patch to one sample.
When a thread finishes operating on a sample it reaches
a synchronization point where it has to wait for the other
threads to finish their operations. Then at the same time,
all threads move one sample forward and add the effects
of their patch to the next sample. This process is repeated
until all the threads have added the effects of their patch
to all the 256 samples. When a block of threads has pro-
cessed all its 256 samples, it writes them out to the output
filters in the global memory. Since the filters are 64k long,
64k / 256 = 256 blocks of threads are required.

On the other hand, in the presented implementation a
block may contain a maximum of 256 threads, so if there
are more than 256 patches, the whole process (GPU kernel
code) must be run more than once, changing the patches
assigned to the threads each time. If all the responses of the
patches can fit into the GPU texture memory, they can be
loaded there in the beginning. Otherwise, the GPU texture
memory works as a cache to the computer’s random access
memory which contains all the responses, and its contents
are changed between calls to the GPU kernel code.

4.3.3. Delay, attenuation, air absorption, HRTFs

The delay-operator applied at run time is based on the dis-
tance from the source patch to the receiver. In addition, the
interaural time delay must be taken into account. These are
given as input parameters and applied at once. The delay-
operator in the frequency domain simply becomes multi-
plication by e~2*/" where f is the frequency and # is the
integer delay in samples.

Attenuation follows the inverse squared distance law,
and it could be applied directly by multiplying the re-
sponse with the attenuation factor, but in the presented im-
plementation it is factored in the weighting coefficients for
the head-related transfer functions in the parameter com-
putation phase.

Air absorption is dependent on the distance and fre-
quency. Since the dependency is complex, it cannot be
easily computed in real time. Thus, filters for air absorp-
tion are designed beforehand for distances from 1 meter
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to 80 meters with one meter step. This accuracy is suffi-
cient as the transitions are smoothed out by the windowing
function used in the signal processing part of the compu-
tation. The maximum distance is also sufficient in typical
cases, such as concert halls, where the longest free paths
are much less than 80 metres. The filters are stored on the
GPU’s memory and they are applied in realtime by using
the distance as an index to the look-up table.

Since these operations are the same for every sample,
they must be done only once per block of samples. Fig-
ure 8 illustrates the process. The outer loop is run once per
block of samples, but the inner loop must be run for every
individual sample. The parameters can be read in the outer
loop since they are the same for the whole response. Then
it is possible to compute the effects of air absorption and
delay (including ITD) and combine them. Also the HRTF
weights and components can be read in the outer loop and
the HRTFs can be constructed. The attenuation by distance
is already factored in the HRTF component weights on the
CPU. Reading and writing to the global memory is done in
blocks in the outer loop while the intermediate results are
kept in the shared memory. The output buffers in the global
memory must be read and written to the shared memory
since they can contain temporary results if the number of
patches is so high that the GPU kernel must be run more
than once. In the inner loop the patch response samples are
read from the texture memory and transformed into equiv-
alent frequency domain impulse responses as described
in Section 4.1.4. The result is multiplied with the inter-
mediate results constructed in the outer loop and finally
the results are accumulated to the intermediate results. Af-
ter processing all the threads the temporary results in the
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Figure 9. The performance of the system was evaluated in four different room geometries: a cube (12 patches), a corridor model (256
patches), a small hall model (243 patches) and a concert hall model (1176 patches).

shared memory are written to the global memory in the
outer loop.

5. Results and Discussion

The implementation of the frequency domain acoustics ra-
diance transfer method which utilizes the GPU was run to
assess the performance and the quality of the auralization.
The goal was to be able to update the output interactively
while the listener was moving, while the perceived sound
quality would be comparable to that achieved by an offline
algorithm which has been shown to produce good results

[1].

5.1. Performance

The performance of the system was tested with four test
models. The cube model consists of 12 patches, the cor-
ridor model of 256 patches, the small hall model of 243
patches, and the concert hall model of 1176 patches. The
models are illustrated in Figure 9. Visually relatively plain
models were used since in practice, small details do not
cause audible effects. In the walkthrough a more detailed
model can be utilized for the visualization while a reduced
model is used for the acoustics modeling.

The tests were run on a desktop PC with a 2.0 GHz In-

tel Core 2 Quad processor, 2 GB of memory, and Nvidia
GeForce 8800 GTX display driver.

Table I. Pre-computation times for the test models. Ini.S.: Initial
Shooting [s].

Model Patches Ini.S. Iter. Propagation
Cube 12 0.03 14 min 56 s
Corridor 256 0.99 10h 7min 17 s
Small Hall 243 1.02 3h 7min 5s
Concert Hall 1176 7.15 99h 12 min 32 s

Table I shows the pre-computation times for the test
models. The number of iterations was fixed to be one hun-
dred times the number of patches. It can be seen that the
pre-processing is quite a slow operation, in particular when
the number of patches grows.

The run-time computation times are listed in Table II.
The time used for accumulating the responses, the total
time used by the GPU, i.e. the time used for both accu-
mulation and memory transfers, and the parameter update
rate are shown. Since the blocks in the overlap-add convo-
lution and the parameters for the direct sound are updated
at the rate of 17.6 Hz, that is the minimum parameter up-
date rate required for updates for every block. Thus, the
performance is sufficient in the case of the three simplest
models. But for the most complex model, the filters are
updated approximately only once per three blocks. The la-
tency is around 160 ms which is even then of the same
magnitude than in other interactive walkthrough systems
[5, 28].
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Table II. Run-time computation times for the test models. Accu.:
Accumulation [ms], GPU: GPU total [ms], Update: Update rate
[Hz].

Model Accu. GPU Update
Cube 4.31 26.3 30.1
Corridor 11.2 40.4 19.8
Small Hall 12.7 43.0 19.5
Concert Hall 61.5 138 6.10

Although, the obtained overall performance is sufficient
for the shown test cases, they are still rather simple when
compared to a typical geometry applied in global illumi-
nation. If the same models should be used for both visual
and aural rendering, an additional geometry simplification
should be added to the pre-processing to make realtime
auralization possible. The level of details used in the test
case models in this study is sufficient, since small details
are not acoustically significant.

5.2. Quality

Since the emphasis of this work was on achieving high
performance, arranging formal listening tests to evaluate
the quality was not considered necessary. Informal listen-
ing confirmed that the perceived sound quality was good
in general, but with the large concert hall model some ar-
tifacts were present due to the slow update rate.

The accuracy of the final result depends mainly on two
factors, first being the accuracy of the acoustic BRDFs.
Currently available acoustic material data is quite coarse
and limits the accuracy of reflection modeling. The sec-
ond factor is the applied discretization such that the use of
smaller patches, smaller solid angles in angular discretiza-
tion, and longer patch responses would improve the qual-
ity of the result. However, since these factors and the com-
putational framework are the same as in the time domain
acoustic radiance transfer method, the results correspond
to those achieved by [1], whose work was validated against
measured data [29, 30]. The small hall model used in the
performance tests is the model of the room used in that
validation.

The response length in the time domain method was
1024 samples which was sufficient for extracting acoustic
parameters [1]. The responses for the patches where gen-
erated for each octave band separately. The frequency do-
main implementation with the same patch response length,
would produce the same results where the patch responses
of different octave bands are combined in one response.
However, the requirements for the output are different for
the auralization than for parameter extraction. Temporal
energy distribution is not sufficient, but an equivalent fre-
quency domain impulse response must be constructed. As
mentioned in Sections 3.3 and 4.1.4 this process causes
some error, but since the acoustical parameters computed
from the patch responses would be realistic, the auralized
output signal gives a realistic impression of the space.
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6. Limitations and Future Work

The presented system is efficient enough for interactive
walkthroughs, although in many ways it is not perfect.
First of all, it is obvious that in reality diffraction oc-
curs, although it has not yet been modelled in the current
system. At low frequencies, the effects of the diffraction
should be audible. However, the framework of the acous-
tic radiance transfer does not hinder the implementation
of diffraction, indeed, it seems that Biot-Tolstoy-Medvin
solution [31] could be applied [32].

Another drawback of the presented technique is the sta-
tionary sound source. When the source moves, the pre-
computation must be redone, and this is a time-consuming
process. Multiple sound source locations could be ap-
plied in the system, but the acoustic radiance transfer pre-
processing must be carried out separately for each of them.
Finding ways to overcome this limitation needs further re-
search.

As more and more accurate models are used the mem-
ory consumption will increase, and it might appear neces-
sary to study more advanced compression techniques such
as use of spherical harmonics [33] in the presentation of
directional responses.

7. Conclusions

The acoustic radiance transfer method was reviewed and
it was noted that the acoustic energy responses could be
represented in the frequency domain and that operations
corresponding to emitting an impulse, as well as scaling,
adding, and delaying the responses in the frequency do-
main was possible. This made possible a frequency do-
main implementation of the technique.

The results of the most time-consuming part of the com-
putation, the iterative propagation of the acoustic energy,
can be stored, and thus only the final part of the compu-
tation must be re-run when the listener moves. This final
part, involving operations on a large number of responses,
can be implemented on the graphics hardware which al-
lows utilization of massive parallellism where one thread
handles one sample of a response. The implementation
tries to minimize the slow memory access which otherwise
could form a bottleneck in the process.

The limits of the memory space and the structure of the
GPU pipeline forced to certain implementation solutions.
The head-related transfer functions were compressed us-
ing principal component analysis so that they could fit in
the memory of the graphics card. Bilinear interpolation
of the weights of the components between the measured
directions was used to produce smooth directional transi-
tions. The overlap-add technique with the Blackman win-
dow was used for the audio stream processing. The direct
sound was handled separately since the overlap-add tech-
nique does not allow per sample, but per block, updates for
the parameters.

The results show that interactive walkthroughs in rela-
tively complex models with arbitrary reflection properties
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is possible while using a physically-based model for the
whole room response.
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